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Abstract

Let G be a locally finite simple group of alternating type, p a prime,
and Z ≤ G be elementary abelian of order p2. We prove that there
exists 1 6= z ∈ Z with CG(z) 6= CG(Z).

1 Introduction

In [LS] it was shown that the centers of maximal subgroups of finite simple
groups are always cyclic. In this paper we extend this result to locally
finite simple groups of alternating type. Note here that by [Me, 4.1] every
countable locally finite simple group has maximal subgroups. While our
result is of interest in itself, our paper is also meant as an illustration how
the structure theory of locally finite simple groups in [Me] can be used. The
techniques developed in this paper already have been used in [DM] to shed
light on the structure of finite subgroups in locally finite simple groups of
1-type. We also expect the techniques to help answer some of the questions
on centralizers in locally finite simple groups posted by B. Hartley in [Har].

A group G is called locally finite if every finite subset of G lies in a
finite subgroup of G. A Kegel cover K of a locally finite group G is a set of
pairs (H, M) such that H is a finite subgroup of G, M is a maximal normal
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subgroup of H, and for each finite subgroup K of G there exists (H, M) ∈ K
with K ≤ H and K ∩M = 1. The groups H/M are called the factors of K.
We say that K is alternating if all of its factors are alternating groups. For
a finite subgroup X of G, K(X) is the set of pairs (H, N) ∈ K with X ≤ H
and X ∩N = 1. A group G is finitary if there exists a field F and a faithful
FG-module V such that dimF [V, g] < ∞ for all g ∈ G. A locally finite
simple group is of alternating type if it is not finitary and has an alternating
Kegel cover. We are now able to state our main theorem

Theorem 1.1 Let G be a locally finite simple group of alternating type, p
a prime, and let Z be elementary abelian subgroup of order p2. Then there
exists 1 6= z ∈ Z such that CG(z) 6= CG(Z). In particular, if M is a maximal
subgroup of G then Z(M) is locally cyclic.

We would like to thank the referee for pointing out numerous misprints.

2 Preliminaries

Lemma 2.1 Let H be a finite group, p a prime, S0 a p-subgroup of H,
N � H and T ≤ H minimal with respect to S0 ≤ T and H = TN . Let
S ∈ Sylp(T ) with S0 ≤ S. Then

(a) S ∩ N = Op(T ∩ N) � T .

(b) T ∩ N/Op(T ∩ N) ≤ Φ(T/Op(T ∩ N)).

(c) If Op(H)N/N is a q-group for some prime q 6= p, then
Op(T )Op(T )/Op(T ) is a q-group.

Proof Note that S0 ≤ NT (N ∩ S) and, by the Frattini argument, T =
NT (N ∩ S)(N ∩ T ). Thus by the minimality of T we have T = NT (S ∩ N)
and so S ∩ N = Op(N ∩ T ). So (a) holds. Without loss we may assume
T = H and Op(T ) = 1. Then N ∩ S = 1 and N is a p′-group. Suppose
N 6≤ Φ(T ). Then there exists a maximal subgroup M of T with N 6≤ M .
Then T = MN and, since N is a p′-group, M contains a Sylow p-subgroup
of H. Thus S0 ≤ Mk for some k ∈ T . Now as T = NMk, we have
T = Mk = M by the minimality of T , a contradiction. Therefore (b)
holds. For (c), since N is a p′-group, Op(T ) is a p′-group. From [Gor,
6.2.2] we conclude that there exists an S-invariant Q ∈ Sylq(O

p(T )). Since
Op(T )/N is a q-group we get Op(T ) = QN and so T = SQN . Hence, by
the minimality of T we get T = QS and Op(T ) = Q is a q-group.
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Before we can state our next lemma we need to recall some definitions
from [Me]. Suppose G is a group and that G/M ∼= Alt(Σ) for some set
Σ and some normal subgroup M of G. Let t be a positive integer with
t ≤ |Σ|/2. Then G acts t-pseudo naturally on Ω with respect to M if G acts
transitively on Ω and if there exists a G-invariant partition ∆ for G on Ω
such that CG(∆) = M and the action of G on ∆ is isomorphic to the action
of G on subsets of size t of Σ. G acts pseudo naturally on Ω with respect to
M , if G acts 1-pseudo naturally on Ω. G acts essentially on Ω with respect
to M if CG(Ω) ≤ M .

