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Abstract

Let H be a finite Frobenius group with a perfect Frobenius complement G.
Two new proofs that G is isomorphic to SL2(5) are given.

1 Introduction
A Frobenius group is a transitive but not regular permutation group on a set
Ω such that every non-trivial element has at most one fixed-point. Let H be a
finite Frobenius group with kernel N and complement G. That is, N consists
of the identity and all the fixed-point free elements; and G is the stabilizer of
some element in Ω. In [Fr, V] Frobenius proved that N is a normal subgroup
of H. In [Za1, Satz 16] ( and in revised form in [Za2]) Zassenhaus showed
that if G is perfect then G ∼= SL2(5). Both of these proofs involve character
theory. A further proof of Zassenhaus’ theorem based on the elementary theory
of exceptional characters can be found in [Be]. In this note we will give two
new proofs of Zassenhaus’ theorem without using character theory (except that
we assume Frobenius’ theorem).

Theorem A Let H be a finite Frobenius group with complement G. If G is
perfect, then G ∼= SL2(5).

The first proof is based purely on standard group theory text book material.
The second proof is slightly shorter but relies on a couple of simple facts about
modular representations of finite groups ( see the end of the introduction for
the details).

Note that the action of G on Ω and the action of G on N by conjugation
are isomorphic. Hence CN (g) = 1 for all g ∈ G#. Let p be a prime dividing
the order of N and put V = Ω1(Z(Op(N)). By [Th], N is nilpotent and so
V 6= 1. ( For perfect G a more elementary argument is possible: Let q the
smallest prime dividing the order of G and S a Sylow q-subgroup of G. By [Go,
10.3.10], S is cylic or q = 2 and S is generalized quaternion. As G is perfect,
Burnside’s p-complement theorem [Go, 7.4.5] implies that S is not cyclic. Thus
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q = 2 and G contains an involution t. But then t inverts N and so N is abelian
and again V 6= 1.) Now V is a GF (p)G-module and all non-trivial elements of
G act fixed-point freely on V . Hence Theorem A follows at once from ( and is
in fact equivalent to) Theorem B, which is also a theorem of Zassenhaus:

Theorem B Let G be a non-trivial, finite perfect group, K a field and V a
faithful KG-module so that all non-trivial elements of G act fixed-point freely
on V . Then G ∼= SL2(5).

In section 3 we establish some basic facts about G which will be used in
both of our proofs of Theorem B. Section 4 contains the first proof of Theorem
B, while in section 5 we prove:

Theorem C Let G be a non-trivial finite perfect group with cyclic or dihedral
Sylow 2-subgroups, K a field of characteristic 2 and W a faithful KG-module
so that all non-trivial elements of odd order of G act fixed-point freely on W .
Then G ∼= Alt(5).

We finish the introduction by showing how Theorem C implies Theorem B,
and thus obtain our second proof of Theorem B.

The starting point are the following simple facts from the theory of modular
representations of finite groups ( which can be extracted for example from [CR]):

1. Let p be a prime and G a finite group so that p does not divide the order
of G. Then every GF (p)G module is isomorphic to the reduction modulo
p of some module for G in characteristic 0.

2. Let G be a finite group, p a prime, V a G-module in characteristic 0 and
W a reduction of V modulo p. Then a p′-element in G acts fixed-point
freely on V if and only if it acts fixed-point freely on W .

Let G and V be as in Theorem B. Without loss K is a ground field. Since
|G| is co-prime to the characteristic of K, V is the reduction of some G-module
X in characteristic zero. Then all non-trivial elements ofG act fixed-point freely
on X. Let W be a reduction of X modulo 2. Then all non-trivial 2′-elements
of G still act fixed-point freely on W .

