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Abstract

Let p be a prime, G a finite KCp-group S a Sylow p-subgroup of G' and @ a large subgroup of G
in S (ie., Ca(Q) < Q and Ng(U) < Ng(Q) for 1 # U < C(Q)). Let L be any subgroup of G with
S <L, Op(L) #1and Q< L. In this paper we determine the action of L on the largest elementary
abelian normal p-reduced p-subgroup Y7, of L.

2010 Mathematics Subject Classification. Primary 20D05.

Key words and phrases. local characteristic p, large subgroup, finite simple groups.
partially supported by Humboldt foundation.

partially supported by DFG.






Introduction

HisTORICAL BACKGROUND. One of the great achievements of 20th century mathematics is the
classification of the finite simple groups. At least from hindsight, the quest for this classification
began with a talk of R. Brauer at the ICM in Amsterdam 1952, where he demonstrated a method,
the centralizer method, that makes it possible to characterize finite simple groups by means of the
centralizer of an involution, and of course with the celebrated Odd Order Theorem of Feit-Thompson
1963, [E'T], which shows that every finite (non-abelian) simple group possesses involutions. It was
quite natural from these beginnings that the prime 2 played an overwhelmingly important role in
the classification.

On the other hand, apart from the alternating groups, the classes Lie(p) of finite simple groups
of Lie type in characteristic p, p a prime, provide the generic examples for finite simple groups. So
for these examples there exists a distinguished prime p associated to these groups. Moreover, in
1974 J. Tits, [T], presented the theory of buildings of spherical type, which makes it possible to
understand and characterize the groups in Lie(p) by means of a geometry that reflects properties of
their parabolic subgroups and focuses on that distinguished prime p. So one might wonder if there
is also a way to classify the finite simple groups more prominently based on this geometric approach.

Both of theses approaches, Brauer’s centralizer approach based on the prime 2 and used in the
classification and Tits’ geometric approach, can only be applied successfully to a general finite simple
group, if one is able to set the stage properly. More precisely, one has to get a satisfactory answer
to the following fundamental questions:

e In case of the centralizer approach: What does the centralizer of a (properly chosen) involution
look like in a general simple group G?

e In case of the geometric approach: How can one detect a distinguished prime p (if there is any)
in a general simple group G?7 And how does this then lead to a geometry that characterizes G7

The answer of the first question can be read from the classification. The Standard Component
Theorem of Aschbacher 1975, [Asl], shows that either

(char 2) Cg(O2(M)) < O2(M) for all 2-local subgroups M of GE|

or that there exists an involution ¢ whose centralizer Cq(t) is classical or of standard form. The
latter case can be treated nicely using Brauer’s centralizer method; either by the Classical Involution
Theorem of Aschbacher 1977, [As2], or by solving various standard form problems.

The first case causes many more problems. It is not accidental that the examples from Lie(2)
have property (char 2). As there, in groups satisfying (char 2) the centralizers of involutions have
non-central normal 2-subgroups which in most cases are an obstruction to applying the centralizer
method effectively. In this case the classification shifts from 2 to a properly chosen odd prime r. In
fact, for groups in Lie(2) defined over not too small fields, r divides the order of a maximal torus.
Then the proof proceeds as before using a standard component theorem for the prime r rather than
2. Unfortunately, this switch of primes cannot be executed in all cases. So one ends up with some
unpleasant cases that have to be treated separately; for example in the Quasithin Group Theorem
by Aschbacher-Smith 2004, [AS], and the Uniqueness Theorem by Aschbacher 1983, [As3].

L\ p-local subgroup is the normalizer of a non-trivial p-subgroup; O, (M) is the largest normal p-subgroup of M.

vii
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The other two questions are more difficult to answer since there is as yet no classification using
the geometric approach that would justify such an answer. But — similar to Aschbacher’s Standard
Component Theorem — one would expect an answer that gives a few cases that then can be treated
independently. In addition, any of these cases should be inspired by properties of the generic
examples involving the distinguished prime p.

Property (char 2) is a good example for this. It reflects an important property that the groups
in Lie(2) have in common without using the terminology and conceptual background of groups of
Lie type, so it also applies to finite groups in general, and it easily generalizes to arbitrary primes p.

We turn this into a definition. A finite group G is of local characteristic p if G satisfies

(char p) Cc(0,(M)) < O,(M) for all p-local subgroups of M of G.

In particular, the finite simple groups of local characteristic 2 are exactly the exceptions in the
Standard Component Theorem that force the switch of primes. So even in this case alone, successfully
carrying out a geometric approach for groups of local characteristic 2 would give an alternative proof
for that part of the classification, avoiding not only the switch of primes but also the above mentioned
cases where this switch fails.

There is another property which nearly all the generic examples share and which the authors
believe is important for a classification following the geometric approach: the existence of a large
subgroup. For any finite group G a non-trivial p-subgroup @ is large if

(1) CG(Q) < Q» and
(ii) Ng(U) < Ng(Q) for all 1 # U < C(Q).

Note that the first property is equivalent to C(Q) = Z(Q). We will refer to the second property
as the Q!-property, or just as Q!.

If G € Lie(p) and S € Syl,(G), then O,(Ng(1Z(9))) is a large subgroup if and only if ©,7(S)
is a root subgroup of G. Thus, every simple group of Lie type possesses such a large subgroup,
except Sp,,(2™), n = 2, F4(2™) and G2(3™).

From a group theoretic point of view, the concept of groups with large subgroups also generalizes
the concept of groups of GF(2)-type introduced in [GL]. In particular, Timmesfeld’s result, [Ti], on
centralizers of involutions whose generalized Fitting subgroup is extraspecial, is an important part
of the classification of the finite simple groups. But he has concentrated on the structure of the
centralizer of a 2-central involution (which in our case is Ng(Q)), so at least in a formal sense he
follows Brauer’s centralizer approach. In contrast to this we will investigate every p-local subgroup
not in Ng(Q), where @ is a large subgroup.

For several years the authors and various other collaborators have worked on a classification
project for finite groups of local characteristic p that uses the geometric approach; and the classifi-
cation of the finite groups of local characteristic p possessing a large subgroup is a major part of this
project. An outline of this project can be found in [MSS]. There it is also demonstrated in which
context large subgroups arise and what role the Local Structure Theorem plays in this classification.

Up to now several contributions to this project have been published or submitted for publication.
For example, the local C(G,T)-Theorem [BHS], the P!-Theorem [PPS], the P!-Uniqueness Theo-
rem [MMPS], plus [MeiStr3|, [P1] and [P2], and results about strongly p-embedded subgroups,
[PS1] and [PS2], and as relevant background material about modules the Nearly Quadratic Module
Theorem [MS3], the General FF-module Theorem [MS5] and its applications [MS6].

Some of these results rest upon properties or hypotheses derived from or justified by the Local
Structure Theorem which is presented in this paper. In this sense the Local Structure Theorem is
the cornerstone for the investigation of finite groups G of local characteristic p possessing a large
subgroup @. In fact, local characteristic p is not really required in full strength for the proof of the
Local Structure Theorem, but we will ignore this for the moment.

The Local Structure Theorem determines the action of M on 2:Z(0,(M)) for every p-local
subgroup M which contains a Sylow p-subgroup of Ng(Q) and is not contained in Ng(Q). Speaking
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in the geometric language of the generic examples, this information allows to determine the residues
of the maximal parabolic subgroups different from the normalizer of a long root subgroup.

In a forthcoming paper the Local Structure Theorem will be used to prove the H-Structure
Theorem, where under an additional assumption the structure of N (Q)/Q is determined. Speaking
again in the geometric language of the generic examples, the Local Structure Theorem and H-
Structure Theorem combined give all the possibilities for the residues of maximal local parabolic
subgroups of G. This then allows to determine up to isomorphism a parabolic subgroup H of G with
Op(H) = 1. If the residues resemble the residues of a group of Lie-type of rank at least three, this
can be achieved via Tits’ theory of buildings, see [MSW]|, Theorem 6.9]. Otherwise by a case-by-case
discussion based on the detailed description of the maximal local parabolic subgroups of G provided
by the Local Structure Theorem and the H-Structure Theorem.

Having determined H one proceeds by computing the group Go generated by all the p-local
subgroups containing a given Sylow p-subgroup of G. Then one still has to show that G = Gy. But
this part of the project has already been treated. A result of M. Salarian and G. Stroth [SaS], shows
that Gy is strongly p-embedded in G if G # Gy, and results of Ch. Parker and G. Stroth, [PS1]
and [PS2], show that this is impossible, so G = Gj.

NOTATION USED IN THE LOCAL STRUCTURE THEOREM. We will now give the notation that
is needed to state the Local Structure Theorem below. Some of this notation will be repeated and
refined in the definitions given in later chapters.

In contrast to the Brauer method, where the centralizers of p-subgroups are of prime interest,
in this paper we investigate the mon-trivial action of p-local subgroups M on suitable elementary
abelian normal p-subgroups V' <2 M. The basic idea is to identify the group M /Cy(V) and the
F,M-module V' at the same time. This requires an inductive hypothesis that is called the Xp,-group
Hypothesis.

A finite group G is a Kp,-group if the simple sections of any p-local subgroup of G are known simple
groups (i.e., these sections are isomorphic to groups of prime order, groups of Lie type, alternating
groups or one of the 26 sporadic groups). This hypothesis is related to (and compatible with) the
proper K-group Hypothesis used in the first and second generation proofs of the classification of the
finite simple groups, which reflects the only inductive property needed in a minimal counterexample
to the Classification Theorem.

This KC,-group Hypothesis allows us to use module-theoretic results provided in [MS3], [MS5],
IMS6|, [GM1] and [GMZ2] for the identification of M/Cy (V) and V.

Let H be an arbitrary finite group. Then H has characteristic p if Cy(Op(H)) < Op(H).
Any subgroup of H containing a Sylow p-subgroup of H is a parabolic subgroup of H; and H has
parabolic characteristic p if every p-local parabolic subgroup of H has characteristic p. So the notion
of parabolic characteristic generalizes the notion of local characteristic introduced earlier.

For A < H we say that H is A-minimal if H = (A"), and A is contained in a unique maximal
subgroup of H; and H is p-minimal if H is A-minimal for A € Syl,,(H).

Let A be an elementary abelian p-subgroup of H. We say that A is symmetric in H if there
exists g € H such that
[A,A9] #1 and [A,A9] < An AY;
otherwise A is called asymmetric in H.
Let T € Syl,(Cu(A)). We say that A is tall in H if there exists T < L < H such that O, (L) # 1
and A € Op(L); and A is char p-tall in H if there exists T < L < H such that A € O,(L) and L has
characteristic p. Note here that these definitions are independent of the choice of T' € Syl,,(Cr (A)).

Of prime interest in this paper will be the set

Lly = {L < H|Cy(0y(L)) < Op(L) and O, (L) # 1}.
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By My we denote the set of maximal elements of Lz with respect to inclusion, and by Py the
set of p-minimal elements of L. Moreover, for K < H

ﬁH(K) = {LE Ly | K < L},
similarly we define My (K) and Py (K).

By Yy we denote the largest p-reduced normal subgroup of H, i.e., the largest elementary
abelian normal p-subgroup of H satisfying O,(H/Cu(Yy)) = 1. (For the existence and elementary
properties see [MS4l 2.2] and [1.24)).

Let 9y be the set of all M € Ly such that
(i) Mg(M)={M'} and Yy = Yy, where M1 := MCy(Yy).
(ii) Cam(Yar) is p-closed and Chr(Yar)/Op(M) < ©(M/O,(M)).
As above, for K < H let My (K) = {M € My | K < M}. In the following, if M € My, we will
refer to (fi) and as the basic property of M.

If A,B and C are groups, then A ~ B.C means that A has a normal subgroup B; such that
B; =~ Band A/B; ~ C. A ~ B-C means that, in addition, there does not exists a complement to
B; in A. If such an A is unique up to isomorphism, we may also write A =~ B-C.

Suppose that V is a faithful H-module and K is a non-empty H-invariant set of subgroups of
H. Then we say that V is a natural SLs(g)-wreath product module for H with respect to K if

V= @[V,E] and (K)= XK,
Kek KeKk
and for each K € K, K =~ SLs(q) and [V, K] is a natural SLy(g)-module for K.

Note here that a natural SLy(g)-module is a natural S Ly(g)-wreath product module with || =
1.

If V is a vector space over the finite field K, then A%(V), (V) and U?(V), denote the exterior,
symmetric and unitary square of V', that is, the set of symplectic, symmetric and unitary forms on
the dual of V, respectively. For further details for our naming of modules see [A2]

THE LOCAL STRUCTURE THEOREM. Suppose now that G is a finite group and @ is a (fixed)
large subgroup of G. For M < G we set

M®:=(Q% |ge G, QI < M),

and
Q* = O0p(Ne(Q)).

Let @ < S € Syl,(G). Clearly, either S is contained in a unique maximal p-local subgroup M
of G, or there exists a p-local subgroup M of G with S < M and @ ¢ M. For the generic examples
from Lie(p), the first case corresponds to groups of Lie rank 1, the second to those of Lie rank larger
than 1.

In general, in the first case M contains the normalizer of every non-trivial characteristic subgroup
of S. Then, at least if G has local characteristic p, either M is a strongly p-embedded subgroup
of G or the p-local structure of G is well-understood and was investigated in [BHS|. Finally, if G
possesses a strongly p-embedded subgroup, the p-local analysis is no longer of any help. Fortunately,
at least for p = 2, a Theorem of Bender, 1971 [Be], gives a complete classification, for odd primes
such a theorem is not known.

In this paper we consider the second case, where S is contained in more than one maximal
p-local subgroup of G, and we investigate the action of L on Y}, for all p-local subgroups L of G
with @ not normal in L. We will prove:
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THEOREM A (Local Structure Theorem). Let G be a finite K,-group and S € Syl,(G).
Suppose that S is contained in at least two mazimal p-local subgroups and that Q is a large subgroup
of GinS. Let L <G with S <L, Op(L) #1 and Q<K L.

Then there exist M € M(S) and L* < M with

S < L* Yy =Yix, LCo(YL) = L*Ca (Y1), and L° = (L*)°.

Moreover, for any such L and M one of the following holds, where L= L/CL(YL) and q is a power

of p.
(1)

(2)

The linear case.

(a) o~ SL,(q), n =3, and [Yr, L°] is a corresponding natural module for e.

(b) If Y # [Yi, L°] then L° = SL3(2), [Y1/[Y,L°]] = 2, [Y2, L°] < Q < Q*, Y = Y1
and M° = L°.

The symplectic case.

(a) L° =~ Spay, (@), n =2, or Sps(q) (and q = 2), and [Yy,, L°] is the corresponding natural
module for I°

(b) If Yy, # YL, L°], then p =2 and |Y./[YL, L°]] < q.

(¢) If YL £ Q°, thenp=2 and [Y,L°] € Q°.

(d) Either L° = M° and Yy, = Y, or one of following holds:

(1) p=2, I° = Spa(2), Yz = [Y1,L°], Y € Q°, M°/Chro(Yar) = Matss, and Yas
is the sin}gle Golay code module of Fo-dimension 11 for M°.
() p = 2, L7 = Spy(2), Yo/ V2, L] = 2, [Vio L] € Q) M2/Care(Yar) =
Aut(Mataz), and Y is the simple Todd module of Fy-dimension 10 for M°.

The Wreath Product Case.

(a) There exists a unique L-invariant set K of subgroups of L such that [Y1, L°] is a natural
SLy(q)-wreath product module for L with respect to K. Moreover, I° = OP({K))Q and
Q acts transitively on IC.

(b) If Yy, # [Y1,L°], then p =2, L =~ T'SLy(4), o~ SLo(4) orT'SLy(4), |Y1/[Y1L, L°]| =
2, [Yz, L°] € Q°, Yar =Y and MCq(YL) = LCg(YL).

(c) Fither Yar =Y and M° = L° or Lo~ SLs(q).

The Weak Wreath Product Case. O”(Ea) is abelian and Yy, = [Yr, L°]. Let

Ui,Us,...,Us be the Wedderburn components of OP(L°) on Yy,. Then the following hold:

(a) Y =U1®...® U, OP(L°)/Cor(r\(U;) is cyclic of order dividing ¢ — 1, and q > 2.

(b) Q permutes the subgroups U; in transitively.

(¢) Yas is a natural S Lo (q)-wreath product module for M /Cyr(Yar) with respect to some K,
M?°/Cre(Ya) 2 SLa(q), and for the inverse image P* of () in M, P* n S < L°S,
Yy < Cy,, (P*nS), and there exists an L-invariant partition K1, Ka, ..., Ks of K with
Ui =Yy N [Yar, K] forall1 <i<s.

The orthogonal case. Y, € Q°, I°~ Q¢(q), n =5, where q is odd if n is odd, and Y7,

18 a corresponding natural module for Ie. Moreover, either Yay =Y and L° = M° or one

of the following holds:

(1) I° =~ Q& (q), and Y is the exterior square of a natural SLy,(q)-module for M°.

(2) p=2, Lo~ Q& (2) and M°/Ce(Yar) = Matay, and Yy is the simple Todd- module
of Fo-dimension 11 for M°.

(3) Lo~ Q4 (q) and M°/Cpre(Yar) = Spinfy(q), and Yy is the half-spin module for M°.

(4) L° ~ Q7(q) and M°/Cre(Yar) = Es(q), and Yy is simple module of F,-dimension
97 for M°.

The tensor product case. Y € Q°, and there exist subgroups Zl, Eg ofi such that

(a) Li =~ SLy,(q), t; = 2, [L1,Lo] = 1, and L1 Ly < L,

(b) YL = Y1 ®p, Yo, where Y; is a corresponding natural module for Zz (and Fy is a field
of order q),

(c) L=I°=~ SLs(2)1Cy andp =2, or L7 is one of Zl,EQ, or Elig,
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(d) Moreover, either M fulfills the tensor product case, or p = 2, L=1IL,=> SLs(2) x
SLy(2), M/Cun(Yr) = 3 Sym(6), and Yar is the simple module of Fo-dimension 6
for M.

(7) The non-natural SL,(q)-case. [Yr,L°] € Q*, and one of the following holds:

(1) L° = SLn(q)/{(—id)"= 1), n = 5, Yy, is the exterior square of a natural S Ly (q)-module
for L°, and Yy is the exterior square of a natural SL,,(q)-module for MP°.

(2) pis odd, L° =~ SLy,(q)/{(—id)" 1), n > 2, and Yy, is the symmetric square of a natural
SL,(q) for L°, and Yy is the symmetric square of a natural SL,,(q)-module for M°.

(3) Lo ~ SLy(q)/{Nid | X € Fg, A" = Aot = 1) n > 2 q = ¢3, and [V, L°] is the
unitary square of a natural SLy(q)-module for L°. Moreover, one of the following
holds:

(1) Y = [YL,L°], and Y is the unitary square of a natural SL,,(q)-module for
Me.

(2) p = 3, |YL/[YL,LO]| =3, Lo~ L2(9), MO/C]\/[o(YM) = Matn, Y., = YM, and
Y is the simple Golay-code module of F3-dimension 5 for M°.

(3) p=2, Yy = [Y5,L°], L° = SLy(4), M°/Cpro(Yar) = Matsy, and Yy is the
simple Golay-code modyle of Fo-dimension 10 for M°.

(4) p= 3, Y. = [YL,LO], L° ~ L2(3), Yr $ Q., MO/CMo(YM) = 2'Mat12, Y is
the simple Golay-code module of Fs-dimension 6, and Y7, € Q°.

(8) The exceptional case. Y, € Q°, Yy, =Yy, M° = L°, and one of the following holds:

(1) I° =~ Spiniy(q), and Yy, is a half-spin module.

(2) Lo~ Es(q), and Y1, is one of the (up to isomorphism) two simple F,L°-modules of
order ¢*7.

(9) The sporadic case. Y, € Q°, Y, = Yy, L° = M°, and one of the following holds:

(1) p =2, L ~ 3:Sym(6), L° ~ 3-Alt(6) or 3-Sym(6), and YL, is a simple module of
F5-dimension 6.

(2) p=2, o~ Matsas, and Yy, is the simple Golay-code module of Fo-dimension 10.

3) p=2, I~ Matsy, and Yy, is the simple Todd or Golay-code module of Fo-dimension
11.

(4) p=3, Lo~ Maty1, and Y, is the simple Golay-code module of Fs-dimension 5.

(10) The non-characteristic p case. There exists 1 # y € Y, such that Cs(y) is not of
characteristic p, and one of the following holds:

(1) Y7, is tall and asymmetric in G, but Y, is not char p-tall in G.

(2) p = 2, I° ~ Aut(Matas), Y, is the simple Todd module of Fo-dimension 10, and
YL €@

(3) p =3, L° =~ 2"Matys, Yy, is the simple Golay-code module of Fs-dimension 6, and
YL £Q°. N

(4) p=2, L = 05,(2), L° = Q5,(2), 2n > 4, (2n,e) # (4,+), Y1 is a corresponding
natural module and Y7, < Q°.

(5) p = 3, ¢~ 05 (3), [Yr,L°] is the corresponding natural module, |Yr/[Yr,L°]| =
3, Yy, is isomorphic to the 5-dimensional quotient of a siz dimensional permutation
module for L° = Alt(6), and [Y1,L°] € Q°.

(6) p=3, Lo~ O5(3), [Yr, L°] is the corresponding natural module, |Y1/[Yr, L°]| = 3,
and [Yr,L°] € Q°.

(7) p=2, Lo~ QF(2), [YL, L°] is the corresponding natural module, and |Y/[Y, L°]| = 2.

(8) p=2, I~ Matay, [Y1, L°] is the simple Todd-module of Fo-dimension 11,
|YL/[YL, L°]| = 2, and [Y1,L°] € Q°. N

Moreover, either Y, = Yy and L° = M°, or L° =~ QF(2), [Y1,L°] € Q°, M°/Cpre(Yar) =

Matay, [Yar, M°] is the simple Todd-module of Fa-dimension 11 and |Yar/[Yar, M°]| = 2.

Note that there is some overlap between the last case of the Local Structure Theorem and the
previous cases: If [V, L°] is a natural Q5(3), Q; (3) or Q¢ (2)-module or the Todd module for Matay
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TABLE 1. Examples for the Local Structure Theorem. Cases 7@

Remarks examples for G
- Lny1(q)
n="738 E.(q)
- Alt(9), Go(3), HS(.2), Ru, HN
- Fi/22,23,247 F4(2)7 2E6(2)7 BM
- Ly, BM, M
Ng(Q) <M Matoy
Th, BM
Aut(G2(3))
- Mat22.2,PS0q (3), PQg (3){w)
- MCLtQQ, PQ6_ (3), Suz
- PQg (3){w) or POg (3)
- BM
q (na Q) 7 (47 2), (87 2) -
- Ls(q), G2(q) p # 3,°Da(q)
°Fi(q) p =2, Da(q)®3p =3
Spa(2)', Go(2)', *Fa(2),
Matlg(.2)7 J27 J37
PQg (3).X, PQF(3).X

Case [Yar, M®] for M°

k3%

»—l/Al\Dl\')i—l»—l[\')»—l»—lHH»—t»—l)—lO
QI
H*
?

2]
=
®
=
n
~
N

®
—
1

nat SL2(3) 1 - M(Ltlg, 2F4(2)/, Th
nat SL2 (4) 1 - Matzg, Matgg
nat SLs(5) 1 - Ru, HN, Th
nat SLs(7) 1 - O'N, M
nat SLo(13) 1 - M
nat FSL2(4) 1 - FL3(4), Mat22
nat SLy(4)[.2] 2 M =TSLy4) Aut(Matas)
nat SLa(q) wreath 1 €] >1 (T)Ls(q) 1 2-group, ¢ = 2,4.
nat %, (q) - R (0)
nat Q7(q) I Fy(q), p odd
nat Qg (q) - °Es(q)
nat Q7 () 1 - Es(q)®P,
nat O5(0) 1 - Fsla)
0} nat SLy, (q)[®S5Lt,(q)] 1 - Lty 445(0), Lot +1(q) P2 11 = 2
@ nat SL2 (2))[®SL3(2)] 1 - MCLt24
1] A?(nat)SL,(¢%) 1 n>=3 PQY (q), Qan+1(q) podd,
POy 1a(0). O () p = 2
S?(nat)SLy(q) 1 - PSpan(q)
U?(nat)S L (q3) - U2n(90), Uzn+1(q0)
U?(nat)SLz(9) 1 - McL
half-spin Spinf(q) 1 - Es(q)
q*" for Es(q 1 - Eq(q)
26 for 3- Alt(6)[.2] 1 M ~ 3-Sym(6) Matay
Golay 2'0 for Mates 1 - Coo
Golay 2! for Mates, 1 - Cop
Todd 2! for Matey, 1 - Ju
4 Golay 3° for Mat1; 1 - Cos

one might have Yy, = [Y1, L°] or Yy, # [YL, L°]. Similarly, if Y7, L] is a natural Q5,,(2)-module one
might have Y7 € Q° or Y, < Q°. But each time the second possibility can only occur if there exists
1 # y € Y such that Cg(y) is not of characteristic p.
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TABLE 2. Examples for the Local Structure Theorem where (char Yjy) fails

Case [Yar, M°] for M° c Remarks examples for G
1:b) nat SL3(2) 2 G #G° Aut(G2(3))
2 nat Spy(2) or Spy(2) 2 - PQg (3){w) or POg (3)
2 nat Sps(2) 2 - BM
3 nat SLs(q) wreath 1 K| >1 (T')L3(q) 1 2-group, ¢ = 2,4
3:b nat SLQ (4) [2] 2 M = FSLQ (4) AUt(MCLtQQ)
316 nat SLy(2) ® SLz(2) 1 - Sym(9), Alt(10)
6| nat SLy(2)[®SL2(2)] 1 - Alt(9)
6 nat SLQ(S) ® SL2(3) 1 - HN
7:2 nat Q3(3) 1 - Spg(2), Q5 (2)
7:2 nat Q3(5) 1 - Coy
73 nat Q; (2) 1 - La(3), Alt(10)
10:5 nat € (3) <3 - Us(2).c(.2)
D nat Q5(3) 1 Figg(.Q)
5i{10:6 nat 5(3) <3 - 2E5(2).c(.2)
5 nat Qg (2) 1 - PO (3)(:3)(.2)
10:7) nat Q7 (2) 2 - Qg (3).2.(2), P (3).Sym(3)
5 nat 7(3) 1 - Fiy, (.2)
5 nat Q7,(2) 1 - M
** 110:4] nat 95,,(2), 2n,e) # (4,+) <2 Yy <Q° -
0:1 26 for 3-Sym(6) 1 M ~ 3-Sym(6) He
10:8 Todd 2! for Matay <2 - Fib,.c
10:2] Todd 2'° for Aut(Matas) 1 - Aut(Fig9)
10:3 Golay 36 for 2-Matio 1 - Cop
**110:1 ? ? tall, asymmetric, -
not char p-tall

Note also that last case is not the only case of the Local Structure Theorem, where C(y) may
not be of characteristic p for some 1 # y € Y. For example both J; and F'i, contain a parabolic
subgroup M ~ 2''Matyy, with Yy the Todd module. In Jy, Cq(y) is of characteristic 2 for all
1 # y € Yy, but this does not hold in Fi5,. On the other hand, M ~ 22U+ Mato, only occurs in
Fiyys, matching the fact that the 2''+! only appears in last case of the Local Structure Theorem.

The cases of the Local Structure Theorem are disjoint with one exception: The case p = 2,
OQ(E) ~ (3 x C5 and |Y7,| = 16 appears in the wreath product and tensor product case. Combining
the two cases we get the following possibilities:

Y, < Q° and Y, € Q° are possible. Either Y, = Yy and L° = M°, or Y, € Q° and
M fulfills the tensor product case with M/Chr(Yar) = SLy(2) 1 Ca, and M°/Curo(Yar) =

~ L = I° ~ SLy(2) x SLy(2), Yz, is a natural Q (2)-module for L, and Y, € Q°. Ei-

ther Y7, = Y3 and L° = M°, or M fulfills the tensor product case with M/Cps(Yar) =
MO/OMO(YM) = SLt1(2) X SLt2(2), or M/CM(YM) = MO/OMO(YM) = 35ym(6) and
|Yas| = 2.

— L = SLy(2) x SLy(2), Yy, is a natural Q (2)-module for L, L° =~ SLy(2), Y7 is the direct

sum of two natural SLs(2)-modules for Ea, and Y7, € Q°. Either Y, = Yy, and L° = M°,
or M fulfills the tensor product case with M°/Cyze (Yar) = SLy, (2), or M/Cp(Yar) =
3-Sym(6), M°/Chre(Yar) = 3+ Alt(6) and [Ya| = 26.
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Most of the cases listed in the Local Structure Theorem occur in interesting finite groups, see
tables [[l and 2
Consider the property

(char Yr) Cg(y) is of characteristic p for all y e Y]&.

In those cases of the first table marked with '+’ property (char Yj,) fails in the listed example, but
we currently do not have a proof that (char Yjs) has to fail other than using the classification of
finite simple groups to determine all the possible examples. For the case marked with s+’ we do
not know any example (with or without (char Yas)). Showing that (char Yj) fails in the '+’ cases
and that the '+’ cases do not occur seems to require the determination of the whole structure of
M (and not only the action on Yjs) and sometimes even the structure of G, and will be done in
separate papers. For example, case of Theorem [A] has already been treated in [MeiStr3| and
case 3] (for r > 1 and Yy < Q*) in [PPS].

In the table ¢ := |Yas/[Yar, M°]| and ®; is a group of graph automorphism of order i. In the
example G = K.X with K = PQg (3) or PQg (3), X < Out(K) such that X acts transitively on the
four elements of Py, (q)(K N S). In the examples G = PQy (3){w), w is a reflection in POy (3). An
entry of the form A[B] in the [Yas, M°] column indicates that there exists more than one choice for
Q in the example G. Depending on this choice the structure of [Yas, M°] as an M°-module is either
described by A or AB.

THE STRATEGY FOR THE PROOF OF THE LOCAL STRUCTURE THEOREM. Suppose that G is
a finite group possessing a large subgroup @ with @ < S € Syl,(G). In it is shown that G
has parabolic characteristic p, and in that for every L € L5(S) there exist M € Mg (S) and
L* < M satistying:
o LCG(YL) = L*CG(YL*)7 L° = (L*)O and YL = YL* < YM
o If Q<1 L then also Q € L* and Q ¢ M.

In other words, the action of L on Y7, can be investigated via the action of the subgroup L* of
M on the submodule Y7, of Yy, since L/Cr(Yy) =~ L*/Cr«(Yr). Hence, the structure of Yy, and
M /Cy (Yar) will also determine the possibilities for Yz, and L/Cp(Yy). For this reason nearly the
entire paper, Chapters f@ is devoted to the analysis of the action of M /Cps(Yar) on Y.

THE GLOBAL STRATEGY. The basic idea is to find subgroups in M/Cy;(Yas) that act in a
“nice way” on Yj; and then to identify M /Cp;(Yar) and the M-module Yy, via the action of these
subgroups.

Of course, the crucial point is to find out what “nice way” should mean. On one side, it should
be a property that arises naturally in the local analysis, and on the other side, it should be a property
strong enough to allow to identify the action of M on Y),.

It turns out that in most cases being some kind of (non-trivial) offender, like quadratic offender,
strong offender, etc., is the right property, and this then leads to one of the FF-Module Theorems
from Appendix [C] In other cases, when no non-trivial offenders are at hand, acting nearly quadrat-
ically or as a 2F-offender is the property we work with, and again results are available that can
be used; in particular, the classification of simple 2F-modules for almost quasisimple groups by
Guralnick and Malle, [GM1] and [GM2].

The list of possibilities for groups and modules in these results is usually much longer than the
list we actually get as the final result of our analysis, so a major part of our proof is devoted to
exclude groups and modules from such lists. Usually this is not done by beginning a case by case
discussion right away, but by finding some general arguments first that allow to treat (some of) the
cases in a uniform way. For example, the cases where Yj; carries an M-invariant form usually can
be treated uniformly using some general arguments from linear algebra.

THE LOCAL STRATEGY. It is obvious that one cannot get any information about M and its
action on Yj; without discussing in one way or another the embedding of M into G. But a priori, it
is not clear at all what type of embedding properties one should study and how they would help to
get this information. In the following we will describe in general terms the strategy we follow and
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which allows to subdivide the proof into a few cases which to a large extend are independent from
each other.

Using the above definition of symmetry, it is clear that Y}, is either symmetric or asymmetric
in GG, and this is the first major subdivision of the proof.

In Chapter [4] we treat the symmetric case, that is, Yjs is symmetric in G, so there exists a
conjugate Y, such that

1# [YM7YAg/I] <Yyun Y]\(Z[

Then Yy, and Y}, act quadratically and non-trivially on each other, and it is easy to see that Yy
is a non-trivial quadratic offender on Y, or vice versa. In any case we can apply the General
FF-Module Theorem to both, M and M9. The trick is now to use the Q!-property to show that
M n MY contains a conjugate of the large subgroup @. Now the action of such a “common” large
subgroup allows to pin down the structure of M /Cy;(Yys) and its action of Y.

The asymmetric case is much harder to handle. But here a fundamental property holds: O,(M)
is a weakly closed subgroup of G (see . As a consequence we get that MT n H is a parabolic
subgroup of H for all subgroups H containing O, (). Since by the basic property of M, O, (M) €
Syl,(Ca(Yar)), the properties “tall”, “char p-tall” and “short” (here “short” means “not tall”), are
tailored to further subdivide the asymmetric case.

In Chapter [5| we treat the short asymmetric case. Here Yy < O,(P) for all P < G with
Op(M) < P and O,(P) # 1. Asymmetry then implies that the closure V := (Y]} is abelian. This
property is used to show the existence of a symmetric pair (Y7, Y3) of conjugates of Yy, (see and
. In this pair no longer Y7 and Y5 act non-trivially on each other, as in the symmetric case, but
abelian subgroups V; and V5, where V; is the normal closure of Y; in a particularly chosen subgroup
L;.

The arguments used in the short asymmetric case are related to those used in the qrec-Lemma
from [MS4].

The remaining case, the tall asymmetric case, is by far the hardest one. Here Y}, is asymmetric,
and there exists P < G with O,(M) < P, O,(P) # 1 and Yar € O,(P). First of all, it may be that
all such subgroups P are not of characteristic p, in our notation, that Y}, is tall but not char p-tall.
The short Chapter |§| partially handles this case by showing that this cannot happen if Cg(z) has
characteristic p for all 1 # = € Yy,.