Lemma 2.2 Let p be a prime. Then there exists an integer n (depending
only on p) with the following property:

If

(a) H is a finite group,

(b) Z is an elementary abelian subgroup of H of order p2,

(c) M � H with H/M ∼= Alt(Ω),

(d) H acts transitively on a set Σ such that CH(Σ) ≤ M ,

(e) Z has no regular orbits on Σ,

and

(f) degΩ(z) ≥ n for all 1 6= z ∈ Z,

then Σ is pseudo natural for H with respect to M .

Proof By [Me, 2.14] there exists an integer n such that under the above
assumptions Σ is t-pseudo natural for some t ≤ p2 − 2. We do assume
without loss that n > 3p2. Then there exists an H-invariant partition ∆ of
Σ such that the action of H on ∆ is isomorphic to the action of H on the set
of subsets of size t of Ω. If t = 1 we are done. Suppose that t > 1. As Z has
no regular orbits on Σ, Z has no regular orbits on ∆. Hence, every subset of
size t of Ω is invariant under some nontrivial element of Z. Let Ω1 and Ω2

be two nontrivial orbits of Z on Ω such that Z acts faithfully on Ω1 ∪ Ω2.
Choose T ⊆ Ω such that |T | = t and |T ∩Ωi| = 1 for i = 1, 2 (this is possible
since n ≥ 3p2). Then there exists 1 6= z ∈ Z leaving T invariant. But then
z fixes T ∩ Ωi for i = 1, 2. Since Z is abelian and acts transitively on Ωi

we conclude that z fixes all elements of Ω1 ∪ Ω2 contradicting the faithful
choice of Ω1 ∪ Ω2.

2
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3 On a Lemma of Alperin

In this section we partially generalize a result of J.L. Alperin [Al] to odd
primes. Let B be a group acting on a group A and i a non-negative integer.
Define [A, B, 0] = A and inductively, [A, B, i + 1] = [[A, B, i], B].

Theorem 3.1 Let H be a finite group, p and q distinct primes with q 6= 2,
V a faithful GF (p)H-module, Z ≤ H a noncyclic elementary abelian p-
group, Q = [Oq(H), Z], and X be the set of all subgroups of index p in Z.
For X ∈ X , set QX = [CQ(X), Z] and suppose that

[V, Z, p] = 0.

Then

(a) [V, X, QX ] = [V, QX , X] = 0,

(b) Q =
⊕

X∈X QX ,

(c) [V, Q] =
⊕

X∈X [V, QX ].

Proof For (a), let X ∈ X and z ∈ Z \ X. Since [V, Z, p] = 0, we have
[V, X, z, p − 1] = 0. Put H = QX〈z〉 and observe that H normalizes [V, X].
Let F be a composition factor for H on [V, X]. Then Op(H/CH(F )) = 1
and so, by the Hall-Higman Theorem B [Gor, 11.1.1], z centralizes F . Since

QX = [QX , Z] = [QX , X〈z〉] = [QX , z],

also QX centralizes F . As QX is a p′-group, we get [V, X, QX ] = 0. Since
QX centralizes X, [V, [X, QX ]] = 0 and so by the Three Subgroup Lemma,
[V, QX , X] = 0 and (a) holds.

For (b), let D = NQ([V, QX ]). Then CQ(X) ≤ D and by (a) 〈XD〉
centralizes [V, QX ]. Therefore

[V, QX , [D, X]] = 0.

Now by co-prime action we have V = CV ([D, X]) ⊕ [V, [D, X]] and so since
QX normalizes [D, X] we get

[V, [D, X], QX ] ≤ [V, [D, X]] ∩ [V, QX ] ≤ [V, [D, X]] ∩ CV ([D, X]) = 0.

Thus by the Three Subgroup Lemma, [V, [[D, X], QX ]] = 0 and as H acts
faithfully on V ,
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[[D, X], QX ] = 1.

By co-prime action D = CD(X)[D, X] and so since CD(X) ≤ CQ(X) ≤
NQ(QX), we have

QX � D.

