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Abstract

A group is called p-linear if it is isomorphic to a subgroup of GL(n, K) for some
field K of characteristic p and some integer n. Let H be a normal subgroup of G
and assume that both H and G/H are periodic and p-linear. In addition, assume
that both H and G/H have finite unipotent radicals and that the finite residual
of G/H has finite index in G/H. The main result of this article is a proof that
under these assumptions G is p-linear. An example is provided showing the
result is false if the assumption regarding the finite residual is removed.



1. Results

For finite n, the group G is said to be K-linear of degree n if it is isomorphic
to a subgroup of GL(n, K) and is p-linear if it is K-linear for some field K of
characteristic p.

The following theorem was proven as [5, Theorem A].

(1.1) THEOREM. Let G be a periodic subgroup of GL(n, K) with trivial unipo-
tent radical. Then for every normal subgroup H of G, the image G/H is K-
linear of degree bounded by a function of n.

Here the statement on bounded degree indicates that there is a positive, non-
decreasing function f such that the degree of G/H is always less than or equal
to f(n).

Wehrfritz [9] gave a second proof of the theorem and was able to weaken the
hypotheses by assuming only that H has trivial unipotent radical. A slightly
different proof of the theorem is given below (one that in fact includes groups
G with finite unipotent radical, as remarked below).

The main concern here is proving a converse result to this theorem. It is
not in general the case that an extension of a linear group by a linear group is
linear. It is also not clear what shape the best converse to the theorem would
take.

Consider the following:

HYPOTHESIS (%)

G is alocally finite group and M a normal subgroup of G satisfying:
(1) M is a central product AY L; Y --- Y L; Y --- Y L, for some
s;

(7i) each L; is a quasisimple group of Lie type in characteristic p;
(7i7) A is a periodic abelian p’-group of finite rank r;

(tv) G/M is finite.

The rank of a periodic abelian group B is the largest m for which there is a
prime ¢ and an elementary abelian ¢g-subgroup C of B having order ¢™. If p = 0,
then s = 0 in (¢) and A is periodic abelian of finite rank in (4i7).

Each of the groups L; in (i) has, naturally defined, a Lie rank r; and a
field of definition K; < F,. (See [5, Lemma 9(iv)] or Theorem 2.6 below.) (In
characteristic p = 0 we set F, = Q hence F, = Q.) We define the M-rank of G
with (x) to ber+Y.7 , r;. We define the field K to be the smallest subfield of
[, that contains each K; and all ¢*th roots of unity, for every k and all primes
q for which A contains a subgroup Z,~. Thus M is K™ linear.

(1.2) TuEOREM. If G is a periodic K-linear group of degree n with finite
unipotent radical U(G), then G has a characteristic subgroup M for which
(G, M) satisfies (x), where p = Char(K). In this case, M can be chosen so
that the M-rank of G is bounded by a function of n and the index |G/M)| is
bounded by functions of n and |U(G)|.



(1.3) THEOREM. A group G with (%) is K™ -linear of degree bounded by a
function of its M -rank and the index |G/M]|.

As a corollary, we get Winter’s theorem [10]. The usual proofs are more
elementary than this; see [3, Theorem 1.L.2] and [7, Theorem 9.5].

(1.4) CoROLLARY. If G is a periodic K -linear group with trivial unipotent
radical, then G is Fy-linear, where p is the characteristic of K. In particular,
G is countable.

Since uncountable unipotent linear groups of exponent p exist, Winter’s
theorem is false without some restriction on the radical. Nevertheless, because
of it we can restrict (most) discussion to the question of whether or not a given
group is p-linear (that is, linear over some field of characteristic p).

We have a partial converse to Theorem 1.1. For a group G let Res(G) be
the finite residual of G, that is the intersection of the subgroups of finite index

in G.

(1.5) THEOREM. Let H be a normal subgroup of G and assume that

(a) H is a periodic p-linear group with finite unipotent radical;

(b) G/H is a periodic p-linear group with finite unipotent radical;

(¢) Res(G/H) has finite index in G/H.
Then G is p-linear of degree bounded by a function of deg H,degG/H and
|G/H: Res(G/H)|.

We claim that assumption (c) of the previous theorem is fulfilled if the
Hirsch-Plotkin radical of G/H is Cernikov. Indeed, let M be as in Theorem 1.2
applied to G/H in place of G. Let E., be the product of all the infinite Lls.
Since A has finite rank, Res(A) is the divisible part of A. Then (x) implies that
Res(G/H) = Res(A)Ey and so Res(G/H) has finite index in G/H if and only
if Res(A) has finite index in A. Note that this fulfilled if the Hirsch Plotkin
radical of G/H is Cernikov.