Assume t is an involution in G and let v ∈ V . Then v + vt is fixed by t,
vt = −v and so t is the unique involution in G. Hence t ∈ Z(G). Moreover,
w = wt for all w ∈ W . By [Go, 10.3.1] the Sylow 2-subgroups of S are cyclic
or quaternion and so the Sylow 2-subgroups of G/〈t〉 are cyclic or dihedral. By
Lemma 3.6 below, O2(G) = 〈t〉 and so G/〈t〉 acts faithfully on W .

Hence we can apply Theorem C, to G if |G| is odd, and to G/〈t〉 if |G| is
even. We conclude that |G| is even and G/〈t〉 ∼= Alt(5). Thus by [Hu, V25.7],
G ∼= SL2(5).

Acknowledgement: I would like to thank the Mathematisches Seminar
der Universität Kiel for its hospitality. I also would like to thank B. Doerr,
P. Hewitt, H. Schnabel, B. Stellmacher and most of all H. Bender for useful
comments on an earlier draft of this paper.
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2 SL2(3)
In this section we proof a lemma on SL2(3) with fixed-point freely acting el-
ements of order three. This lemma is at the heart of both of our proofs of
theorem B.

Proposition 2.1 Let H ∼= SL2(3), A = O2(H), K a field and V a KH-
module. Let d be an element of order three in H and a ∈ A \Z(H) so that also
ad has order three. Let b = ad

2
and 1 6= z ∈ Z(H). Suppose that

(i) The elements of order three in H act fixed-point freely on V .

(ii) vz = −v for all v ∈ V .

Then

(a) The following relations hold in the ring EndK(V ):

(1 + a)d = b− 1 and − 2d = (a− 1)(b− 1).

(b) If charK = 2, then CV (a) = CV (b) = CV (A).

(c) If charK 6= 2, then any A-invariant subspace of V is also H-invariant.

Proof: Since d has order three, (1+d+d2)(d−1) = 0. As d is fixed-point
free we conclude

(1) 1 + d+ d2 = 0.

As ad also as order three, 1+ad+adad = 0. Multiplying this equation with
d from the right we get d+ad2+adad2 = 0. Hence by (1), d−a−ad+adad2 = 0.
Furthermore, dad2 = ad

2
= b and so d− a− ad+ ab = 0. Thus d− ad = a− ab

and (1 − a)d = a(1 − b). As a2 = z = −1 we can multiply the last equation
with a from the left to obtain

(2) (a+ 1)d = b− 1.

Since (a− 1)(a+ 1) = a2 − 1 = −2 we get

(3) −2d = (a− 1)(b− 1).

In particular, (a) holds. Suppose now that charK = 2 and let v ∈ CV (a).
Then v = va, v + va = 0 and so v(1 + a)d = 0. Hence by (2) v(b− 1) = 0 and
v ∈ CV (b). As A = 〈a, b〉, (b) holds.

So suppose that charK 6= 2. Then by (3), d = −1
2(a−1)(b−1) and so every

subspace invariant under A is also invariant under H = A〈d〉.
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3 Alt(4)
In this section we assume that G is a non-trivial finite group with the following
three properties:

(i) G is perfect.

(ii) The Sylow 2-subgroups of G are dihedral or cylic.

(iii) Every subgroup of G of order pq, p and q odd primes, is cyclic.

The main result of this section is Propostion 3.9 which establishes a sub-
group isomorphic to Alt(4) in G.

Let p be an odd prime dividing the order of G, T a Sylow p-subgroup and
S a Sylow 2-subgroup of G.

Lemma 3.1 All p-subgroups of G are cylic.

Proof: By (iii) applied to the case p = q, all abelian p-subgroups of G are
cyclic. Hence the lemma follows from [Go, 5.4.10i].

The following observations will be useful later on.

Lemma 3.2 (a) If A is a p′-group acting on a cyclic p-group B, then either
[B,A] = 1 or CB(A) = 1.

(b) If α is an automorphism of order 2 of the cyclic p-group B, then α inverts
B.

Lemma 3.3 NG(T )/CG(T ) is a 2-group and each p-subgroup of G is inverted
by some element in G.