Suppose D 6= Q. Then since Q is a q-group, D < NQ(D). Since Q is
Z-invariant, each of QX , D, and NQ(D) is Z-invariant. Let E be minimal
Z-invariant with D < E ≤ NQ(D). Then Z acts irreducibly on the q-group
E/D. Since Z is noncyclic, Z does not act faithfully on E/D. Thus, there
exists Y ∈ X such that [E/D, Y ] = 1 and therefore [E, Y ] ≤ D. By co-prime
action E = CE(Y )[E, Y ] = CE(Y )D and so since CQ(X) ≤ D, we have
Y 6= X. Let y ∈ Y \X and put W = [V, QX ] and U = [W, y, p−1]. As we saw
above QX = [QX , y] and so y normalizes QX and QX〈y〉 acts on W/〈UQX 〉.
By the Hall-Higman Theorem B, y acts trivially on the composition factors
of QX〈y〉 on W/〈UQX 〉 and so QX acts trivially on W/〈UQX 〉. Hence W =
[W, QX ] ≤ 〈UQX 〉 ≤ W , and therefore W = 〈UQX 〉. In particular, as D
normalizes W and QX ≤ D, we have

W = 〈WD〉 = 〈UQXD〉 = 〈UD〉.

Let e ∈ CE(y) and z ∈ Z. Then

U e = [W e, y, p − 1] ≤ [V, Z, p − 1] ≤ CV (Z) ≤ CV (z).

It follows that U e ≤ W e∩W ez. As E normalizes D and W ez is D-invariant,
we compute

W e = 〈UDe〉 = 〈U eD〉 ≤ 〈W ezD〉 = W ez

and so W e = W ez. Therefore Z acts trivially on the set S = {W e|e ∈
CE(y)}. Moreover, since E normalizes D and D normalizes W , D acts
trivially on S as well. By co-prime action E = CE(y)[E, y] = CE(y)D and
so E acts on S.

Now D[E, Z] is Z-invariant and so D[E, Z] = D or E = D[E, Z] by the
minimality of E. In the first case, [E, Z] ≤ D and so by co-prime action
we get E = CE(Z)[E, Z] = CE(Z)D ≤ NQ(W ) = D, a contradiction. On
the other hand, E = D[E, Z] implies E acts trivially on S and again we get
E ≤ NQ(W ) = D, a contradiction.

We conclude that D = Q and so Q normalizes [V, QX ]. By (a), X
centralizes [V, QX ]. Hence also [Q, X] centralizes [V, QX ] and
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[V, QX ] ≤ CV ([Q, X]).

Now by co-prime action V = CV ([Q, X]) × [V, [Q, X]] and so

[V, QX ] ∩ [V, [Q, X]] ≤ CV ([Q, X]) ∩ [V, [Q, X]] = 0.

In particular,

QX ∩ [Q, X] = 1.

Let Y ∈ X \ {X}. Then QY = [QY , Z] = [QY , XY ] = [QY , X] ≤ [Q, X].
Thus

QX ∩ 〈QY | Y ∈ X \ {X}〉 ≤ QX ∩ [Q, X] = 1.

Since QX � Q, we conclude that

Q = [Q, Z] = 〈QX |X ∈ X〉 =
⊕

X∈X

QX .

Therefore by the commutator laws

[V, Q] =
∏

X∈X

[V, QX ].

Moreover, since

[V, QX ] ∩
∏

Y 6=X,Y ∈X

[V, QY ] ≤ [V, QX ] ∩ [V, [Q, X]] = 0,

we get

[V, Q] =
⊕

X∈X

[V, QX ].

2

Lemma 3.2 Let P be a p-group acting on an abelian p-group A. Suppose
that CA(Z) = CA(P ) for some Z ≤ Z(P ).

(a) For a subset X ⊆ P and non-negative integer i define CA(X, i) induc-
tively by CA(X, 0) = 1 and CA(X, i + 1)/CA(X, i) = CA/CA(X,i)(X).
Then for all non-negative integers i,

CA(Z, i) = CA(P, i)
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(b) If A is elementary abelian and |Z| = p, then [A, P, p] = 1.

Proof For (a) we use induction on i. The result holds for i = 0 and
i = 1 by definition and by assumption respectively. Let i ≥ 2 and suppose
the result holds for all positive integers less than i. Then since Z ≤ P ,
CA(P, i) ≤ CA(Z, i). Let W = CA(Z, i)/CA(Z, i − 2). Then [CA(Z, i), Z] ≤
CA(Z, i − 1) = CA(P, i − 1) and so [W, Z, P ] = 1. Also, [Z, P, W ] = 1 and
so by the Three Subgroup Lemma [W, P, Z] = 1. We conclude that

[W, P ] ≤ CA/CA(Z,i−2)(Z) = CA(Z, i − 1)/CA(Z, i − 2).