(1.6) THEOREM. Let G be a periodic linear group with finite unipotent radical.
Let Res(G)™ be the image of Res(G) in Aut(G). Then Out(G) is residually finite
and Res(Aut(GQ)) = Res(G)".

The next section contains proofs of Theorems 1.1-1.6. The final section
contains two examples. The first example shows that Theorem 1.5 is false
under (a) and (b) alone. The other example demonstrates the impossibility in
Theorem 1.5 of bounding the representing degree of G in terms of deg G/H and
deg H, indeed in terms of the isomorphism class of H and the degree of G/H.
The theorem shows that the degree is bounded in terms of the degree of H and
the isomorphism class of G/H.

The problem discussed in this article was one that Richard Phillips was
working on during the last years of his life. He wrote an initial draft of this
article in conjunction with Julianne Rainbolt. After Richard Phillips’ death,



Jonathan Hall, Ulrich Meierfrankenfeld, and Julianne Rainbolt completed the
revisions of the article. The authors thank Felix Leinen and the referees for
helpful remarks on earlier drafts of this article.

We also would like to thank Bert Wehrfritz for noticing that Theorem 1.5 in
the published version of this article is false.

2. Proofs

Let G be a locally finite group and 7 be any set of primes. Then O,(G) denotes
the largest normal subgroup of G all of whose elements are 7-elements. If G is
periodic and linear in characteristic p, then O,(G) is the unipotent radical of G.
In the following, E(G) denotes the subgroup of G generated by the components
of G, where a component of G is a subnormal quasisimple subgroup.

(2.1) THEOREM. (SCHUR, [3, THEOREM 1.L.1]) Periodic linear groups are
locally finite.

The next two lemmas are elementary.

(2.2) LEMMA. If G is Ky-linear of degree n and K is a subfield of Ky such
that |Ko : K| is finite, then G is K -linear of degree n|Ky: K|.

(2.83) LEMMA. If M is K-linear of degree m and has finite index in G, then
G is K-linear of degree m|G: M| via the induced representation.

(2.4) LEMMA. Let H be K-linear and Z a finite normal subgroup of the center
Z(H). Then H/Z is K-linear of degree bounded by a function of the degree of
H and |Z|.

In particular, if the factors H; are K -linear, then a central product H1 Y Hy =
(Hy x Hs)/Z over a finite central subgroup Z is K -linear of degree bounded by
a function of the degrees of the H; and |Z|.

PRrROOF. As the direct product of two K-linear groups is K-linear with degree
equal to the sum of the two degrees, this an immediate consequence of [5,
Proposition 3(ii)].

(2.5) LEMMA. Let B be a periodic abelian group and let A be the divisible hull
of B. Suppose K contains an n-root of unity whenever A contains an element
of order n. Let V be faithful finite dimensional K B-module. If the unipotent
radical of B is trivial, then V can be extended to a faithful K A-module with
EndKA(V) = EndKB(V).

PRrROOF. As V is finite dimensioal and B has trivial unipotent radical, B has
finite rank. Note that every non-trivial subgroup of A intersects B and so any
extension of V to a K A is faithful. Any direct summand of B is contained in a
direct summand of A and so by induction on the rank of B we may assume that
B = (b} is cylic and hence A is locally cyclic. Let A be an eigenvalue for b on V.



Then there exists an homomorphism ¢y : A — (K*,-) with ¢(b) = X\. From the
assumption, V is the direct sum of the eigenspaces for b. Define v* = ¢ (a)v
whenever a € A and v is in the eigenspace corresponding to A.

A proof of the following theorem can be found at [4, Lemmas 15.6, 15.10,
and Theorem 15.12]. It is very similar to [5, Proposition A] and [8, 1.2].

(2.6) THEOREM. Let G be a periodic linear group of degree n over a field in
characteristic p and having trivial unipotent radical.

Let {L;|1 < i <t} consist of all components of G that have Lie type in
characteristic p. The central product Ey, ,(G) = L1 Y --- Y Ly is characteristic
in G, and t < n/2. Furthermore, G has a characteristic abelian subgroup A
such that the subgroup M(G) = AY Ep ,(G) is characteristic in G and has
finite index bounded by a function of n.

Proor or THEOREM 1.2.

G is locally finite by Theorem 2.1.