Suppose that Yy, is char p-tall. Then the Asymmetric L-Lemmal2.16|can be applied and provides
us with a subgroup L of characteristic p such that Yy < L and L/O,(L) = SLs(q), Sz(q), or Da,,
where p = 2 in the last two case and r is an odd prime, and ¢ = |Yar/Ya 0 Op(L)].

It turns out that 21Z(0p(L)) is a non-trivial strong offender on Yy, or L normalizes a conjugate
of Q. In the first case we can use the FF-Module Theorems from Appendix[C} in the second case we
show that O,(L) acts as a (non-trivial) nearly quadratic 2F-offender on Y), and then [MS2] and
the 2F-Module Theorems of Guralnick and Malle are the main tools in the investigation.

For more details see the introductions to Chapters [4 - [0}

In earlier publications the Local Structure Theorem is quoted under the name “Structure The-
orem”. In [PPS] the following earlier (weaker) version of the Local Structure Theorem was used,
except that we correct a misprint , it should read F*(Mg) rather than F*(M), and we added
property for better understanding.

COROLLARY B. Let G be a finite Kp-group of local characteristic p and S € Sylp(G). Suppose
that there exist M, Ce Mg (S) such that the following hold for Q := Op(CN’):
(i) Na(@Z(5)) < C.
(ii) Cg(z) < C for every 1 # x € Z(Q).
(iii) M # C, and M = L for every L € Mg(S) with M = (M ~ L)Cr(Yar).
(iV) Yu < Q
Then for My := {QM>Cs(Yas) and M := M /Cy;(Yar) one of the following holds:
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(1) F*(My) = My, My = SL,(p™), n > 2, SPo,(@™), n = 2, or Sp,(2) (and p = 2), and
[Yar, Mo] is a corresponding natural module for My. Moreover,
(i) Yar = [Yar, Mo] or p =2 and My = Spa,(q), n = 2, and
(ii) either Car,(Yar) = Op(Mp), or p =2 and My/O,(My) = 3:Sp,(2)'.
(2) Py := MyS € Pg(S), Yir = Yp,, and there exists a normal subgroup P < Py containing
Cp, (Yp,) but not Q such that
(i) Ff: Ky x- x K., K; ~SLy(p™), Yoy = Vi x -+ x V., where V; := [Yar, K;] is a
natural K;-module,
(ii) @ permutes the components K; of (i) transitively,
(iii) OP(Pf) = OP(My), and PfFChr(Yar) is normal in M,
(iv) Cp,(Yp,) = Op(P1), orr > 1, K; = SLy(2) (and p = 2) and Cp,(Yp,)/O2(P1) is a
3-group.

The proof of this Corollary to the Local Structure Theorem is contained in Chapter

We assume the reader to be familiar with the basic concepts of finite group theory, for example
coprime action, components and the generalized Fitting subgroup. In addition, in Chapters [9] and
we assume basic knowledge of the parabolic subgroups of groups of Lie type and the sporadic
simple groups and their action on some low dimensional modules. Most of this information can be
found in [Cal, [RS] and [MSt]. Note also that the action of Qf;(g) on the half spin modules and
the action of Eg(q) on the 27-dimensional modules can be seen inside the groups Fs(q) and Er(q),
respectively.

Acknowledgement: We would like to thank the referee for pointing out numerous inconve-
niences in the original manuscript which encouraged us to add more details and information for the
reader.






CHAPTER 1

Definitions and Preliminary Results

In this chapter we provide elementary group theoretic results needed in this paper. Some of
them already indicate the kind of technical tools used throughout this paper.

In Section [1.2| some properties of p-reduced normal p-subgroups are given, since p-reduced sub-
groups are the typical modules for parabolic subgroups investigated in this paper. In Sections [I.3]
and [[-4] we discuss p-irreducible and Y-minimal groups. They naturally occur as subgroups of p-local
subgroups and belong to our most important tools.

In Section [1.6] we have a first look at large p-subgroups. In particular, we show that such
subgroups are weakly-closed. Consequently, in Section weakly closed subgroup are investigated.

Throughout this chapter H always denotes a finite group and p is a prime.

1.1. Elementary Properties of Finite Groups

DEFINITION 1.1. (a) H is p-irreducible if H is not p-closed and OP(H) < N for any normal
subgroup N of H which is not p-closed.
(b) H is strongly p-irreducible if H is not p-closed and OP(H) < N for every normal subgroup
N of H with [N, H] € O,(H).
(©) Zn := (WZ(T) | T & Syl (H)).
(d) Apg is the set of elementary abelian p-subgroups of H of maximal order, J(H) := (Ag) is
the Thompson subgroup of H and

B(H) Cuy(MZ(J(H))) if H is a p-group
) (B(T) | T e Syl,(H)) in general
is the Baumann subgroup of H.
(e) Let R < T < H. Then R is weakly closed in T with respect to H if R is the only H-
conjugate of R contained in T'; and a p-subgroup R is a weakly closed subgroup of H if R
is weakly closed with respect to H in some Sylow p-subgroup of H.
(f) Let A < H. The subnormal closure of A in H is the intersection of all subnormal subgroups
of H containing A.

LEMMA 1.2. Let H be a finite group of characteristic p and T € Syl,(H). Then the following
hold:

(a) Every subnormal subgroup of H has characteristic p.
(b) Every subgroup containing T has characteristic p.
(¢) H has local characteristic p.

Proor. [MS6) 1.2]. O

LEMMA 1.3. Let R be a p-subgroup of H with Cy(R) < R. Let L < Ng(R) and suppose that L
acts nilpotenly on R. Then L is a p-group.

PROOF. Since L act nilpotenly in the p-group R, coprime actions shows that OP(L) centralizes
R. By hypothesis, Cu(R) < Op(R). So OP(L) < R and OP(L) is p-group. Thus OP(L) = 1, and L
is a p-group. O
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LEMMA 1.4. Let L < H. Suppose that H has characteristic p.

(a) Suppose that L acts nilpotently on Op(H). Then L is a p-group.
(b) Suppose that L << H and L acts nilpotently on Op(H). Then L < O,(H).
(¢) Suppose that L centralizes the factors of an H-invariant series

1=Ay<A1 <...<A,1<A4,=0,(H).
Then L < O,(H).

PROOF. @: Since H has characteristic p, Cu(Op(H)) < O,(H)). Thus applied with
R = O,(H) shows that L is a p-group.

(]ED: By (ED L is a p-group and since L <<t H, this gives L < O,(H).

: Since L centralizes A;/A;_1 and H acts on A;/A;_; also (L™ centralizes A;/A;_;. Thus
(LT acts nilpotently on O,(H), and @ implies that (L7 < O,(H). O

LEMMA 1.5. Suppose that Cy(Y') has characteristic p for some Y < Op,(H). Then H is of
characteristic p.

PrROOF. Put D := Cy(O,(H)). Note that D < H and since Y < O,(H), D < Cy(Y). Thus
[0p(Cu(Y)), D] < D 0 Op(Cu(Y)) < Op(D) < Op(H) < Cu(D).

In particular, [O,(Cu(Y)), D, D] =1 and D acts nilpotently on O,(Cg(Y)). By hypothesis Cy(Y)
has characteristic p, and since D < Cy(Y), shows that D is a p-group. Since D < H this gives
D < O,(H), and so H has characteristic p. 0

LEMMA 1.6. Let M € Ly and K < M with O,(M) < K. Then
Ly(K)={L|K<L<M}={LeLy(K)|L<M}.

Proor. Let L < H.

Suppose that L € Lp;(K). Then K < L < M by the definition of £, (K).

Suppose that K < L < M. Then O,(M) < K < L and since L < M, Op(M) < Op(L). Thus
Cu(Op(L)) < Cu(Op(M)). Since M € L, Cu(Op(M)) < Op(M) and so Cu(Op(L)) < Op(M) <
Op(L). Hence L e Ly(K) and L < M.

Suppose that L € Lg(K) and L < M. Then Cp(O,(L)) < Cu(0,(L)) < Op(L) and so

LEMMA 1.7. (a) Suppose that Op,(H) = 1. Then ®(H) = ®(OP(H)).
(b) Suppose that H = OP (H) and O,(H) = 1. Then Z(H) < ®(H).

PROOF. (a): This the case m = {p} of [MS6, 1.9].

(B): Since O,(H) =1, Z(H) is a p'-group. Let M < H such that H = MZ(H). Then M < H
and H/M is a p/-group. As H = OP (H) we get H = M. This shows that Z(H) is contained in
every maximal subgroup of H and so Z(H) < ®(H). O

LEMMA 1.8. LetY be a finite p-group acting on H and L a Y -invariant subnormal subgroup of
F*(H). Suppose that Op(H) = 1.
(a) L =[L,Y]CL(Y),
(b) [L,Y] =[L,Y,Y].
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PROOF. It is evident that @ implies (]ED Thus, it suffices to show

Set Lo := [L,Y]CL(Y). Note that L << H and so by [KS| 6.5.7b], F*(L) = F*(H)nL =L
and so L = F(L)E(L), where E(L) is the subgroup generated by the components of L. O,(F(L)) <
O,(H) =1 and F(L) is nilpotent, F'(L) is a p’-group. Hence, the properties of coprime action show

Let K be a component of L. Then [V, K] < (KY) << L, so by a fundamental property of
components either K < [Y, K] or [Y,K,K] =1 (see for example 6.5.2 in [KS]). In the first case
K < Ly, in the second case with the Three Subgroup Lemma [Y, K] = 1 since K is perfect. Thus,
also in this case K < Hy, and (ED follows. O

LEMMA 1.9. Let K be subgroup of H with Op(K) =1 and Y be a p-subgroup of Ny (K) with
[K,Y,Y] =1. Then [K,Y] = 1.
PROOF. Since [K,Y,Y] =1,
Y SY[K, Y] =K =yYEYy<9 Ky
and so Y < O,(KY). Thus
[K,)Y] < O,(KY)n K <O,(K) =1.
O

LEMMA 1.10. Let Y be a finite p-group acting on H, and let A and B be normal subgroups of
Y. Suppose that O,(H) =1 and [F*(H),A,B] # 1. Let X be a Y -invariant subnormal subgroup of
F*(H) minimal with respect to [X, A, B] # 1. Then

X =[X,A] and X =[X,B].

PrOOF. By [L.8|[b) applied to (X, A) in place of (L,Y) we have [X, A, A] = [X,A]. Hence
[X,A A, B]=[X,A,B] #1. So the minimal choice of X gives X = [X A].

Suppose that [X, A n B] # 1. Then [1.8|(b) applied with Y = A n B shows

1#[X,AnB]|=[X,AnB,AnB]=[X,AnB,AnB,AnB]|<[X,An B,A,B].
Thus the minimal choice of X implies that X = [X, A n B] and so also X = [X, B].

Suppose next that [X,A n B] = 1. Since [4,B] < A n B this gives [4,B,X] = 1. Since
[X, A, B] # 1, the Three Subgroups Lemma shows that [X, B, A] # 1. As above, (]ED gives
[X,B,B] = [X,B] and so [X,B,B,A] = [X,B,A] # 1. Since [A,B,[X,B]] < [[4,B],X] =1
another application of the Three Subgroups Lemma yields [X, B, A, B] # 1 and the minimal choice
of X implies X = [X, B]. O

LEMMA 1.11. Let A,B, K < H with A=[A,B] and B K<< H. Then A < K.

Proor. If K = H the claim is obvious. In the other case there exists L = H such that
K < L # H since K <<t H. Hence A = [A, B] < [A, L] < L. Since also K < L, we conclude that
A < K by induction on |H|. O

LEMMA 1.12. Let H be a group and G a function which assigns to each subgroup X of H a
Ny (X)-invariant subgroup G(X) of H such that G(X) < G(Y') whenever X <Y < H.
Let A << B < H and suppose that G(A) = G(C) for some C < H with Ng(G(A)) < C. Then
G(A) =4(B).
ProOOF. By induction on the subnormal length of A in B we may assume that A < B. Then
B < Ny(A) < Ng(G(A)) <C.
Thus A < B < C and
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LEMMA 1.13. Let A < H and K be the subnormal closure of A in H.
(a) K =(AK) and Ng(A) < Ny (K).
(b) K = AOP(K) = (A9"(K)3,
(¢c) If A is a p-group, then OP(K) = [OP(K), A].
PROOF. @: Note that A < (A%) < K << H and so K = (AX) by the minimality of K. The
second statement should be evident.
(b): Note that K/OP(K) is a p-group, and so AOP(K)/OP(K) is subnormal in K /OP(K). Hence
A< AOP(K) << K << H and K = AOP(K) by minimality of K. Thus using @
_ <AK> _ <AAOP(K)> _ <AOP(K)>.
. By ( . K = <AOP(K)> = [OP(K), A]A. If A is a p-group, then OP(K) < [OP(K), A], and
holds. O

LEMMA 1.14. Put K := OP(H). Suppose that O,(H) = 1 and K is quasisimple. Then
(a) K = F*(H).
(b) K = [K,Y] <{Y®) for all non-trivial p-subgroups Y of H.
(¢) If C <€ H with K € C, then C is a p'-group. In particular, H is p-irreducible.
PROOF. @: Note that K is a component of H and so K < F*(H). Since O,(H) =1, F(H) is
a p’-group. Thus F*(H) = F(H)E(H) < OP(H) = K and so K = F*(H).
(B): In particular, Cy(K) < Z(K) and so Cy(K) is a p’-group. Thus [Y, K] # 1, and since K
is perfect, [Y, K, K] # 1. Hence [Y, K] £ Z(K), and since K is quasisimple, K = [V, K] < (Y¥).
follows immediately from . O

LEMMA 1.15. Suppose that Op(H) =1, and let Y be a p-subgroup of H. Then
(a) [F*(H),Y] =[F*(K),Y] =[F*(K),Y,Y] for every K << H withY < K
(b) If[F*(H),Y] =1 then Y =1,
(c) If Yo <Y with [F*(H),Y,YO] =1 then Yy =1.
PROOF. (f)): Since O,(H) = 1, gives [F*(H),Y] = [F*(H) Y,Y]. Hence [L.11] implies
[F*(H),Y] < K and so [F*(H), ] F*(H)n K. By [KS| 6.5.7b], F*(H) n K = F*(K). Thus
[F*(H),Y] = [F*(H),Y,Y] < [FF*(K),Y] < [F*(H),Y],

and @ holds.

([B): Since Cy(F*(H)) < F*(H), [F*(H),Y] = 1 implies Y < O,(Z(F*(H))) < Op(H) =

(d): Note that [F*(H), Yy, Yo] < [F*(H),Y,Yy] = 1. On the other hand, by [1.8] [F*(H), YO]
[F*(H), Yy, Yo], so [F*(H), Y] = 1, and () gives Yy = 1. O

LEMMA 1.16. Let N and E be subnormal subgroups of H. Suppose that E is a direct product of
perfect simple groups. Then

[NE]=1 <= [F*(N),E]=1 <« NnE=1.
PRrOOF. Note that F(FE) = 1 and F is generated by its components. If [N, E] = 1, then also
[F*(N), E] - 1.

Suppose that [F*(N), E] = 1. Since F*(N n E) < F*(E) n N we conclude that F*(N n E) is
abelian. Hence F*(NnE)=F(NnE)< F(E)=1andsoalso NnFE =1.

Suppose that N n E = 1, and let K be a component of E. Then N n K = 1 and so by [KS|
6.5.2], [V, K] = 1. Since E is generated by its components, this gives [N, E] = 1. O

LEMMA 1.17. Suppose that O,(H) = 1. Let Q be a p-subgroup of H, put L := [F*(H),Q], and
let F' be the largest normal subgroup of F*(H) centralized by Q). Then the following hold:
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(a) F' = Cpxm)(LQ)

(b) L=[L,Q].

(¢) LnF<P(L).

(d) If B < Ng(Q) is a p-subgroup with [L,B] < F, then [L,B] = 1.
)

Cy(FL) is a p’'-group.

PROOF. @: Note that LQ = [F*(H),Q]Q = <QF*(H)>. Since FF <9 F*(H) and [F,Q] =1 we
conclude that F' < Cps()(LQ). On the other hand Cpx () (LQ) is a normal subgroup of F*(H)
centralized by @ and so Cpxg)(LQ) < F.

(b): Since O,(H) = 1 we can apply (]E[) and conclude that [F*(H),Q] = [F*(H),Q,Q].
Thus (b)) holds

: Let N be a subgroup of L with L = N(L n F). It suffices to show that N = L. By @
L =NZ(L) and thus L' = N'. As L< F*(H) and O,(H) =1, OP(L) = L and L/L’ is a p’-group.
By [L/L',Q] = L/L" and since L/L’" is a p’-group we get Cp/1,(Q) =1. So Fn L < L' < N and
N =L.

(d): By hypothesis, B < Ny (Q) and [L,B] < F. Hence B normalizes [F*(H),Q] = L and
[L,B]<SLnF.By(d LnF <®(L). Since L < F*(H) we get from [L.8(a) that L = [L, B]|CL(B).
Thus L = ®(L)CL(B) and so L = C(B).

(€): Observe that

[F*(H),Cyg(FL)] < F*(H) nCy(FL) =: Fy
Since FL < F*(H) also Fy < F*(H). Hence [1.8(la) gives Fy = [Fo, Q]Cr,(Q). Note that [Fp, Q] <
[F*(H)Q] < L and Cp,(Q) = Cr,(LQ). By (a)), Cr (LQ) < F, so Fy < LF. Tt follows that
[F*(H),Cy(FL),Cg(FL)] = 1. Let Y be a p-subgroup of Cy(FL). Then [F*(H),Y,Y] = 1. Now
1.15{(c) gives Y =1 since O,(H) = 1. Hence Cy(FL) is a p’-group. O

LEMMA 1.18. Suppose that H acts on the finite p-group P and [P,H] < WZ(P). Then
[®(P),H] = 1.

PROOF. Since [P, H, P] = 1, the Three Subgroups Lemma shows that [P’, H] = 1, and since
[P, H] is elementary abelian and central in P,

(aP)h = (a™)P = (a[a, h])? = aP[a,h]? = a? for allae P and h e H,

and [PP,H] = 1. By [KS| 5.2.8], ®(P) is the smallest normal subgroup of P that has elementary
abelian factor group, so ®(P) = P'PP, and the lemma follows. O

LEMMA 1.19. Suppose that H acts on a finite p-group P. Let Y < Cy(P') such that [P,Y] is
elementary abelian. Then OP((Y'H)) centralizes ®(P).

PROOF. Put P = P/P' and L = (Y"). Since P is abelian and [P, Y] is elementary abelian we

have [P, L] = ([P,Y]#) < 0,Z(P). Thus by [®(P), L] = 1. Note that L centralizes P’ since
Y does. Since ®(P) = ®&(P)/P’ we conclude that [®(P), L,L] = 1 and thus [®(P),0P(L)] =1.

LEMMA 1.20. Let A and B be subgroups of H. Then Ca(b) = Ca(B) for allb e B\Cg(A) if
and only if Cp(a) = Cp(A) for all a € A\Ca(B).

PROOF. Both statements just say that [a,b] # 1 for all a € A\C'4(B) and b€ B\Cp(A). O

For the next lemma recall from that W is a root offender on V if W is an offender on V'
and

Cy(W)=Cy(w) and [Vw]=I[V,W] for every w e W\Cw (V).

LEMMA 1.21. Let V and W be elementary abelian p-subgroups of H with [V,W] < VAW. Then
V' is a root offender on W if and only if W is a root offender on V.
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ProoF. We may assume that W is a root offender on V. Then by |[V/Cy(W)| =
|[W/Cy (W)]|, and so V is an offender on W. By W is a strong dual offender on V. Hence
[v, W] = [V,W] for all v e V\Cy(W). Moreover, by definition of a root offender Cy (W) = Cy (w)
for all w € W\V, and so by also Cw (V) = Cw (v) for all v € V\Cy(W). Thus V is a root
offender on W. U

LEMMA 1.22. Let Vi and Vy be elementary abelian p-subgroups of H with [Vi,Va] < Vi n Va,
and let K; is a subfield of Endg,(V;) with |K;| > p, i = 1,2. Suppose that
(i) V; acts K;-semilinearly on V; for all {i,j} = {1,2}.
(ii) Vo does not act Ky -linearly on V;.
Then p = 2 and, for or all {i,7} = {1,2}, |K;| = |V;| = 4, dimg, V; = 1, |V;/Cy;,(V;)| = 2, and V;
does not act K;-linearly on V;.

PROOF. Let {i,j} = {1,2} and put W; := Cy,(K;), so Wj is the largest subgroup of V; acting
K;-linearly on V; and V;/W; is isomorphic to subgroup of Aut(K;). Since Aut(K;) is cyclic and V} is
elementary abelian, we conclude that |V;/W;| < p. By hypothesis, V5 does not act K;-linearly in V7,
so |V1/W1| = p. Note that [V1, Wa] < [V4, V2] < Vin Ve < Cy, (Vo). Since Wh acts Ky -linearly on V7,
[V1, W] is a Ky-subspace of V; centralized by Va. Since V; does not act Ki-linearly on V4, this shows
that [V1, W5] = 1. Observe that Cy, (V1) < Wa, so Wy = Cy, (V). Thus |Vo/Cy, (V)| = |Vo/Wa| = p.

Let E; := Ck,(V;), so E; is the largest subfield of K; such that V; acts E;-linearly on V;. Then
Cy, (V1) is an Ea-subspace of Va, so V2/Cl, (V1) is an Eg-space. As |V2/Cy,(V1)| = p, this shows that
|Eo| = p. Since |Ks| > p, we infer Ey # Ka. So also V; does not act Ky-linearly on Vs, and the setup
is symmetric in 1 and 2. In particular, also p = |V;/W1| < |Aut(Ks)].

Note that any Es-hyperplane of V5 contains a Ky-hyperplane of V3. In particular, Cy, (V1)
contains a Ks-hyperplane Ho. As V; centralizes Hs and does not act Ks-linearly, we conclude
that Hy = 1. So dimg, Vo = 1. In particular, the action of Vi on Vs is isomorphic to the action
on Vo on Ky. It follows that |Cy,(V1)| = |Ck,(V1)| = |Eo| = p. As |Va/Cy,(V1)| = p this gives
IKa| = |Va| = p?, so |Aut(Ky)| = 2 and p = 2. By symmetry, |[Ki| = |Vi| = p? = 4, and the lemma
is proved. O

LEMMA 1.23. Let 7 be a set of primes, and let A and B be subnormal subgroups of H. Suppose
that A is a w-group and B = O™(B). Then A normalizes B and B = O™(AB).

ProOF. If B = H then the claim is obvious. Assume that B # H. Then there exists N < H
such that B < N and N # H. As A<<t H, we have A < O,(H) < H and so [A4, B] is a m-group.
Since [A, B] < (A, B) << H and [A, B] < N, we get that [A, B], B and N satisfy the hypothesis
in place of A, B and H. Hence by induction on |H|, B = O™([A, B]B). Since [A, B]|B = (B4) is
normalized by A, we conclude that A normalizes B. Thus AB/B is a w-group and so

O™(B) < O™(AB) < B = O™(B).

1.2. The Largest p-Reduced Elementary Abelian Normal Subgroup

LEMMA 1.24. Let T' € Syl,(H) and L, M < H with T < L n M. Suppose that L and M are of
characteristic p and put Ty := Cp(Yy) and Lo := Np(Tp).
(a) To € Sylp(CH(YL))
(b) Suppose that LCy(Yar) = MCr(Yar). Then Yar < Y.
(c) If L < M and Y is a p-reduced elementary abelian normal subgroup of L, then (Y™M) is a
p-reduced elementary abelian normal p-subgroup of M.

)
() ZL =MZ(L)[ZL,0P(L)] and [Zy, L] = [ZL, OP(L)].
(f) If L < M, then Yy, < Yy;.
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(h) Suppose that L < M and M < LCy(Y) for someY < H with Yy <Y. Then Yy, = Yy
and LCH(YL) = MCH(YL)

(1) L= L()CL(YL), To = OP(L()), CT(T()) < Ty, and Yy, = le(T()) = YLO-

(j) Suppose that MCy(Yy) = LCy(Yy) and put L* = Np(Tp). Then Yix = Y and
LCy(Yy) = L*Cy(YL).

(k) If CL(YL) is p-closed, then Y1, = 1Z(0O,(L)) and Op(L) = Ty € Syl,,(Cu(YL))-

ProOOF. Note first that Yas < O,(M) < T < L. For the definition of a p-reduced module and
nilpotent action see Definition [A24]

: Since T' € Sylp(H) and T < L < NH(YL), Te Sylp(NH(YL)), and since CH(YL) S NH(YL)
we conclude that Ty = Cr(Yz) =T n Cu(YL) € Syl,(Cu(YL)).

(]ED: Observe that L normalizes Yas and since Yy < L, Y < Op(L). We have
Op(L/CL(YM)) = Op(LCH (Ya)/Cr(Yir)) = Op(MCr(Yar)/Cr(Yar)) = Op(M/Crs(Yar)) = 1
and so Yy, is p-reduced for L. Thus Yy, < Y7.
(c): This is [MS4] (2.2)(b].
@: Note that 1Z(T) is p-reduced for T, T < L and Zj, = {0 Z(T)%). So @ follows from .

(EI): Note that L normalizes ,Z(T)[Z1, L]. Since Z;, = (1Z(T)E) we get Z1, = WZ(T)[Z1, L].
Hence Gaschiitz’'s Theorem gives Z;, = Cygz, (L)[ZL, L] = Z(L)[Z, L], see This implies
[Zr,L] =[Zr,L,L] and so [Z1, L] = [Z1,0P(L)], and () is proved.

(): This is [MS4], (2.2)(c)].

(g): By the definition of Z; we have 2Z(T) < Z;. By @, Zy, is p-reduced for L and so
Zr, < Yp. Since Y7, is a normal p-subgroup of L, Y7, < Op(L). As O,(L/CL(Yr)) = 1 we have
OP(L> < CL(YL) Thus YL < 91Z(OP(L>) and Op(L) < OT(YL) = To.

([M): By (), Y2 < Y. By hypothesis Yy <Y and M < LCy/(Y). Thus Cx(Y) < Cy(Yy) and
so M € LCy(Ya). As L < M this implies LCy (Yar) = MCy(Yar). So (]E[) gives Yy < Yy. Hence
Y = Yy and ( @ holds.

(i): Recall that Tp < L. By @) Ty € Syl,,(Cu(Yr)) and so also Ty € Syl,(Cr(Yz)). A Frattini
argument gives L = LoCr(Yy), and T < LO since Ty < T. Since L is Of characteristic p and
O,(L) < Ty < Oy(Ly), also Ly is of characteristic p. So (applied with L = Lo, M = L and
Y =Y) implies that Yz, = Y. By @ Y, < QZ(0,(Lo)). We record

Y, = YLO < 91Z(OP(L0))
Let U be the largest normal subgroup of Ly acting nilpotently on Q1Z(0,(Lo)). Then U acts
nilpotently on Yz,. As Yz, is p-reduced for Ly, implies that U < Cr,(Yz,). So

Op(Lo) UNT < Cp(Yr,) = Cr(Yr) = To < Op(Lo).
Therefore, O,(Lg) = Tp. Note that OP(Lg) < CL,(2:Z(0,(Ly))) and thus
U= (UnT)CL,(1Z(0p(Lo))) = CL,(1Z(0p(Lo)))-
Now shows that 1Z(0,(Ly)) is p-reduced for Ly and thus
YL < Z(To) = WZ(0p(Lo)) < Y, = Y.
Since Ly is of characteristic p and Ty = Op(Lo), Cr,(To) < Tp and (i) is proved.

(ED: By hypothesis MCy(Yy) = LCyx(Yr) and so M normalizes Y. Hence Ty is a Sylow p-
subgroup of Cy/(Yy) and Cp(YL) is a normal subgroup of M. So by a Frattini argument M =
NM(T0>CM(YL) = L*CM(YL) Thus LCH(YL> = MCH<YL) = L*CH(YL By . YL = le(To)
and Cr(Ty) < Tp. Since Ty < O,(L*) we conclude Y« < 01Z(Tp) = Yy. By @ Y. < Yrx and so
Y. =Y.

@: By (g) Op(L) < Tp. Since Cp(Yz) is p-closed and Ty € Syl,(Cr(Yr)), we have

Ty = Op(CL(YL)) < Op(L) < To.
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So Ty = Op(L), and ({i) shows that Y, = QZ(Tp) = MZ(O,(L)). By @), Ty € Syl,(Cu(Yr)) and
SO is proved. |

LEMMA 1.25. Suppose that H is of parabolic characteristic p. Let T € Syl,,(H) and L € Ly (T).
Then there exist M € My (T) and L* € Ly(T) such that L* < M, Y, = Y+, Y < Yy and
LCy(Yy) = L*Cy(YL).

ProOF. Put Tj := CT(YL) and Ly := LCH(YL) Then Yy, < L; and CH(Op(Ll)) < CH(YL) <
L. Since H is of parabolic characteristic p we conclude that Cy(O,(L1)) = CL,(0p(L1)) < Ou(Ly),
SO Ll € ,CH(T) Note that LCH(YL) = Ll = Lch(YL) and so by , YL < YL1- Thus
Cu(Yr,) < Cu(Yw).

Suppose that there exist M € My (T) and L € Ly (T) such that LF < M, Y, = ¥ < Ya and
LICH(YLl) = LTCH(YLl). As CH(YLl) < CH(YL) this gives Lch(YL) = LTCH(YL) Together
with Ly = LCy(YL) we get

LCH(YL) =1, = Lch(YL) = LTCH(YL)

Put L* = NL?(TO). Since T < L n L we can apply (E[) with (L¥, L) in place of (M, L) and
conclude that Yz, = Y7« and LCL(Yr) = L*Cr«(Yr). Also T' < L* < LY < M, and thus
with (L*, M) in place of (L, M) yields Y« < Y. So the lemma holds in this case.

Hence it suffices to prove the lemma for L; in place of L. Since Cy(Yy,) < Cu(Yr) < L1 we
therefore may assume that Cg(Y7) < L. By [MS4l, Theorem 1.3] there exists a set F of parabolic
subgroups of H containing T such that the following hold:

(i) For every L € Lg(T) there exists F' € F such that L € Cy(Y)F and Y, < Yp.
(i) If L e Ly (T) and F € F with F € Cy(Yp)L and Y < Yy, then Yy, = Y and L < F.

<

According to (i}) there exists F € F with L € Cy(Yr)F and Yz, < Yr. Since Cy(Yr) < L, we
get L<Cp(Yr)F andso L =CL(YL)(LnF)=(LnF)CL(Ys). In particular, by (applied
with (L, L n F,Yy) in place of (M,L,Y)) Yy, =Y, ~p.

Let M < F be minimal with T < M and F = MCr(YFr). By , Yi~r < Yr and so
YL = YLmF < YF Then CF(YF) < CH(YL) < L7 F = MCFQL(YF) and LNnF = (LQM)CLQF(YL)
Thus L = (LN F)Cyu(Yy) = (LA M)Cg(Yy). Since Ln M < L, [1.24|(h)) gives Y7, = Y7 and since
LM< M, [1.24() gives YoAnr < Y. Thus if M € My (T) then L* := L n M has the required
properties. It remains to show that M € My (T).

By [MS4, 3.5] F' is the unique maximal p-local subgroup containing M. Since H is of parabolic
characteristic p, both F' and M are of characteristic p. Since M < F and F' = M Cp(Yr) we conclude
from that Yas = Yp. Thus F = MCp(Yy) and M(M) = {F}. This shows condition (i) of
the basic property for M.

Put M, = NM(CT(YM)) Since Op(M) < Op(MO) and

Cr(0p(Mo)) < Cu(Op(M)) < Op(M) < Op(My),

My € Ly(T). Moreover, the minimality of M and a Frattini argument show that M = My. Thus
Cn(Yar) is p-closed. In particular, by [1.24{k), O, (M) € Syl,(Chrr(Yar))-

Let X be a maximal subgroup of M containing O, (M). Assume that XCp(Yar) = M. Since
F =MCuy(Yr) and Yr = Yy we get F' = XCr(Yr). In addition, X contains a Sylow p-subgroup
of M since O,(M) € Syl,(Crr(Yar)). Hence without loss 7' < X, which contradicts the minimal
choice of M. Thus XCu(Yar) # M, ie. Cpr(Yar) < X, and so Cir(Yar)/Op(M) < (M /Cri(Yrr))-
So also condition (ii) of the basic property holds for M. O

LEMMA 1.26. Let L <<t H. Then
(a) Yu n L =Yy nYy is p-reduced for L.
(b) Cr(Yr) =Cr(Yn) = Cr(Yu n L). In particular [Yr,L] =1 if and only if [Yu, L] = 1.
(¢) Suppose that OP(H) < L. Then [Yr, L] =1 if and only if [Yu,H] = 1.
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PROOF. Let R be the inverse image of O,(L/Cr(Yy n L)) in L, so R< L << H. Then OP(R)
centralizes Yy n L. Note that OP(R) = OP(RYy) < RYy since R << H, and so [OP(R),Yy| <
OP(R) nYy <Yy n L. Hence

[Yi,OP(R)] = [Yu,OP(R),OP(R)] < [Yu n L,OP(R)] = 1.
Thus R acts nilpotently on Y. Since R << H and Yy is a p-reduced H-module, [A-10] now implies
that R centralizes Y. Hence
CL(Yun L)< R<CL(Yy) <Cp(Yg n L),
and thus
(*) CL<YHﬁL) =R=CL(YH>

In particular, Yy n L is p-reduced for L. Hence Yy "L <Yy and Yg nL =Yy nYy. Thus @

holds.

@: By induction we may assume that L << H. Then H acts on Y7, and by [A.15(b) (applied
with V =Y1) Cr(Yy, (L)) = Cp(Yy, (H)), where Yy, (H) is the largest p-reduced H-submodule of
Yr. Since Y7, is p-reduced for L, Yy, (L) = Y7, and since Yy, (H) is p-reduced for H, Yy, (H) < Yg.
So

CrL(Yu)<CrL(Yy,(H)) =CrL(Yy, (L) =CL(YL) <C(YunYy) =Cr(Yn),
where the last equality follows from (x). Hence (b)) holds.