Hence [CA(Z, i), P ] ≤ CA(Z, i−1). By induction CA(Z, i−1) = CA(P, i−1)
and so CA(Z, i) ≤ CA(P, i). For (b), let 1 6= z ∈ Z. Then in EndZ(A),
(z−1)p ≡ zp−1( mod p), and so [A, z, p] = A(z−1)p = 1. Thus CA(z, p) =
A. Hence, by (a) A = CA(P, p) and [A, P, p] = 1.

2

4 An Abelian Normal Subgroup

Lemma 4.1 Let H be a finite group, p a prime, and R = Op(H). Then
one of the following holds

(a) Φ(Op(R)) ≤ Z(R).

(b) There exists an elementary abelian normal p-subgroup A of H with
[A, R] 6= 1.

Proof Let Q = Op(R) and suppose [Φ(Q), R] 6= 1. Let D � H minimal
with respect to D ≤ Φ(Q) and [D, R] 6= 1. Put E = CD(R). Then by
the minimality of D, D/E is elementary abelian and H acts irreducibly
on D/E. Since R � H, Q � H and so [D, Q] � H. Since Q is nilpotent,
[D, Q] < D. Thus by the minimality of D, [D, Q] ≤ E. Since E ≤ Z(R),
[D, Q, Q] = 1 and therefore [D, Q′] = 1 by the Three Subgroup Lemma.
Let d ∈ D and q ∈ Q. Since D/E is elementary, dp ∈ E. Hence, since
[D, Q] ≤ E ∩ Q ≤ Z(Q), we get

1 = [dp, q] = [d, qp].

Therefore [D, qp] = 1 and so [D, Φ(Q)] = 1. Now since D ≤ Φ(Q), D is
abelian. Let A = Ω1(D). Then A is an elementary abelian p-group and
A char D � H implies A � H. Also as [D, R] 6= 1 and R = Op(H), [Gor,
5.2.4] implies [A, R] 6= 1. 2
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5 Over-groups for Z in Alt(n)

Lemma 5.1 Let p be a prime, Ω a finite set and m > 1. Suppose Z ≤
Alt(Ω) is elementary abelian of order p2 such that Z has at least m · p3

regular orbits on Ω. Then there exists a subgroup H ≤ Alt(Ω) such that

(a) Z ≤ H and [Φ(Op(O
p(H))), Op(H)] 6= 1.

(b) H/Op(H) ∼= Alt(mp2) and Z acts semi-regularly on {1, 2, 3, . . . , mp2}.

Proof By assumption there exists a Z-invariant subset Σ ⊆ Ω such that
|Σ| = mp5 and Z acts semi-regularly on Σ. Let n = mp2 and let P1 be
an extra special group of order p3. By letting P1 act on itself regularly
and Alt(n) act naturally, we see that Alt(Σ) contains a subgroup H∗ =
P1 o Alt(n). Now since p2 | n, Alt(n) contains a subgroup Z∗ isomorphic
to Z with Z∗ acting semi-regularly on {1, 2, . . . , n}. Then Z∗ is also semi-
regular on Σ. Finally we can choose H∗ and Z∗ so that Z∗ is the image of
Z under the restriction map from NAlt(Ω)(Σ) to Sym(Σ). Letting H∗ fix all

the points in Ω \ Σ elementwise, we may view H∗ as a subgroup of Alt(Ω).
Then since Z∗ ≤ H∗, Z normalizes H∗. Let H = H∗Z. Then Z ≤ H and
H = H∗CH(Σ). Since H∗ centralizes Ω\Σ, we conclude that H/CH(Ω\Σ) ∼=
Z/CZ(Ω\Σ) is a p-group. Thus CH(Σ) is a p-group, Op(H) = Op(H

∗)CH(Σ)
and H/Op(H) ∼= H∗/Op(H

∗) ∼= H∗/〈PH∗

1 〉 ∼= Alt(n). Thus (b) holds. Let
P = 〈PH

1 〉. Then P is a normal p-subgroup of H. We leave it as an exercise
to the reader to verify that P ′

1 ≤ Φ(Op(O
p(H))). Also Op(H) does not

normalize P ′
1 and (a) holds.