As the unipotent radical U = U(G) is finite, C¢(U) is a characterisitic
subgroup of G of finite index bounded by a function of |U|. Therefore we may
assume that U < Z(G).

By Lemma 2.4, G = G/U is K-linear with trivial unipotent radical of degree
bounded by a function of |U| and n.

Let N = M(G) be the subgroup AY L; Y --- Y Ly of Theorem 2.6. Let L;
be the derived group of the preimage of L; in G, A the p'-part of the preimage
of A,and M = AY Ly Y --- Y L,. Then M is characteristic in G, and the
pair (G, M) satisfies (x).

The various rank(L;) are bounded by a function of n [5, Lemma 9(b)(i)].
Since A is p' and periodic, it has finite rank bounded by a function of n by
Maschke’s Theorem.

Proor or THEOREM 1.3.

By (iv) and Lemma 2.3, we may assume GG = M. Each L; is K™-linear by
assumption and has a center that is finite of order bounded by a function of the
Lie rank of L; ([5, Lemma 10(viii)] or Lemma 2.8). Thus E(G) =LY --- Y L;
is KM linear by Lemma 2.4 and has finite center of order bounded in terms of
the Lie ranks of the L;. By definition, (K*)* contains a copy of Z,~ whenever
A has infinite ¢g-part, so A is K™ -linear of degree equal to its rank . A second
application of Lemma 2.4 then proves that G = M = AY E(G) is KM-linear,
as desired. Furthermore, its degree is controlled as described.

PrOOF OF COROLLARY 1.4. _
As G is periodic and K-linear, it has (x) by Theorem 1.2 and so is F,-linear

by Theorem 1.3.

PRrROOF OF THEOREM 1.1.



By Theorem 1.2, G has (*) for a normal subgroup M, and the M-rank of
G and |G/M]| are both bounded by functions of n. In G = G/H, set M =
MH/H. Then the pair (G, M) inherits (x), so by Theorem 1.3 G is linear of
degree bounded in terms of the M-rank of G (at most the M-rank of G) and
|G: M| (< |G: M|). Thus the degree of G/H is bounded by a function of n, as
desired.

REMARK. The same proof actually gives something slightly stronger than The-
orem 1.1. We need only require that the unipotent radical of G be finite, in
which case the representation degree of G/H is bounded by a function of n and
of the order of the radical.

(2.7) LEMMA. Let B be a class 2 nilpotent group with B' < H < Z(B).
Assume that B/H is divisible and periodic. Then B is abelian.

PROOF. Let b € B and choose an integer n with b™ € H. Then B/Cp(b) = [B, ]
has exponent dividing n. But H < Cp(b) and so B/Cp(b) is divisible. Thus
B = Cp(b) and B is abelian.

(2.8) LEMMA. Let periodic N have a central subgroup H such that N = N/H
is a central product My Y --- Y M, of finitely many infinite quasisimple groups
M; of Lie type in characteristic p. Then N = H Y E(N), where E(N) =
N1 Y --- Y N; has finite center of deg N-bounded order, and is a central product
of quasisimple groups N; of Lie type with N; = M;. Moreover, E(N) is p-linear
of deg N -bounded degree.

PrROOF. By the Three Subgroups Lemma, Z3(N) = Z(N). Also N' =
[N'H,N'H] < N"; so N' is perfect, and N = H Y N'. Indeed N/H =
N'H/H ~ N'/N'N H has image N'/Z(N'). Therefore N' = E(N), the central
product of the components N; = (M;)’, the derived subgroups of the preimages
M; of the various M;.

Each simple periodic infinite Lie type group L is a direct limit of finite sim-
ple groups of the same Lie type, and so any element of its multiplier occurs
already within the multiplier of some finite subgroup of Lie type. Exceptional
multipliers for finite Lie type groups occur only over small fields, and the canon-
icial multipliers come from the natural or spin representations of fixed degree
bounded in terms of the Lie rank [2]. Thus the multiplier of L is finite of or-
der bounded by the rank of L and comes from a representation of degree also
bounded by the rank. (See also [5, Lemma 10].)

PrROOF OF THEOREM 1.6. By 1.2 there exists a characteristic subgroup M of
G fulfilling (). Let E be the product of the infinite L;. Using Lemma 2.8 we
may choose A to be a characteristic subgroup of M. Then E A is a characterisic
subgroup of finite index. Let H = Res(G) and note that H = Res(A)E and
Res(A) is the largest divisible subgroup of A. For g € G let g* € Aut(G),h —
h9.