(c): By (B), [Yz,L] = 1 if and only if [Yy, L] = 1. If [Yg,L] = 1 then [Yy,OP(H)] = 1 and
since Yy is p-reduced, also [Yy, H| = 1. Hence [Yg, L] = 1 if and only if [V, H] = 1. O

LEMMA 1.27. Suppose that H has characteristic p. Let T € Syl,(H).
(a) (Kieler Lemma) Let E be a subnormal subgroup of H. Then
Ce(hZ(T)) = Ce(hZ(T n N)).
(b) Let V be an elementary abelian normal p-subgroup of H containing Q1Z(T). Then
Cu(Z(T)) = Cu([V,OP(H)] n 2Z(T)).

PROOF. @: If E =1 this if obvious. So suppose that E # 1. By @, F has characteristic
p and so O,(E) # 1. In particular, p divides |E|. Since H has characteristic p, H also has local
characteristic p, see [1.2|[). Now (@) follows from [MS6, 1.5].

@: By [MS6, 1,6] Cr(Cv(T)) = Ce(Clv,g (T n E)) for any subnormal subgroup £ of H. For
E = H this gives
(%) Cu(Cv(T)) = Cu(Crv.m(T)).

Put [V,H,1] = [V,H] and [V, H,n] = [[V, H,n—1], H] for n = 2. Now an elementary induction
on n using (*) gives

Cu(Cv(T)) = Cu(Crv,m,n (T))-
For n large enough, [V, H,n] = [V,OP(H)] since H acts nilpotently on V/[V,OP(H)]. Thus
Cu(Cv(T)) = Cu(Crv,orm)(T))-
Since 1 Z(T) <V and V is elementary abelian,
MZ(T)=Cv(T) and  Clv,oemy(T) = [V,O0°(H)] n Z(T).

So (b) holds. m

LEMMA 1.28. Suppose that H is of characteristic p and N <<t H.
(a) CN(ZH) = CN(ZN)
(b) The following are equivalent:
(1) [2:Z(T),N] =1 for some T € Syl,(H).
(2) [21Z(R),N] =1 for some R e Syl,(N).
(3) [Zn,N] =1.
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(4) [Zg.N] = 1.
Proor. Let T'e Syl,(H). By the Kieler Lemma m
(=) Cn(0Z(T)) = On (UZ(T ~ N)).

: Note that Syl,(N) ={T'n N | T € Syl,(H)}. So @) follows from (*) and the definition of
ZH and ZN.

: Since T'n N € Syl ( ) for T' e Syl,(H), (* shows that l ) implies (b:2} ‘ Since N acts
4)

transitively on Syl,(N), (b:2)) implies (b:3] . By (@) b:3) implies (b:4)). Clearly (b 1mphes

1.3. p-Irreducible Groups

LEMMA 1.29. Suppose that H is p-irreducible. Let T € Syl,(H).
(a) H={(T"Y=H'T
(b) OP(H) < H'.
(c) OP(H) = [OP(H),Y] < (YOS = (Y for every Y ST with Y € O,(H).
PRrROOF. @: Since H is not p-closed, T is not normal in H. Hence (T*) is not p-closed. By
definition of p-irreducible this gives OP(H) < (T, and so H = OP(H)T = (T*). Since H'T < H,
we have H = (TH") < H'T, and thus H = H'T.

(]E[): This is an immediate consequence of H = H'T.

(c): Since Y £ O,(H), and (Y)Y < H, we get that Y £ O,((Y')). Hence (Y is not p-closed,
and since H is p-irreducible, OP(H) < (YH). Since T normalizes Y and H = OP(H)T, we have
Yy = (YO () and so

0”( ) <Y = [07(H), Y]Y.
Hence OP(H) < [OP(H),Y ], and (] is proved. O

LEMMA 1.30. (a) Let D be a normal p-subgroup of H. Then H is (strongly) p-irreducible
if and only if H/D is (strongly) p-irreducible.

(b) Let K < H and D a K-invariant p-subgroup of H. Then K is (strongly) p-irreducible,
if and only if KD is (strongly) p-irreducible and if and only if KD/D is (strongly) p-
1rreductble.

PRrOOF. @: Let N < H and put H := H/D. Since D is a p-group
N p-closed <= ND p-closed <= N p-closed.
Moreover, since for every X < H, OP ()Ldoes not have any non-trivial p-factor groups, one
easily gets OP(N) = OP(ND) and OP(H) = OP(H). This gives
OP(H)<S N <= OP(H)SND < OPH)<N,

and

[N,H|<O,(H) <= [ND,H|<O,(H) <= [N,H]|<O,H).
Now @ follows from the definition of (strongly) p-irreducible.

([): Since K n D is a normal p-subgroup of K, (a) shows that K is (strongly) p-irreducible if
and only if K/K n D is (strongly) p-irreducible. Also D is a normal p-subgroup of KD and so KD
is (strongly) p-irreducible if and only K D/D is (strongly) p-irreducible. Since K/K n D =~ KD/D,
this gives (]E[) |

LEMMA 1.31. FEvery strongly p-irreducible finite group is p-irreducible.

PROOF. Suppose H is strongly p-irreducible. Then H is not p-closed. Let N << H. If [N, H] <
O,(H), then N/N n O,(H) is abelian and N is p-closed. If [N, H] € O,(H), then the definition of
strongly p-irreducible gives OP(H) < N. Thus H is p-irreducible. O



1.3. p-IRREDUCIBLE GROUPS 11

LEMMA 1.32. Suppose that there exists a non-empty H-invariant set of subgroups K of H such
that for R :=(K) and E € K:

(i) H acts transitively on K.
(ii) OP(H) < R.
(ili) EO,(H)< RO,(H).
(iv) E is strongly p-irreducible.
Then the following hold:
(a) For E,K € K either OP(EO,(H)) = OP(KO,(H)) or [E,K] < Oy(H).
(b) H is p-irreducible.

PROOF. Put H := H/O,(H). Then H and K satisfy —. By E is strongly p-irreducible
and so by also E = EO,(H)/O,(H) is strongly p-irreducible. Thus holds for E. Hence
H and K satisfy f.

Moreover, if the claims @ and (b)) hold for H and K, then they also hold for H and K, again
with the help of in the case of (b). Thus, we may assume that O,(H) = 1. Then E < R. As
H acts transitively on K, R = (E™). Since F is strongly p-irreducible, E is p-irreducible by
Hence gives OP(F) < E’ and so

(+) O(R) = (O"(E)") < (B") < R,

@: Let E, K € K. Since FE and K normalize each other, D := [K, E] < KnE, and D is normal
in F and K. Since E is strongly p-irreducible, either D < Z(F) or OP(E) < D and by symmetry
also D < Z(K) or OP(K) < D.

If OP(E) < D and OP(K) < D, then OP(K) = OP(D) = OP(E), and (&) holds. Thus, we
may assume without loss that D < Z(E). Pick Tr € Syl,(E). Since Oy(E) < O,(H) = 1, both
Z(E) and D are p'-groups. Note that Tx centralizes D. We conclude that DT = D x Ty and
T = Op(DTEg). Since K normalizes DTy, it also normalizes Ty, and [Tg, K| <Tg n D = 1. We
conclude that K centralizes every Sylow p-subgroup of E. Since E is p-irreducible, gives
E =(TE>. Hence [E,K] =1, and @ is proved.

(]ED: Let N be a normal subgroup of H. We need to show that OP(H) < N or N is p-closed.
Suppose first that OP(E) < N. Then by (%) OP(R) = (OP(E)?) < N. By OP(H) < R and so
OP(H) < OP(R) < N.

Suppose next that OP(E) < N for all E € K. Since E is strongly p-irreducible by , this gives
[ENN,E]<O,(E)=1. Since E<S R, [RNN,E]<EnN. So[Rn N,E,E] =1 and with the
Three Subgroups Lemma [R n N, E’] = 1. Since R n N < H we get [Rn N,(E'H)] = 1. By (%),
OP(R) < (E'"™) and thus [R n N,OP(R)] = 1. In particular, [R " N,OP(Rn N)] =1,s0 Rn N is
p-closed. As O,(H) = 1 this shows that R n N is a p’-group. Since [R n N,OP(R)] = 1, R and so
also E acts a p-group on N n R. Thus coprime action gives [R n N, E] = [Rn N, E, E] = 1. Since
this holds for all E € K and since R = (K) this gives [R n N, R] = 1. Hence [N, R, R] = 1 and by
the Three Subgroups Lemma, [R', N] = 1. By (%) OP(R) < R’ and thus [OP(R), N] = 1. By
OP(H) < OP(R). It follows that [OP(H), N] =1, so [OP(N),N] =1, and N is p-closed. O

LEMMA 1.33. Suppose that H is p-irreducible. Let V be an Fp,H-module with [V,OP(H)] # 0.
(a) Cu (V) is p-closed.
(b) Cr(V) < Op(H) for all p-subgroups T of H.
PROOF. Note that OP(H) £ Cy (V). Hence (a]) follows from the definition of p-irreducible, and
(o) follows from (). O

LEMMA 1.34. Suppose that H is p-irreducible. Let V' be an F,H-module with [V,OP(H)] # 1
and [V,0,(H)] = 1.
(a) Cr(V) =T n O,(H) for all p-subgroups T of H.
(b) V is p-reduced for H.
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(¢) Let U be an H-submodule of V' minimal with [U,OP(H)] # 0. Then U is a quasisimple
H-module.

ProOF. (a)): By [1.33|a]), Cr (V) < O,(H). Since [V,0,(H)] = 0, this gives (al).

(]ED: Let R/Cu(V) = Op(H/Cu(V)). Then OP(R) < Cyx(V). Since OP(OP(H)) = OP(H) <
Cy (V) this gives OP(H) € R. The definition of p-irreducible now shows that R is p-closed. Since
O,(R) < O,(H) < Cy(V) we conclude that R/Cr(V) is a p’-group. Thus R = Cy(V) and V is
p-reduced.

(): Recall from the definitions, see that U is a perfect H-module if 0 # U = [U, H] and
that U is a quasisimple H-module if U is perfect and p-reduced for H and U/Cy (OP(H)) is a simple
H-module.

Since [U,OP(H)] # 0 we have [U,OP(H)] £ Cy(OP(H)). By minimality of U, Cy(OP(H)) is
the unique maximal H-submodule of U and so U = [U,OP(H)] and U/Cy(OP(H)) is simple. In
particular, U = [U, H| and thus U is a perfect H-module. By (]ED applied to U, U is p-reduced for
H. Thus U is H-quasisimple. O

LEMMA 1.35. Suppose that H is p-irreducible and of characteristic p. Then either
Yo = WZ(0Op(H)) and [Yu,OP(H))] # 1,

. Vi, Hl =1 and [QuZ(0,(H)),OP(H)] = 1.

PRrROOF. Put V := 01 Z(0,(H)). Recall from |1.24(lg) that Yy < V.
Assume first that [V,OP(H)] # 1. Then [1.34{|b) shows that V is p-reduced for H. Hence

V <Ypy. Since Yy < V this gives V = Yj.
Assume next that [V,OP(H)] = 1. Then [Yy,OP(H)] = 1 since Yy <V, and H/Cyx(Yy) is a
p-group. Since Yy is p-reduced this gives [Yy, H]| = 1. O

1.4. Y-Minimal Groups
Recall from the introduction:

DEFINITION 1.36. H is Y-minimal for Y < H, if H = (Y®) and Y-is contained in unique
maximal subgroup of H; and H is p-minimal if H is T-minimal for T'e Syl,,(H).

LEMMA 1.37. Suppose that H is p-minimal. Then H is p-irreducible.

Proor. Let T'€ Syl,(H). By the definition of p-minimality, H = (TH) and T is contained in
a unique maximal subgroup M of H. Hence T < M < H, (TH#) £« M and T €t H. So H is not
p-closed.

Let N <€ H. Then either NT = H or N < M. In the first case OP(H) < N. In the second case
by a Frattini argument H = NNg(N nT), s0 T < Ng(N nT) € M and thus Ng(T n N) = H.
Hence T n N < O,(H), and N is p-closed. O

LEMMA 1.38. Suppose that H is p-minimal and N < H. Then either H/N is a p-group or H/N
is p-minimal.
PROOF. Let T € Syl,(H). Since H is p-minimal, H = (T and T is contained in a unique

maximal subgroup M of H. If N < M, then H/N = {(TN/N)"/N% and M/N is the unique
maximal subgroups of H/N containing TN/N, and so H/N is p-minimal. So suppose N £ M.
Since T'< NT and NT €< M, NT is not contained in any maximal subgroup of H. Thus NT = H
and H/N is a p-group. ]

LEMMA 1.39. Suppose that there exists a non-empty H-invariant set of subgroups K of H such
that for R :={K) and E € K:

(1) H acts transitively on K.
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(i) OP(H) < R.

(i) EOp(H) < ROp(H).

(iv) E is p-minimal .
Then H is p-minimal.

PrOOF. Put H := H/O,(H). Clearly, E is p-minimal since F is. Hence H and K satisfy (i) —
. Moreover, H is p-minimal if and only if H is p-minimal. Thus, we may assume that O,(H) = 1.
In particular, by , E< Rfor EeK.

Since OP(H) < R, H = RT. Since E < R we know that R acts trivially on K, while by
H = RT acts transitively on . Hence T acts transitively on K.

Let £ e K. Then E < R < H and so T'n E € Syl,(E). Since E is p-minimal, T'n E is
contained in a unique maximal subgroup Er of E and E = (T n E)E) < (TH). Thus R < {(T*)
and H = RT = (TH). Put D :=(\gex Nr(Er). Suppose that H = DT. Then OP(H) < D and so
also OP(E) < D. Hence

E = Op<E)(E N T) = OP(E)ET < DEr < NR(ET).

But then {(E n T)¥) < Er, a contradiction since E is p-minimal. Thus H # DT.

We will show that DT is the unique maximal subgroup of H containing 7T'. For this let M < H
with T < M. Suppose first that M n E € Er for some E € K. Since Tn E < M n FE and Er is the
unique maximal subgroup of E containing 7' n E, this gives E = M n E < M. The transitivity of
T on K now shows that R = (K) = (ET) < M and H = RT = M.

Suppose next that M n EF < Ep for all E € K. Since Tn E < M n E, Er is the unique
maximal subgroup of F containing M n E. Note that M n R normalizes £ and M n E and so
M n R normalizes Ep. Since this holds for all Ee K, M n R < D. From T < M < H = RT we
have M = (M n R)T and so M < DT.

We have proved that DT is the unique maximal subgroup of H containing 7" and that H = (T'T).
Thus H is p-minimal. O

LEMMA 1.40. Let L be a group acting on a group V. Suppose that X < L and g € L such that

[V,X,X]=1and L =(X,X9). Then for W := [V, L]
W = [V, X][V,X?], Cw(X) = [V, X] and Cw (L) = [V, X] n [V, X7].
Proor. Clearly
W =[V,L] = [V,(X,X9)] = [V, X][V, X7]
and
Cw (L) = Cw({X, X?)) = Cw(X) n Cw (X7).

Thus, it remains to show that Cy (X) = [V, X].

Since [V, X, X] =1, [V, X] < Cw(X). As W = [V, X][V, X9], this implies

Cw(X) = [V, X]([V, X9] n Cw(X)).

Moreover,
[V, X9 nCw(X) =[V, X nCw(X) nCw(X9) =[V, X nCw(L) <[V,X] nCwig) <[V, X].
This shows that Cw (X) = [V, X]. O

LeEMMA 1.41 (L-Lemma). Suppose that H is p-minimal. Let T € Syl,(H), and A < T such that
A £ Op(H). Also let M be the unique mazimal subgroup of H containing T. Then there exists a
subgroup L < H with AO,(H) < L satisfying:
(a) AOp(L) is contained in a unique mazimal subgroup Lo of L, and Lo = L n M9 for some
ge H.
(b) L =CA,A"YO,(L) for every x € L\Ly.

PROOF. This is the L-Lemma on page 34 of [PPS]. Note that although formally the L-Lemma
was proved under Hypothesis 1 of Section 3 in [PPS], this hypothesis was never used in the proof.[]
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LEMMA 1.42. Let L be a finite group and Lo a maximal subgroup of L, and letY < T € Sylp(LO).

Suppose that L is Y -minimal. Then the following hold:
(a) Y £ 0,(L).

(b) Np(T) < Lo and Oy(L) < Lo. In particular, T' € Syl,(L).
(¢) Nr(Lo) = Lo.
(d) NLE/O,(L) = ®(L/O,(L)). In particular, (| LE is p-closed.
() Let N < L with N < Ly. Then N/Oy(N) is a nilpotent p'-group. In particular, N is
p-closed.
(f) L=Y,Y9) for each g € L\Lyg.
() YnY9=Cy(L)ifY is abelian and g € L\Ly.

PROOF. (ja)): By [MS6], Lemma 2.5(b)] Y is not subnormal in L and so Y £ O,(L).

(b): By [MS6| Lemma 2.5(h)], Ly contains the normalizer of a Sylow p-subgroup of L. Hence
NL(T) < LO and Op(L) < Lo.

(c): See [MS6l Lemma 2.5(b)].

@: Put D := (LY. By [MS6], Lemma 2.7(c)] applied to L/O,(L), D/O,(L) is a p’-group and
D/Oy(L) = ®(L/Op(L)). In particular, D is p-closed and so (d)) holds.

(e): Since N < L{, this follows from (d).
({): See [MS6, Lemma 2.5(c)].

(g): Let Y be abelian and g € L\Lo. By () L = (Y,Y9). Thus Y nY¥ < Cy (L), and clearly
Oy(L) <Y AYY. 0

[§]

LEMMA 1.43. Let L be a finite group and Lo a mazimal subgroup of L, and let Y be an elementary
abelian p-subgroup of Ly. Suppose that
(i) L is Y-minimal and of characteristic p, and
(ii) Op(L) < Np(Y).
Put
A:={0,(L) nY)") and L := L/Cy (L),
and let B be an L-invariant subgroup of A. Then the following hold for every g € L\Lq:
(a) P(A)=A' =[AnY,Al=[AnY, AnYI < Cy(L).
D) YnYI=(AnY)n(AnYY9) =Cy(L) =Cy(L).
Cr(@) < Lo foreveryl£a€ AnY.
BnY =Cg(Y) = Cx(y) = [B,y] for every y € Y\O,(L).
B=BnY xBnYY9 B=(BnY)BnYY) and |B/BnY|=|BnY/Cp~y(L)|.
IfB#1andbe B\Y, then Cy(b) =Cy(B) = AnY and Cy(B) < Cy(b) < ANnY.
Bn
C

)
)
)
;
) Y =Cp(Y)=Cgp(y) = [B,Y|Csny (L) = [B,y]Cpny (L) for every y € Y\O,(L).
) C5(L) =1 and Cp(OP(L)) = Cg(L) = BnCy(L)=BnY nY¥Y.

(i) [a, Y] nCy(L) =1 for allae Z(A).

(j) A;él C’A(Ar\Y) Z(A)(ANY) and Cy(A) = Z(A)nY.
)
)
)
)
)
)

(m) A/Ca (Y) is elementary abelian, [Y,A] # 1 and A acts nearly quadmticallyﬂ onY.
[Y/Cy (A)] < |A/Ca(Y)%.

o) If B< Z(A), then B is a strong oﬁendeﬂon Y.

L has no central chief factor on A.

Q) Z(4) = WZ(A).

1°.  L={(Y,Y9.

Lfor the definition of nearly quadratic see 1)
2for the definition of a strong offender see mﬁi
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This holds by @

2°. Cy(L)=YnY9I=(AnY)n(ANnYY).

By[L42[g) Y n Y9 = Cy(L). Also Cy(L) <Y n Op(L) < A and so follows.
3°. A=(AnY)(ANnYY).

Since A < Op(L) < Np(Y) n N (YY), we get [A,Y] < AnY and [4,Y9] < AnY9. As
L ={Y,Y9), we have [A, L] = [A,Y][A,YY]. Thus

A={0p(L) nY)") =((AnY)) = (AnY)[A L] = (AnY)[AY][A Y] = (AnY)(AnYY),
and is proved.
4°. P(A)=[AnY,AnYI| <Y nY9=Cy(L). In particular, A is elementary abelian.

Since A nY and A n Y9 are elementary abelian, the first equality follows from . The
inequality holds since A normalizes Y and Y9, and the last equality follows from .

5. A=AnY x AnY9. In particular, |A] = |[AnY|?.
Since A is abelian, this follows from 1) and .
6°.  [B/Cx(y)l = |[B,y]l <|C5(y)| fory e Y. In particular, |B| = |[B,y]||C5(y)|-

Since B < Op(L) < Np(Y) we get [B,Y,Y] < [Y,Y] = 1, and Y acts quadratically on the
abelian group B. Thus

¢: B — Cx(y) defined by b +— [b,y]
is a homomorphism with ker ¢ = C5(y) and so (6°) holds.

7. [Ay] =[A Y] =Cx(y) = AnY = Cx(Y) for each y € Y\O,(L).

By @7 (N LE is p-closed. Since y ¢ O,(L), this implies y ¢ (| L{, and there exists h € L
such that y ¢ LE. Hence by [L.42|{f) L = (Y, Y"¥) and thus also L = {(y, Y"). In particular, h ¢ Lo,
and applied to h in place of g gives

A=AnY xAnYh
Since Y is abelian, A 0 Y < C5(Y"). Thus
Cx(y) nAnYh < C5((y, YM)) = Ciwn(L) SAnY nAnYh =1,
and using that A 'Y < C3(y),
Cxy) =C5(y) n(ANY x AnYh) =AY (C4y) nAnYh) =AnY.
By we get |[A] = |[AnY|* = |Cx(y)|* and by applied to A in place of B, |A| =

[4,9][[Cx(y)|. Thus [[4,y]] = |Cx(y)|.
Moreover, the quadratic action of Y on A gives

[A,y] < [AY] < Cx(Y) < Cly) = A Y.
As |[4,y]] = |C4(y)], equality holds everywhere and is proved.
@: This is (4°).

(H): Note that Ca(L) < Cx(Y). By (7) Cx(Y) = AnY and so Ca(L) < AnY nYY. By
AnY nY9=Y nY9=Cy(L) <Ca(L). Hence C4(L) =AY nY?Y, and (b holds.

(c): Pick 1 #a@e AnY. Then Y < Cr(@) and so either Cp(a) < Lo or Cr(@) = L. In the
second case e AN Y9, and (5°) yields @ = 1, a contradiction.

@ and (Eb: By , [A,y] = [A,Y] = C4(y) = AnY, and intersecting with B gives
[B,y] < [B.Y]<Cxly) =BnY,
By 1] A=AnY xAnY9andso BAnY nBnY9=1. Thus
IBAY|?=|BnYBnYY <|B|
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In addition, by
1B, y]l|CE(y)| = |BI.

Combining the last three displayed equations we get
1Bl = |[B,y]lIC5(y)| < [BAY]P=[BnY B Y9 <Dl
and so (d) and (e follow.

(f): Let be B\Y and y e Y\A. By (d) C5(y) =B Y, s0y ¢ Cy(b) and Cy(b) < AnY. By
@) [A,AnY] < Cy(L) and so AnY < Cy(b). Hence Cy(b) = AnY, and @) holds.

(g): This follows from @ by taking preimages in B.
@: We have

=

Cy(L) < Cy(Y)n Cu((YY) Q@ 5rvamay @
Hence also C5(OP(L)) = 1 and
Cp(OP(L)) < Cy(L) n B < Cg(L) < Cp(OP(L)).
({i): Let y € Y and a € Z(A) with [a,y] € Cy(L). If y € Oy(L), then y € A and [a,y] = 1. If
y ¢ Op(L), then @ gives @ € C4(y) = AnY. So a €Y and again [a,y] = 1. As Y is abelian,
[a,Y] ={[a,y] | y € Y}, and we conclude that [a,Y] n Cy (L) = 1. Hence ({i) holds.
{): By ) A=(AnY)(AnYY) and so
Ca(An Y) =(ANnY)Canys(ANY)=(AnY)Z(A).
Since [0,(L),Y] < Op(L) n'Y < A, we get that Cy (A) centralizes the factors of the normal L-
series 1 < Cy (L) < A < O,(L ) Slnce by Hypothesis . ) L has characteristic p, -. ) shows that
Cy (A) < O,(L). AsY £ O,(L) we conclude that A # 1. Moreover, since Cy (A) < Cy (A) < O,(L)
Cy(A)=AnCy(A)=Z(A) Y.

: Choose Tp € Syl,(L§) with L§ n'Y < Tp. Then choose € L§ with Y9 < Ty. Note that
LI" = L and gz ¢ Lo. So replacing g by gz we may assume that Y9 < Ty. If LI nY < O,(L), then
LInY =0,(L)nY = AnY and (k) holds. Assume that Lo nY € Op(L). Since (L{nY,Y9) < Tj

C(To) < (L nY) nO5(Y) © Tnv ndnys © 1,
which is impossible since Tj and A are p-groups and A # 1 by (EI)
: Suppose that B # 1. Then

Cy(L) < Cy(B) @ AnY and |B/Cg(Y)] @ |[BnY/Cpny(L)| =[B Y]
Since B # 1 we can pick b € B\Y. Then
N i T —
v/anyl @ vioy®) © 5] < BAY = |B/Cs)).
Thus
Y/Cy(B)| =Y/AnY|[AnY/Cy(B)| < |B/Cp(Y)[|[AnY/Cy(B)|.

(m): By (a) 4" = ®(4) < Cy(L) < Ca(Y), and so A/C4(Y) is elementary abelian. By (j),
A#1andso [A,L] # 1. Since L = (AL) this gives [A,Y] # 1. Note that [V, A] < A and, as seen
above, [A, A] = A’ < Cy (L) < Cy(A). Thus A acts cubically on Y. By (g) AnY = [Y, A]Cy (L) <
[Y, A]Cy (A) and by () Cy(4) < AnY. So

[V, A]Cy (A) = ANY.

Let y € Y\[Y, A]Cy (A). We conclude that y € Y\A = Y\O,(L), and (g)) gives [4,y]Cy (L) =
ANY. Since [Y, A]Cy (A) = AnY this implies

[4,y]Cy (4) = [Y; A]Cy (A).

Hence A acts nearly quadratically on Y.
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([@): By bb Ca(Y) =AY and so Cy (L) < Ca(Y) = AnY. We get
AnY/CaV) < AnY/Or (L) B |a7any),

and so
Y/Cy(A)] 2 [AJAAYIIARY/Cy(A)] < [A/ANYIIANY[Cy(L)] = |A/A A Y2 = |A/CA(Y).

@: Suppose that B < Z(A). If B = 1, then [B,Y] = 1 and @ holds. So suppose that B # 1.
Then by () Cy(B) < AnY. Since B < Z(A) this gives Cy (B) = An Y. Thus

Y/Cy(B)| < |B/Cp(Y)[|[AnY/Cy(B)| = |B/Cp(Y)],
so B is an offender on Y. Let be B\Cg(Y). Then b¢ Y. Thus
Cy(B) < Cy(b) Q AnY = Cy(B),

so B is a strong offender on Y.

@: Suppose that L has a central chief factor on A. Then there exists an L-invariant subgroup

B of A with Cy(L) < B and [B,L] < B. But by (d), Y n B = [B,y] < [B,L] and so by (d
B=BnY x BnYY<[B,L], a contradiction.

(a): By () Z(A) = (Z(A) nY)(Z(A) nYY). Since Z(A) is abelian and Y is elementary abelian
we conclude that Z(A) is elementary abelian. O

1.5. Weakly Closed Subgroups

In this section @ is a fixed non-trivial p-subgroup of H. Recall that @ is a weakly closed subgroup
of H if every Sylow p-subgroup of H contains exactly one H-conjugate of Q.

NOTATION 1.44. For L < H
L°:=(PeQY|P<L)and L, = O(L°).
(So L° is the weak closure of @ in L with respect to H.)

LEMMA 1.45. The following statements are equivalent:
(a) Q is a weakly closed subgroup of H.
(b) Q = P for all P e Q% with [Q,P] < Qn P.
(¢) Q@ < Ny (R) for all p subgroups R of H with @ < R.

PROOF. @ = @: Let P e Qf with [Q,P] < Q n P. Then QP is a p-group, and since @
is weakly closed in H, PQ contains only one conjugate of Q in H. Thus P = @, and holds.

() = (J: Let R be p-subgroup with @ < R, and let r € Ny(Ng(Q)). Then both @ and
Q" are normal in Ngr(Q) and so @ shows @ = Q". Thus Ny (Ngr(Q)) < Ny (Q). In particular,
Nr(Ngr(Q)) = Ng(Q). Hence Ng(Q) = R and Ny(R) < Ng(Q).

— @): Let Q@ < T € Syl,(H) and P € Q" with P < T. By (d) both P and Q are
normal in Ny (7). In particular, Q and P are normal in T" and so by Burnside’s Lemma [KS| 7.1.5],
P = Q" for some h € Ng(T). Thus P = Q" = Q and Q is a weakly closed subgroup of H. O

LEMMA 1.46. Let @ be a weakly closed p-subgroup of H, Q@ < K < H and N < H. Then the
following hold:

a) Q is a weakly closed subgroup of K.
Let g e H with Q9 < K, then Q9 = QF for some ke K.

QK = QK" and K° = (QF) = (QF").

)
) P
d) K° is the subnormal closure of Q in K. In particular, K° = K,Q = (Q°"(K)) = (Q¥e).
(e) Ko = [Ko, Q]
(f) K°<< H iff K° = H° iff Q¥ = Q¥ iff H = KNy (Q).
(g) Nk(Q) is a parabolic subgroup of K, in particular N = Nn(Q)OP(N).
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(h) N = Nn(Q)[N,Q].
(i) [V,Q] = (@ [N, QDN Q,Q].
(j) @N/N is a weakly closed subgroup of H/N.

PROOF. @): This is an immediate consequence of the definition of a weakly closed subgroup.

@: Let Q < T € Syl,(K) and choose k € H with Q7 < T*. Since Q is weakly closed in T with
respect to H, Q7 = Q.

: Let 9 ={Q%|ge H Q9 < K}. By (]E[), Q = Q¥ and by @ applied to K° in place of K,
Q = Q%°. Hence Q¥ = Q%" and K° = (Q) = (Q¥) = (QF").

@: Since K° = (Q%) = (QK"), K° is the subnormal closure of Q in K. Now shows that
K° =0P(K°)Q = K.Q and K° = (Q°"(K")) = (Q¥°). Note that K, < O?(K) < K and so
K°® = (Q") (")) < (@) = K*.
Thus K° = (Q°" )} and @ is proved.
(&): By () K° =<(Q") = [K.,Q]Q and so K, = O(K°) < [Ks, Q]. Hence K, = [K,,Q].

@: Suppose that K° <<t H. By @ K° is the subnormal closure of @) in K, and since K° << H,
K° is also the subnormal closure of @ in H. Thus K° = H°.

If K° = H°, then by (b) applied to K and H, Q¥ = QK" = QH° = Q.

If QF = QX then (d) gives H° = (Q) = (Q¥) = (K?) = K° and so K° < H and K° << H.

So the first three statements in (]ﬂ) are equivalent. By a Frattini argument, H = Ny (Q)K if and
only if QF = Q¥. Hence @) holds.

: Let @ < T € Syl (K). Then T < Nk (Q) and so Nk (Q) is a parabolic subgroup of K.
(b): Note that Q[N,Q] < NQ. So

oval _ gevel @ pov _ oN
and thus follows from a Frattini argument.
@: By @,
[V, Q] = [NN(Q)[N, Q] Q] = [Nn(Q), QIIN,Q,Q] < (@ n [N, Q])[N,Q,Q].
(EI): Put H := H/N and let S € Syl,,(H) with @ < S and h € H with @E < S. Pick R e Syl,,(H)
with @ < R and R = S. Then Q < R and Q" < RN. Hence by (]E[) Q" e QFN = QN and so
d'-q O

LEMMA 1.47. Let Q be a weakly closed subgroup of H. Suppose that Hy and Hy are normal
subgroups of H° such that

(i) H° = H1H,, and
(ii) [Hi, H2] < Nu(Q).

Let i € {1,2} and set K; := (H;Q)o. Then
(a) K; = [KZ,Q] = [K“HZ] < Hll and K; < Ho,
(b) HO = K1K2 and [Kl,Kg] < [Kl,HQ][HQ,Kl][Hl N HQ,HO] S OP(HO).
(c) Let N< H. Then F*(H/N) normalizes K;N/N.

PROOF. Let {i,j} = {1,2}. By hypothesis H; << H° and so

K; = (H;Q)o = OP((H,;Q)°) < O"(H,;Q) < O"(H,);
in particular, K; < H;. Put Z := [H;, Hy]. We first show:
1°.  0,(Z)< H°, K;Z< H° and [Z, H°] < 0,(Z).
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By (i) H° = H1Hs, so Z < H1Hy = H° and thus also O,(Z) < H°, and by Z < Ny (Q).

Thus
(K, H°] = [K;, HiH;] < [K;, Hi][K;, Hj] < K;Z  and  [Z,Q] < Z 0 Q < Op(2).

Since Z < H° the first chain of inequalities gives K;Z < H°, and since by [1.46{lc), H° = (Q""), the
second one gives [Z, H°] < O,(Z).

2°. R, :=K;,H;]0,(Z) < H°.

By (1°) K;Z and Op,(Z) are normal in H®. Since also H; < H°, we get [K;Z, H;|0,(Z) < H°.
Again by (1°) [Z, H;] < [Z,H°] < 0,(Z) and so

[KiZ, Hi]Op(Z) = [Ki, Hi][Z, Hi]Op(Z) = Ky, Hi]Op(Z) = R;.

Thus holds.

3.  K;<R,.

By [1.46{le), K; = [K;, @] and so
K, = [K;,Q) < [K;,H°] = [K;, H Hs| = [K;, H;|[K;, H;] < [K;, H;]Z < R; Z.
Thus
Ki=[K;, QI < [RiZ,Q] = [Ri,Q][Z,Q] < RiOp(Z) = Rs.

@: Recall that K; < H,, so [K;,H;] < K; n H]. Hence R; < K;0,(Z), and by , R; =
K;0,(Z).

Since Z < Hy n Hy < H;, Oy(Z) normalizes K; and [K;, H;]. Thus

OP([K;, H;]) = OP([Ki, H;]0,(2)) = OP(R;) = OP(K;0,(2)) = OF(K;) = K;.

Since by R; < H°, this shows that K; <€ H® and K; < [K;, H;]. As [K;, H;] < K; we get
K; = [K;,H;] < H], and @ is proved.