2

Theorem 5.2 Let m ≥ 53 and let Z ≤ Alt(mp2) be an elementary abelian
p-group of order p2 acting semi-regularly. Then there exists a prime q with
2 6= q 6= p and a Z-invariant q-subgroup Q of Alt(mp2) such that

[QX , QY ] 6= 1

for all X and Y distinct proper subgroups of Z, where QX = [CQ(X), Z]
and QY = [CQ(Y ), Z].

Proof. Let q = 3 if p 6= 3, q = 5 if p = 3, and Q1 be an extra special
q-group of order q3. Since m ≥ 53 ≥ q3, there exists a Z invariant subset
Σ ⊆ {1, 2, . . . , mp2} with |Σ| = q3p2. Moreover, as in Lemma 5.1, Alt(Σ)
contains a subgroup H∗ = Q1 o Alt(p2), such that Z normalizes H∗ and H∗

contains the image of Z in Alt(Σ).
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Let Q = 〈QZ
1 〉, X and Y distinct be proper subgroups of Z, 1 6= x ∈ X,

and 1 6= y ∈ Y . Then Q is a Z-invariant q-subgroup of Alt(mp2). Let
π be the projection map from Q to Q1. We claim (QX)π = Q1. Clearly
(QX)π ≤ Q1. Let q1 ∈ Q1. Then q = q1q

x
1 . . . qxp−1

1 ∈ CQ(X) and

[q, y] = q−1qy = q−xp−1

1 . . . q−x
1 q−1

1 qy
1 . . . qxp−1y

1

Now as Z acts semi-regularly on {1, 2, . . . , mp2}, it acts semi-regularly on
〈QZ

1 〉. Therefore each of the 2p factors of [q, y] lie in different conjugates
of Q1. In particular, ([q, y])π = q−1

1 . Since [q, y] ∈ QX and q1 ∈ Q1 was
chosen arbitrarily, we have Q1 ≤ (QX)π and so (QX)π = Q1. By symmetry
(QY )π = Q1 and hence ([QX , QY ])π = Q′

1. Since Q1 is non-abelian, we
obtain [QX , QY ] 6= 1 and the theorem is proven.

2

6 The Regular Case

Theorem 6.1 Let F be a finite group, Z an elementary abelian subgroup
of order p2, and N � F with F/N ∼= Alt(Ω). Suppose that Z has at least
53 · p3 regular orbits on Ω. Then CF (z) 6= CF (Z) for some 1 6= z ∈ Z.

Proof Let H ≤ F/N be given by 5.1 with m = 53. Let H∗ and N∗ be
the pre-images of H and Op(H) in F , and S ∈ Sylp(H

∗) with Z ≤ S. Also
let T ≤ H∗ be minimal with respect to S ≤ T and H∗ = N∗T . Set P =
S∩N∗ = S∩N∗∩T . By Lemma 2.1(a), P �T . Since P is a Sylow p-subgroup
of N∗ and N∗/N is a p-group, N∗ = PN . Thus H∗ = TN∗ = TPN = TN .
Note that Op(O

p(H)) = (P ∩ Op(T ))N/N . As [Φ(Op(O
p(H)), Op(H)] 6= 1

we conclude that [Φ(Op(O
p(T ))), Op(T )] 6= 1. Hence, by Theorem 4.1 there

exists A � T elementary abelian with [A, Op(T )] 6= 1. It follows that there
exists a composition factor D for T on A with [D, T ] 6= 1. Let T = T/CT (D).
Then D is a faithful irreducible GF(p)T -module and Op(T ) = 1. Suppose
that CT (D) 6≤ N∗. Then since H∗/N∗ is simple, H∗ = N∗CT (D). Hence,
by the minimality of T , we have T = CT (D)S and so T is a p-group. It
follows that T = 1, contradicting the choice of D. Since Op(T ) = 1, Φ(T ) is
a p′ group. By Lemma 2.1, N∗ ∩ T ≤ Φ(T ). Since T/N∗ ∩ T is simple we
conclude that N∗ ∩ T = Φ(T ) and so T/Φ(T ) ∼= Alt(mp2). Let Q be the Z-
invariant q-subgroup of T/Φ(T ) given by Theorem 5.2. Since the pre-image
of Q in T is a p′-group, the pre-image of Q contains a Z-invariant Sylow
q-subgroup Q∗. As [QX , QY ] 6= 1 for all distinct proper subgroups X and
Y of Z, [Q∗