We first treat the case where E = 1. Let m be the set of prime divisors of
|G/A| and let D be the largest m-divisible subgroups of A. Note that A has finite
rank, O, (A) < D and H = Res(A) < D. Therefore A/D and G/D are finite
m-groups. Let n = |G/D| and for a positive integer i let D; = {d € D |d' = 1}.
Then D; is finite. The following cohomological argument is taken from [1,
Propostions 3.7.5]. Since D is n divisible, the following is a short exact sequence:

a—a™

1—D,—D — D—1

Hence we also obtain the long exact sequence

...— H™(G/D,D,) — H™(G/D,D) “=%* H™(G/D,D) — ...

Suppose m > 0. By [1, Proposition 3.6.17] the map o — na factors through
the restriction map to the trivial subgroup of G/D and so is 0. Thus

H™(G/D,D,) - H™(G/D, D)

is onto. That is every cocyle for G/D in D arises from a cocycle of G/D in D,,.

For m = 2 we conclude that there exists T' < G with G = DT and DNT =
D,. For m = 1 and G replaced by G/D,, we see that for all T < G with
G = DT and GNT = D,,, there exists d € D with T < T%D,,2. Put R = TD,2.
Let a € Aut(G) and choose d € D with T® < T?D,>. Then R® = R% and so
Aut(G) = Nayy(ey(R)D".

Put F' = Cyuy)(R). Since R is finite we get that F'D* has finite index in
Aut(G). Note that Crp(D) < Cr(G) =1 and so F is isomorphic to a subgroup
of Aut(D). Since D is generated by its finite characteristic subgroup, Aut(D)
is residually finite. Thus F' is residually finite. Note that F'Nn D* < Cp(D) =
1. Hence FD*/D* is residually finite and since this group has finite index in
Aut(G)/D*, Aut(G)/D* is residually finite. Moreover, G*/D* is finite and so
Aut(G)/G* is residually finite.

Let p be a prime. Then O, (D)H has finite index in D and so FOp (D)*H*
has finite index in Aut(G). Also FO,(D)*H*/Oy(D)*H* = F is residually
finite and so Res(Aut(G)) < Op(D)*H*. Since this holds for all primes,
Res(Aut(G)) < H*. But H* has no proper subgroups of finite index and so
Res(Aut(G)) = H*.

Hence 1.6 holds if £ = 1. In the general case, we have E = LiLs... Ly
where L; is a group of Lie type 7 ®; over an infinite field K;. Let F; be a finite
subfield of K; such that if o; # 1, o; acts nontrivially on F;. Let L;(F;) be
the group of Lie type % ®; over the field F; naturally embedded into L;. We
choose the F; such that the Schur multipliers of L; and L;(F;) are identical.
Let X = Hle L;(F;) < E. Since G/Cg(E)E is finite we we can choose the
F;’s such that Ca(X) < Cg(E). Note that L;(F;) is normalized by any field
or graph automorphism of L;. Moreover, our condition on the Schur multiplier
ensures that every diagonal automorphism of L; can be written as a product of
an inner automorphism and an automorphism normalizing L;(F;).



Put B = Ng(X) and F' = Ngyye)(X). By the preceeding discussion G =
EB and Aut(G) = FE*. Since B has no infinite component, we can apply the
E = 1l-case to B. We conclude that both F/Res(B)"Cr(B) and F/B*Cp(B)
are residually finite. Note that

Aut(G)/G* = FG*|G* = F/F N G* = F/B*

and so Res(Aut(G)/G*) < Cp(B)G*/G*. Also Cg+(B) < Cg«(X) < Cg=(E).
Since BE = G we conclude that Cg«(B) = 1. In particular, G* N Cr(B) = 1.
Thus

(Cr(B)G* = ((\Cr(B))G* =G*

where the intersection is taken over all the eligible F;. Thus Res(Aut(G)/G*) =
1.

Since B/Cp(X), Cq(X)/Ca(E) and Cg(E)/A all are finite we conclude
that Res(B) = Res(A) < F and H = Res(B)E. So Crp(B)Res(B)* < F,

FN(Cr(B)Res(B)"E*) = Cp(B)Res(B)"(FNE*) = Crp(B)Res(B)* (BN E)*
and
Aut(G)/Cr(B)H* =2 FE*/Cp(B)Res(B)"E* = F/Cp(B)Res(B)" (BN E)*.