Proof: By induction on p. Suppose first that q is an odd prime dividing
the order of NG(T )/CG(T ). Then q 6= p and as T is cyclic, q divides p − 1
and so q < p. Let R be a Sylow q-subgroup of NG(T ) and E = CR(T ). If
E = 1 then Ω1(R)Ω1(T ) is not cylic, a contradiction to (iii). Thus E 6= 1. By
induction there exists y ∈ NG(E) which inverts E. Note that T is a Sylow p
-subgroup of CG(E). Thus by the Frattini argument [Go, 1.3.7] we may assume
that y normalizes T . Now R is a Sylow q-subgroup of NG(T ) ∩NG(E) and so
by another application of the Frattini argument we may assume that y also
normalizes R. Since y does not centralize E, it does not centralize R. Thus by
3.2 y inverts R and so R = [R, y]. As the autmorphism group of T is abelian
we conclude R = [R, y] ≤ CG(T ), a contradiction.

Thus NG(T )/CG(T ) is a 2-group. By Burnside’s p-complement theorem
[Go, 7.4.5], NG(T ) 6= CG(T ). Hence T is inverted by some element of G and as
any p-subgroup is conjugate to a subgroup of T , 3.3 is proved.

Lemma 3.4 CG(S) ≤ S.
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Proof: Suppose CG(S) contains an element x of order p. Then S is a Sylow
2-subgroup of NG(〈x〉) and centralizes x. But this contradicts 3.3.

Lemma 3.5 All involutions in G are conjugate.

Proof: Since S is dihedral or cylic, S has a cyclic subgroup of index two.
Since G has no subgroup of index two, Thompson transfer [Su, 5.1.8] implies
that all the involutions in G are conjugate to the unique involution in this cyclic
subgroup.

Lemma 3.6 S is dihedral of order at least four and Z(G) = O2(G) = 1.

Proof: By 3.3, G has even order and no element of odd order is in the center
of G. Thus Z(G) ≤ Z(S). By Burnside’s p-complement theorem, S is not
cylic and so is S is dihedral of order at least four. Hence G has more then one
involution and so by 3.5 S ∩ Z(G) = 1 and so Z(G) = 1. Since O2(G) is cyclic
or dihedral, Aut(O2(G)) is solvable and as G is perfect, O2(G) ≤ Z(G).

Lemma 3.7 Let A be a fours group in S. Then 3 divides |NG(A)/CG(A)|.

Proof: It suffices to show that NG(A) acts transitively on A#. If A = S this
follows from 3.5 and a theorem of Burnside [Go, 7.1.1]. So suppose A 6= S and
let a, b be any two distinct involutions in A. Let c be the third involution in
A. By 3.5, c ∈ Z(S)g for some g ∈ G. Then Sg is Sylow 2-subgroup of CG(c)
and so we may assume that A ≤ Sg. As Sg is dihedral, A = CSg(A) < NSg(A).
Since NSg(A) fixes c it must permute a and b.

Let F ≤ Z(S) with |F | = 2.

Lemma 3.8 CG(F ) = O(CG(F ))S.

Proof: Put R = O2(CG(F )). If R has odd order we are done. So suppose
that R has even order. Since R has no subgroup of index two we get as in 3.5
and 3.6 that all involutions in R are conjugate and R ∩ S is dihedral of order
at least four. But then F ≤ R ∩ S and we get a contradiction as F is normal
in R.

Proposition 3.9 G has a subgroup isomorphic to Alt(4).

Proof: By [Go, 6.2.2i] there exists an S-invariant Sylow 3-subgroup L of
O(CG(F )). Let A be a fours group in S. We consider the cases that CG(A) is
a 3′-group and that 3 divides |CG(A)| seperately.