X , Q∗
Y ] 6= 1. Suppose that CA(z) = CA(Z) for all 1 6= z ∈ Z.
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Then by Lemma 3.2 [A, Z, p] = 1 and also [D, Z, p] = 0, where we view D as
a vector space over GF(p). Thus Theorem 3.1 (b) implies [Q∗

X , Q∗
Y ] = 1, a

contradiction. Therefore CA(z) 6= CA(Z) for some 1 6= z ∈ Z and the result
of the theorem follows.

2

7 A Bifurcation Lemma

Theorem 7.1 Let G be a non-finitary, locally finite simple group with al-
ternating Kegel cover K and let E ≤ G be a finite subgroup of G. Then one
of the following holds

(a) For all positive integers t

Kt
reg(E) = {(HK , MK) ∈ K(E)| E has at least t regular orbits on ΩK}

is a Kegel cover for G.

(b)

Knat(E) = {(HK , MK) ∈ K(E)| E has no regular orbits on ΩK}

is a Kegel cover for G.

Proof Suppose (a) does not hold. Then there exists a positive integer t
such that Kt

reg(E) is not a Kegel cover. Then K(E) \ Kt
reg(E) is a Kegel

cover and we may assume that for all (HK , MK) ∈ K, E ≤ HK and E has
less than t regular orbits on ΩK . Let F ≤ G be a finite subgroup with
E ≤ F and |F/E| = r > t. Suppose there exists some (HK , MK) ∈ K(F )
such that F has a regular orbit sF on ΩK , for some s ∈ ΩK . Then each
sxiE , where {xi}

r
i=1 is a transversal for E in F , is a regular orbit for E

on ΩK , contrary to our assumptions. Therefore F has no regular orbits on
ΩK for all (HK , MK) ∈ K. From [Me, 3.4] we conclude that there exists a
Kegel cover J ⊆ K for G such that for all (HJ , MJ), (HK , MK) ∈ J with
HJ ≤ HK , all essential orbits for HJ on ΩK are pseudo natural with respect
to MJ . Without loss we may assume K = J .

Pick (HK , MK) ∈ K so that the number d of regular orbits of E on ΩK

is maximal. If d = 0 then (b) holds. Suppose d > 0. Let R be the unique
minimal subnormal supplement to MK in HK and 1 6= r ∈ R. Then by
Hall’s Finitary Lemma ( [Ha, 3.13]) there exists (HJ , MJ) ∈ K(HK) such
that degΩJ

(r) > |HK |, where degΩJ
(r) is the number of elements of ΩJ
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moved by r. Hence there exists at least two orbits Ω1 and Ω2 for HK on
ΩJ which are not fixed elementwise by r. In particular, Ωi is an essential
orbit for HK and therefore pseudo natural for i = 1, 2. So there exists an
HK-invariant partition ∆i of Ωi such that ∆i and ΩK are isomorphic as
HK-sets. As E has d regular orbits on ΩK , it has d regular orbits on ∆i for
i = 1, 2. But then E has at least 2d regular orbits on ΩJ , contradicting the
maximal choice of d.

2

8 The Proof of the Main Theorem

Let G be a locally finite simple group of alternating type and suppose Z is
an elementary abelian subgroup of order p2 such that CG(Z) = CG(z) for all
1 6= z ∈ Z. Let K be an alternating Kegel cover for G and let (HK , MK) ∈ K
with Z ≤ HK . Then by Theorem 6.1 Z has less than 53p3 regular orbits on
ΩK . Therefore, by Theorem 7.1 we may assume that K = Knat(Z), that is,
for all (HK , MK) ∈ K, Z ≤ HK and Z has no regular orbits on ΩK .