(B): Again by [L46f) H. = [Ho, Q]. Since H° = HyH, we have H, = OP(H;)OF(Hs). By
‘El' (HiQ)O = (HzQ)oQ = KzQ and so [Op(Hl),Q] < (HiQ)o < KZQ Hence

H, = [H,,Q] = [OP(H1)OP(H3), Q] = [OP(H,), Q][O (Hz), Q] < K1QK2Q = K1 K>Q,

and as K1 Ky < H, = OP(H,) and by (o) K1K> < H°, H, = O (K1 K2Q) = K1 K>.

Note that by [H;, H; H ;) = [Z,H;] < Op(Z). Hence, the Three Subgroups Lemma shows
that [H;, H;, H;| = [H’ ] 0,(2). Slnce by @ K; < H], we get

(K, K] < [Ki, Hy] < [H], H;] < Op(Z) < Oy(H?).

As H, = K 1Ko, we also get [Hy n Ho, H,| = [H1 n He, K1][H1 n Ha, K3] < O,(H®), and @ is
proved.

(c): Put H = H/N. By (EI) Q is a weakly closed subgroup of H. Hence H, H;, Hy, Q fulfill
the hypothesis of the lemma and K; = (H; Q).. So replacing H by H/N we may assume that
N = 1. Put L; := O (H;). We first show:

4°. K; = (L;Q),-

Note that H° = OPI(HO). Since H° = HyHy we get H° = Li1Ls. As L; < H; we conclude
that H; = L;(Hy n Hs). By @, [H1 n Hy, Q] < [H1n Hy, H°] < O,(H®). So Hy n Hy normalizes
0,(H®)Q. Since Q is weakly closed, this shows that Hy n Hy < Ny (Q) and H; = L;(Hy n Hs) =
L;iNy,(Q). Hence [L.46|f) gives (H;Q)° = (L;Q)°. Thus also K; = (L;Q)..

Observe that F*(H) = E(H)O,(H)D, where E(H) is the product of the components of H and
D := Oy(F(H)). Thus, to prove it suffices to show that each of the factors E(H), O,(H) and
D normalizes K.

Note that K7 is a subnormal subgroup of H. Thus, by [KS7 5.5.7(c)] E(H) = E(K1)Crm)(K1)
and so E(H) < Ng(K;). Moreover, since K; = OP(K;), [1.23 w1th 7 = {p}) shows that also
Op(H) < Ny (Ky).
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The coprime action of @ on D gives D = Cp(Q)[D,Q], and by @ [D,Q] < H° < Ny(Ky).
Since L; << H and L; = O” (L;), D normalizes L; by It follows that Cp(Q) normalizes
Ly, Q and (L1Q).. By K, = (I1Q), and so Cp(Q) < Ny (K;p). This shows that also D =
Cp(Q)[D, Q] normalizes K7, and is proved. O

LEMMA 1.48. Suppose that Q is a weakly closed subgroup of H.

(a) Let X € Z(Q) and h € H with X" < Z(Q). Then there exists g € Ng(Q) with 29 = 2"
forallze X.
®) 2 A Z(Q) = 2N# Q) for every x € Z(Q).

PROOF. @: Note that (Q, Q") < Cy(X") and so by |1.46/(b) there exists ¢ € Cy(X") such that
Q" = Q. Hence hc e Ny (Q) and z"*¢ = 2" for all z € X. Thus (j) holds.
(]ED follows from (ED applied with X = {z}. O

LEMMA 1.49. Let Q be a weakly closed p-subgroup of H, and let Q < L < H. Suppose that
Cu(Q) < Q and H is of characteristic p. Then [Q,Cu(Op(L))] < Q n Op(L), Cu(Op(L)) is a
p-group, and L is of characteristic p.

PROOF. Put D := Cy(O,(L)). Since Q is weakly closed, O,(H) normalizes Q. Thus
[0p(H),Q] < Op(H) nQ < Op(H) n L < Op(H) n Op(L).
Hence @ centralizes O,(H)/O,(H) n O,(L). Since D centralizes Op(H) n Op(L), we conclude that
[Q, D] centralizes the factors of the series
1< Op(H) <Op(L) < Op(H).

Since H is of characteristic p, shows that [@, D] is a p-group It follows that Q[Q, D] is a

p-group normalized by D and since @ is weakly closed this implies that D normalizes Q. Thus
(@, D] <QNnD<QnO,(D)<QNLNnO,(D)<QnOp(L) < Op(L) < Cu(D).

Hence [Q,D,D] =1, and shows that D is a p-group. Hence also C1,(O,(L)) is a p-group, so
CL(Op(L)) < Oy(L) and L is of characteristic p. O

COROLLARY 1.50. Let @ be a weakly closed p-subgroup of H, and let Q < L < H. Sup-
pose that Cu(Q) < Q and that Cy(y) is of characteristic p for some 1 # y € Co ()(Q). Then
[Q,Cu(0p(L))] < QN Op(L), Cu(Op(L)) is a p-group, and L has characteristic p.

PRrROOF. Put K := Ny (O,(L)) and note that @ < Ck(y) < Cy(y). By hypothesis, Cy(y) is of
characteristic p. Since @ is also a weakly closed subgroup of Cy(y), we can apply with Cy(y)
and Ck(y) in place of H and L. Then Ck(y) is of characteristic p. Note that y € Op(L) < Op(K)
and so shows that K has characteristic p. Now (with K in place of H) shows that

[Q,Ck(0,(L))] < Q n Oy(L), Cx(Oy(L)) is a p-group, and L is of characteristic p. As
Cu(0,(L)) < K we have Cy(O,(L)) = Ck(0,(L)) and so the corollary is proved. O

1.6. Large Subgroups
In this section @ is a fixed non-trivial p-subgroup of H.
DEFINITION 1.51. Recall from the introduction: @ is large (in H) if Cy(Q) < Q and
Q" Ny (U) < Ng(Q) for every 1 # U < Cy(Q).

We will refer to this property as the Q!-property, or shorter just Q!.
Moreover

Q"= 0,(Na(@), M°=(Q|geG,Q" < M), M, =0"(M°).

Note that according to (@ below @ is a weakly closed subgroup of G, so the notions M° and
M, correspond to those introduced in for weakly closed subgroups.
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LEMMA 1.52. Let @ be large in H and Q < L < H and let' Y be a non-trivial p-subgroup of H
normalized by L. Then the following hold:
(a) Ng(T) < Ny (Q) for every p-subgroup T of H with Q <T
(b) Q is a weakly closed subgroup of H.
(¢) L° = (LCy(Y))° and [L°,Cu(Y)] < O,(L°). In particular, Cy(Y') normalizes L°.
(d) Let L := L/O (L). Suppose that OP(L) < L° and L = OP (L). Then 6L\(§7) < Z(i\a) <
<I>(L) = <I>(Lo).
(&) Ci(Q) A Cr(Q9) = Cu(Q*) A Cr(Q9) = Z(Q) N Z(Q%) = Z(Q*) A Z(Q"7) = 1 for every
g € H\Ng(Q); in particular, Ng(Q) = Ng(Q*), and Q° is a large subgroup of H.
PrROOF. (a): Let @ < T, T a p-subgroup of H. Then Ny (T) < Nu(Z(T)) < Np(Q) since
Z(T) < Cu(Q).

(]E[): By the condition in @ is equivalent to @) being a weakly closed subgroup of H.

(c): We may assume that H = LCg(Y). Note that Cy(Q) # 1 since Y # 1, and so by Q!,
Cuy(Y) < Nu(Cy(Q)) < Ng(Q). Thus H = LNg(Q). Since @ is a weakly closed subgroup of H,
1.46|{f) gives L° = H® = (LCy(Y))°.

In addition

[CH<Y),Q] <@n CH(Y> < Cpo (Y) < L°,
so [Cy(Y),Q] < O,(L°). Since Q is a weakly closed subgroup of H, [1.46{|c) implies L° = (QX")
and so conjugation with L° gives [Cy(Y'), L°] < Op(L°).

(d): Since OP(L) < L°, OP(L) = OP(L°) = L, and thus also OP(L) = L,. Put D := C(Y).
By () [L°, D] = [L°, CL(Y )] < 0,(L°) < Op(L) and so [’LVO,B] = 1. Since OP(D) < L°, this shows
OP(D) < Z(D), therefore D is mlpotent As O,(D) <O
and thus D < OP(L) = L, < L°. Hence C’L( ) = D < Z(L°). Since L° is generated by p-elements,

Op(D
L% = OP (L°). Thus 1.) applied to L° gives Z(L°) < ®(L°). By [L7(a) ®(L°) = ®(L.), and so
(d) holds.

@: By definition of a large subgroup, @ contains its centralizer in H. Hence Cy(Q®) <
Cu(Q) < Q < Q° and Z(Q*) < Z(Q) since @ < Q°. Moreover, Cy(Q) = Z(Q) and Cy(Q°) =
2(Q").

Let g € H with Z(Q) n Z(Q)9 # 1. By Q!, Q and Q9 are normal in Ny (Z(Q) n Z(Q)?). Since
Q is a weakly closed subgroup of H, this gives Q = Q7 and thus g € Ny(Q). Hence Z(Q°) n
2(Q%)7 < Z(Q) A Z(Q)* = 1 for all g € H\N(Q) and Nu(Q") < Nu(Z(Q")) < Nu(Q). Clearly
Nu(Q) < Ng(Q*) and so Ny(Q*) = Nu(Q).

Let 1 # X < Cy(Q*), Then X < Cy(Q) and by Q!, Ng(X) < Ny(Q) = Ng(Q*). Moreover,
as seen above, Cy(Q*) < Q*, and so Q* is a large subgroup of H. |

(L) = 1, we conclude that Disa p'-group

LeEMMA 1.53. Let Q be large in H and H = H°S for Q < S € Syl,(H). Suppose that there
exists R<Q H such that R < Ny(Q) and H/R is p-minimal. Then H is p-minimal.

PROOF. Since H/R is p-minimal, there exists a unique maximal subgroup Hy of H containing
SR. Let H; be any maximal subgroup of H containing S. Assume H; # Hy. Then R € H; and so
H = HiR. Since R < Ny(Q), H = HiNg(Q). Since @ is a weakly closed subgroup of H, [L.46((f)
gives H{ = H°, and so H = H°S < H;, which contradicts H; # H. O

LEMMA 1.54. Suppose that Q is a large p-subgroup of H. Let U be a non-trivial elementary
abelian p-subgroup of H and Q@ < E < Ny(U). Suppose that Q € E, O,(E/Cg(U)) = 1 and
OP(E)Cg(U)/Cg(U) is quasisimple. Then the following hold:

(a) OP(E)Cg(U) = E,Cg(U) and E, = E! = OP(E,).
(b) Eo/Cg, (U), E;/Op(Es) and Eo/[Op(Es), Es] all are quasisimple.
(c) Eo = [E,, Y] < (YE°) for all p-subgroups Y of E with [U,Y] # 1.
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PrROOF. Put E = E/Cg(U). Then O,(E) = 1 and O?(E) is quasisimple.

@) Since Q €1 E, Q! shows that [U Q] # 1. So Q # 1 and, as OP(FE) is quasisimple and
O,(E) =1, 1.14@ gives OP(E) < <Q > < E°. Also E° = OP(E®) = OP(E;). Thus OP(E) =
E., and the first statement in (EI) holds. In particular, E, is quasisimple and so perfect. By-.
E° = E,Q. Since E, is perfect, B, = E/Cg, (U) and so o ELQC(U). By [L.52d),

E° = (B.QCro (V)" = (ELQ)° < ELQ,
and so E, < E/. Thus E, is perfect, and (a)) is proved.

(]Eb: As seen above, E°/Cpe(U) =~ E, = OP(E) is quasisimple. By|[1.52(c)), [E°, Cr(U)] < O,(E)
and so [E,, Cg, (U)] < O,(E;). Let L be the inverse image of Z(E,/Cg,(U)) in L. Then [L, E,] <
Cg,(U) and [Cg, (U), Es] < O,(Es). Since E, is perfect the Three Subgroups Lemma gives [L, E,] <
[Eo, Op(Es)]. Thus L/O,(E.) = Z(E,/Oy(E,)) and L/[O,(E:), Eo] = Z(Es/[Eo, Oy(Es)]). Since
E./L is simple and E is perfect, this shows that E,/O,(E;) and E,/[O,(Es), Es] are quasisimple.
So (@ holds.

: By [1.14((b) E, = [E.,Y]. Since E,/O,(E,) is quasisimple this gives E, = [Es, Y]O,(E,).
As E, = OP(E,), we conclude that E, = [E,, Y] < (YEe). O

LEMMA 1.55. Let Q be large in H and L < H with Q < L and Op,(L) # 1. Then
(a) Cu(0Op(L)) is a p-group; in particular, L has characteristic p.
(b) Let R be a parabolic subgroup of H with O,(R) # 1. Then Cu(Op(R)) < Op(R).

(¢) H has parabolic characteristic p.

(d) FEither L° =@ or Cyx(L°) = 1.

PROOF. @: To show that Cr(O,(L)) is a p-group, it suffices to verify the hypothesis of-
Note that Cy(Q) < Q since @ is large and that @ is a weakly closed subgroup by -. Since
Op(L) # 1 and @ normalizes O, (L), there exists 1 # y € Co_(£)(Q). So it remains to show that
Cr(y) has characteristic p.

Put Y := {y). Then by Q!, Ng(Y) < Ny(Q) and so Ny (Y) is a local subgroup of Ng(Q).
Since Cy(Q) < Q, Ny (Q) has characteristic p and so by Ny (Q) has local characteristic p.
Thus Ny (Y') has characteristic p. Since Cy(y) = Cy(Y) < Ny (Y), also Ci(y) has characteristic p

(see [2(a)-

(]ED: Since R is parabolic subgroup of H, R contains a Sylow p-subgroup 7" of H and so also a
conjugate of (). So by (ED Cu(Op(R)) is a p-group. Observe that T" normalizes C(Op(R)) and so
Cu(Op(R)) <T < R. As R normalizes C(O,(R)) this gives Cu(Op(R)) < Op(R)).

follows from (b)).
(d): If Cx(L°) # 1, then Q! implies that Q < Ng(Cy(L°)) and so Q < L. As L° = (Q*) by
[1.46)(c), this gives L° = Q. 2

LEMMA 1.56. Let Q be large in H and Q < S € Syl,,(H), and let L € Ly (S5).
(a) There exist M € My (S) and L* € Ly (S) such that L* < M, LCy(Yy) = L*Cu(YL),
L° = (L*)° < M° and Yy, = Y« < Y.
(b) Suppose that Q € L, and let M and L* be as in (@ Then Q€ L* and Q € M.
(¢) Either Mg (S) = {Ng(Q)} or there exists M € My (S) with Q L M.

PRrOOF. (a): By H has parabolic characteristic p. Hence shows that there exists
M e DﬁH(S) and L* € ,CH(S) with L* < M, LCH(YL) = L*CH(YL) and YL = YL* < YM Thus
L5 gives
= (LCx(Y1))" = (L*Cu(Y1))" = (L*)°,
and @ holds.

([B): Q! shows that Cx(Yz) < Cr(Cy,(Q)) < Nu(Q). Since Q € L and LCy (Yy) = L*C (Y)
we conclude that @ €2 L* and so also Q <2 M.
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(d): Suppose that My (S) # {Ng(Q)}. Then there exists L € Ly(S) with @ € L and so by (b)
there exists M € My (S) with Q ¢ M. O

LEMMA 1.57. Let Q be large in H. Suppose that M < H with Q < M and V is a non-trivial
elementary abelian M -invariant p-subgroup of H. Then the following hold:

(a) Nar(A) < Ny (Q) for every 1 # A < Cy(Q).
(b) Suppose that M £ Ngi(Q). Then V is a faithful Q!-moduleﬂfor M /Cr (V) with respect
(c) Let U < M be transitive on V.. Then M° = (QY).

PROOF. @: This is a direct consequence of the Q!-property.

(]ED: Since M € Ny (Q), Q@ € H. Together with @ this shows that V is a Q!-module for H
with respect to Q. Now (b) follows from

(c): Let 1 # v e Cy(Q). By a Frattini argument M = UC)(v), and Q! implies Cps(v) <
Ny (Q). So M = UNpy(Q), and [1.46|[f]) gives M° = (QY). O

LEMMA 1.58. Let Q be large in H, let S € Syl,(H) with Q < S, and let L € Ly (S). Put
P = L°S and L := L/Cr(Y). Let K be a non-empty P-invariant set of subgroups of P and
suppose that Yy, is a natural SLs(q)-wreath product module for P with respect to K. Then K is
uniquely determined by that property. Moreover, the following hold, where P* is the inverse image
of (K in P.
(a) Q acts transitively on K.
(b) Y = Yp, Yp is a simple P-module, and Op,(P ) Cs(YL).
(c) O ( ) = OP(P*) = L., and P* is normal in L.
(d) Py = P* for all P, < P with Oy(P) < P, and P = {K).
(e) PePu(S).
(f) One of the following holds:
(1) CP(YP) Op(P).
(2) p = K|, @ Q =~ C,, and, for any T € Syly(L°), T is extraspecial of order 33,
[Z(T), LO] < Oy(P). and L, = TO5(L,).

PROOF. Since Y7, is a faithful natural SLs(q)-wreath product module for P with respect to /C,
[A225] gives

1°. Yr = X e Y, K] and P* = X gex K, and for K € K, K =~ SLy(q) and [Y, K] is a
natural SLo(q)-module for K.

In particular, Op(ﬁ") # 1 and thus also L° # Q. Hence by [1.55(d) Cy, ((K?)) =1, and so
2°. K=K® for Ke K, and (@ holds.
Thus P and Yy, satisfy the hypothesis of in place of H and V, and (]EI) gives:

3°. P s p-minimal.
By [1.52{(c)

4°. [CL(YL),L°] < Op(L°) < Op(L) < Op(P).
Since @ is weakly closed, @ gives
5°. L, =[L,,Q].

By Yp < Y. Since [Yr, K] is a simple K-module for K € K and @ acts transitively
on K, Yy is a simple P-module, so Yp = Y, and Op(ﬁ) = 1. Hence O,(P) < Cs(YL), and by
(4°) [Cs(Yr),L°] < Op(P) < Cg(Yy). Since P = L°S we conclude that Cg(Yy) < P. Hence
Cs(Yp) = Op(P). We have proved:

3See for the definition of a Q!-module
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6°. Yp =Y, Y1, is a simple P-module and Cs(Yp) = O,(P). In particular, (@) holds.

Let P, < P with O,(P) < P, and ﬁl = (K). The p-minimality of P implies that either
S NP <O,(P)or P=PS. The first case is clearly impossible since O,(P) = 1 and (K) is not a
p/-group. Hence P = P;S. As P = L,S we have OP(P) = OP(L,) = L., and we conclude that
or(P) = O°(P) = L..
In particular, OP(P;) < LoCp(YL). Since OP(P;) < OP(P) = L, this gives
LQ = Op(Pl)(LO (@) CP(YL))
So

£ @ 1,1 = [0/ 2 Cr(12).Q) < 0P, QUCr10). 1°] D 07(R)0,(P).

Hence L, = OP(L,) = OP(P;). Note that O,(P) < P* and P* = {K). So P* fulfills the assumptions
on P;, and we conclude

7. OP(P) = L, = OP(Py) = OP(P*); in particular P = OP(Py)S.

Thus OP((K)) = OP(P*) = L, < L. Hence by any subgroup E of L such that [V, E] is a
faithful natural SLs(¢q)-module for E is contained in K. It follows that

8°. K is uniquely determined and P* = Ky= L. In particular, @) holds.

Put T:= S~ P*. Then T € Sylp(ﬁ‘) = Sylp(ﬁl)7 and since Cr(Yz) < Cs(Yz) = Op(P) < Py,
T € Syl,(P1). By (7°), OP(P1) = Lo and so Py = OP(P1)T = LoT. This result also applies to P*.
hus

9°, P, = L, T = P*. In particular, (@ holds.

Set
Q* :=QnP*, P:=PJ/O,(P), r:=|K|, and {Ki,...,K.}:=K,
and let 1 <7 <r. Then K; =~ SLy(q) and SnK; #1.
We clalm that Q* # 1. Since Q < S, [SnK;,Q] < Q* If r > 1, the transitive action of Q) on

K shows that [S N K;, Q] # 1 and so Q* #1. If r =1 and Q $ K, then Q induces some non-trivial
field automorphism on K; and hence [S N Kl,Q] # 1 and Q* # 1. If r =1 and Q < K, then
Q* = Q # 1. So indeed Q% # 1.

Recall that P is p-minimal and thus also p-irreducible. Hence shows that OP(IB) =
[0P(P), Q*]. Also

(+) OY(P) = OF(P%) = 0" ( X I) = X O(Kq)

As OF(P) = [07(P),Q*] and Q% normalizes each OP(K;), this gives [op( 1), Q%] = OP(K;).
Let K} < P* be minimal with K;“ = OP(K;) and [K},Q*] < K. Observe that

[K3.QF] = [KF. Q] = [07(K.), Q] = O"(K.),

and the minimality of K gives K = [K},QF] and K} = OP(K}). By OP(P*) = L, and so
K < Lo. Thusby (1) [Cp(Y2), Q*K7] < [Cr(Y1), L°] < Op(P). With R := K7 and D == Cp(Y)
this gives D < Z(RQ*). Observe that R/R’ is an abelian p’-group. Since [R/R',Q*] = R/R/,
coprime actions shows Cr/r/(Q*) = 1 and since @* centralizes D, we get D < R'. Hence R is a
non-split central extension of R/D =~ R ~ OP(SLy(q)) = SLa(q)’ by the p/-group D.

If ¢ < 3 then R/D =~ C3 or Qs. By [Hul, V.25.3] the Schur multiplier of cyclic and quaternion
groups is trivial and so D = 1. If ¢ > 3 then R/D = SLs(q)’ = SL2(q). As the Schur multiplier of
SLs(q) is a p’ -group (cf. [Hul V.25.7]) we again have D = 1. We have proved:

10°.  OP(K}) = K¥, KF ~ OP(K;) and Cyx (Y1) < Op(P).
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Next we show:
11°.  Put K* := (K* | 1 <i<r). Then O?(P) = K*, P = K*S and [K,;, K;] < Ciz (Y1) <
Z(K*Q*) forall1 #i<j<r

Note that OP(I/D\*) Cs (YL)K* As Q* centralizes C’A( 1) and [KF, Q*] = K} we conclude
K* = []5\*762*] and K* < L°. In particular, S normalizes K*. Hence S normalizes K*0,(P),
and , applied to P, = K*(S n P*), gives Lo, = OP(K*(S n P*)) < O,(P)K* and P = LS =
OP((K*(SnP*))S = K*S. By (10°), OP(K}) = K} and so also OP(K*) = K*. Since S normalizes
K* and P = K*S we conclude that or(P) = K*. By (1°) [K;, K] = Land so [K}, KF] < Crex (Y1).
As K*Q* < L° and by (1) [CL(Y2), L°] < O,(P) we have Ci (Y) < Z(K*Q¥).

12°. Suppose that [I/{E,I/{}] =1foralll <i<j<r. Then Cp(Yp) = Oy(P) and P is
p-minimal. In particular, @) and (m) hold.

Since [I/{E,I/{}] = 1 we have |f(\* H_[: 1K?"| |K*|’ Moreover, by \K*\ = |OP(K;)|
and by (11°) K* = OP(A) Now (%) implies |K*| |OP(P )| = |OP(K;)|" and so |K*| |K*| Since
K* is a factor group of K*, we get that \K*\ |K*| and Ci (Yr) = 1. As OP(P ) K*, it follows
that C’p(Yp) is a p-group and so Cp(Yp) = O,(P). Hence P/O,(P) = P. By (3°) P is p-minimal
and so also P is p-minimal. Therefore (ED and @ hold.

We now distinguish the cases r = 1, 7 = 2 and r > 3. If 7 = 1, we are done by (12°). Assume
next that » = 2. Since Q acts trans1t1vely on K by @ we have p = 2. Suppose that ¢ > 2. Then

> 4, K; is perfect, and K* is a a_component of P. Thus [Kl, KQ] = 1 and we are done by 1)

Suppose that at g = 2. Then |K*| =3 and by we may assume that [KT,K*] # 1. By 1
[Kf‘, K*] Z( *). Since r = 2, K* = <K 2> and we conclude that that K* is extra spe(nal of
order 33. By (L K* = Or(P), and so @) holds. As P/‘IJ(K*) P is p-minimal, so are P and P.

Since K* is extra special of order 3%, any involution in Aut(K *) which centralizes <I>(K *) inverts
K*/<I>(K* By @) Q centralizes <I>(K*) and so Q contains only one involution. As Q* is non-trivial
and elementary abelian and has index 2 in Q we conclude that Q Cy4. Thus (EI) holds.

Assume finally that r > 3. Let 4,j,k be three different elements in {1,...,r}. Pick z € S n
K\O,(P). Since Q acts transitively on K we can choose y € Q with K = Kk. Put z :=[y,z] =
27z Then z € Q*, ¥ € K;K}, and ¥ € 2K},. Since K; =~ SLy(q), we have K; = (ZK¢). Now
[K;, Ki] = 1 implies

[OP(K3), z] = [OP(K:), 2] = OP(Ky),
and since [K; Ky, K;] = 1 and 7 € K; K}, we also have [Kj,z] = 1. Recall that Q* normalizes K,
K} = OP(K;) and Cg (Y1) = 1. Thus

[K;,2] =K, and [K;Z]=1

In particular,

By (K, K;] < Z(KQ*) and so L
[K;, K;,z] = 1.
With the Three Subgroups Lemma [Z, K, I/(\j] =1, and since [Z, I/(\Z] - K,
K3 K] =1
Another reference to completes the proof of the lemma. O






CHAPTER 2

The Case Subdivision and Preliminary Results

In this chapter we give the relevant definitions that allow to subdivide the proof of our main
result stated in the introduction. This partition of the proof enables us to treat the different parts
independently and sometimes under a slightly more general hypothesis.

We believe that concepts like symmetry, asymmetry, shortness and tallness can also be useful in
other situations. In a certain sense they reflect the general behavior of conjugates of (abelian) sub-
groups in finite groups. In the amalgam method these concepts have already proved their relevance
(without getting particular names). For example, symmetry is closely related (and generalizes) the
”b even”-case of the amalgam method, while tallness corresponds to the ”b = 1”-case.

In Section [2.2] general properties of asymmetry are investigated. Most of these properties are
elementary, the exception being where the Quadratic L-Lemma of [MS6] is used and so also a
KCp-group Hypothesis is needed.

Finally in Section [2.3| symmetric pairs are introduced. It is probably our most complicated and
technical definition. Also the existence of symmetric pairs requires a rather long and sophisticated

argument, see and
In this chapter G is a finite group, S € Sylp(G), and @ is a large p-subgroup of G contained in

S. Moreover, M € M¢(S) and MT = MCq(Ya). So M fulfills the basic property defined in the
Introduction.

2.1. Notation and Elementary Properties

NOTATION 2.1. Recall from the introduction that Q°* = O,(Ng(Q)) and that L is Yas-minimal
if L =(Y{;) and Y, is contained in a unique maximal subgroup of L.

Let A be an abelian p-subgroup of G. Then
e Ais symmetric in G if there exist A, Ay € A% such that 1 # [A}, Ay] < Ay N Ay,
o Ais asymmetric in G if A is not symmetric in G.
Let A be a set of subgroups of G. Then
o Ais N-tall if there exist T' € Syl,(Cg(A)) and L € N such that T'< L and A € Op(L),
o Ais N-short if A < Oy(L) for all T' € Syl,(Ca(A)) and L € N with T'< L. (So A is
N-short if and only if A is not N-tall.)
o Ais tall (short) if A is N-tall (N -short), where A is the set of all subgroups L of G with
OIU(L) 7 17
o A s char p-tall (char p-short) if A is N-tall (M -short), where A is the set of all subgroups
of characteristic p of G,
o Ais Q-tall (Q-short) if A is N-tall (N-short), where N' = Ng(Q)€.
For K < G with Op(M) < K let $x(O,(M)) be the set of subgroups H of K such that
(i) H is of characteristic p,
(11) OP(M) <H and Y]\/[ $ OP(H), and
(ii) Yam < Op(P) whenever P is proper subgroup of H containing O, (M).
For K < G with Yy < K let £, (Yar) be the set of subgroups L of K such that
(i) Yar < L and Oy(L) = {(Yar 0 Op(L))F) < Np(Yar),
(ii) L is Yps-minimal and of characteristic p,

27
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(iii) Np(Yar) is the unique maximal subgroup of L containing Y, and
(iv) L/Op(L) = SLs(q), Sz(q), q := |Yam/Ymr 0 Op(L)| or L/Oy(L) = Ds,, where p = 2 in the
last two cases and r is an odd.

Note that, since Yar = 1Z(0,(M)), Hx (0,(M)) only depends on K and O,(M).

We use the following subdivision:

The Symmetric Case. Yy is symmetric in G.
The Short Asymmetric Case. Y is short and asymmetric in G.
The Tall char p-Short Asymmetric Case. Yy, is tall, char p-short and asymmetric in
G.
The char p-Tall Q-short Asymmetric Case. Y is char p-tall, @Q-short and asymmetric
in G.
The Q-Tall Asymmetric Case. Yy is Q-tall and asymmetric in G.
LEMMA 2.2. (a) Ca(Op(M)) < Op(M).

(b) Q is a weakly closed subgroup of G.
(¢) N ( ) < MT for all 1 # K < M, in particular, Ng(Op(M)) < M.
(d) MT = Ng(Yy) = MCq(Yy).
(e) YM = MZ(0p(M)).
(f) Op(M) € Syl,(Cc(Yar)); in particular, Cs(Yar) = Op(M).
(2) Q < M if and only if Q < M*.
(h) M° = (MT)°.
PROOF. (a): We have M € M(S) € M = L and so Ca(Op(M)) < Op(M) by definition of
Le.
([o): Since @ is a large subgroup of G, shows that @ is a weakly closed subgroup of G.
ut R := Ng(K). Since M has characteristic p and K < M, also K has characteristic p,
see [1.2(a)). In particular, O,(K) # 1 and so also O,(R) # 1. Note that S < M < Rand so Ris a
parabolic subgroup of G. Thus implies that Cq(Op(R)) < Op(R) and so R € L. Let R*
be maximal in L5 with R < R*. Since M < R < R*, R* € M(M). By the basic property of
M e Mg, we have Mg(M) = {MT} and so R* = MT and R < MT.
@; By (b), Na(Yar) < M1, and by the basic property of M, M = MCg(Yar) and Yar = Yy
So M'" < Ng(Yar) and holds.
,@: By the basic property of M, Cas(Yar) is p-closed. Thus gives Yar = (1Z(0p(M))
and O,(M) € Syl,,(Ca(Yar))-

(g, [@): By Q!, Ca(Yar) < No(Q) and so Mt = MCq(Yar) = MNy+(Q). Thus Q < M if and
only if Q@ < M. Moreover, by [1.52c) M° = (MCq(Yar))® = (MT)°. O

LEMMA 2.3. Let A< Z(Q). Then the following hold:
(a) Let g€ G and A < Z(Q9) such that [A,A] < An A. Then [A, A] =
(b) A is asymmetric in G.
(¢) Suppose that B < G is a Q-short abelian p-subgroup, A < Z(Q®) and A~ B # 1. Then
[Aa B] =

ProoF. (a): If g € N (Q), then AA < Z(Q) and [A, A] = 1. Tf g ¢ Ng(Q), then [L.52(d) gives

Z(Q)n Z(Q%) = 1. Thus
[A,A] < An A< Z(Q)n Z(QY) =1.

(]E[): This is a direct consequence of @ and the definition of asymmetric.

(): Assume that R := An B # 1. Then R < A < C(Q) and Q! implies N¢(R) < Ng(Q).
Since B is abelian, B < Cg(B) < Ng(R) < Ng(Q). In particular, Ng(Q) contains a Sylow p-
subgroup of Cg(B), and as B is @-short, we conclude that B < O,(Ng(Q)) = Q*. So [B,A] =1
O
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LEMMA 2.4. (a) Op(M) is a weakly closed subgroup of M.
(b) Let B be a p-subgroup of MT with O,(M) < B. If Ng(B) £ M, then Yas is symmetric in
G.

PROOF. @: By the basic property of M, Yy, = Yyt is normal in MT. Hence Cq(Yy) =
Cyi(Yar) < M. By Op(M) € Syl,(Ca(Yar)). Sylow subgroups of normal subgroups are
clearly weakly closed (even strongly closed) subgroups of the whole group.

(]EI): Since S is a Sylow p-subgroup of MT, there exists g € MT with B9 < S. Then O,(M)J <
B9 < S, and since O,(M) is a weakly closed subgroup of M1, O,(M) = O,(M)?. So replacing B
by BY we may assume that B < S < M. We will now verify that the assumptions of @ are
fulfilled. Note that O,(M) < B < N¢(B) and Y), is a non-trivial normal p-subgroup of M. By
2.2({), Op(M) € Syl,(Ca(Yn)) and so Cpr(Yas) is p-closed. By assumption, Ng(B) € MT. By
2.2{lc), No(K) < MT for all 1 # K < M, and so no non-trivial p-subgroup of M n Ng(B) is normal
in M and Ng(B).

Thus indeed all assumptions of are fulfilled for Hy := M, Hs := Ng(B), A1 := Yy and
H := G. Hence there exists h € H = G with 1 # [A;, A}] < A; n A}, and so A; = Y) is symmetric
in G. L]

2.2. Asymmetry

LEMMA 2.5. Suppose that Yar is asymmetric in G. Let Yay < R < MT. Then <YAI/[VG(R)> 18
elementary abelian.

PROOF. Recall from the basic property that Yas = Yyr, so Yar < R since R < MT. Thus Y
is normal in R for every « € Ng(R). Hence, the claim is an immediate consequence of the definition
of asymmetry. O

LEMMA 2.6. Suppose that Yy is asymmetric in G. Then the following hold:
(a) Let L be a p-subgroup of G with O,(M) < L. Then Ng(L) < Ng(O,(M)) < MT.
(b) Op(M) is a weakly closed subgroup of G.
(c) Let Op(M) < L<G. Then L n M' is a parabolic subgroup of L.
(d) 2% A Yy = 2™ for every x € Y.
(e) Yur is Q-tall if and only if Yo €< Op(Na(Q)).
PROOF. @: Put B := MT~ L. Since Y); is asymmetric, (]EI) implies that Ng(B) < MT. In
particular, N, (B) < MT n L = B and so L = B since L is a p-group. By @) O,(M) is a weakly
closed subgroup of MT. Thus

Na(L) = No(B) = Nyt (B) < Nt (0,(M)) < Na(Op(M)) "= M,

and @ is proved.
[®): By (&) Op(M) < Ng(L) for all p-subgroups L of G containing Op(M). Thus shows
that O, (M) is a weakly closed subgroup of G.