3.9.1 If CG(A) is a 3′-group, then A is contained in a subgroup of G isomor-
phic to Alt(4).
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Indeed, let D be a Sylow 3-subgroup of NG(A). By assumption CD(A) = 1
and by 3.7, D does not centralizes A. Thus D ∼= C3 and DA ∼= Alt(4).

3.9.2 If CG(A) is not a 3′-group, then 1 6= L is a Sylow 3-subgroup of CG(A),
S 6= A and if B is a fours group in S not conjugate to A in S, then B inverts
L.

Indeed by 3.4 we first conclude that S 6= A. Let L∗ ∈ Syl3(CG(A)). As S
is dihedral, F ≤ A and so L∗ ≤ CG(F ). By 3.8 L∗ ≤ O(CG(F )). Since L∗ is
A-invariant we conclude from [Go, 6.2.2ii,iii] that some conjugate of L∗ under
CG(A) is contained in L. Hence we may assume without loss that L∗ ≤ L.
Thus by 3.2, A centralizes L and so L = L∗. Hence 〈AS〉 centralizes L. Note
that S is a Sylow 2-subgroup of NG(L) and so by 3.3 S inverts L. As S is
dihedral, S = 〈AS〉B and so B inverts L.

We are now able to prove 3.9. In case 3.9.1 we are done. So assume 3.9.2
holds. Then B does not centralize L. If CG(B) is not a 3′-group, then 3.9.2
applied to B gives the contradiction L ≤ CG(B). Thus CG(B) is a 3′-group
and by 3.9.1 B is contained in a subgroup isomorphic to Alt(4).

The next lemma is well known. For completeness we provide a simple ( and
also well known) counting argument.

Lemma 3.10 If the centralizer of some involution in G has order four, then
G ∼= Alt(5).

Proof: Recall that by 3.5 G has a unique conjugacy class of involutions.
Moreover, CG(F ) = S and all elements in G have order either odd or two.

3.10.1 Let M and M∗ be a maximal abelian subgroup of G of odd order with
M 6= M∗. Then |NG(M)/M | = 2 and M ∩M∗ = 1.

Let b be an element of prime order in M and C = CG(b). Then C has
odd order and by 3.4 there exists an involution z in G which inverts b. Then
CC(z) = 1 and so C is abelian and C = M . In particular, b 6∈ M∗ and
M ∩M∗ = 1. As any involution normalizing M has to invert M , M can not
be normalized by a fours group. Thus NG(M)∩CG(z) = 〈z〉 and by a Frattini
argument applied to M〈z〉�NG(M),

NG(M) = M(NG(M) ∩ CG(z)) = M〈z〉.

Thus 3.10.1 holds.

Let M1,M2, . . . ,Mk be representatives for the conjugacy classes of maximal
abelian subgroups of odd order in G, n = |G| and mi = |Mi|. By 3.10.1 each
non-trivial element of odd order in G lies in exactly one conjugate of the Mi’s.
Moreover, there are n

4 involutions and so
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n = 1 +
n

4
+

k∑
i=1

n

2mi
· (mi − 1).

Multipliying by 2
n we obtain

3
2
>

k∑
i=1

mi − 1
mi

.

Since 2
3 + 6

7 = 32
21 > 3

2 , we conclude k = 2, m1 = 3, and m2 = 5. Hence
n = 60. In particular, the subgroup of G isomorphic to Alt(4) has index five in
G and so G ∼= Alt(5).

4 The first proof of Theorem B
Let G and V be as in Theorem B. Morever, we assume without loss that K is
algebraicly closed. Let S be a Sylow 2-subgroup of G. By [Go, 10.3.1] we have

Lemma 4.1 (a) S is cylic or generalized quaternion.

(b) Every subgroup of G of order pq, p and q primes, is cyclic.