Since BNE is finite and F/Cr(B)Res(B)" is residually finite, Res(Aut(@)) <
Cr(B)H*. Intersecting over the various choices for F; gives Res(Aut(G)) < H*.
Also H has no proper subgroup of finite index and so Res(Aut(G)) = H*.

ProOF OF THEOREM 1.5.

By 2.3 we may assume that G/H = Res(G/H) and so G/H has no non-
trivially residually finite quotient. By Theorem 1.6 G/Cq(H)H is residually
finite and so G = Cq(H)H. Thus Cq(H)/Z(H) = G/H. Since Res(G)/H =
G/H we conclude that Co(H) = A/Z(H) x L/Z(H) where A/Z(H) is divisible
abelian and L/Z(H) is the central product of infinite groups of Lie type. By
28, L = E(L)Z(H), E(L) is p-linear of deg G/H-bounded degree and |Z(L')|
is deg G/H-bounded. So by 2.4 there exists a faithful F,E(L)H module V of
dimension bounded by a function of deg H and deg G/H.

By 2.7 A is abelian. Let Ay < Res(A) with Res(A) = Res(Z(H)) x Ag.
Let A; be a divisible hull for Z(H) N Ag in Ag. Then there exists As < Ag
with Ag = A2 x Ay. Moreover, G = Ay x (A1 E(L)H. According to 2.5 we can
extend the F,(Z(H) N Ag)-module W to a module for A4;. So W becomes an
F,G module with A, acting trivially. Take the direct sum of W with a faithful
G /H module we obtain a faithful F,G-module of dimension bounded in terms
of deg H and deg G/H.



3. Examples

(3.1) LEMMA. There is an infinite sequence of primes
G <pL < <qg<pi<--

fori € ZT, with q;|p; — 1.

PROOF. The proof is by induction on ¢. Let ¢; be any prime number.
A theorem of Dirichlet [6, p. 250] asserts that the sequence {1 + kq; | k =
1,2,...} contains an infinite number of primes. Let p; be any such prime. Then
q1|(p1 — 1). Now let g2 be a prime greater than p; .

Suppose that we have chosen ¢1,...,¢s41 and p1,...,ps such that

G <pr << Qs <Ps<gsy1

Now choose the prime p,41 in the sequence {1 + kgs11 | K = 1,2,...} and the
prime g2 wWith g;13 > psy1.

(3.2) EXAMPLE.

We first show that Theorem 1.5 is false when only (a) and (b) are assumed
(even when (a) and (b) are strengthened to require that the unipotent radicals
be trivial).

For p;,q; (i € Z*) as in Lemma 3.1, let S; be cyclic of order p; and R;
cyclic of order ¢;. Let F; = S;.R; be the Frobenius group of order p;q;. Then
Ft = @ Zle F; has representation degree at least 2k in each characteristic,
even though it is the extension S*.RF of cyclic S¥ = ®Y>¥ | S; of degree 1
over any prime not in the sequence (and degree at most 2 in general) by cyclic
Rt =@ Zle R; also of degree 1 over any prime not in the sequence (and degree
at most 2 in general).

Thus F* = @3 . F, = lim; F* is not linear in any characteristic even
though it is the extension of rank 1 linear S = &3, S; = lim;, S* by rank 1
linear R™® = &), R; = lim; R*. The residual core of F> /S is trivial and
has infinite index in F'*°/S.

(3.3) EXAMPLE.

The groups F* of the first example show that the degree of linear G' can not be
bounded in terms of the degree, deg H, of the normal subgroup H and deg G/H.
The next example will show that the degree of linear G' can not in general be
bounded in terms of deg G/H and the isomorphism type of H.
Fix a characteristic p and a prime q # p. Let, for n € Z%,
E(n) = (x,y,z|$q" = yq" =27 = 1, [may] =2z [I,Z] = [y,z] = 1>

Let E*(n) be the central product of E(n) and Z,~ with z identified with
an element of order ¢" of Zje. Then H = Zg~ is p-linear of degree 1 and
E*(n)/H ~ Zgn x Zg» is p-linear of degree 2.



We claim that the degree of E(n) (and hence of E*(n)) in characteristic p is
q". Abelian W = (z, z) has index ¢", so this is an upper bound on the degree.
Consider the restriction of a faithful representation to W. There is some degree
1 constituent ¢ with W = (w, z) = Cg(,)(w), where (w) = ker(¢). Then by
Clifford’s Theorem the (¥, for i = 0,...,¢" — 1, are distinct constituents of the
restriction.
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