(c): Since Op(M) is a weakly closed subgroup of G, [L.46|(g]) shows that N (O, (M)) is a parabolic
subgroup of L, and since Nz (Op,(M)) < L n MY, also L n MT is a parabolic subgroup of L.

(d): Since O,(M) is a weakly closed subgroup of G and Ya; < Z(O,(M)), [L48|[b) shows that
2% A Yy = aNeOrOD) By RY[) N (0,(M)) < MT = Cq(Yar)M, and so (d) holds.

(E[): Recall from that O (M) € Syl,(Ca(Yu))-

Suppose that Yy € O,(Ng(@Q)). Since O, (M) < Ng(Q), we conclude that Y is Q-tall.

Suppose that Ya; is @-tall. Then there exists g € G such that O,(M) < Ng(Q9) and Yy <«
O,(Ng(Q9)). Since Op(M) is a weakly closed subgroup of G by (]ED, Q7 < Ng(Op(M)) and since Q
is a weakly closed subgroup of G by , Q" = Q for some h € Ng(0,(M)) < Ng(Yar). Thus
Yar € 0p(Na(Q)). 0
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LEMMA 2.7. Suppose that Yy is asymmetric in G.

(a) Let g € G with Cy,, (Q9) # 1. Then Q9 < M°.
(b) Let1 # Uy < U < Yy. Put By = <Qg | g€ G,CU(QQ) #* 1>. Then Ng(Uo)o < Ey < M°.

PROOF. (a)): Let g € G with C’yM (Qg) # 1. Since 1 # Cy,, (Q9) < < Cq(0p(M)), Q! implies
O,(M) < Ng(Qg) By -@ »(M) is a weakly closed subgroup of G and so Q9 < Ng(Op(M)).

By.. Ng(O By.. (MT)° = M° and so Q7 < M°.

(]EI): Let h € G with Q" < Ng(Up). Then Cy, (Q") # 1, so Cyy(Q") # 1 and Q" < Ey. Thus
N¢(Uy)° < Ey. By @ Ey < M°, and so (]ED holds. |

LEMMA 2.8. Let F be the inverse image of F*(MT/Cyp(Yar)) in MT. Suppose that Yy is
asymmetric in G, F < H < G and H is of characteristic p. Then Yy < Y.

PROOF. Since Yy, is asymmetric in G and O,(M) < F < H, implies that H n MT
contains a Sylow p-subgroup of H. Thus by |1.24] -., Yaiian < Ya.

Now let MT := MT/Cy+(Yar). Then O,(F) < O,(MT) = 1 and Cii—7(F) < F. Note that
F < MT~H and so [0,(MT n H),F] < O,(F) = 1. Tt follows that O,(MT A H) = 1. Thus Yy is
p-reduced for M1 n H and so Yy < Yypram < Yo O

LEMMA 2.9. Suppose that Yy is asymmetric in G and that there exists a subgroup H* of
characteristic p such that Op(M) < H* and Yar € Op(H*). Let H < H* be minimal with O, (M) <
H and Yy € Op(H). Then Hej’Jg(O (M)).

Proor. By R.2f) Ca(O < Op(M). Since Yy is asymmetric in G, [2.6{(b) shows that
O,(M) is a weakly closed subgroup of G. Thus the hypothesis of [1.49 m are fulfilled and we conclude
that H is of characteristic p. Let O,(M) < P < H. Then the minimal choice of H implies that
Y < Op(P) and so H € ﬁg(Op(M)). O

LEMMA 2.10. Suppose that Yas is char p-tall and asymmetric in G. Then $a(0,(M)) # &.

PROOF. Since Y}, is char p-tall there exists H* < G such that H* is of characteristic p, Y3
Op(H*), and H* contains a Sylow p-subgroup of Cg(Yas). By [2.2(e), O,(M) € Syl, (Cg(YM)) and
after conjugation in Cg(Yas) we may assume that O,(M) < H*. Then by -.?)G M) #J. O

LEMMA 2.11. Suppose that Yas is char p-tall and asymmetric in G. Let H € $¢(O,(M)) and

put H := H/O,(H). Then the following hold:

(a) Let Ty € Syl,(H n MT). Then Ty € Syl,(H). In particular, H = OP(H)T4.

(b) Op(H) normalizes O,(M) and Y.

(c) OP(H) = [OP(H), Y] and H — OP(H )Op(M).

(d) OP(H)Yy = Yy, ) = (Vily < H and H = (O, (M)™).

(e) Let N < H. Then either OP(H) < N, or N is p-closed and [N,Y p;OP(H)] = 1. In
particular, H is p-irreducible.

(f) Z(OP(H)Yyr) is a normal p’-subgroup of H.

(g) ®(H) = ®(Or(H)) = Z(OP(H)Yy), and OP(H)/®(H) is a minimal normal subgroup of
H/®(H).

(h) FEither OP(H) is a q-group for some prime q # p, or OP(H) is a product of components,
which are permuted transitively by O,(M).

(1) If Y <L < H and L =(Y), then [O,(H), L] < O,(L), and L is of characteristic p.
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PROOF. Put Hy := OP(H), and let Tyy € Syl,(H) with O, (M) < Ty,

@: By H ~ M is a parabolic subgroup of H and so @ holds.

([B): Since O,(M)O,(H) is p-group containing O, (M), 2-6|fa) shows that

0,(M)O,(H) < Na(Oy(M)) < M' = No(Yay).

(c): By @ H = HyTy, so [Ho,Yn]Yas is normal in H. Hence O,([Ho, Ym|Yn) < Op(H)
and thus Yy € O,([Ho, Ym]Yn) since Yar € Op(H). Now the definition of $¢(O,(M)) implies
[Ho, Yam|Op(M) = H, so Hy = OP(H) < [Ho, Yi] < Hp, and (¢ follows.

@: By H = HyO,(M). Thus HyY) is normal in H and so (Y{l) < HoYas. Also by
Hy = [Hy, Ya]. We get

HoYr = [Ho, Yi]Yar = <Y31°) < Vi) < HoYar.
Hence equality holds everywhere and the first statement in @ is proved. Similarly,
H = HyOp(M) = [Ho, Yar]Op(M) < [H,0,(M)]0,(M) < Op(M)™) < H
and so H = (O,(M)H).
@: By the definition of $¢(O,(M)), H = NTg or Yar < Op(NTg). In the first case Hy < N.

In the second case
[N.Yar] € N 1 O,(NTi) < Op(N) < Op(H),

so [N, Y] = 1. Since by @] HoYy = <mHO>, we conclude that [N, HoYs] = 1; in particular, Hy
centralizes Ty n N. By () H = HoTy. Thus Ty n N is normal in H and N is p-closed. So @ is
proved.

@: Put D := Z(HyYy). By @ H = HyTy, so D < H, and since D is abelian and O,(H) = 1,
D is a p'-group.

GE) Since O,(H) = 1, ) shows that ®(Hy) = ®(OP(H)) = ®(H). In particular, Hy £
®(H). Hence (EI) shows that (I>( ) Z(HoYy) =: D.

Suppose that D & ®(H). Then there exists a maximal subgroup K of H with D £ K. By @) D
is a normal p’-subgroup of H, so H = DK and K contains a Sylow p-subgroup of H. Thus we may
choose K such that O,(M) < K. Hence the definition of $5(0,(M)) gives Yar < Op(K). Since

[D, Y] = 1 this shows that <YM > = <YM > Y > is p-group, a contradiction to O,(H) = 1.
Thus D = ®(H), and the first part of (g is proved.

By (€]) every normal subgroup of H properly contained in Hy is contained in D. Hence Hy/D
is a minimal normal subgroup of H and (g is proved.

@): By @) Hy/®(H) is a minimal normal subgroup of H. So either Hy/®(H) is a g-group for
some prime g or Hy/®(H) <I>( ) is the direct product of non-abelian simple groups transitively permuted

by H. By ®(Hy) = ®(H) < Z(Hp). So in the first case, Hy is nilpotent and
Hy = ®(H)O,(Ho) = ©(Hy)O4(Ho),

so Hy = O,(Hy) is a g-group.
In the second case, Hy = @(FO)FO/, Hy = Fo/ and H is the product of components transitively
permuted by H. In particular, each component of Hy is normal in Hy, and since H = HoO,(M),

already O, (M) permutes the components transitively.
: By @ O,(H) normalizes Ya; and so [O,(H), Y] < Yar < L. Since L = (Y}L) this gives
[0u(H), L] = [0p(H),{YiD)] < Op(H) 0 L < Op(H) 1 Oy(L).

It follows that Cr(Op(L)) acts quadratically on O,(H). By the definition of $¢(O,(M)), H is of
characteristic p, and so [L.4(a]) shows that C1(Op(L)) is a p-group. Hence L is of characteristic p. [

LEMMA 2.12. Let H € Hc(0,(M)). Suppose that Yar is asymmetric in G and that there exists
g € G such that H < Ng(QY). Then the following hold:
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(a) Y is Q-tall.

(b) QI < O,(HQI) < Ng(Op(M)) < Ne(Yar) = M.
(¢c) H< HQY; in particular OP(H) = OP(HQY).

(d) HQ?Y is p-irreducible.

PROOF. @: By the definition of HG(0,(M)), Y € Op(H) and Op(M) < H. Since H <
Ne(Q9) this gives Yar € Op(Ng(Q?)) and Op(M) < Ng(Q9). By 2.2(f), Op(M) € Syl,(Ca(Yar))
and so Y), is Q-tall.

(]ED: Clearly Q9 < O,(HQ9) and O,(M)O,(HQ?) is a p-group. By Op(M) is a weakly
closed subgroup of G, and we conclude that QY < O,(HQ?) < Na(O,(M)). By 2.2(d),(d),
Ng(0,(M)) < MT = Ng(Yar), and so @ is proved.

(c): By @, @7 normalizes O, (M) and thus also every N¢(Q7)-conjugate of O,(M). Since by
2.11(d) H = (O,(M)") and H < Ng(Q7), QY normalizes H and H < HQY.

(d): By R-11ff) H is p-irreducible. Since H normalizes Q9, [L.30|(b) shows that HQY is p-
irreducible. |

Recall the definition of a minimal asymmetric module from Definition for the next lemma.

LEMMA 2.13. Suppose that Yy is char p-tall and asymmetric in G. Let H € $¢(O,(M)) and
let V be a non-central H-chief factor of Op(H). Put H := H/Cy(V), A := Y and B := 0,(M).
Then V is a faithful simple minimal asymmetric F, H-module with respect to A and B.

PROOF. We have to verify (i) = (iv). By [2.6{(b) O,(M) is a weakly closed subgroup of G

and so by 15' B = 0,(M) is a weakly closed subgroup of H. Hence H holds.

By [2.11|[b)), O,(H) normalizes Yy and O, (M). Therefore,
[Op(H), Yi] < Y < Ca(Op(M)) and [Op(H), Op(M)] < Op(M) < Ca(Yar)-

Thus
[Op(H), Y1, Op(M)] = 1 and [Oy(H), Op(M), Y] = 1,
and Property holds.

Assume for a contradiction that (Y1) acts nilpotently on V. Since V is a chief factor and so a
simple H-module, [V,(Y{l)] = 1. By , OP(H) < (Y and thus [V,0P(H)] = 1. But then
V is a central H-chief factor, a contradiction. So (Y{f) does not act nilpotently on V, and
holds.

Finally let Cyx(V) < P < H such that B < P < H. Then P is a proper subgroup of H
containing O, (M), so by the definition of 5 (0,(M)), Yar < O,(P). By [2.6{a) O,(P) < MT and
thus by (Y] is elementary abelian. Let W be the inverse image of V in H. Then

(W, YDl < W (Yip) and [W, (Y, (Yip] = 1.
This gives . |

LEMMA 2.14. Let L € £¢(Yn) and put A := Op(L). Then Yy A/A is the unique non-trivial
elementary abelian normal p-subgroup of Np(Yar)/A.

Proor. Let T'e Syl,(NL(Y)). By definition of £¢(Yar),
L/A = SLs(q),Sz(q), or Diha,,

where p = 2 in the last two cases, r is an odd prime, and Ny, (Y)s) is the unique maximal subgroup
L containing Y. If L/A =~ SLs(q) or Sz(q), then N5(Y)/A is a Borel subgroup of L/A and
T/A = 0,(N,(Y)/A).

In the SLs(g)-case T/A is elementary abelian and N (Y) acts simply on T//A. Thus YA/A =
T/A and the lemma holds.

In the Sz(q)-case all involutions of T'/A are contained in Z(T'/A), and Nr(Y) acts simply on
Z(T/A). Thus YA/A = Z(T/A), and the lemma holds.

In the Dihg,-case, N (Y) =T and |T/A| = 2, and the lemma holds. O
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For the next lemma recall the definition of £x(Yas) from and the definition of a CK-group
from

LEMMA 2.15. Let Yy < L < G and suppose that L is a CK-group of characteristic p. Then
Le £6(Yn) if and only if L is Yar-minimal and N, (Yar) is a mazimal subgroup of L.

PROOF. If L € £4(Yys), then by definition, L is Ya;-minimal and Ny, (Ya,) is a maximal subgroup
of L.

Suppose now that L is Yj/-minimal and Np(Yas) is a maximal subgroup of L. Let T €
Sylp(NL(YM)) with Y]\/[ < T. By , NL(T) < NL(Y]V[) and OP(L) < 7T e Sylp(L) In
particular, Op(L) < Np(Yar).

Let V be the direct sum of the L-chief factors on O,(L) (in a given chief series). Since L is
of characteristic p, [1.4{[c) shows that CL(V) < O,(L), and since O, (L) < CL(V), we get C(V) =
O,(L). Hence V is a faithful F,L/O,(L)-module.

As O,(L) normalizes Yys, we have [Op(L),Yn] < Yar and [Op(L), Y, Yu] = 1. It follows
that Ys acts quadratically on V', and we can apply the Quadratic L-Lemma [MS6l Lemma 2.9] to
L/O,(L) and V. This gives

L/OP(L) = SLQ(q)st(Q) or Dihg,,

where ¢ is a power of p, r is an odd prime, and p = 2 in the last two cases.

Set X := {(Yar n O,(L))L) and L := L/X. Suppose that \}//E| — 2. Then L is a dihedral group,
but not a 2-group. So there exists }//]; <D < L with D =~ Dihg,., r an odd prime. Then Yur < D
and so D € L n MT. Since L is Yj;-minimal with L n MT being the maximal subgroup containing
Yar, we conclude that D = L and X = O, (L).

Hence we may assume that |)/’1\\4| > 2. In particular, L/O,(L) = SLs(q) or Sz(q). As seen above,
Np(T) < Np(Ya) and T € Syl,(L). Tt follows that Nr(Yar)//O,(L) is a Borel subgroup of L/O,(L)
and normalizes the elementary abelian group Y30, (L)/Op(L). Thus the structure of SLy(g) and
Sz(q) shows that ¢ = |Y30,(L)/O,(L)| = |5//A;| It remains to show that O,(L) = X.

Suppose for a contradiction that O,(L) # X. Since [Op(L),Yn] < Yu n Op(L) < X, Lisa
non-trivial central extension of L/Op,(L) by a p-group. Hence [Grl] shows that either ¢ = 9 and
L ~38Ly(9) or g=8and L ~2%52(8), 1 <a<2 Inboth cases, since T is a Sylow p-subgroup
of L, Op(f/) = Z(f) In particular Y, N Z(f) =1, a contradiction as T’ normalizes Yyy. O

LEMMA 2.16 (Asymmetric L-Lemma). Suppose that Yas is char p-tall and asymmetric in G. Let

H e 9Hc(0p(M)) and L be minimal among all subgroups L < H satisfying Yar < L and Yar € Op(L).
Then the following hold:

(a) H ={(L,0,(M)y = {Y],,0,(M)) for all h € L\NL(Ya).

(b) L is Yas-minimal and of characteristic p, and N (Yar) is the unique maximal subgroup of

L containing Yas.

(c) [V,OP(L)] # 1 for all non-central chief factors V of H on O,(H).

(d) {(Op(L) A Yar)Ey < O,(H).

(e) Suppose that L is a CK-group. Then L € £5(Ya) and Op(L) < O,(H).

PROOF. Define
H* :=(Y{]), B:=[0p(H), H*] = ([Op(H),Ynu]"), and P := NL([O(H),Yn]) A N1(CE(Yar))
1°. L ={Yun,Y{,) for some g € L. In particular, L = (Y).

Suppose that (Y, YY) is a p-group for all g € L. Then Baer’s Theorem [KS|, 6.7.6] shows that
Yir < Op(L), a contradiction to the choice of L. Thus there exists g € L such that (Y, Y},) is not
p-group. Then Yas € O,((Yas,Yy;)) and the minimal choice of L gives (Yys, Yy, ) = L.

In the following we fix g € L such hat L = (Yar, Y3,).

2. H=(L,0,(M)) = (¥}, 0,(M)).
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Note that Op(M) < (L,O0,(M)) and Yy € O,((L,Op(M)). So the definition of H5(Op(M))
gives I = (L, 0p(M)) = (Y}, Op(M)).

3°. [Op(H), Y] < Y n B < Cp(0p(M)) < Cp(Yum) and [B,0,(M)] < Bn Op(M) <
Cs(Yr).

By [2.11|[b) O,(H) normalizes Yy; and O,(M). By definition of B, [0,(M),Yr] < B < O,(H)
and so (3°) holds.

4°. L has characteristic p.
By (1), L = (V{;), and so (¢°) follows from [2.11fi).
5°. O,(H), Y 1Cs(Ym).

B=| )

Since [B,Yy] < [Op(H),Y] and by (), [B,0,(M)] < Cp(Ya), both Yy, and Oy(M)

normalize [O,(H),Y{|Cs(Ynm). As H = (Y{,0,(M)) and B = {O,(H),Y{]%), this gives
] )

B = [0y(H),Y(1CB(Ynr).

6°.  Cp(Yn) = [Op(H),Yu]Cp(L).

Since [O,(H), Y] < Cp(Yy,) and L = (Y, Y3)), implies

Cp(Yyy) = [0p(H), Y 1(Ce(Yar) n Cr(Yf))) = [0p(H), Yy ]Cp(L).

7°. P =Np(Yu) = Np(Op(M)).

By [2.2(e), Yar = QZ(O0,(M)) and so Np(Op(M)) < Np(Ya). Clearly Np(Yas) normalizes
[Op(H),Yr]| and Cp(Yar). Thus Ni(Yar) < P. So it remains to show that P < Np(Op(M)).

Both, P and O,(M) normalize the series

1< [0p(H), Yu] < Cp(Yi) < B < Op(H).

By (3°) [B,0,(M)] < Cp(Ynm) and [Op(H),Ynm] < Yar, so Op(M) centralizes [O,(H),Yy] and
B/Cp(Yrm). As L = (Y, Yy) < H*, we know that L centralizes O,(H)/B. By Cp(Yy) =
[Op(H),Ya|Cp(L). Since P < L and P normalizes [O,(H),Yar], we conclude that P centralizes
Ce(Ya)/[0p(H), Yr]. It follows that [P, O,(M)] centralizes all factors of the above series and so
acts nilpotently on O,(H). As H is of characteristic p, [L.4(ja) implies that that [P,O,(M)] is a

p-group. So [P, 0,(M)]O,(M) is a p-group normalized by P and since O,(M) is a weakly closed
subgroup of G, P < Np(O,(M)).

8°. Y is a weakly closed subgroup of L.

Let r € L with [Yas, Y};] < Yar n Y}, By [1.45([b) it suffices to show that Yy, = YM

As Yy is asymmetric in G, [Yar, Y] < Y mYM implies [Yar, Y] = 1. By . »(H), Yar] <
Yy and so [O,(H), Y] < Cp(Yy;). Now gives Cp(Yy) < Cp(Y];) and so C’B(YM) =
Cp(Ya)". So r normalizes Cp(Yar). Put W := [O,(H),L]. Since L = (Y, Y}, [1.40| shows
that [O,(H),Yn] = Cw (Yar). Note that W < B, and so W n Cp(Yy) = Cw (YY) = [Op(H) Y]
Thus r also normalizes [O,(H), Y] and so r € P. By P = Np(Ya). Hence Y}, = Yy, and
is proved.

9°. L is Yas-minimal, and N, (Yar) is the unique mazimal subgroup of L containing Y.

Let Yy < U < L. By the minimal choice of L, Yas < O,(U). By Y is a weakly closed
subgroup of L and so Yy, < U. Thus N, (Y)/) is the unique maximal subgroup of L containing Y.
By L ={Y) and thus L is Yj/-minimal.

10°.  O,(L) n Yar < O,(H).

By O,(L) < Np(Ya) and so also O,(L) < N(Yy,). By (8°), [O,(H),Y{,] < Y{, and thus
[[O (H) Y, 0p(L) nYur] < Yar 0 Y 0 B < Cp((Yy), 0p(M))) = Cp(H).
By . ), Y 1Cp(Yar) and so [B,Op(L) nYa] < Cp(H). Hence O,(L) nYyy centralizes

all factor of the H 1nvar1ant series
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Since H is of characteristic p, -Glb shows that Op(L) n Yy < Op(H). So (10°) holds.

(&), (), (d): This follows from (2°%), (%) and (9%, and (L0%), respectively.

(): Let V be a non-central H-chief factor on O, (H) and assume that OP(L) < Cy (V). By
L =Y}, so L = OP(L)Yy. Thus implies

H = (L, 0y(M)) = (O"(L)Ys, Op(M)) < C (V) Op (M),
and [V,OP(H)] = 1. But then V is a central H-factor, a contradiction.

(e): By L is Yys-minimal and Ny, (Y)s) is a maximal subgroup of L. Thus shows that
L e £c(Yy). In particular, O,(L) = {(Op(L) n Yar)L). By (10°) O,(L) n Yar < O,(H) and so
Op(L) < Op(H). O

For the next lemma recall the definition of a quasisimple module from

LEMMA 2.17. Suppose that G is a Ky-group, Yar is char p-tall and asymmetric in G and there
exists H € HG(0,(M)) with [1Z(0p(H)),OP(H)] # 1. Then there exist L € £y(Yan) and a
quasisimple H-submodule V' of Y. Moreover, the following holds for any such L and V and W :=
[V, L]:

(a) H =(0p(M), L.
(b) W < Z(0O,(L)) and [Op(H), L] < Op(L) < Op(H) <
() 1#W = [W,L] = [W,0P(L)] = [ V,Oor(L)], V =

non-trivial strong offender on Y.

(d) Cv(0"(L)) = Cv (L), and Cy(OP(H)) = Cv(<Yz\ZI>)
(e) W Cy,, (L) = Cw(OP(L)) = Cw(OP(H)) = Cw (H).
(f) [W,Yum] = [W, X] for every X < Yy with | X/Cx(W)| > 2.

PROOF. Let Vo be minimal in 0,.Z(0,(H)) with [V,, OP(H)] # 1. By-.7 H is p-irreducible
and so by[1.34)[d), V4 is quasisimple. In particular, Vo is p-reduced for H and so V < Yy by definition
of Yg. By deﬁmtlon of Hc(0p(M)), Yar € Op(H) and so we can choose Ly < H minimal with
respect to Yar < Lo and Yar € Op(Lo). By -. e) Lo € Lx(Yar). This shows the existence of L
and V.

Now let V' be any quasisimple H-submodule of Yy and L € £5(Ya). Then V/Cy (OP(H))
is a non-central chief factor for H on O,(H). Let Yy < R < L. By definition of £4(Yar), L is
Y-minimal and N (Yys) is the unique maximal subgroup of L containing Ya;. Thus R < Np,(Yay)
and so Yy < R and Yy < Op(R). So L satisfies the assumptions of We conclude that
H =(L,0,(M)), Op(L) < Op(H) and [V,OP(L)] # 1. In particular, (a)) holds and W := [V, L] # 1.

Ny (Yar).
WCyv(Yy) = WCv(L), and W is a

(B): Since W V Y < Z(OP(H)) and O,(L) < O,(H) we have W < Z(0,(L)). By 2-11J(i),
[0p(H), L] < Op(L), and by R.11|{b), O,(H) normalizes Y. Thus

W < [Op(H), L] < Op(L) < Op(H) < Nu(Yu),
and (]ED holds.

(c): By :1.43 W is a strong offender on Yy,. Let h € L\Np(Yas). By [L42f{f), L = (Yar, Y1),
and by &), H =Y}, 0,(M)). AsVisa perfectHH—module, V =[V,H] = [V,Y}][V,0,(M)].
By [2.11{(b), O,(H) normalizes Op(M), so [V,0,(M)] <V n Op(M) < Cy(Yu), and we conclude
that

V = [V.Y}]Cv (Yn).

In particular, V. = WCy (Yar). Moreover, [V,Yy] < V n Yy < Cy(Yy), and since also h™! €
L\NL(Yar), V = [V, Yar]Cv (Y1), so

Cv(Yar) = [V, Yu](Cv (Yar) n Cv (Yy)) = [V, Yar]Cv (L).

Lfor the definition of a perfect module see
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Hence V. = [V,Y2][V,Yu]Cy(L) = WOy (L). It follows that W = [V,L] = [W,L], W =
[W,0P(L)] = [V,L,0P(L)] = [V,0P(L)] and [W, Y] = [V, Yar]. Since V is quasisimple, we have
[V,OP(H)] # 1. As OP(H) < (V{1 by 2.11|({d)), this gives [W, Yas] = [V, Yar] # 1. So () holds.

(d): Since V.= WCy (L), Cv(O?(L)) = Cw (OP(L))Cy (L). By [L43|[), Cw (OP(L)) = Cw (L)
and so Cy (OP(L)) = Cy(L). Since OP(H) < (Y{l) we have Cy ((Y{)) < Cyv(OP(H)). Also

Cy(OP(H)) < Cy(0"(L)) = Cv (L) < Cv(Ynm),
and so (Y{l) centralizes Cy (OP(H)).
(e): By [L.43|[n) Cw (OP(L)) = W n Cy,, (L), and so

Cw(H) < Cw(O(H)) < Cw(0O"(L)) = W n Cy,, (L) < Cw (L, Op(M)))

=

Cw(H).
Hence @ holds.

@: If |Yar/Ynm 0 Op(L)| = p, there is nothing to prove. Thus, we may assume that ¢ :=
[Yar/Yar 0 Op(L)| > p. Since L € £5(Yar), we get L/O,(L) = SLy(q) or Sz(g); in particular,
L/O,(L) is quasisimple.

Assume that ¢ is odd. Then L/O,(L) = SLy(g) and V = [V, Z(L/O,(L))] x Cv(Z(L/O,(L))).
Put Vi := Cv(Z(L/O,(L))). Then L/Cr (V1) has dihedral Sylow 2-subgroups. As [V1, Yy, Y] <
[Yar, Y] = 1, [Gorl Theorem 8.1.2] shows that Yy < Cr(Vh) and Vi = Cy(L). Hence W =
[V,L] = [V, Z(L/Op(L))] and Cw (L) = 1. On the other hand shows that [W/Cw (L), x]
[W/Cw (L), Y] for all z € Y/ \Cy,, (X), and so (f)) holds.

Assume now that ¢ is even. Let X < Y3 such that |X/X n O2(L)| = 4. Then there exists
y € Yy and g € L such that

L =(X,y?)0a(L) = (X, X9)05(L) = Yar, Yi)Oo(L).

Put L := L/Cr(W). Since by (EI) Op(L) < CL(W), we get L = <Y,Y§> and so are allowed
to apply with L, W and X in place of L, V and X. This gives Crw,i(X) = [W, X]. As
(W, X] < [W,Yy] < Cpw,£1(X) we conclude [W, Y] = [W, X], and @) is proved. O

LEMMA 2.18. Let L€ £¢(Yar) and put A :== Ou(L), Y :=Yp and §:=|Y /Y n Al.

(a) Let he L. If h is not a p-element then h acts fived-point freely on A/Cy (L).
(b) Let U be any chief factor for Np(Y) on AY /Cy(L). Then |U| = ¢, and if ¢ > 2, then
(¢c) Let U be any N (Y)-invariant section of AY /Cy(L). Then |U| is a power of §.

PROOF. @: Recall form the definition of £4(Yas) that L/A =~ Dihg,, r an odd prime, SLs(q)
or Sz(g). Moreover, by[L.43|(p) L has no central chief factors in A/Cy (L). Thus, the claim is obvious
if L/A = Dihs,.

So suppose that L/A =~ SLy(§) or Sz(§). Then by every chief factor is a natural module
for L/A. As the non-trivial p’-elements of L/A act fixed-point freely on these modules, they also act
fixed-point freely on A/Cy (L).

([B): Now let U be a chief factor for Ni(Y) on A/Cy(L). Then the p’-elements of N7 (Y) acts
fixed-point freely on U, so U is a faithful simple module for Ny (Y)/O,(Nr(Y)) over F,. Since
NL(Y)/Op(NL(Y)) is cyclic of order ¢ — 1, we get that |U| = ¢, and if ¢ > 2, U = [U, N.(Y)].

Since Y A/A is a simple N1 (Y)-module of order § we conclude that (b)) holds.

follows immediately from . O]
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2.3. Symmetric Pairs

In this section we study how Yj; is embedded in parabolic subgroups of G if Y}, is short and
asymmetric in G.

DEFINITION 2.19. Let Y be a conjugate of Yj; in G. A subgroup L < G is a Y-indicator if
either
(1) Lis p-group and Y << L, or
(2) L is p-minimal, Y < O,(L), N(Y) is a maximal and parabolic subgroup of L (so Y € L),
and one of the following holds:
(i) There exists Qo € Q¢ with Qf < Ng(Y) and L < Ng(Qo)-
(ii) There exists T'e€ Syl,(Ng(Y')) such that T'n L € Syl (Nz(Y)), [{uZ(T), OP(L)] # 1,
and [Y7 OP(L)] i [le(T)7 OP(L)]'
A pair (Y7, Y2) of conjugates of Yy, is a symmetric pair if there exist Yi-indicators L;, i = 1,2, such
that for V; := (Y;*)
Vl‘/g < L1 N L2 and [Vl,VQ] # 1.

LEMMA 2.20. Suppose that Ya; is asymmetric in G. Let Y be a conjugate of Yy and L be a
Y -indicator. Then (Y'*) is elementary abelian.

ProOF. Without loss of generality we may assume that Y = Yj;. We discuss the cases given in
Observe that in every case Yar < Op(L). In case Yy < L, so the lemma holds in this
case.

In case 2.19(2) N.(Yar) is a parabolic subgroup of L, so O,(L) < N (Yy) < M. Now
yields the assertion.

LEMMA 2.21. Suppose that Y is Pc(S)-short and asymmetric in G and that Mq(S) # {MT}.
Then there exists P € Pg(S) such that P~ M is a mazimal subgroup of P. Moreover, for any such
P:

(a) O,((M, Py) = 1.
(b) Yar < Op(P) < S < M.

(c) (Y{)) is an elementary abelian p-group.

PROOF. Since M¢(S) # {MT} there exists P € Lg(S) with P £ M?*. We choose P minimal
with this property. Since O ( P)<S<PnM1 shows that {U | P n MT < U < P} < Lg(59).
Thus, the minimal choice of P 1mphes that P~ M T is a maximal subgroup of P.

Since Y)y is asymmetrlc in G, 2 implies that Ng(S) MT, so S« P. Now the minimality
of P shows that P € Pg (S) This shows the existence of P.

Now suppose that Pe Pc(S) such that P A M is a maximal subgroup of P. Then P £ M7,
and since Mg (M) = {MT}, @) holds.

Note that O,(M) < S < P, O,(M) € Syl (Ca(M)) and Yy is Pg(S)-short. Thus Ya, <
Op(lg) < S < Mf, and (]Eb is proved.

As Y)s is asymmetric, now shows that <YA§> is an elementary abelian p-group. O

LEMMA 2.22. Let L € Pg(S) such that L n M is a maximal subgroup of L. Suppose that
Q< M and that Yy, is short and asymmetric in G. Then L is a Yy;-indicator.

PROOF. Since L € Pg(S) € Lg, L is of characteristic p. Thus [1.24|[g]) gives
1°0 Z(S) <YL < UZ(0,(L)).

By -21)(b), Yar < O,(L) < S < M'. Suppose that Q < O,(L). Then L < Ng(Q) by [1.52|fa)).
As Q* < S < Ng(Ya) we conclude that L satisfies with Y = Yy and Q¢ = @, so L
is a Yjs-indicator in this case. Thus we may assume that Q £ O,(L). If [%1Z(S),L] = 1, then
L < Ng(Q) by Q! and Q < O,(L). Hence
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2. [Z(S),07(L)] # 1.

So if [Yar, OP(L)] £ [1Z(S), OP(L)], then L satisfies 2.19|(2:1i), with Y = Yy, and T = S and
L is a Y)s-indicator. Hence we may assume for the rest of the proof that

3°. Q € Op(L) and [Yr,OP(L)] < [01Z(S),0P(L)] < Yr.

In particular,

40, YyYL<L.

By 2.21](a))

5°. 0,((M,L)) =1.

If Op(M) < Op(L), then @ gives L < Ng(0O,(L)) < M, a contradiction. Thus
6°. O,(M) £ O,(L).

Next we show:

7°. Yu < Z(0,(L)).

Assume that R := [Yp,0,(L)] # 1. By (4°) YiY, < L and so R< L and CL(R) < L. Since
[R,O,(M)] =1 and O,(M) <« O ( ), CL(R ) is not p-closed. Hence implies that OP(L) <
CL(R). Thus L = OP(L)S < Ng( Cr(Q)), and since Cr(Q) # 1, Q! shows that L < Ng(Q) and
@ < O,(L), a contradiction to (3°).

Let V := Q4Z(0p,(L)), J := Jr(V) (for the definition see , and L := L/CL(V).
8°.  Cs(V)=0,(L), and V is a p-reduced L-module.

Put N := O,(L)) and let N be the inverse image of N in L. By (1°) 2:Z(S) <V and by
[0Z(S),0P(L)] # 1, so [V,0P(L)] # 1. Hence OF(L) £ N and [L.37] gives that N is p-closed. Thus
NS =0,(L)),Cs(V)=0,(L), N=1and V is a preduced L-module.