If G has odd order then G fullfils the assumptions but not the conclusion of
section 3. Thus G contains an involution t. Then t inverts V , t is unique and
t ∈ Z(G). Put Ḡ = G/〈t〉. Then S̄ is cyclic or dihedral and so we can apply the
results of section 3 to Ḡ. In particular, there exists H ≤ G with H ∼= Alt(4).
Let A = O2(H) and D ∈ Syl3(H). Then A ∼= Q8 and H ∼= SL2(3). Without
loss A ≤ S. Let F̄ be a subgroup of order two of Z(S̄). Then F ∼= C4 and
F ≤ A. By 2.1c we have

Lemma 4.2 All A-invariant subspaces of V are also invariant under H.

Lemma 4.3 Let H ≤ R ≤ G so that R normalizes a 2-dimensional subspace
of V . Put E = 〈HR〉. Then E = H or E ∼= SL2(5). Moreover, CR(E) =
Z(R) = O(Z(R))Z(H) and R/Z(R) ∼= Alt(4), Sym(4) or Alt(5).

Proof: Let W be a 2-dimensional subspace of V normalized by R. By the
fixed-point free action R acts faithfully on W and we may view R as a subgroup
of GLK(W ). Let M be a maximal abelian subgroup of R. As K is algebraicly
closed, W is the direct sum of two 1-dimensional M -submodules. As M is
maximal, M 6≤ Z(R) and so these submodules are non-isomorphic and uniquely
determined by each m ∈M \Z(R). Hence M ∩M∗ = Z(R) for any two distinct
maximal abelian subgroups M and M∗ of R. Moreover |NR(M)/M | ≤ 2. Let
M1,M2, . . .Mk representatives for the classes of maximal abelian subgroups of
R, mi = |Mi/Z(R)|, n = |R/Z(R)| and εi = |NNR(Mi)/Mi|. Then
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(1) n = 1 +
k∑
i=1

n

εimi
(mi − 1).

If k = 1 we conclude that R = M1 is abelian, a contradiction to H ≤ R.
Hence we may assume from now on that k ≥ 2. By (1)

(2) 1 =
1
n

+
k∑
i=1

mi − 1
εimi

.

Since mi−1
εimi

≥ 1
4 we get k ≤ 3.

Suppose first that ε1 = 1. Then m1−1
m1

< 1 − 1
4(k − 1) and so k = 2 and

m1 ≤ 3. If m1 = 2 we compute from (2) that n = 2m2 and so M2 is of index
two in R. Then as H has no subgroup of index two, H ≤M2, a contradiction.
If m1 = 3 we get n = 6m2

3−m2
. Thus m2 = 2, n = 12 and R = HZ(R).

Suppose next that εi = 2 for all i. Then by (1), k > 2. Thus k = 3 and so
by (2) 1

m1
+ 1

m2
+ 1

m3
= 2

n + 1. In particular, at least one of the m′is has to be
2. Say m1 = 2. Then 1

m2
+ 1

m3
= 2

n + 1
2 . Then at least one of m2 and m3 has

to be at most 3. Say m2 ≤ 3 and m2 ≤ m3.
If m2 = 2, then n = 2m3, a contradiction as above.
If m2 = 3, then n = 12m3

6−m3
. Thus m3 is 3, 4, or 5 and n = 12, 24 or 60

respectively. Hence HZ(R) has index 1, 2 or 5 in R. As m2 = 3 and e2 = 2
elements of order three in H are inverted by some element in R. So the case
of index 1 is impossible while in the remaining two cases it is easy to see that
R/Z(R) ∼= Sym(4) and Alt(5), respectively.

Furthermore, as S is generalized quaternion, O2(Z(R)) = Z(H) and Z(R) =
O(Z(R))Z(H).

Lemma 4.4 A ≤ O2(NG(F )). In particular, O2(NG(F )) ≤ CG(A).