Let n be chosen as in Lemma 2.2. By Hall’s Finitary Lemma ( [Ha,
3.13]) there exists (HK , MK) ∈ K such that degΩK

(z) ≥ (p + 1)(n + 2) for
all 1 6= z ∈ Z. Also let ∆ be the union of the nontrivial orbits of Z on ΩK

and let X be the set of nontrivial proper subgroups of Z. As none of the
orbits are regular, we have

∆ =
⋃

X∈X

Fix∆(X)

where Fix∆(X) is the subset of ∆ fixed elementwise by X. Since |∆| ≥
(p + 1)(n + 2) and Z has p + 1 proper subgroups, ∆2 = Fix∆(X1) has at
least n + 2 elements for some X1 ∈ X . Let 1 6= x1 ∈ X1. Then |∆ \ ∆2| ≥
degΩK

(x1) ≥ (p + 1)(n + 2). As above there exists X2 ∈ X \ {X1} so that
∆1 = Fix∆(X2) has at least n+2 elements. Note that an element in ∆1∩∆2

is fixed by X1X2 = Z. But Z has no fixed points on ∆ and so ∆1 and ∆2

are disjoint.
If p is odd, let Ωi = ∆i for i = 1, 2; if p = 2, let Ωi be a Z-invariant

subset of ∆i such that |∆i \ Ωi| ≤ 2 and 4 divides |Ωi|. Then |Ωi| ≥ n and
Xi has no fixed points on Ωi for each i.

Let Ω = Ω1 ∪ Ω2, H∗ = {h ∈ NHK
(Ω)|h is even on Ω} and M∗ =

CH∗(Ω). Then Z = X1X2 ≤ H∗. Choose H ≤ H∗ minimal so that Z ≤ H
and H∗ = HM∗, and let M = M∗ ∩H. Then H/M ∼= Alt(Ω). Let R = H ′.
Suppose N � H with N 6≤ M . Then, since H/M is simple, H = MN . Now
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by the minimality of H, H = NZ and so R ≤ N . Let Ai = CH(Ω3−i) for
i = 1, 2. Then Xi ≤ Ai and Ai/M ∼= Alt(Ωi). Let Bi = 〈XA1A2

i 〉 for each
i. Then as Xi 6≤ M and Ai/M is simple, Ai = BiM for each i. Now R � H
and Bi � Ai implies that Bi ∩ R � Ai. If Bi ∩ R ≤ M , then, as B′

i ≤ R,
B′

i ≤ M . Hence, we get that Ai/M is abelian, a contradiction. Therefore
Bi ∩ R 6≤ M and so Ai = (Bi ∩ R)M .

Suppose [B1, B2 ∩ R] = 1. Then [X1, B2 ∩ R] = 1 and, as CG(X1) =
CG(Z) = CG(X2), [X2, B2 ∩ R] = 1. Also since B2 ∩ R � A1A2 and B2 =
〈XA1A2

2 〉, it follows that [B2, B2 ∩ R] = 1. Thus [A2, A2] = [B2M, (B2 ∩
R)M ] ≤ M , a contradiction since A2/M is not abelian. Therefore [B1, B2 ∩
R] 6= 1.

Let D = [B1, B2 ∩ R] and (HJ , MJ) ∈ K with H ≤ HJ and H ∩ MJ =
1. Since D 6= 1, there exists an orbit Σ for H on ΩJ on which D acts
nontrivially. Suppose CH(Σ) 6≤ M . Then as seen above D ≤ R ≤ CH(Σ),
a contradiction. Therefore CH(Σ) ≤ M . Note that for all 1 6= z ∈ Z,
degΩ(z) ≥ min(|Ω1|, |Ω2|) ≥ n. Also Z has no regular orbits on ΩJ and
so Lemma 2.2 implies that Σ is pseudo natural for H with respect to M .
That is, there exists a H-invariant partition Γ of Σ such that Γ and Ω are
isomorphic H-sets. Let Γi be the images of Ωi under the above isomorphism
for i = 1, 2. Also let

Σi =
⋃

γ∈Γi

γ

for each i. Then Σ = Σ1∪Σ2. Let σ ∈ Σ3−i. Since Z has no regular orbits on
Σ, CZ(σ) 6= 1. Let γ ∈ Γ3−i with σ ∈ γ. Then CZ(σ) ≤ NZ(γ) = Xi. Thus
CZ(σ) = Xi and Xi fixes Σ3−i elementwise. Therefore, as A1A2 normalizes
Σi for each i, Bi = 〈XA1A2

i 〉 fixes Σ3−i elementwise for each i. Hence B1∩B2

acts trivially on Σ = Σ1 ∪Σ2. Since D ≤ [B1, B2] ≤ B1 ∩B2, we get D acts
trivially on Σ, contradicting the choice of Σ.
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