By :A.40 each A € Ap, () induces a best offender on V. In particular Jo, an) (V) # 1 if
J(Op(M)) £ CL(V).
9°. Op(L) < Op(M) and J(Op(L)) & CL(V); in particular, Jo, M)(V)
1.

By Op(L) < Cs(Yam) = Op(M), and by (B°) O,((M, L))
characteristic subgroup of O,(M) is normal in L. In partlcular J(O,(M)) € L. Since O,(L) <

T
0,(M) this gives J(O,(M)) € O,(L). By (8°) 0,(L) = Cs(V) and so Jo ) (V) # 1.

10°. There exists subgroups E1, ..., E in L such that for i =1,...,k and U; := E;C (V) n
M*t:

Hence no non-trivial

(a) J=Fy x - x By, L=JS, V =[V,Ey] x - x [V,E], and By ..., Ex are the J(V)-
components of L.

(b) E; =~ SLa(q), ¢ =p", orp =2 and E; = Sym(5), and [V, E;] is the corresponding natural
module for E;.

(c) Q is transitive on {E1, ..., EL}.

(d) Ei = SLy(q) and U; = Ng(S n E;), or E; = Sym(5) and U; = Sym(4).

Since V is a @Q!-module for L, @, (]ED and () are a straightforward application of and
Note here that the case E; =~ Sym/(2" +1) i only appears for n = 2 via Sym(5) = O, (2)
in Moreover, @ follows from the structure of the groups given in (]ED and the fact that L is
p-minimal with L n MT being the unique maximal subgroup containing S.

In the following we use the notation of (10°)) and put
W;:=[V,E], Jo:=J(O,(M)), R;:=[W;,Jo].

11°. E; =~ SLs(q), O,(U;) = Jon E;, V < Jo, and |Ri| = q, i = 1,...,k. Moreover,
YMﬁWZ‘=Ri qu>2
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By Jo £ CL(V). Let A e Ay, such that A £ Cr(V) and |A/C4 (V)| is minimal with this

property. By [C.13|
A=AnE; x---xAnE, and |W;/Cw.(An E;)| = |An E|.

Hence |A| = |A4;| = |VCa(V)|, where A; := (A nU;)Cy (A n U;). Since by V < 0,(M), we get
VCa(V) e Ao, () and A; € Ao, (nr)- In particular, V' < Jy. Moreover, the minimality of A implies
that A = A, for some [ € {1,...,k}, so A < E; and A < O,(U;). Suppose that E; =~ Sym(5). Since
A is an offender on W, |C.4{lg) shows that A is generated by transpositions, a contradiction since
U, =~ Sym(4) and so O,(U;) contains no transpositions.

Thus E; =~ SLy(q) and by (10°) U; = Ng- (S N E;). From the structure of SLy(q) we get that
U, = (SnE;)K;, K; ~ Cy_y. Since A is an oﬁender on W; we have |W;/Cw, (A)| = |A|] = ¢, and
A€ Syl,(E;). In particular, A = O,(U;) = Jo n Ey and Jy = A x C5-(W;), and R; = [Wy, Jo] =
Cw,(A) is a 1-dimensional F,-subspace of W;. Since S normalizes O ( ) and acts transitively on
{E1,...E.} we conclude that the first sentence in (11°) holds.

Assume now that in addition ¢ > 2, so K; # 1. Since U; < M and Yy, < Cy(A), [Yar, U] <
Y 0 Cw;, (A), and either [Yas, U] = 1 or [Yar, Ui] = Cw,(A) = R;. In the latter case the last part of
. 11°) holds. In the first case [Yar, K] = 1, and the action of K; on W; shows that Cy (K;) = Cy (E}).
But then Yy, < Cy (E;) and E; < Cg(YM) < MT. Hence E; = Uj, a contradiction.

12°.  O,(L) =V = CL(V).
Byi—SLg( ) and O, (U, )—Tomfandby @)72‘=NE(§0E)~ SoJynE; e

Syl,(E;) and thus Jo € Syl (7). According to (9°) O,(L) < O,(M) and so O, (M) € Syl,(Op(M).J).
By m@ L =JS and so (M,L)y = (M, J). Thus by . ) Op((M,J») =1 and S0 no non-trivial
characteristic subgroup of O, (M) is normal in O,(M)J. Moreover by m Z(0p(M)J) = 1.

Hence, the C(G, T)—Theorem [BHS], applied to O,(M)J, shows that [O,(L),OF(J)] < V and
[®(O,(L)),0P(J)] = 1. As OP(J) = OP(L) and Z(Op(M)J) =1, we get ®(O,(L)) = 1 and so
V = 0,(L). Since L is of characteristic p, also V = Cp(V)

13°. q>pandk=1.

Let Q:={R;|i=1,...,k}. By |R;| = ¢, and by @ is transitive on Q. We will
show that M acts on 2. For this let z € M and i € {1,...,k}. Note that W < V* < J§ = Jy < L,
and so [W7, Jo] = R?.

Suppose that [WF*, V] = 1. By Cr(V) =V and so WZ <V =Wy x ... x W,. Since
[WZ,Jo] # 1 we can choose je{l,. 1"} such that the projection of W to W is not centralized
by Jo. Then

R; = [Wzm’jomﬁj] < [Wf’,fo] = Rf
Hence R; = R} € Q.

Suppose that [W7, V] # 1. Then there exists j € {1,...,k} such that [W7?, W,] # 1. Hence
R; = [WZF, W;] < [W7F,Jo] = R}, so again R; = R} € (.

We have shown that M acts on . Let A < Q be an orbit of Op(M) and Ry := []g,c Re
Observe that O,(M) < Ng(Ro) and Op(M) € Syl,(Ca(Yar)). Hence 21Z(S) < Yar < Op(Ne(Ro))
since Y)y is shortﬂ

Assume that A # Q. Then there exists ¢ € {1,...,k} such that R; £ Ry. Note that

(+) [Ri,E;] =1 forall 1 <1,j <k with | # j.

Hence [Ry, E;] = 1, so E; < Ng(Rp) and W; = [:Z(S), E;] < Op(Ng(Rp)). On the other hand,
by (5° . ) Op,((M,L)) = 1. SoV € M, and there exists y € M such that V¥ # V. Then V¥ < Jj.
Moreover, by m. is transitive on €2, so y can be chosen such that [W;,V¥] = R;. Since M

acts on Q, RY " € Q and so there exists j€{l,...,k} such that [W;, VY] = R; = RY. Conjugating

() by y gives
[R},E}] =1forall 1 <I,j <k with [ # j.

2This is the unique place in the proof of this lemma where shortness is needed and not only char p-shortness
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Since RY = R; and y acts in Q this shows [R;, E¥] = 1 for all 1 <1 < k with [ # i. Then also
[Ro, E}] =1, 50 E} < Ng(Ry). Since W; < Op(Ng(Ro)) this shows that [W;, EY] is a p-group. But
Wi < Jo = Jj < JY and [VY,W;] = RY. So the action of J¥ on V¥ implies that [EY, W;] is not a
p-group, a contradiction.

We have shown that A = Q. Hence O,(M) is transitive on  and thus also on the groups
Ei,...,E). Suppose that ¢ = p, then the transitivity of O, (M) shows that |Ya| = |Cy (O,(M))| = p.
Thus Yy < Cg(Q) and Q! gives MT < Ng(Ya) < Ng(Q), a contradiction since Q €t MT by
assumption. Therefore ¢ > p. Now shows that W;nY3s # 1 and thus O, (M) < Cp(W;nYy) <

N7 (E;). Hence, the transitivity of O, (M) gives k = 1.
14°. J/V = SLs(q), ¢ > p, and V is a natural SLy(q)-module for J.

By ({129 V = CL(V), and by (1% and (13%) J/V = SLa(q), ¢ > p. Moreover, by (10 (b)
V = Wi is a natural SLy(g)-module.

15°. Jo € Syl,(J), and there exists x € M\L with Jo = VV?.

By O,((M,L)) =1 and so M € Ng(V). Pick x € M\Ng(V). Then V # V* and so by
(12°), V* « CL(V). Since M normalizes Jy, V* < Jy < J. By (14°) V is a natural SLy(q))-module
for J, and we conclude that [Cy (V®)[ = q. So [VnV?®| < q, [V*V/V| = qand VV® = Jy € Syl,(J).

16°.  O,(M) = Jo, Yoy = Cv(O,(M)), |Ynm| = ¢, and M ~ J acts transitively on Yas.

By Yu <V, s0 Yy < Cy(Jp). By (14°) V is a natural SLs(¢)-module for J, and so U;
acts transitively on Cy (Jy). As U; < MT, U; normalizes Yy, and hence Yy = Cy (Jp).
It remains to be shown that O,(M) = Jy. Since O,(M) centralizes the F -subspace Y,

Cy (Jo) of V, O,(M) acts F,-linearly on V. As GLa(q)/SLa(q) is a p’-group, this gives O, (M) < J
and so Op(M) < J. Since Jo < Op(M) and Jo € Syl,(J), this shows that O,(M) = Jo.

17°. p is odd.

Assume that p = 2. By (15°) and (16°) O2(M) = Jo = VV®. As V is a natural SLs(q)-module
for J, this implies that V and V* are the only maximal elementary abelian subgroups of O3(M), so
|M/Na (V)| = 2. But this contradicts the fact that V' is normalized by the Sylow 2-subgroup S of
M.

18°.  Q<J.

Assume that @ < J. By (15°) and (16°) O,(M) = Jo € Syl,(J) and so Q < O,(M). Thus
by [1.52|(a)), Ng(0,(M)) < Ne(Q). Hence Q < M and by [2.2(g), @ < MT, a contradiction to the
assumption.

19°. M, < MnJ, and Ng(V)° = (QJ)°.

By (16°) M n J acts transitively on Y3, and so by [L.57(c), M° = (QM"'Y < Q(M n J).
Thus M, = OP(M°) < M n J. Since J acts transitively on V' another application of [1.57||c) gives
Ng(V)° =(Q7) = (QJ)°.

Put B := M' ~ J and B := B/Cp(Yu).

20°. B = N;j(Op,(M)), Ce(Yrm) = Op(M) = Op(B), B is cyclic of order ¢ — 1 and acts
reqularly on Y]\ﬁ/[. In particular, M, acts fized-point freely on Y.

By (15°), Jo € Syl,(J), and by (16°), O,(M) = Jo and Ya; = Cv(Op(My)). In particular,
Op(M) € Syl,(J). By (14°) J/V = SLz(q) and V is a natural SLa(g)-module. It follows that
B = N;j(Op(M)), Cg(Yar) = Op(M) = Op(B) and B is cyclic of order ¢ — 1. By 1) M, < B

and so also the last statement holds.

21°. g+ 1 <|M,|
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The elements of @Q\J induce field automorphlsms on J/V, and by (18°) @ <« J. This shows that
IC5(Q)| = qo 1 where ¢ is a power of p with ¢f < q. By. ) B < Ng(Op(M)) < MT and by
.1.) M° = . So [B Q] < M°. Since [B Q] is a p’-group and M°/M, is a p-group, this gives
[B,Q] < M.. Hence |[B,Q]| < |M,| and B = [B, Q] x C3(Q), so

q—1=|B|=[[B,QlIC(Q)| < |Mo|(go —1).
As gh < g and p > 2, we have ¢y < +/q and we conclude

—1 —1
4 > 4 =.q+1

Q-1 4q-1

|M°| >

22°. Yr is a simple ]\Z-module.

By 1) J\\/fO acts fixed-point freely on Y, and by 1) |J\\4/o| > ,/q + 1. Thus any non-trivial
M°-invariant section of Y3, has order larger than /g + 1. As |Y| = ¢ by (16°) we conclude that a
composition series for M° on Yy, has at most one factor and so (22°) holds.

We now derive a final contradiction. Put F := Endy,(Ya), K := End;(V) and K :=
Endj=(V*®), where z is as in . By F is a finite field, and by V' is the natural SLo(q)-
module for J, so K is a finite field of order ¢q. By M, < J, and since Yy = Cv(O,(M)),
M, acts K-linearly on Ya;. Thus F contains a field isomorphic to K. Since |Yy| = ¢ = |K| and
[F| < [Yn| this show that F is a field isomorphic to K, indeed F is the restriction of K to Y. Note
that FF is 1nvarlant under z and 80 also K is a isomorphic to F, and F is the restriction of K to Y.
Moreover, since M is abelian, M embeds into I via its action on Y),.

Pick y € V*\V, v € V\Yys, and d € M,. Then there exists p € F such that d acts on Yy as
multiplication by u. Let A € K and X € K such that

)\|Y1\4 =B = )\|Y1\4'
Then
d -1 d N—1
v*evA AT  + Yy and y“ e yAT 4+ Y
since the action of d on V' and V* has determinant 1. The mappings
V/Yy — Yy with w+Yy+— [wy], and
VE/Yy — Yoo with  w+ Yy — [v,w].

are K- and K—linear, respectively. It follows that

lvvylﬂ = [va]d = [Udayd] = [v)‘ilvyAill = [vvy])‘illyM/\illyM = [v,y]/fQ.
This shows that 4 = p=2 and pu® = 1. Since the multiplicative group of F is cyclic, we get that
|M,| < 3. Hence 1) implies that \/g +1 < 3, so ¢ < 4. On the other hand, by il p < q and by

(17°) p is odd, a contradiction. O

LEMMA 2.23. Suppose that Yyr is short and asymmetric in G, that Mq(S) # {M'} and that
Q< MT. Then G possesses a symmetric pair.

ProOF. Note that the assumptions of l are fulﬁlled and so we can choose P € Pa(S) as
there. Since Q € MT, P satisfies the hypothesis of [2.22] in place of L. Hence P is a Yj-indicator.
We will now verify the assumptions of |E -@i for (G YM, M, P) in place of (H, Ay, Hy, Hs).

Observe that Yy is a non-trivial normal p-subgroup of M and by -. f) Car(Yar) is p-closed.
By [2.21{(a), O (M, P>) = 1 and so no nontrivial normal p- subgroup of M A P is normal in M and
in P Since S < M n P MAPis parabohc subgroup of M and P. By -. YM <O (13), and
as P € Pg(S), P is p-minimal and so » by |L.37] p-irreducible.

We have shown that (G, Yy, M, P) satlsfy the hypothesis of [E -@) in place of (H, Ay, Hy, Hs).
Hence there exist i € {1,2} and h € G with 1 # [A;, A"] # A; n AP and A; Al < H; n HY, where
A = <AH2> <YA];> Since YY) is asymmetric in G, we conclude that ¢ # 1. So i = 2. As already
observed, Pisa Yr-indicator and thus (Yay, YM) is a symmetric pair with indicators P and P". [
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2.4. Tall Natural Symplectic Modules

LEMMA 2.24. Let I be a non-trivial normal p-subgroup of M and Y < O,(M"). Let L < G and
let A be a normal p-subgroup of L. Suppose that I < A< M andY < L. If [Y, A] < [I, A], then
Y < 0,(L).

PROOF. Let H be the subnormal closure of Y in L. Put W := {[I, A]). Since [Y, A] < [, A]
and H = (YH) (see [1.13), we get [H,A] < W, and H acts trivially on A/W. Since I < A we
conclude that H normalizes /W and so

W = ([I, A]") = [(I"), A] < [IW, A] < I[W, A].

Since A < M, A acts in IW/I, and we conclude that IW/I = [IW/I,A]. so IW = I, and
H normalizes I. As I < M, [2.2f|d) gives Ng(I) < M'. Thus H < M. In particular, since
Y <<0,(M")<S M, Y << H. Hence Y = H and Y << L, s0 Y < O,(L). O

LEMMA 2.25. Suppose that p = 2 and Y is an M-submodule of Yy such that I := [Y, M,] is
natural Spa, (2F) -module for M,, m > 1.
(a) Let L < G and A a normal p-subgroup of L. Suppose that I < A< M andY < L. Then
Y < O,(L).
(b) If I <Q°, thenY < Q°.

PROOF. @: Put ¢ = 2*. By , Ce(M°) = 1. In particular, Cy (M°) = 1 and so also
Cy(M,) = 1.

We claim that Cy(Y) = Car(I). Indeed by [L.52f[d), [M°,Car(1)] < Op(M) < Cpr(Y). Thus
[M,,Cn(I),Y] = 1. Also [Y,M,,Cr(I)] = [I,Cp(I)] = 1, and so the Three Subgroups Lemma
implies [Y, Cy(I), Mo] = 1. Since Cy (M,) = 1, this gives [Y,Cp(I)] = 1 and Cp (V) = Cpr(1).

Suppose that M° % Sp2(2)" and put K := Endps, (I). Then K is a finite field of order ¢ and
dimg I = 2. Put D := (I'). Then D < A < M < Ng(I), and so [D,I] < I. Suppose that I* does
not act K-linearly on I. Then |K| > 2, and shows that dimg I = 1, a contradiction. Hence I®
and so also D acts K-linearly in I. Note that the set of M -invariant symplectic forms on I form a
1-dimensional K-space, on which D acts K-linearly and so trivially. We conclude that D leaves all
these forms invariant. Thus I is a natural Spay,,(q)- or Spam,(q)-module for M,D. Note that the
same statement holds if M° =~ Sp(2)’.

Now [C.20|shows that [I, D] = [Y, D], and so[2.24] applied with D in place of A, gives Y < O,(L).

([B): Just apply (&) with L = Ne(Q) and A = Q°. 0

LEMMA 2.26. Suppose that X is an M-submodule of Yy and a natural Spa,,(p*)-module for
M°,2m =4 and p odd. Then X < Q°.

Proor. Note that X is an F,M°-module equipped with a non-degenerate M °-invariant sym-
plectic form, where ¢ := pk. Put M = M/Cy(X), Xo := Cx(Q) and X; := [X,Q]. Note that
X = Xj in the symplectic space X. By Xp is 1-dimensional over F, and

Q = O (X1/Xo) N Cs (Xo).
In particular, [ X1, Q] = Xo. Moreover, by [B.28|(b:al)
(+) Z(Q) = C(X1).
Put
H := Ng(Q) and W :=(X{).
Suppose first that W is non-abelian. Then [X;, W] # 1 and we can choose g € H with [ X7, X{] #

1. From X; < Q we conclude X{ < Q. As [X;,Q] = X, and X, is 1-dimensional we get [ X7, X7{]
Xo. This gives

[X1,Q] = [X1, X{] = X = X§ = [X{,Q].
Thus [X{,Q] < Xo < Cm(X) and X;° < Z(Q). As Z(Q) = C5(X1) by (x) this gives X{ <

Cy(X1) and so [X{, X1] = 1, a contradiction to the choice of g.

—
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Suppose now that W is abelian. Then W < Cg(X1) and so W < Cy(X1) = Z(Q). Thus
[W,Q] < Cy(X) and [W,Q,X] = 1. As X; < Cx (W) we have [W, X] < X{ = X = [X1,Q] <
[W,Q]. Also [Q, X] = X; < W and so X centralizes all factors of the series

1< [W,Q] <W <Q.
This series is H-invariant and so also (X ) centralizes these factors. Hence (X acts nilpotently on
Q. Since Cg(Q) < @ this implies that (X ) is a p-group, see (1.3} and so X < (X#) < O,(H) = Q°.
O






CHAPTER 3

The Orthogonal Groups

In this chapter we treat a particular situation, which arises in Chapter [ and in Chapter [f] In
this situation, [Yas, O?(M)] is a natural OS5, (2)-module some M € Mg. Natural O, (2)-modules
for p = 2 are the only examples of simple Q!-modules V' with a non-trivial offender A such that
[V, A] does not contain non-trivial 2-central elements of M. This forces us to look at centralizers of
non-2-central involutions and requires a line of arguments quite different from those of later chapters.

THEOREM C. Let G be a finite Ko-group and S € Syly(G), and let Q < S be a large 2-subgroup
of G. Let M € Mq(S) and suppose that the following hold:
() M/Cat(Yar) = 05,(2),n > 2.
(i) [Yar, O*(M)] is a natural OS,,(2)-module for M/Cn(Yar).
(ii) Cq(y) < MT for all non-singular elements y € [Yar, O?(M)].
(iv) Q4 M.
Then Cg(y) is not of characteristic 2 for all non-singular elements y € [Yar, O%(M)].

Here an element of a natural OS,,(2)-module V is singular if h(v) = 0, where h is the M-invariant
quadratic form on V. For the definition of M° see [L.51] Recall from [L.52] m ) that @Q is a weakly
closed subgroup of G. In particular, by -. Me = (QM).

3.1. Notation and Elementary Properties

In this section we assume the hypothesis of Theorem |C| apart from [C|fii). The first lemma
collects elementary facts about a natural OS5, (2)-module V' with quadratic form h and associate
symplectic bilinear form f.

LEMMA 3.1. Let V be a natural O5,,(2)-module for X = 0O5,,(2), n = 2.

(a) X is transitive on the non-singular elements of V' and on the non-trivial singular elements
of V.
(b) Let 0 # z € V be singular. Then Cx(z) = AK, where
(a) K = 05,,_5(2) and A is a natural OS,,_5(2)-module for K.
(b) [ Al = (2), Cx(z1) =1 and A induces Hom(z/{2),{z)) on z*+.
(c) C (Z) s a parabolic subgroup of X.
(d) If (2n,¢) # (4,+), then Ox(Cx(2)) = A < 05, (2).
(c) Let y e V be non- smgular Then Cx(y) =T x E, where
(a) T = Oy, E = Spa,_2(2), y* is a natural Os,_1(2)-module for E, and y*/{y) is a
natural Spa,—2(2)-module for E.
(0) T = Cx(y), [X.T] = ), y* = Cx (T), and T £ 95,(2).
(c) Let Z be the set of non-trivial singular elements of y*. Then y*~ = (Z), and E acts
transitively on Z.
(d) Let 0 # v € V. If X = OF (2) suppose that v is singular. Then Cx(v) is a mazimal
subgroup of X.

PROOF. @: Note that h(v) = 1 = h(w) for any two non-singular vectors. It follows that any
two non-singular and any two singular vectors are isometric. Thus (&) follows from
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: Put Z :={(z) and A := Cx(Z) nCOx(Z+/Z). Let v e V\Z* and put K := Cx(z) n Cx(v).
Then B . shows that (b:a)) holds. It follows from , that A induces Hom(Z*/Z) on Z*,
via the commutator map. So (b:b)) holds. By any 2-subgroup of X centralizes a non-trivial
singular vector and so Cx(z) is a parabolic subgroups of X.
Suppose that n =4 or e = —. Then O3(K) =1 and so O2(Cx(z)) = A < Q5,,(2).

(c): Since y*+ = (y) and y is non-singular, y=* is a non—degenerate orthogonal space. By Witt’s
Lemma Cx(y) induces O(y+) = Ogz,-1(2) on y*, and by- B.14) Os,,_1(2) = Sps,(2). Put
T :=Cx(y~). Then T = <wy> where w, is the reflection associated to y. In particular, |T| = 2,
[X,T] = {y), Cx (T) = y*, and T £ 95,,(2).

Put E := Cx(y) n QQn( ). Since Q5,,(2) has index 2 in X, Cx(y) = T x E. In particular, F
acts faithfully on y*, y* is natural Ogn,1(2)—module for E and E =~ Spa,_2(2).

Now shows that C'x (y) acts transitively on Z. By yt =(Z). Thus is proved.

@: By Witt’s Lemma Cx (v) has at most three orbits on v™, namely

{v},
To(v) :={we 1% | h(w) =

(), flv,w) = 0,v # w}, and
T1(v) := {w e V* | h(w) = v, W

(U)> ( ’ )=1}'

Suppose that Cx(v) < H < X. Then {v} # v # v¥X so both To(v) and T;(v) are non-empty,
and A := vl = {v} U T;(v) for some i € {0,1}. In particular, H acts 2-transitively on A, and

= {u} u T;(u) for all u € A. Let {1,2} =: {i,j}. Since H is transitive on A and leaves invariant
T;(v), we have T;(v) = T;(u) for allu € A. Put W := (A) = (v)+W; and, for k = 0,1, Wy, := (Ti(v))
and W := (A = (v) + W;.

We claim that vt = (v) + Wy. Clearly (v) + Wy < v'. Suppose first that v is singular.
Then {v} U To(v) is the set of singular vectors of . On the other hand, since To(v) # J, there
exist singular vectors in v-\(v). Thus, by vt is generated by its singular vectors, and so

L = (v) + Wy. Suppose next that v is non-singular. Then {v} U To(v) is the set of non-singular
vectors of v*. Let w € v+ be non-zero and singular. Then h(v) = h(v + w) and v + w € To(v), so
w= (v+w)—ve )+ Wy. Thus (v)+ Wy contains all singular and non-singular vectors of v and
again vt = (v) + Wy

Assume that i = 0. Then W = (v) + Wy = v+ and so (v) = W+, Since H normalizes W this
gives H < Cx(v), a contradiction.

Hence ¢ = 1 and so j = 0. Thus, as seen above, To(v) = To(u) for u € A and so Wo = <76( ) =
(To(u)) < ut. Thus Wy < W+. Therefore, W < W3- and so W n ot < ((v) + Wy)* = (V).
Thus |W| < 4. Let w e T1(v). Then W = (u,v) has order 4 and since u ¢ v+, W n WJ- = 0

Let d € W+ be singular. Then h(d+u) = h(u) andso d+u e Ti(v) € W. Thusde WnW+ = 0.
Hence W+ does not contain any non-zero singular vectors. Since To(v) € Wy < W+ this shows that v
is not singular. Also shows that dimp, W+ < 2. Since dimp, W + dimp, W+ = dimg, V > 4,
this gives dimp, W+ = 2 and dimg, V = 4. Let v/ and u’ be distinct non-zero elements in W+. Then
v+, u+u) is a singular subspace of dimension 2, and so V has Witt index 2. Hence X = O} (2),
and @ is proved. |

h(v), f
h(v),

NOTATION 3.2. Let MT := MT/C)+(Yas) and recall from |1.1] that
Zy = {2 (X) | X € Syly(M)).

By our hypothesis [Yas, O?(M)] is a natural O§,, (2)-module for M, and we will use the corresponding
orthogonal structure for the following notation.
We choose y, z € [Yar, O?(M)]* such that

z is singular, y is non-singular, and y L z.

Recall from that z is 2-central in M. Thus we can fix our notation such that z € ;Z(S) and
Cs(y) € Syla(Cu(y))-
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Since z € C(Q), Q! implies Ce(2) < Ng(Q). Hence, we can define
Q.o :=0Q9 for ge G.
We further put
Fo:=Cy(y), T* :=Cs(y), Y :=y* (in[Yar, 02(M)]), F:={(Q. Fp)), T :=Cs(Y).
Note that T* € Syly(Fp).

LEMMA 3.3. (a) Ca(M®) =1 and Z(M)=1.

(b) [Yar,O*(M)] = Zps. In particular, Zys is a natural OS,(2)-module for M.

(c) Either Q. = O2(Cx7(2)), or (2n,€e) = (4,+), and Q. = Cy, Dg or Cy x Co, with Q, <
QF (2) in the last case. In all cases Cz,,(Q.) is a 1-dimensional singular subspace and
o Yt O%(M), Q.| = 2

(d) Mo ~ an(2), 3204 or 32D8.

(e) Suppose that (2n,e) = (4,+). Then TQ, = S.

(f) Either Yy = Zg, or (2n,€) = (6,+) and Yar is the factor module of order 27 of the natural
permutation module for Sym(8) =~ OF (2).

(8) [Yn,T]=<y).

(h) M/O3(M) = 05,(2); or M/O2(M) ~ 3:05 (2), O3(M/O2(M)) is extra-special of order 33
and exponent 8 and Q = Cy.

(i) M = M°S.

PRrOOF. @: By Hypothesis Q<L M. So M° # @, and @ shows that Cg(M°) = 1.
In particular, Z(M) = 1.

(b): Since [Yar, 0?(M)] is a simple M-module, we have [Yar, O*(M)] < Zy;. By [L.24[) Zas =
Z(M)[Zr, O*(M)]. Also Z(M) =1 by (), and so (b)) holds.

and @ : By Hypothesis [C|fiv) @ € M and since Q is large, [L.57((b) shows that Zy is a
Q!-module for M° with respect to Q). Thus we can apply Since Oy (2) does not have a normal
subgroup isomorphic to SLs(2), Case [B.37[) does not occur. Hence (d) and (d) follow from [B.37

(e): Note that [S| = 8 and T < QJ (2). Now (c|) implies |Q.| =8 or |Q.| =4 and T £ Q.. Thus
S=TQ.. As C5(Yy) < Cg(Y) =T this gives S = TQ,.

@): By|C.18/, H'(O2(M), Zys) = 1, unless (2n,€) = (6,4), in which case it has order 2. Since
Zy = [Yar, O*(M)] and Cly,, (O*(M)) = 1, this implies @

(g): Note that by [3.1f(c:b), [Zar, T] = {y). So if Yar = Zpy, holds. Otherwise, () shows that

Yas is quotient of the natural Sym(8)-permutation module. As [Zy;,T] = (y), T is generated by a
transposition and so again [Yas, T] = (y).

Put M := M/Os(M) and D := Cpy(Yar).

(b): By the basic property of M, D < @(M) From ®(05,,(2)) = 1, we conclude that <I>(]\\/7) =D.
By [1.7(}a) ®(M) = ®(O*(M)) and thus D = &(M°). By R.2) O2(M) € Syly(Cas(Yar)) and so D
has odd order. —

Moreover, by [M°, Car(Yag)] < O2(M°) < Oy(M). Thus M° centralizes D, and M, is a
non-split central extension of ]\\/[/o/b by a group of odd order. If (2n,€) # (4, +), then ]\\J/O/Zv) ~ 05,(2)
is simple. Also the odd part of the Schur multiplier of Q5,,(2) is trivial in this case (see [Grl]), and
follows.

Assume now that (2n,€) = (4,+). By () Yar = Zas. It follows that Yy, is a natural SLy(2)-
wreath product module for M. So we can apply [L.5§|f) and conclude that also holds in the
Of (2)-case.

: Note that @ implies that O?(M) < M° and so M = M°S. By the basic property of M,
b<<I>(]\\/.7) and so M = M°S. As Op(M) < S this gives M = M°S. O

LEMMA 3.4. The following hold:
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(8) 1Q-/Ca. ()] = 2, [1, Q-] = (=) and 4@ = {y,y2).

(b) TM® = M and Fy = FT. Moreover, either Cp(Yr) = Oz(M) and Fy = FT, or
M/Oo(M) ~ 3:0F (2) and |Fo/FT] = 3.

(¢c) Cr(Ym) < Oo(M), F/F n'T =~ Span—2(2), Y is a natural Ozy,—1(2)-module for FT/T,
Y /(y) is a natural Span—2(2)-module for FT/T, and [Yr,T] = {y). In particular, T =
O2(FT), |T/O2(M)| = 2, and T* € Syl,(FT).

(d) Suppose that n = 6. Then Q. N F is a natural Ogy,—3(2)-module for Cp(z). In particular,

Q. N F is elementary abelian of order 2°"~3 and [Q, n F,Cr(2)] < T.

) Nart (T) < Cays () and On(Nyg1(T)) = T.

) @2 = Q) = Gy (1) = O (@: 1 T7)

) 0,2(5) = (2.

) There exists My < M such that

(a) T € Syly(M1) and M1/O2(M) = Sym(3);
(b) if 2n = 4, then T* normalizes My and {(My,S) = (M1, Ny (T*)) = M; and
(c) if (2n,e) # (4,4+), then (My, Ny (T)) = M.

(i) {Q., F) = M° and, if (2n,€) # (4,4), Fo is a mazimal subgroup of M.

(j) Suppose that (2n,€) # (4,+) and A < O2(Chr(2)) is an offender on Yyr. Then A < O2(M).

(k) F<Cyi(y) = FTCO\: (Yu) and F = {(Q. n F)").

PROOF. @: Suppose first that (2n,e) # (4,+). Then by .. = O02(C37(2)) and so by
3.1)(b:b) Q. induces Hom(zt/{z),{z)) on Zps. This gives @ Suppose next that (2n,e) = (4,+).
Then y and yz are the only non-singular vectors in z*. By [3 , ) = Spg( ) x Co. As

< COum(y) and T € QF (2), we conclude that T% =~ Cy x Cy and T* £ Q+ . Hence by [3.3] ..
@ $ T* and so @ does not centralize y. Since @, acts on the non-singular Vectors of 2+, follows.

@ @ By , Fo = Cy7(y) = Ca x Span—2(2), |C37(Y)| = 2 and Y is natural Og,,—1(2)-
module for Fy. In partlcular T C’ <(Y) = C37(Y) = O2(Fv), [YM, T = [Zm, T = {y), Fo/T =
Span—2(2), Y /(y) is a natural Spgn,g( )-module for Fy and T M° = M.

Suppose now that (2n, €) # (4, +). Then[3.3|h) gives M /O5(M) = O5,,(2), so Cpr(Yar) = O2(M)
and T = Cp(Y). By Q. = O5(Cy7(2)) and so by [3.1{fa)) Q. is a natural Of,_,(2)-module
for C37(z). Observe that @), n F is the hyperplane corresponding to a non-singular vector of Q..
Thus by applied to C37(2)/Q. and @, in place of X and V, we have CFfO(z)/Qz NEF >~
Ca x Span_4(2), and Q. N F is a natural Og,_3(2)-module for Cr,(z). Note also that T < @, and
T=Cny(Y)=Cp(Y). Thus @, n F acts faithfully on Y and Cr, (2)/(Q. " F)Cr,(Y) = Span—4(2).

It follows that

) 2(CFO(z)/cFO(Y))F“>. Since F = (Q. n
S
this

(e
(f
(g
(h

(Q: N F)Cr, (Y)/Cro(Y) =
)

As FO/OFO(Y) = szn_g(z), we have FO/OFO(Y
F)¥o) this gives Fy = FCF,(Y) = FT. Hence (b)) —

Suppose next that (2n,e¢) = (4,4). By ), S = TQ.. Thus T%* = T(Q. n T*) and so
Q.nFo«T. Since Fy/T =~ Fy/CF,(Y) = SpQ( ), this gives Fy = FT. If Cp(Yar) = O2(M) we
conclude that (b)) and hold. Assume that Cas(Yas) # O2(M). Then by B3|[) M/Oo(M) ~
3:0f (2), O3(M/O2(M)) is extra-special of order 3% and Q =~ Cy4. In particular, Cps(Yas)/O2(M) <
M°O2(M) and so M = M°T.