Proof: Let g ∈ NG(F ), a ∈ A \ F , E = 〈aag〉 and D = 〈a, ag〉. Then
D̄ is dihedral, and EF as index at most 2 in DF . Since E centralizes F ,
EF is abelian. Since K is algebraically closed, EF normalizes a 1-dimensional
subspace in V . Hence DF normalizes a 2-dimensional subspace W in V . Since
A = 〈a〉F ≤ DF , we conclude from 4.2 that also H normalizes W . Let R =
〈D,H〉 = 〈ag,H〉 and E = 〈HR〉. Then R = 〈ag〉E and we conclude from 4.3
that R̄ ∼= Alt(4), Sym(4) or Alt(5). Hence DF ≤ NR(F ) ∼= Q8 or Q16. In
particular, A and Ag commute modulo F . Thus 〈ANG(F )〉 is a 2-group and so
A ≤ Q := O2(NG(F )). Clearly each element of odd order in NG(F ) centralizes
F and, as Q is quaternion, also Q.

Lemma 4.5 S = A.
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Suppose S 6= A and let B be a quaternion group of order eight in S not
conjugate to A in S.

Suppose that B is contained in a subgroup H∗ ∼= SL2(3). Put R =
〈H,H∗, S〉. As S has a cyclic subgroup of index two, there exists a 2-dimensional
KS-submodule W in V . Then by 4.2 applied to H and H∗, R normalizes
W . As |S| ≥ 24 we conclude from 4.3 that R/Z(R) ∼= Sym(4). But then
A = O2(H) = O2(R) = O2(H∗) = B, a contradiction.

Thus B is not contained in an SL2(3). From 3.9.1 applied to B in place of
A, we conclude that 3 divides |CG(B)|. As F ≤ B, 3 divides |CG(F )| and so
by 4.4, 3 also divides |CG(A)|. As the Sylow 3-subgroups of NG(A) are cyclic
this implies that all elements of order three in NG(A) are already in CG(A), a
contradiction to H ≤ NG(A).

We are now able to complete our first proof of Theorem B. Since A = S,
3.4 implies that CḠ(Ā) = Ā is a 2-group. Hence by 4.4 also CḠ(F̄ ) is a 2-group
and so CḠ(F̄ ) = Ā. Thus by 3.10, Ḡ ∼= Alt(5) and by [Hu, V25.7], G ∼= SL2(5).

5 Theorem C
Let G and W be as in Theorem C. As in [Go, 10.3.1] we have that subgroups of
order pq, p and q odd primes, are cyclic. Thus we can apply the results of section
3. In particular by 3.9 there exists H ≤ G with H ∼= Alt(4). Put A = O2(H)
and let S be a Sylow 2-subgroup of G containing A. Let 1 6= a ∈ Z(S) ≤ A.

Lemma 5.1 A = CG(a)∩CG(CW (a)) and in particular, A is normal in CG(a).

Let B = CG(a) ∩ CG(CW (a)). By definition, B centralizes CW (a). Since
[W,a] ≤ CW (a) and [W,a] is isomorphic to W/CW (a) as CG(a)-module, B also
centralizes W/CW (a). It follows that [W,B,B] = 0. Hence B is elementary
abelian. By 2.1b, A ≤ B. Since S is a dihedral group, S has no elementary
abelian subgroup of order larger than four, and so B = A.

Lemma 5.2 S = A

Suppose that S 6= A and let B be a fours group in S distinct fom A.
If B is not contained in an Alt(4) then by 3.9.2 (with the roles of A and
B interchanged), A inverts an element of order three in CG(B) ≤ CG(a), a
contradiction since by 5.1, A is normal in CG(a). Thus B is contained in
an Alt(4) and hence 2.1b (applied to B in place of A) yields B ≤ CG(a) ∩
CG(CW (a)). Thus by 5.1 B ≤ A, a contradiction.

Lemma 5.3 CG(a) = S.

By 5.2 S = A is a fours group. By 5.1, CG(a) normalizes A and so stabilizes
the series 1 ≤ 〈a〉 ≤ A. Thus O2(CG(a)) centralizes A and so by 3.4 CG(a) is
a 2-group. Thus CG(a) = S.

Theorem C now follows from 3.10.
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