Also Fy/O2(M) ~ 3.(Co x Sym(3)). Since T neither centralizes nor inverts Od(M/Og( ), T
inverts Cpr(Yar)/O2(M). As CM( ) =TCn(Yar), this gives Cas(Y)/O2(M) = Sym(3 By-.7
[Cp(Y),M°] < O2(M°) < O2(M), and so Q. n Fy centralizes Cp(Yar)/O2(M). It follows that
F/O2(M) = Sym(3), Fy/O2(M) = Sym(3) x Sym(3), FT/O2(M) = Cy x Sym(3), |Fo/FT| = 3
and O2(FT) = T. Also T(Q. n Fy) € Syly(Fp) and so T* = T(Q. n Fy) € Syly(F). Thus again ()
and hold.

(€): Note that Cs(Yas) is a Sylow 2-subgroup of Cj+(Yas) and Cs(Yys) < Cs(Y) = T. Hence
T is Sylow 2-subgroup of C)+ (Yas)T. Also

FT < Ny (T) < Nopi ([Yar, T1) = Cgi(y) = Crge (Y FT,
and 50 Oy (Nt (T)) < Oo(FT) = T. Thus Oy (Ny+(T)) = T.

old for (2n,€) # (4,+).



3.1. NOTATION AND ELEMENTARY PROPERTIES 49

{@: By R2[e) 2Z(02(M)) = Y. Since Ox(M) < T* and 1Z(T*) < Cq(02(M)) < O2(M),
we conclude that Q1Z(T*) < YM

Assume first that Z(T%) < Zu. Suppose that (n,€) = (4, +). Then |Zy| = 2% and S ~ Dy,
so U := Z(8) has order 2. Hence U < @, since Q, < S, and U = S’ < Q (2). In particular, U does
not act as a transvectlon group on Zys and thus |Cyz,, (U)| < 4. Since y and yz are the only non-
singular vectors in z*, S acts on {y,yz} and since U < 5/, U centralizes y. Hence Cy,,(U) = (y, 2).
Since U < Q. it follows that

<y’z> < CZM (T*) < CZM (T* N Qz) < CZM (U) = <yv Z>7
and () holds on this case.
Suppose that (n,e) # (4,+). Put A := O2(C37(2)) and A, := Cx(u) for u € z+. Then by
3.1flc:al) A = @, and by [3.1{{b:b) A induces Hom(z*/{z),{(z)) on y*. Hence
Ay =4, = wey+{2).

Thus Cz,,(4,) = {y,z) = Cz,,(T*), and again @ follows.

Assume now that 2 (T*) € Zyr and pick v € 1 Z(T*)\Zp. By B3|[) Yar is the 7-dimensional
quotient of the natural permutation module for M =~ Of (2) =~ Sym(8). Hence C37(v) = Sym(7)
or Sym(3) x Sym(5). By .. M° = Qf(2) =~ Alt(8) and so the Sylow 2-subgroups of Ciz=(v)
are dihedral of order 8. On the other hand Qz NF <Q,nT* < Cpe(v) and by @, Q. Fis
elementary abelian of order 262 = 8, a contradiction.

(g): Note that 2Z(S) < MZ(T*). By () QuZ(T*) = {z,y) and by (a) [y,Q.] # 1. Thus

1Z(S) =<{z).

@: Let ¢ € Q. with y? = yz. Then Y # Y7 and so there exists y; € Y?\Y. Replacing y; by
y1(yz) if necessary, we may assume that y; is non-singular. Thus y; = y* for some u € M. Note
that (y,y")> < Y% = Cgz,,(T7) and so T9 centralizes T". As T" € Syl,(T"“C;(Yas)) we can choose
u such that T normalizes T.

Put My := (T,T"y and W := (y,y"). Since T = Cs(y*) we have [Zy,T] = (y), and so
[Zar, My] = W. As Zyr = W ® W+, we conclude that M; centralizes W+ and My /Chy, (Zar)
SLy(2) =~ Sym(3). Together with Cas(Yar) = Ca(Zar) this gives My =~ Sym(3). If Cpr(Yar)
Os(M), then obviously M;/Os(M) = Sym(3). If Car(Yar) # O2(M), then by B.3|{h), O (M /O, (M))
is extra-special of exponent 3. Since M;/O5(M) is a dihedral group, we conclude again that
M;/O9(M) = Sym(3). Thus holds.

Suppose that 2n = 4. Then T < T* = TT? <2 S. As T? normalizes T" we conclude that T*
normalizes My = (T,T"). Note that M is 2-minimal and so M = (My,S). As Ox(M) < S and
Cr(Yar)/O2(M) < (M /O2(M)), we get M = (M7, S) = (M7, Ny (T*)). So is proved.

Suppose that (2n,€) # (4,+). Then by Cry(Yar) = O3(M) and so T = Cy(Y) < Fy.
Also by[3.1)(d) Fy is maximal subgroup of M. Thus M = (M, Fy) = (My, M (T)), and holds.

(i): Put L = (F,Q.). Note that L < M° and T normalizes L. If (2n,e) = (4,+), then by
3.3(h), S = Q.T and S is a maximal subgroup of M, so LS = M. As above, Ox(M) < S and
Crr(Yar)/O2(M) < ®(M/O2(M)) give M = LS, and so M = LQ,T = LT. Hence L < M and
Me° ={QM) < L < M°. So . holds in this case.

Suppose that (2n,€) # (4,+). Then by (]EI) Cy(Ya) = O2(M) and Fy = FT. By @j Fpis a
maximal subgroup of M. Thus FT is maximal subgroup of M and again LT = M, and H holds.

(i): This follows for example from

(K): By [L52(d), [Ca(Y), M°] < O2(M°) < O2(M°). Since F < M°, we get [F,Cyr(Yar)] <
03(M) < F. As M = Cypi (Yar)M, we have Ciyi(y) = Cagr(Yar)Cas(y) = Cart(Yar)Fo. By (b)
Fy =TF, and we conclude that

Cut(y) = Copt Ym)TF = Cyt (Cy, 2)) F = Corr Ky, 2)) Fo.
Note that Cg_(y) = Q. n Fo = Q. n F and so Cy+(y, 2)) normalizes @, n Fy. Hence
F={(Q:n Fp)"™) = {(Q. n )W) = ((Q. n Fy)") = {(Q= n F)"),

Thus holds. O




50 3. THE ORTHOGONAL GROUPS

3.2. The Proof of Theorem

In this section we will prove Theorem [C| For this we assume that (G, M) is a counterexample
to Theorem [C|] Thus C¢(z) is of characteristic 2 for some non-singular x € Zy;. We continue to use
the notation introduced in section By [B.1)fa) M acts transitively on the non-singular elements
of Zyr and so Cg(y) is of characteristic 2. We will derive a contradiction in a sequence of lemmas.

LEMMA 3.5. Suppose that [Oo(M),0*(M)] < Yar. Then Yar = Oz(M) = Cq(Yar) and MT =
M.

PROOF. Since [O2(M), 0*(M)] < Yar < D1Z(02(M)),[L.18| implies that [®(Oa(M)), 0*(M)]
“

1. As Z(M) = 1 by [3.3|[a), we conclude that ®(O5(M)) = 1 and O9(M) = Yy = Oo(MT). In
particular Cq(Yas) = Yas since M7 is of characteristic 2. Thus MT = MCg(Yy) = M. 0O
LEMMA 3.6. (a) If2n = 4, then Ng(T*) < M and T* € Syly(Ca(y)). In particular, y is

not 2-central.
(b) If (2n,€) # (4,+), then Ng(T) < Ng(B(T)) < Mt and T = O2(Ny (1)) ]

PROOF. @: Let M; be as in. Since 2n = 4, T* normalizes M. Put M* = T*M;. Note
that T* € Syly,(M*) and M*/Oy(M*) = Sym(3).

We claim that Ng(T*) < MT. For this, suppose first that no non-trivial characteristic subgroup
of B(T*) is normal in B(M*). By the Baumann argument (see for example [PPS], 2.8 and 2.9(a)])
B(T*) € Syly,(B(M*)). Note that B(M*)/O2(B(M*)) =~ Sym(3), and so the pushing up result for
Sym(3), see [GI2], shows that B(M*) has a unique non-central chief factor in O(B(M*)). Since
O?(M*) < B(M*), the same holds for M*, and since [V, O?(M*)] # 1 we conclude that

[O2(M), 0%(M*)] < [Oo(M*),0*(M*)] < Y.

Hence also [O2(M), 0%(M)] < Yas and byYM = 0o(M).

A straightforward computation shows that Arx = {Yr, A, Ay, Ao}, where |A; Yy /Yi| = 2 =
[Yar/Yar 0 A;l, and |AY /Y| = 4 = Y /Y 0 Al So {A1, A2} and {Ys, A} are the only pairs of
elements of A« which intersect in a group of order 4. Hence Ng(T*)/Cq(Ars) is a 2-group. Since
Ng(T*) n MT contains the Sylow 2-subgroup S of G and Cg(Arx) < Ng(Yar) = MT, we conclude
that Ng(T*) < M, and the claim holds in this case.

Suppose next that K is non-trivial characteristic subgroup of B(T*) which is normal in M*.
By BAlub) M = (My, Nar(T*)) = (M*, Ny (T*)) and so K < M. Thus by R.2(d), Ne(K) < M.
Since K is a characteristic subgroup of T* this implies Ng(T*) < MT.

We have shown that Ng(T*) < MT. Note that Cs(Yar) € Syly(Ce(Yar)). Since MT =
Ce(Yy )M and Cs(Yar) < Cs(y) = T* € Syly(Crr(y)) we have T* € Syly(Cyyi(y)). Let Ty €
Syly(Ca(y)) with T* < Ty. Then Ny, (T*) < N, ,(,»)(T*) and so T* = Np, (T*) and Ty = T*.
Thus () holds.

(]E[): Suppose now that (2n,¢) # (4, +) and that L := Ng(B(T)) £ M'. We derive a contradic-
tion using a similar pushing up argument as in the proof of @ Let K be non-trivial characteristic
subgroup of B(T) normal in M;. By [34(H) M = (M;, Ny (T)) and so K < M. Thus by 2:2)(d),
Ng(K) < MT, contrary to L € M'. Hence no non-trivial characteristic subgroup of B(T) is normal
in B(Ml)

The same pushing up argument as in @ shows that [O2(M), 0*(M)] < Y. So by Yu =
O2(M) = Cpr(Yyr) and M = MT. Let t € L\MT. Then Yy, # Y}, and so Yy Y}, = T = B(T). Note
that all involutions in 7" are contained in Yy; u Y}, and thus Ay = {Yy, Y}, }. Since Np(Yy) =
LaM'=LnM= Ny(T) = FT we conclude that |L/FT| = 2 and FT < L. Let Ty € Syly(L)
with T* < Ty. Then L = (FT)Ty = FT; and so T1 € M. By (FT,Q.) = M°T = M. Since
Ng(M) < Mt = M we conclude that T} € Ng(Q.) and so [z,T1] # 1.

Put H := Ng(T*). Since T* = Cs(y) = Cs({z,y)) and y?= = {y,yz} we have Q, < H.
Also Ty < H. By BA), QZ(T*) = (z,y). Since 0Z(T*) < H, the action of Q. and Ty on

IFor the definition of B(T) see
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WZ(T*) shows that H/Cy(0Z(T*)) = Sym(3), and H acts_transitively on OZ(T*). So there
exists h € H with 2" = y. Thus y € 2“. Since z is 2-central, @ gives 2n > 6. Also Q" = Q, and
|Qy/Qy N T*| =1Q./Q. nT*| = 2. Since

Qy nT* < Qy N M < OQ(CM(y)) = OQ(Fo) = OQ(FT) = T,
we have |Q,/Qy NT| < 2. As |T/Y| = |T/O2(M)| = 2 this gives |Q,/Qy N Y| < 4 and so
|Qyl < 4|Qy N Yar| < 4[Yn].

Since 2n > 6, [3.3(lc) implies |Q.Yrr/Ya| = |Q.02(M)/O2(M)| = |02(C7(2))] = 22n=2 By
B3 1201/ Z0s 0 Qo < | Z04/[Z1, Q2| = 2 and by B3 [Yar/Zas| < 2. Therefore

Q.| = 22" 2|V n Q2] = 227220 0 Q.| = 22" Y| = 4|Vl

Since |@Qy| = |@-| equality must hold in each of the last two displayed inequalities. Thus
YvnQy =Yy and Yar 0 Q. = [Zym,Q-]. Hence Yy < Q, and Yy € Q.. Therefore Yj\h[l is an
elementary abelian normal subgroup of order |Yy/| in @, and Ys # Y](/‘[l. Since Yar = Cp(Yar) we
conclude from that @,Y)s contains a non-trivial offender on Y3, a contradiction to .

We have shown that Ng(B(T)) < MT. Since Ng(T) < Ng(B(T)) this gives Ng(T) = Ny (T).
By B4, O2(Nysi(T)) = T, and so (b)) holds. O

M

LEMMA 3.7. 26 A Yy =2M =26~ Zy,.

PROOF. Suppose that there exists u € 2 N Yy, with u ¢ 2. Assume first that u € Z»;. By
a) M has two orbits on Z?w, and since u ¢ Z™, we have u = y™ for some m € M, so y € 2°.
If 2n = 4 then hows that y is not 2-central, a contradiction. Thus 2n # 4. By Q! we have
Qy < Cq(y). By[3.6(b) and Ng(T) = Ny (T) < Curi(y) < Ca(y) and so Ng(T') normalizes
Qy. Thus Ng, (T) < O2(Ng(T)). By O2(Ng(T)) = T and so Nq,(T) < T. It follows that
Qy < T < S. By[22[), @ is weakly closed in S with respect to G, so Q. = Q. In particular
[Q.,y] = 1, which contradicts .

Assume now that u € Y3/ \Zn. By B.3|([f), (2n,€) = (6, +) and Yj is the 7-dimensional quotient
of the natural permutation module for M = Of (2) = Sym(8). Hence C37(v) = Sym(7) or Sym(3) x
Sym(5). In both cases O2(Cyst(u)) < Cpt(Yar) and thus

O2(Cart (u)) = O2(Copr (Yar)) = O2(MT) < Oo(M).
Since Ng(O2(M)) < MT by and Q, < 02(Cg(u)), we conclude that
N, (02(M)) < O2(Cppr(u) < O2(M),

and so @, < O2(M). Since @ is a weakly closed subgroup of G, this implies Q,, = Q9 for all g € M
and so Q < M, a contradiction to Hypothesis [C{fiv]). O

LEMMA 3.8. The following hold:
(a) 91Z(T) = CYM (T) and Y = CZM (T) = Q]_Z(T) M ZM
(b) Let Z = {ueY | 1 # uis singular in Zpr}. Then Ng(T) < Neg(1Z(T)) = Ng(Z2) =
Ng(Y) = FTCMT(YM) < Mt
(¢) O2(Ng(T)) =T and Cq(Y) = TCuit (Yur).
PROOF. (@: By, WZ(O2(M)) = Y. Since O2(M) < T we get 0 Z(T) = Cy,, (T). Thus
Cz(T) = UZ(T) A Zy. By BAfc:b) Cz,, (T) = y* =Y, and so (a) is proved.

(]ED: Observe that z € Z and so
Q. <L:={Q,|ueZ)< M.

By [3.1}c:q)
(Z2)=Y;
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in particular, Ng(Z) < Ng(Y). Since M acts transitively on the non-trivial singular vectors in Zyy,
Z=YnzM By Y = WZ(T) n Zy and since 2M < Zy we get Z2 = 0 Z(T) n 2M. By
M = 2% A Yy, and since 0,Z(T) < Yar, we conclude that Z = 0Z(T) n 2% =Y n 2%, Hence

Na(T) < Ne($1Z(T)) < Na(Z) < Na(Y) < Na(2) < Na(L).

In particular, Ng(Z) = Ng(Y).

Since Fy < Nar(Y), we get F = {(Q. n Fy)™) < L and so by BAfl), M° =(Q.,F) < L < M°.
Hence L = M° and Ng(Z) < Ng(M°) = MT. Thus Ng(Y) = Ng(Z) = Nyt (Z) = Nyt (V). Since
Y =yt Nyt (Y) = CMT (y). By 1) we have Cyt(y) = Cpt (Yar)FT, and (]EI) is proved.

(d): By (0) Na(T) = Npt(T) and C(Y) = Cpyi(Y). Hence [3.4)(¢) gives the first part of (d),
and [3 -|-i the second part. U

NotaTioN 3.9. By Hypothesis |Clfiii) Cq(y) < MT, and so there exists a subgroup L < Cg(y)
with FT < L and L £ M'. Among all such subgroups we choose L such that |L| is minimal.

Observe that the minimality of L implies that L n M7 is the unique maximal subgroup of L
containing FT. By [3.4[d), T* € Syl,(FT) and we can pick T € Syl,(L) such that T* < Tp. We set

D:=LnM', Z,:=(WZ(T)"), P:=CL(z), and P*:=0%(P).

LEMMA 3.10. The following hold:

(a) 02((Q, L) = 1.

b) [Q.,P]<Q.nP=Q.nL=0Q,nF<0yP).
) Oo({L,Lt)) =1 forte Q,\L.

) ZpZt € L oand ZZt @ L' fort e Q,\L.

) 02(Ca(y)) < O2(L) <T.

; 91Z(T0) = 91Z(T*) = <y,Z>.

)

)

A,\A/—\/-\

P = Cr(Z(Tp)), so P* is a point-stabilizer for L on YL, and on ZLE|

Zr = <YL> andY < Cyz, (T) < Cy,, (T).

(i) D = FTCp(Yy) = FCp(Y). In particular, Y is a natural Og,—1(2)-module and Y /{y)
is a natural Span—2(2)-module for D.

(j) F is normal in D.

(k) If 2n =4, then T* = Ty € Syly(L).

Proor. (a): By B4b) and (), M = M°T = (Q.,TF) <(Q.,L). Since L £ M', Mg(M) =
{MT} implies 02(<Q2,L>) =1.

(B): Note that Cq_(y) = Q- " F = Q. n L = Q. n P and that by B.4fa) |Q./Cq.(y)| = 2. By
Q!, P normalizes @), and so also @, n P, and @ follows.

(c): Since |Q./Q. n L| = 2 we conclude that (L,t) = (L,Q.), t> € Q. n L and t normalizes
(L,L%). So (d) follows from (@)

@: Note that ¢ normalizes Z LZt Thus @ follows from .

(e): Put U := O2(L)O2(Ce(y)). Then FT normalizes U. By b) No(T) < Cyppt(Yar)FT and
by 3.4(c) O2(FT) =T, so Ny(T) < Oo(FT) = T. Hence Ny (T) < Cysr (YM)T Since T is a Sylow
2-subgroup of Cy;+(Yas)T and T normalizes Ny (T) we get Ny (T) < T. It follows that U < T < L.
Since L normalizes O2(Cq(y)), this gives O2(Ca(y)) < O2(L) < T.

@: Choose g € G with Ty < S9. Since G is a counterexample to Theorem [C| Co(y) is of
characteristic 2 and so

By

Thus

¢
d
e
f
g
h

~~ —~

Cc(02(Cc(y))) < 02(Ca(y)).
O2(Cay)) ST <T*<Ty < 99.

MZ(S)Z(Th) < Ca(02(Ca(y) < T < T* < T,

2 For the definition of a point-stabilizer on a module see
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and so
MZ(59) < 1Z(T0) WZ(T*).
By BA4l) Q:Z(T*) = (y,z), and by B4|[g) 1Z(S) = (z). Hence 01Z(S9) = (z9) and
(,2%) < 1Z(To) <y, 2).
ByYM nz% =2M Thus y ¢ 29, 29 # y and Z(Ty) = {y, 2).
(): By (@, 22Z(To) = {y, 2). Since L < C¢(y) we have CL(1Z(Ty)) = Cr(z) = P.
@ Let Z be the set of non—tr1v1al singular vectors in Y. By-. ) Y = (Z) and Cy;(y) acts

transitively on Z. By .@ Cy7(y) = Fy = FT, and we conclude that Y = (%) = <QlZ(T0)F>.
Therefore Z; = (YF). Moreover by @ Z;, < T and so

Y <Oz, (T) <0Z(T).

By B-8lfa) Q2.2(T) = Cy,,(T), and so (b)) holds.
{: By BAK), Curi(y) = FTCui(Yar). Since FT < D = MY n L < Cypi(y ) this gives
D = FT(D n Cyt (Yar)) = FTCp(Yar). Since T centralizes Y we get D = FCp(Y). By [3.4 ,

Y is a natural Os,_1(2)-module and Y /{y) is a natural Spa,(2)-module for FT and so also for D.
Thus () holds.

@: By@. F < Oyt (y) and since D = MT A L < Cyi(y) we get F < D.

(K): Suppose that 2n = 4. Then by B.6|[b), T* € Syl,(C(y)). Since T* < Ty € Syly(L) and
L < Cg(y) this gives T* = Ty. O

LEMMA 3.11. L is of characteristic 2, Cr(Zy) = O2(L) = Cr(Yy) and Y, = 1 Z(02(L)).

PROOF. Since G is a counterexample to Theorem Ca(y) is of characteristic 2. Moreover, by
3.10(le) O2(Ca(y)) < O2(L) and so L is of characteristic 2.

By B.10[fh) ¥ < Z;, and B.§|{d) implies C1(Z) < CL(Y) < TCuyt(Yar), so O*(Cr(Zr)) <
Cat(Yar). On the other hand, by [M°, Cort (Yar)] < O2(M°) < Oy(MT), and thus Q.
normalizes OQ(CL(ZL))OQ(MT). But OZ(CL(ZL)) = OZ(CL<ZL)OQ(MT)) since OQ(MT) < T <
L. Hence O*(Cr(Zy)) is normalized by @, and L. As 02((Q.,L)) = 1 by B.10/f), we get
02(0?(Cr(Z1))) = 1. This yields O*(CL(ZL)) = 1 since L is of characteristic 2. Hence C(Zy) =

Oz (L).
Put U := Q1Z(02(L)). Since Z;, <Yy < U this implies
O2(L) < CL(U) < CL(Ye) < CL(ZL) = O2(L).
Hence Oy(L) = Cp(U) and Oo(L/CL(U)) = 1. Thus U is 2-reduced for L, so U < Yy and Y7 = U.
O

LEMMA 3.12. Let Ny be a subnormal subgroup of D.
(a) Suppose that O2(F) £ Ny. Then O (0%(Ny)) < TCysi(Yar) and if in addition Ny < D,
then No < TCjt (YM) and OQ(N()) < Cyt (YM)
(b) If Ng is subnormal in L, then either O?(F) = O?(Ny) or Ny < Oa(L).

PRrROOF. From [3.4|(k) we get that F' <@ Cj(y) and from that

(I) b = ﬁ = 02 X Spgn_2(2)
and
(II) F/Oz(F) = Span—2(2).

(a): By either O?(F) < X or [O%(F), X] < Oz(F) for every subnormal subgroup X of D.
By the hypothesis of (a), O%(F) € No, and hence [O?(F), No] < Oa(F). By (I) Ny < T, or 2n = 4
and O?(Ny) = O*(F) =~ C3. The first case gives Ng < TCy1(Yar), while the second case gives
0% (0*(No)) < TChy1 (Yar).

Moreover, if Ny is normal in D, then [F, Ng] < F n Ny. Since O?(F) £ Ny, we conclude that
[F, No] < O2(F). But then also in this case Ny < 7.




54 3. THE ORTHOGONAL GROUPS

(b): Assume now that Ny is subnormal in L. Note that if @ holds for (NP in place of Ny,
then (II)) shows that (]ED also holds for Ny. So we may assume that Ny <t D. We first treat the case

(%) O*(F) £ No.

By B.10J{) ©12(To) = (y,2) < Zu and by () O?(No) < Cw, (Yar). Since Ty n No € Syly(No),
this gives

N() = (NQ M To)Oz(No) = (NQ @) TO)CNO (YM) < Cg(le(To))

Thus by [1.28|(t), [ZL, No] = 1, and implies Ny < C(Z1) < O2(L).

Assume next that O%(F) < Ny. By , D = FT and so O*(Ny) < O*(F)Cyi(Yar). As
O?(F) < Ny, we get
(1) 0*(No) = O2(F) (0*(No)  Cigs (Ya)).
Note that O?(Ng) n Cjs+(Yar) is subnormal in L, normal in D and satisfies () in place of Ny. As
we have seen already, O2 (No) N Cpt (Yar) < O2(L), and so by 0O?(No) < O*(F)Oz(L). Thus
O?*(Ny) < O*(F). By () O%(F) < O2(No) and so O%(Ny) = O*(F). 0

LEMMA 3.13. Let Ny be a normal subgroup of L. Then O*(F) < Ng or To n Nog = T n Np.

ProoF. By [3.4{lc), FT/T =~ Span(2). Since FT n Ng < FT we conclude that either O?(FT) <
FT nNygor FI'n Ny <T. In the first case we are done. So we may assume that FT n Ny < T.
Since T* < FT also

(+) T* A Ny < T,
in particular, [Npy~n, (T%),T*] < T* n Ny < T. It follows that Np,~n, (T*) < Nryan, (T). By

3.8((b) Ng(T) < MT and thus N, n, (T*) < Ty n MT < T*. This shows that Ty n No < T* n Ny
and by (%) To n Ng =T n Np. O

LEMMA 3.14. Let t € Q,\L.
(a) J(O2(L)O2(LY)) & Oa(L).
(b) If (2n,€) # (4,4) then J(T) £ Oz(L).
(c) O2(L)O2(LY) < P and O2(L)O2(L') < Oa(P) = Oo(P*).
(d) There exists A < Oz(P*) such that A is a minimal non-trivial quadratic best offender on
Y.

PROOF. (a)): Assume that J(O2(L)Os(L!)) < Oa(L). Then J(O2(L)O2(Lt)) = J(Os(L)) =
J(O2(L")), and so t normalizes .J(O2(L)). A contradiction, since Oa((L, L*)) = 1 by [3.10f(c). Hence
@ holds.

(b): Assume now that J(T) < O2(L) and (2n,e) # (4,+). By BI0|f) O2(L) < T and so
J(T) = J(O2(L)). Since Z;, < Z(J(02(L)) we conclude that Zr, < Z(J(T)). As CL(ZL) = Oy(L)
by [3.11} this gives B(T) < C’L(ZL) 02( ). Thus B(T') = B(Oz(L)) and B(T) is normal in L, a
contradiction, since by |3 @ Nea(B(T)) < MT.

@: By [3.10b) Q. and so also t normalizes P. Since Oz(L) < P we get Oy(L') < P. Since
O2(L)O5 (L) is a 2—group7 this gives O5(L)Os (L) < O9(P). Recall that P* = O (P), so O (P*) =
O3 (P).

(d): By @) we can choose B € A j(0,(Ly0,(Lt) Such that B € Oz(L). By (), B < O2(P*). Since
by Cr(Yz) = O2(L), [Yz,B] # 1. Thus by [A.40] Cp([Y%, B]) is a non—tr1v1a1 quadratic best
offender on Y7,. Hence there also exists such a minimal offender A in Cp([Y7, B]) and (d) holds. [

NoTATION 3.15. Recall from that CL(ZL) = Oy(L). So L := L/Oy(L) is faithful on Zj.
According to [3.14{|d)) we can choose A < O2(P*) such that
A is a minimal non-trivial quadratic offender on Y7,.

Put H := (A")O5(L) and Y, := Y, /Cy, (H). For X € Yy, let X := XCy, (H)/Cy, (H), the
image of X in Y;'.
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LEMMA 3.16. There exist subgroups H;, i = 1,...,m, of H such that for V; := [Zy,, H;]:

(a) OQ(H) <H;<H.

(b) H=Hy x Hy x ... x Hp,.
(c) Zf = V" x ViF x ...V F.
(d) H; = SLi(2%), 1 =2, Spa(2%), 1 = 2, G2(2F) or Sym(l), | > 6,1 = 2,3 (mod 4). Moreover

V.t is a corresponding natural module.
(e) L acts transitively on {Hy, Ha,...,H,,}.
PROOF. Let Hy be the smallest subnormal subgroup of L containing AO5(L) and put
HEY = {H,... H,}.

By Gaschiitz’ Theorem Cyz, (To n H) < Cz,(H)[ZL, H], see Since MZ(Ty) < Cz, (To n H)
and Zp, = (WZ(To)L), this gives Z, = Cz, (H)[ZL, H] and so Z; = [Z},H]. The lemma now
follows from O

NOTATION 3.17. In the following we will use the notation introduced in [3.16}
LEMMA 3.18. H £ D, L= HFT and Ty = (H  To)T*.

PROOF. Suppose that H < D. Then we can apply (]ED with Ng = H. Since H € O5(L) we
conclude O%(H) = O*(F) and so O%(H)/O2(0O?(H)) = Span_2(2)". Now shows that m = 1 and
[Z1,0%(H)]Cz, (H)/Cz,(H)
is a simple O?(H)-module. From we get Y < Zp. Since [Y,02%(F)] # 1 this gives
[Z1,0%(H)] = [Y,0%*(F)]. Hence Y = (yy[Y, O*(F)] is normal in L, a contradiction since Ng(Y) <

MT by .
Thus H € D and the minimal choice of L implies L = HFT. Since T* € Syl,(FT') and T* < Tj
we conclude that Ty < HT* and so Ty = (H n To)T*. O

LEMMA 3.19. H; % SL,(2F).
PROOF. Suppose for a contradiction that H; ~ SLy(2%). We will first show
. Yt #1.

Otherwise H < Cg(Y). By (]EI) Ce(Y) < MT and so H < L n MT = D, a contradiction to
0. 18

2°.  O*F)<H.

Assume that O?(F) < H. Then by HnTy=HnNT and byTg =(HnTy)T* =T* In
particular, H n Ty < FT. Since D is the unique maximal subgroup of L containing F'T' we conclude
that Nz (HnTp) < D. On the other hand by [3.12{(a)), applied with No = DnH, O*(DnH) < Cr(Y),
so O?(Ny(H nTp)) centralizes Y. For k # 1 this yields a contradiction since by Y+ # 1 while
O*(Ng(H nTyp)) acts fixed-point freely on the direct sum Z; of natural SL(2%)-modules.

Thus k = 1. Then O2(H) is an abelian 3-group, D n H = H Ty, [Zy, H] n 4Z(H) = 1
and, for 1 < i < m, V; is a natural SLs(2)-module for H;. In particular, |Cy,(Ty n H)| = 2. Let
1 # v; € Cy;,(TonH), and put v = [ [~ v;. Then D = Ny (TonH) centralizes v and 1 # v € [Z, H].
Since FT < D, ve QW Z(FT). By BAf) 012(T*) = {y,z). Hence WZ(FT) < \Z(T*) = (y, z) and
since [z, F] # 1, WZ(FT) = {yy < 4 Z(H). This shows that v = y andsov € [ZL, H|n{WZ(H) =1,
a contradiction.

3°. L=HT* 2n=4,T* =Ty, D= Ny (To n H) and k > 1.

By L = HFT, and by (2%, O*(F) < H. As F = O*(F)T*, we get L = HT*. Since
H; ~ SL, (2%), H does not have any section isomorphic to Spe¢(2) for any 2¢ > 4. Since by @)
FT/T =~ Sps,—2(2) and by O%*(F) < H, we conclude that 2n — 2 = 2 and 2n = 4. Now [3.10}(k)
gives T* = Ty. Since L = HT*, the structure of L shows that Np(Th n H) is the unique maximal
subgroup of L containing T*. Thus FT < Np(To n H) and D = N (Ty n H). If k = 1, this implies
that D = T*, a contradiction to F' < D.
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2. k=2m=1,L=Sym(5), D=FT and Oy(D) = T.

By B.16)[é), L acts transitively on {H,..., Hy,} and by L = HT*. Hence T* acts transi-
tively on {Hy,..., Hp}.

Recall from [3.10}f) that D = FTCp(Yas), so D normalizes Y. From weget D = Np(TonH)
and k > 1, so O*(D n Hy) # 1. Since V' is a natural SLs(g)-module for H;, we conclude that
CV1+(OQ(D NHp)) =1 As Z} = V" x ... x VI, this gives 022(02(D NnH))=1.

Put Xt := [YT,0%D n Hy)] that X* = 1. Then YT < CZz(Oz(D N Hp)) and so YT <
Cyzt (O*(D n H)) = 1, since T* normalizes Y+ and acts transitively on {Hy,..., Hy,}. But Y* # 1
by , a contradiction.

Thus X # 1, and as X* = [XT,0%(D n Hy)], |XT| > 4. Since Z} = V;" x ... x V., we have
X+ <[z}, Hi] =V;", and since D normalizes Y, X+ <Y ™'. Thus X* < V;" nY*. By 2n =4
and so [YT| < |Y/{y)] =4 < |XT|. Hence Y+ = X+ < V;". Since Y+ is T*-invariant, we conclude
that T* normalizes V" and so m = 1. Moreover, Y is D-invariant and by D = Np(H nTp).
Since Z} = Vit is a natural SLy(2%)-module for H, any non-trivial Ny (H n Tp)-submodule of Z;
has order 2¥ or 22¢. As |[Y*| =4 and k > 1. we get k = 2. In particular, HAD = Alt(4). By
(3°) 7% = Ty and L = HT*. Hence O2(D) < H ~ D, and F < D implies O*(F) = 0?(D). Since
Ty = T* and T* € Syl,(FT) this gives D = O*(D)T, = O*(F)T* = FT. By 3.4, T = 0:(FT)
and FT/T = Sym(3). Thus T* £ H L~ Sym(5) and all parts of are proved.

By Ty = T* and by [3.10|(b) [Q., P] < Q. P <Tj. Hence Q. < Ng(Tp). Let t € Q.\L. By
3.10|(c) , O2((L, L)) = 1. In particular, since ¢t normalizes Ty, no non-trivial characteristic subgroup
of Ty is normal in L. Since L n M is the unique maximal subgroup of L containing Ty, we conclude
that N7 (X) < L n MT for every non-trivial characteristic subgroup X of Ty. The main result of
[BHS|] now shows that [O2(L),0*(L)] = [ZL, H]. By [3.10(d), Z.Z% is not normal in L. Thus
Z% € Oo(L) and so [Zg, Zt] # 1. Observe that no element in T acts as a transvection on Zr, or Z%.
Thus | Z1| = |Z] /Cg: (Z1)| = 4. Since Z} < Ty, Zj, acts quadratically on Zr. Note that HATyis
the unique subgroup of order at least four in ’T}; acting quadratically on Zp, so

Hn TO = CTO([ZL, ZE]) = ZEOQ(L) = ZLOQ(Lt).

Hence Oy(L) = Z(0O2(L) n Oz(L)!) and ®(03(L)) = ®(O(L) n Oz(LY)). Since [O2(L), 0*(L)] <
71, < WZ(02(L)), shows that O%(L) centralizes ®(O2(L)) and so (O3 (L) nOz(L?)) is normal-
ized by O?(L), Ty and t. This forces ®(O2(L) n Oz(L?)) = 1, whence Oa(L) is elementary abelian.
By Ty = T* < D and by L =~ Sym(5). Since D is maximal subgroup of L, this gives
D/Oy(L) = Sym(4) and so D has no central composition factor on O2(D)/O2(L). But |Zp/Y| =2
and Y < O3(L), so Zyr < Oz(L) and [Zay,02(L)] = 1. Since T' = O2(D) by and |T/O2(M)| =2
by [3.1f|c), a similar argument yields T' < O3(L)O2(M). But then T centralizes Zy;, a contradiction.

O

LEMMA 3.20. CZ(fI) =1.

PRrOOF. Put N := Cp(H). Note that Z(H;) = 1 for all the groups listed in . Also
H = H; x ... x Hy,. Thus Z(H) =1and so N n H = Oy(L).

Suppose for a contradiction that O%(F) < N. We claim that D n HT* is the unique maximal
subgroup of HT* containing T*. So let T* < U < HT* and put E := O*(U)O(L). Then U = ET*
and E < H. Thus O%(F) < N < C(E) and so FT = O2(F)T* normalizes E. Hence EFT is a
subgroup of L containing FT. Note that ETF = ET*F = UF. By the minimal choice of L
either UF < D or L = UF. In the first case U < D n HT*. In the second case L = ET*F and
ET* < HT*, so

HT* = ET*(HT* n F) = ET*(O*(HT* n F)) = UO*(HT* n F).
Since O?(HT* nF) < O*(HT*)nO*(F) < Hn N = Oy(L) < T* < U we conclude that HT* = U.
This completes the proof of the claim. It follows that HT* is 2-minimal. Hence shows that
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~ SLy(2%) or Sym(r), r = 2° + 1, s > 2. The first case contradicts In the second case
r=1 (mod 4), a contradiction to [3.16|(d).
Thus O*(F) €« N. Now[3.13|gives NnTy = NnT < T < TH. Since NnH = O(L), NnTH
is 2-group. By L = HFT. Since F normalizes T, this gives TH < L. So NnTy < NnTH <
03(N) < Oy(L). Thus N is a 2'-group. Assume for a contradiction N # 1. Since N nTH = O,(L),

N~ NTH/TH < L/TH = FTH/TH.

On the other hand, as FT/T = Spa,—2(2) and N is a non-trivial 2'-group, we conclude that
2n — 2 = 2. Hence F and N are solvable.

Suppose that N € D. Then the minimality of L implies L = NFT, and so L is solvable. The
only solvable group listed in is E ~ SL5(2), a contradiction to Hence N < D. Since
O%(F) £ N,[3.12|(b) implies that N < O(L). O

LEMMA 321. m=1, F<H;=H,L=HT and P~ H = Cg(z").

ProoF. Note that Cy(zT) centralizes (z*) and Cy, (H). Thus Cy(21)/Cy(z) is a 2-group.
Since Tp N H centralizes z and is a Sylow 2-subgroup of H we conclude that P n H = Cg(z) =
CH(Z+)

Recall from [3.16] that

H=H x.. .H, and Zi =V x.. .V},

where VT = [Z;,E] Let 2 be the projection of 2z onto V;* and put P, := Cy,(2;). Then
PAH={(P;|i=1,...,m). By[3.19| H; % SLy(2*) and so by [3.16}(d)
(%) H; =~ SLi(2%), 1> 3, Spui(2¥), 1 = 2, G2(2%) or Sym(1), 1 > 6, k=2,3 (mod 4).

Moreover, V' is a corresponding natural module. In each of these cases we conclude that IBi =
Cy (z) is not a 2-group. On the other hand, [P;, Oz(P)] is a p-group, and so O2(P) normalizes
H;. Since Q, n L < O2(P) by Q!, we get that

Q20L<02(P)<NL(HZ), i=1,...,m.

By F ={(Q, n F)F) and we conclude that F < N (H;), i = 1,...,m. The structure of the
groups in (*) shows that no element of O5(P) induces an outer automorphism on Hi. SoQ.nF
and thus also F' induces inner automorphisms on H. Hence F < Oy, (fI )H, and yields F' < H.
In particular, L = HFT = HT, and by L and so also T acts transitively on {Hq,..., Hy,}.

Let O2(L) < F; < H; such that F} is the projection of Fin }7;7 and put Ny := F; --- F,,. Then
F < Ny and the minimality of L shows that either Ny < D or NyT = L.

Assume first that Ny < D. By F < D and so F < Ny. Since F' is not a 2-group, also
[F1, F] is not a 2-group. As F/Oq(F) = Spa,—2(2) and [Fy, F] < F, we conclude that O%(F) <
[F1,F] < Fi n F. Hence T normalizes H; and the transitivity of T gives m = 1. So the lemma
holds in this case.

Assume now that NogT' = L. Then O?(H) < Ny. Note that none of the groups in (*) is solvable.
Hence also H, Ny and F are not solvable and thus 2n > 6. By [Q. N F,F n P] < T. Hence
also [Q, n P,P] € T and by the transitivity of T, [Q, n P, P;] € T. Since by @ Q. £ L and
|Q./Q.nF|=2 wehave Q,nH < F. Thus [Q,nP,P| < Q.nH < FnHyand Q,nFnH; £T.
Since F' n Hy is normal in F and FT/T = Spa,_2(2) we get that O?(F) < Hy, so T normalizes H;
and m = 1. O

LEMMA 3.22. H 2 Sym(l), [ > 6.

PrOOF. By @ Il = 2,3 (mod 4), and er is the corresponding natural module. Since

Out(Sym(l)) = 1, for | > 6, L induces inner automorphism on H. By CE(I?I) = 1 and so
L=H.
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By BI0[{) Zo := Cz, (Tv) = {y.z) has order 4. Since [y,L] = 1 and [z, H] # 1, this gives
Cz,(H) = WZ(L) = {yy. Thus either Z;, = O Z(L) x [Z, L] or [Zr, L] is the even Sym(l)-
permutation module of order 211 for H. As |Cz, (To)| = 4, the action of Ty on Zp implies that
I = 2+ 2% in particular, [ = 2 (mod 4). Since I > 6, we have k > 3. Then P = Ci(z") =
Cy x Sym(l —2), A = O4(P) is generated by a transposition and (2}, A] = (z%). In particular
A=Q.n L.

Since by F={Q.n ), F is generated by a conjugacy class of transpositions. Thus
F is a naturally embedded symmetric subgroup of H = Sym(l). As F/Oy(F) = Span_2(2), we get
F =~ Sym(s) with s = 3,4 or 6, and since s < [, (=) is the natural even permutation module of
order 2571,

Suppose that s is even. Then, as an F-module, (z*") is a non-split central extension of a simple
module. On the other hand Y+ =~ Y /{y) is simple for F' and by Y = &), s0 FFY s
simple F-module, a contradiction.

Thus s = 3, F' =~ Sym(3) and 2n = 4. By [3.10{(k), Tp = T*, and so Ty normalizes F. Hence T
has an orbit of length 1 on {1,...,l}. But then [ # 2 mod 4, a contradiction. O

LEMMA 3.23. The following hold:

(a) L =H, L= SL3(2), Sps(2) or Ga(2), Z} is a corresponding natural module, 2n = 4, and
F/Oy(F) = SLy(2).

(b) M = 04(2), Yar is a corresponding natural module, Ty = T* and D = FT.

(¢) D and P are the two mazimal subgroups of L containing Ty. Moreover, sz (To) =
OZZ—(OQ(P)> = WZ(To)" = (=T and P = Cr(z7%), and CZZ(O2<D)) = Y™ is natural
SLy(2)-module for D.

(d) Cy, (H) = Cy, (0*(L)) = (y) = Cy, (O*(F)).

(e) Either Zy, =Y or L = Spy(2) and |YL/Z1| = 2.

Proor. (a) and (b): By[3.21] L = HT, F < H and m = 1. By[3.19| T % SL,(2*) and by
L % Sym(l), | > 6. Thus, shows that

(%) H = SLi(2"),1=3, Spu(2¥),1=2, or Gy(2"),

and ZZ is a corresponding natural module. This implies that j(\ﬂ < H and that no element of L
induces a graph automorphism on H. Moreover, by (EI) either j(\f/) #1or (2n,e) = (4,4).

Suppose that j(\f) # 1, and choose a 2-subgroup E of H maximal with FT < Np(F) and
J(T) < E. Then E = O3(Ng(E)) and so by [GLS3| 3.1. 5] (a corollary of the Borel-Tits Theorem)
5) = Ng(E) is a proper Lle—parabohc subgroup of H normalized by FT. Observe that F' <
FT nH < Ny(E), so F < FTmH

Suppose that (2n,€) = (4, +), then by , T* € Syly(L) and so DO = N~(FT NnH)isa
proper Lie-parabolic subgroup of H normahzed by FT. Moreover, F<FTAHX< DO

We have shown that in both cases DO is a proper F'T-invariant Lie-parabolic subgroup of H
with F' < ﬁ). Let T € Sylz(fﬁ)) with T' < Ty. Then Th n H is a Sylow 2-subgroup of H. Let A be
the set of Lie-parabolic subgroups of H containing Tg A~ H. Then T acts on A and since no element
of L induces a graph automorphlsm on f[ T " acts trivially on A. We conclude that FT normalizes
all Lie-parabolic subgroups of H contammg DO Thus, by the minimal choice of L, DO is a maximal
Lie-parabolic subgroup of H and Do —HnD. In particular, Oq (Do) # 1 and by Smith’s Lemma

Cys (O2(Dy)) is a simple Dy-module.

Since T < D < L = HT we have D = (H n D)T' = Dy = DoCj(Y). By B.10lfi) Y/(p) is
natural Spa,_2(2)-module for D. Hence (y) = Cy (D) = Cy(DO) Cy( ) and Y is a natural
Span—2(2)-module for Dy. In particular, 1 # Yt < Cys (O2(Dy)). The simplicity of Cys (O2(Dy))

as a Do-module now shows that Y+ = C 77 (Oq (ﬁa) Thus Dy is a maximal Lie-parabolic subgroup
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in H such that
(%) Yyt = C’er(OQ(BE))) is a natural Sp,,,_5(2)-module for Dy.

From the possible isomorphism types for H and er listed in (*) we conclude that er is a natural
Sp2(2)-module for Dg. Thus 2n — 2 = 2, |[Y*| =4 and k = 1. Recall that Cz(ﬁ) =1. Since k=1
and no element of L induces a graph automorphism on H we get L = H.

Since 2n — 2 = 2 we have 2n = 4. So M = 04 . From [3.3} i@) we conclude that Yy = Zjpr and
thus Y/ is natural O§(2)-module for M. Also shows that T* = Ty. So Ty = T* < FT and
FTis parabohc subgroup of H. Since k =1 thlb 1mpheb that F'T is a Lie- parabohc subgroup of H.
As FT/OQ(FT) ~ FT/T =~ Span—2(2) = SLa(2), FT has Lie rank 1. Since FT is contained in a
unique maximal subgroup of L, we conclude that L has Lie-rank two. Thus L =~ SL; (2), Spa(2) or
G42(2) and FT is maximal subgroup of H. Thus D = FT and all parts of @ and (]ED are proved.

(c): By the choice of L, D is a maximal subgroup of L. By (]ED To = T* < FT < D. By

2n = 4and H = L. So D = Dy, and (xx) shows that Cyz, ;(02(D)) = Y* is a natural
SLy(2)-module for D and Ty < D. Hence, D satisfies the statements of (.

BmeH = Cy(z")and since H = L, P = Cy(z"). By Smith’s Lemmaw7 CZE(OQ(P))
is a simple P-module and so C+ (02(P)) = (). Since O5(P) < Ty < P, this gives Cyy (Ty) =
(=M. By B.10(d), 9:Z(Ty) = (y, z) and so 1Z(Tp)" = {z*). Since Z; is a natural SL3(2)-, Spa(2)-
or G2(2)-module for L and P = Cp(2%), we conclude that P is a maximal subgroup of L. As L is a
group of Lie-type of rank 2, Tj is contained in exactly two maximal subgroups of L, namely P and
D. So is proved.

(d): From (&) we get H = L, Cz,(H) = Cz, (L) < MZ(F) = (y). We now use A < Oy(P)
as chosen in [3.150 By |C.9(e), [C’YL(Oz( )),A] = 1. For L = Sp4(2) or Go(2), [C.8lc), shows that
A £ O?*(L)Oz(L). Thus L = AO2(L)O*(L) and Cy, (O*(L)) = Cy, (L) = <y>

For the equality Cy, (O*(F)) = (y) it suffices to show that Cy+(FT) = 1. By 1)

Yy, = Z,Cy, (A). We conclude that [Y7,O0?(L)] < Zp, and by (b) Ty = T* < FT. Now Gaschiitz’s
Theorem shows that CYJ(FT) < C’Y; (To) < CYL+ (L)Z], see But Cy, (O*(L)) = {y) < Zr,

and so C’Y+(FT) Z}. As seen above C’Z+ (Og(ﬁa)) is a natural Spy(2)-module for Dy. Since
FT = D = Dy we conclude that C’Z+ (FT) = 1.

@: Suppose that Y7, # Z;. By @ Cy, (O*(L)) = {y) < Z, and thus Y7, does not split over
Zy, as an L-module. Since A is an offender on Y7, and give |Y./Zr| =2 and L = SL3(2)

or Spy4(2). Moreover, in the SL3(2) case, |[Z}, A]| = 4, which is a contradiction since A < Oq(P)
and [Z],0,(P)]| = 2. O

NOTATION 3.24. We fix t € Q,\F and set Gg := (L, L*).

LEMMA 3.25. The following hold:
(a) Q. ={t)(Q.NnF) andt?* € F.
(b) Yar < Oz(L).
(c) O2(Go) =1, and L n Lt = P = Pt.
d) Y €Y, nYLE

Proor. (a): By BA4f) |Q./Co.(y)| = 2 and by BIOP) Co.(y) = Q. n F. Hence Q. =
Q. N F) and t2eer\F<F.

[{): By B-10|[e), O2(L) < T and thus Y, < T, and by [3.3|[g) we have [Ya;,T] = (y). Thus
[Yar, Y] < <y> Since L centrahzeb y, this gives [(Yi), YL] < {y), and as Y, is p-reduced,
[Y{), Y] = 1. ByB.11] O (Y1) = Op(L) and so Yas < Oa(L). Hence (b)) holds.

(9: By-.02 Go) =1 # O5(L). So Gy # L and L # L*. By [3.10(b) we have [Q.,P] <
O,(P), and since t € Q, we get P = P! < L n L' < L. As P is a maximal subgroup of L by-.7
this gives P = L n L* and (d) is proved.
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@ Note that by -. M =~ ) and Yy, is a natural O§(2)-module. Also by )H
3.23((d)

FT =~ Oy x Spy(2). Tt follows that O?(F ) Spg( ) =~ C3 and Cy,, (O*(F)) has order 4. By
Cy, (O%*(F)) = (y) has order 2. Hence Yy < Yz. Since Yy =YY  we get Y £« YV, and Y < Y}. [

LEMMA 3.26. (a) O2(L)Oo(LY) = O5(P).
(b) Zr n Y] =<y,2) = Z(Ty).
(¢) YY) is not normal in L.

)
(dg[ 2(L), O*(L)] € Y.

(e YL = ZL
PROOF. Put R := O(L)O2(L'). By B.14[[J) R < P and R < O(P , and by 3.14|fa) J(R
O>(L). Thus, we can choose B € AR with B € Oy(L By-CL Z1) = O5(L) and so [ZL7B] 75 1
By |A.40| B is an offender on Z;, and therefore , since Cr(Z1) = C(Z ) B is also an offender on

Z;.

Suppose for the moment that L =~ Sp,(2) =~ Sym(6). Them Z}§ is a natural Sym(6)-module
for L, and since P = C(z%), P = CL(to), where to is the transposition in L with [Z], o] = (z+).
Note also that ty is the only transposition in Og (]3) Part @ of the Best Offender Theorem
now shows that

(*) é = <t()>, é = <t1t2,t0> or E = <t1t2, 8182,t0>

where tg,t1,t2 are pairwise commuting transpositions and s; and s, are transpositions distinct from
t, and ¢ and moving the same four symbols as t1ts.

(e): By B25|[b),(d), Yar < O2(L) and Y & Y{, so Yy & Yi. By YL = WZ(0:(L))
and hence [Yyr,02(L)] # 1. Since O3(L) < T this gives [Yar, O2(L)] = [Yar,T] = {y). Thus
[Yar, R] = {y,y") = (y,2) and so R « T Since by T = O5(FT) and by B-23|b) FT = D, this
gives R € Oy(D).

As C(Z1) = O5(L) < R, we get R £ 04(D), and to prove (al) it suffices to show O(P) = R.
We do this by dlscussmg the cases for L given in By |3 - I P and D are the two maximal
parabolic subgroups of L containing TO and, as seen above R<Pand R £ Oy(D )

Suppose first that L = SL3(2). Then Oy(P ) is the unique non-trivial normal subgroup of P.
Since 1 # B < R< P, we get R = Oy(P).

Suppose next that L =~ Ga(g). Then by B < P and |B| = 8. It follows that P acts
simply on Oy(P)/B. Note that B < Oy(D). Since R € O(D) and B < R < P, we conclude that
R = Oy(P). R o R

Suppose now that L =~ Sps(2). Choose notation as in (x). Then ¢y € B < R, ty € O2(D) and P
acts simply on 02(13)/<t0>. As R € 04(D), we again get that B = Oy(P). Thus (EI) is proved.

@' By ) C,+ C,+(02(P)) ={zT)andso Cz, (R) = {y,z). Since R = O5(L)Oz(L")
this gives Z L NY, <y, z> and is proved.

(c)): Assume for a contradiction that Y Yy is normal in L. By [3.10(h)) Y < Yy nZp < Yy nYp
and so |Yar/Yar 0 Y| < 2. Hence [Yar, P] < Y. On the other hand, ¢ normalizes Y, and P, so
[Yar, P] <Y, nY}. Since Y < Zj, this gives

wv.Pl<zavi gz <
Thus P normalizes Y and so by (]E[) P < Ng(Y) < M1, a contradiction.

(d): Suppose that [Os(L),0%(L)] < Yz. Since Yar < O2(L) we get [Yar, O(L)] < Yz and
YuYr < O*(L)FT = L, which contradicts (d).

(Eb According to u we may assume that L = Sps4(2) and Z} is a natural Spy(2)-module for
L. As we have seen already above Pisa point stabilizer of L on zZt.
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Suppose for a contradiction that j(\RJ) = ({to), to as in (*=). Then 5(7%_/)) = B, and it follows
that Zy := Cyz, (J(R)) = Cz,(B). As |B| = 2 and B is an offender on Zj,, we have |Z/Z| = 2.
Recall that Z(Ty) = Z(T*) = {y, z). By the action of P on Zp,

| Zo/UZ(Ty)| = 4 and [Zy, O*(P)|1Z(Ty) = Zo.
By[C.10/{) [1Z(J(R)),{J(R)")] < Zp and so [uZ(J(R)),0%(L)] < Zp. Since Z5 < 1Z(J(R))
7z = 2§, 0%(P)|Z(To) < Zz.
Thus Z§ < Y' n Z1, =y, 2) = Z(Tp). Hence Zy < Z(Tp) a contradlctlon

Thus J( ) # {to). Suppose that Y;" # Z; . Then Case . or in C 2/ holds, and so B is

generated by transpositions in L = Sym(6). But then () shows that B = {to), s0 also J( ) = {to),
a contradiction. Hence (¢ is proved.

LEMMA 3.27. Y} < O5(L).

PROOF. Assume for a contradiction that Y} & Oy(L). Since t2 € F < L A L' we have L" = L
and the situation is symmetric in L and L'. By CrL(YL) = O2(L) and so [Y},Yr] # 1. Since
Y] < 05(P), lﬁ) shows that Y/ is not an over—offenderon Y, 50 |YL/Cy, (Y])| = [Y]/Cy: (,}:L)
Since the situation is symmetric in L and L' equality holds in the preceding equation. Hence Y} is

an offender on Y7, contained in Oy (P By- CL Yr) = CL(ZL), and as [Y},YL] # 1, we conclude
that [Z%,YL] # 1.

1°. OL) < (VP

Observe that O2(L) is the unique minimal normal subgroup of L and so O2(L) < <§;Ei> Hence
O*(L) < (Y})0,(L) and (1°) follows.

2°. O(LY) € YEO5(L) and Y} # Oo(P).
Assume that Oz(L') < Y}O2(L). Then [Yz,O2(L")] < [Y1,Y}] < Y} and after conjugation with
t, [02(L),Y}] < Yr. Since O?(L) < (V) by (1°), we conclude that [O5(L), 0*(L)] < Y7, which
contradlcts 3. |I) Hence O2(L') € Y}Oo(L). Since O2(L') < O2(P) this gives YOz (L) # O2(P)
and so Yt # Oo(P).
3°. L =Spy(2) and |Y}| =|2%| = 2.

Recall that Yt is a non-trivial offender on Yz, in O3(P ) and that P normalizes Yt since P = Pt

Also by [B23|(d), . Cr(zh).

By a) Z; is natural SL3(2), Spa(2) or G2(2)-module for L. We treat these three cases one
by one.

Suppose that Z; is a natural SLsz(2)-module for L. Since P = C(2") we conclude that P acts

simply on Oy (P) (see for example . But then }?E — O,(P), contrary to 1)

Suppose that Z; is a natural Sp4(2)-module of L. Observe that 02 (Lt) centralizes [Z],Y}].
By -@ we have 02 (P) = O3(L)Oy (L), and by -' 2+ (02(P)) = (z*). It follows that
[Z],Y]] ={(z") and so |Yt| =2= |Zt |

Suppose that Z;" is a natural Ga(2)-module of L. Note that Ox(L") centralizes Z%. By the Best
Offender Theorem lab Cq(Z}) = Zj and so O2(L') < Y7 O2(L), a contradiction to .

42 (0s(L)) A B(Oo(LY)) = 1

By L =~ Sps(2) and so Oy(P) is elementary abelian. Thus ®(Oy(L')) < Oy(L) and
[fI)(Og(Lt)) V1] = 1. By (1°) we have O*(Lt) < (YL, so [®(Os(Lt)),02(Lt)] = 1. This shows
that ®(02(L)) n ®(O2(LY)) is centralized by O%(L!) and normalized by ¢ and P. Since L = O?(L)P

3for the definition of over-offender see
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we conclude that ®(O2(L)) N ®(02(L")) is normalized by (L, L*). By [3.10{lc) O2((L,L")) =1 and,
holds.

Put U := Z} n Oy(L) and X := Co, 1) (U).
5°. |O2(L)/X| =4, and X is elementary abelian.

By U is a hyperplane of Z! centralized by Yz. The action of L' on Z! shows that
O2(P)/Co,py(U) and Co,p)(U)/O2(L") have order 4 and 2, respectively. By O5(P) =
O2(L)O5 (L) and so

X = YL(X M OQ(Lt)) and |02(L)/X| = 4.
Moreover,
B(X) = (X n 0z(L")) < ®(02(L)) N D(O2(L")).

Now yields ®(X) = 1.
6°. |O2(L)/YL| = 2* and [O2(L),0?(L)]YL, = Oa(L).

Observe that the smallest Fo-module V' for Spy(2) with [V, Sp4(2)'] # 1 has order 2%, while by
) 0a(L)/X| = 4. By BIGE) [02(L), 0*(L)] £ Y5, and so |[0s(L), O*(L)]Y2/Yz] > 2. Also by
Y1, = 01Z(02(L)). Hence it suffices to show that |Oo(L)/Q1Z(02(L))| < 2%

Let d € L and put B := X X% Note that by X is elementary abelian. Thus X n X? <
91Z(B) So

(%) |B/Q1Z(B)| < |B/X n X = |X/X n XXX ~n X = |X/X X

Suppose that 4 < |B/X|. By |O2(L)/X| = 4 and so |B/X| = 4 and B = Oy(L). Since
|B/X|=|B/X% =|XX%X =|X/Xn X9, also | X/X n X% =4, and

02(L)/0Z(05(L))| = |B/uZ(B)] ¢ |1 X/X 0 X7 =42,

Thus we may assume that |[B/X| = |X/X n X4 < 2 (for all d € L). In particular, |B/1Z(B)| < 4
by (#). Suppose that B <2 L. Since |O3(L)/B| < |0O2(L)/X| < 4 and |B/Q1Z(B)| < 4, it follows that
[O2(L),0%(L)] < 2Z(B). From U < X < B, we conclude that [O(L),0*(P)] < Cp(U). This
contradicts O2(L)O2(Lt) = Oz(P) and [O2(P),0%(P)] £ Cp(U).

Thus XX? s L for all d € L. In particular, X € L and XX # Oo(L). Moreover, we can
choose d,h € L such that X # XX # XXX By |Oo(L)/X| = 4, so Oz(L) = XXX,
X n XA X< 0Z(02(L)) and | X/Q,Z(02(L))| < 4. Thus |Oo(L)/2Z(02(L))| < 2* and (6°) is
proved.

We now are now able to derive a contradiction. By |O2(L)/Yr| < 2% = 1+ 15. Since
the maximal parabolic subgroups of Sp4(2) have index 15, we conclude that L is transitive on the
non-trivial elements of Oy(L)/Yy. Since X is elementary abelian, O(L)\Yz, Hence all cosets of Y7, in
O3 (L) contain involutions. As Yy, < 3Z(02(L)) this implies that all non-trivial elements in O2(L)
are involutions, so Oz(L) = 21Z(02(L)) = Y. But this contradicts |O2(L)/Yy| = 2%. O

3.28. Proof of Theorem

Put R := O2(L)O5(L?), and let G* be the free amalgamated product of L and L over R. Let
L; and Ly be the image of L and L! in G*, respectively, and identify R with its image in G*. An
elementary property of free amalgamated products shows that L1 n Ly = R. We will now verify
that Hypothesis 1 in [P2] is satisfied for G*, Ly, Ly, R and p = 2.

HyPOTHESIS 3.29 (Hypothesis 1 [P2]). Let p be a prime and G* be a group generated by two
finite subgroups Ly and Lo . For every ¢ € {1,2} put

R = L1 M LQ, ZZ = QlZ(Op(Lz))a Z;r = ZZ/C'Zz (Ll), zz = Lz/Op(Ll)
and suppose that the following hold:
(1) R is a p-group with Cp,(Z;) < R.
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(2) L~ SL,,(q:), Span,(q;) or Ga(q;), where g; is a power of p and p = 2 in the last case; and
Z;’ is a corresponding natural module for L

(3) There exists S; € Syl,(L;) such that R < Pr,(S;) and either R = O,(Pr,(S;)) or
G(g;) and R is elementary abelian of order 3. (Here Pyp,(S;) := OP (CL((QZ(S;)))

(4) Z1Z5 < Op(L;), and Z1Z5 is not normal in L;.

(5) No subgroup U # 1 of R is normal in G*.

(1): ByB.14[[c) R = O,(L)O,(L)") < P. In particular, R is a p-group. ByB.11]Y,, = Q.Z(0,(L))
and by 326 Y, =Z5,%0 Z, = 91Z(OP(L)) By L(ZL) = Op(L) < R and thus OLQ(Zl) <R
and holds.

: By @) L~ SL3(2), Spa(2) or G2(2), and Z} is a corresponding natural module. Thus
holds.

|| Recall that R << P. By @ P =CL(NZ(T)p)) and so also R <2 P* = O2l(C’L(QlZ(T0)).
By O,(L)O, (L") = O,(P) and so also R = O,(P*). Thus (3) holds.

[@): By .27 Zi < O,(L) and so also Z,Z! < O,(L). By B.I0({d) Z.Z% < L, and so (@) is

proved.

Let U < R such that U < G*. Then U is normal in L; and Ly and so U < O2((L, L")).
Since O5(¢L, L*)) = 1 by [3.10}[c), this gives U = 1 and (5] holds.
So indeed Hypothesis 1 holds. According to the Main Theorem in [P2] this implies that L >~

SL,,(g;) and either p = 3 and n; = 2 or ¢; = 2 and n; = 4. Since in our case p = 2 and L is one of
SL3(2), Sps(2) and G2(2), we finally have reached a contradiction.

Ei;
)







CHAPTER 4

The Symmetric Case

Recall from Section 2.I] that an abelian subgroup Y of G is called symmetric in G if
(%) 1# [V, Y] <Y nYY for some g € G.

In this chapter we investigate the action of M on Y when M € 9MMg(S), Y is a p-reduced
elementary abelian normal p-subgroup of M, and Y is symmetric in G. Note that for Y = Y}, this
is the symmetric case as defined in Section Allowing Y to be proper subgroup of Y, will turn
out to be useful in Chapter

It is immediate from (#) that Y is a quadratic offender on Y9, or vice versa. So we are able to
apply the General FF-module Theorem [C.2]from Appendix C. But it is still a fairly general situation;
for example, the General FF-module Theorem puts no restriction on number of components of
M /Ch(Yar). This is one of the points where the existence of a large subgroup comes in handy, it
allows us to apply the more restrictive Q!FF-Module Theorem

There is another point in the proof where large subgroups are essential. Assuming for a moment
that F*(M/Cp(Y)) is a classical group and Y a corresponding natural module. Then again (x)
shows that Y nY? is non-trivial and contains the commutator of a quadratic offender (either on Y or
Y9). The structure of the natural module in question shows that, with very few exceptions, [Y,Y?]
contains non-trivial elements that are centralized by conjugates of @ in Ng(Y) and in Ng(Y9).
Then Q! shows that Ng(Y) n Ng(Y9) contains these conjugates of @ and so acts non-trivially on
Y and Y.

On the other hand

Y/Cy(Y?) =2YCq(Y?)/Ca(Y?),
and Ng(Y) n Ng(Y9) acts on the the left hand side as a subgroup of Ng(Y') and on the right hand
side as a subgroup of Ng(Y9). So these two actions must be isomorphic. But typically Y /Cy (Y9)
is a “natural” module for Ng(Y) n Ng(Y9), while YCq(Y9)/Cq(Y9) is the “square” of a natural
module (cf. . This simple observation poses a further restriction on the possible action of M
onY.

We now state the main result of this chapter.

THEOREM D. Let G be finite Kp-group, S € Syl,(G), and let Q < S be a large subgroup of G.
Suppose that M € Ma(S) and Y is an elementary abelian normal p-subgroup of M such that
(i) Op(M/Cri(Y)) = 1, and
(ii) Y is symmetric in G.

Then one of the following holds, where q is some power of p and M := M /Cy(Y):

(1) M° =~ SL,(q), n=3, and Y is a corresponding natural module.
(2) (a) M° = Span(q), n =2, or Sps(q) (and ¢ =2), and [Y, M°] is a corresponding natural
module.
(b) If Y # [Y,M°], thenp =2 and |Y/[Y, M°]| < q.
(¢) If Y €£Q°, thenp=2 and [Y,M°] £ Q°.
(3) There exists a unique M-invariant set K of subgroups of M such that Yas is a natural
S Lo (q)-wreath product module for M with respect to K. Moreover,
(a) M° = OP(())Q,
(b) @ acts transitively on K,
(C) IfY = YM, then YM = YMOS-

65
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(4) Y € Q° and one of the following holds:
(1) M° =~ QF (q) for 2n =6, Q5 (q) for p=2 and 2n > 6, Q5, (q) for p odd and 2n = 8
or Qant1(q) for p odd and 2n+1 =7, and Y is a corresponding natural-module.
(2) M° =~ SL,(q)/{(=id)"~*), n = 5, and Y is the exterior square of a corresponding
natural module.
(3) M° =~ Spinf,(q), and Y is a corresponding half-spin module.
(4) M° =~ SL,(q) o SLin(q), n,m = 2,n+m =5, p is odd, and Y is the tensor product
of corresponding natural modules.
(5) (a) M = 0s,,(2), M° = Q5,,(2), 2n > 4 and (2n,¢) # (4, + and [Y, M] is a correspond-
ing natural module.
(b) IfY # [Y,M], then M =~ OF (2) and |Y/[Y,M]| = 2.
(c) Cq(y) €« MT for every non-singular element y € [Y, M].
(d) If Y = Yy, then Cg(y) is not of characteristic 2 for every non-singular element
€Y, M].
Table [] lists examples for Y, M and G fulfilling the hypothesis of Theorem
TABLE 1. Examples for Theorem
Case [Y, M°] for M° ¢ Remarks examples
1 nat SL,(q) 1 p odd Ly11(q)®s
1 nat SL,(q) 1 n="78 E,(q)
T nat SLs(2) 1 - Go(3), HS(.2), Ru, HN
T nat SLs(3) 1 - Fihy 53,00, F1(2), 2Eg(2), BM
1 nat SL3(5) 1 - Ly, BM, M
T nat SLs(2) 1 - Th, BM
* R nat Sps(2) <2 - BM
3 nat SL(q) L - Ls(q), G2(q) p # 3, Da(q)®3 p = 3, °Da(q)
3 nat SL2(2) 1 - GQ( ) Jg, J3, Q ( )X Q+( )
3 nat SLQ(B) 1 - Mat12 2 F4(2)
3 nat SLy(5) 1 - Ru, HN, Th
3 nat SLy(7) 1 - O'N, M
3 nat SL,(13) 1 - M
4:1 nat Q7(q) 1 p odd Fy(q)
4:1 nat Qg (¢) 1 - ’Es(q)
4:1 nat Q+(q) 1 - EG( )Py
4:1 nat Q,(q) 1 - Es(q)
4:1 nat 7 (2) 1 - PQE(3).3(.2)
{4:1 nat Q7,(2) 1 - M
1[:1] [1:2] A%(nat) SLn(q),n>3 1  p=2 O4,15(q)
4:3 half-spin Spin{y(q) 1 p odd E¢(q)®Ps
4:4) nat SLi (¢) ® SL,(q) 1 p odd L, 14,(q) Doty # to
Here ¢ := |Yar/[Ya, M°]| and ®; denotes a group of graph automorphisms of order i. In the

example G = K.X with K = Qg (3) or PQg (3), X is a subgroup of Out(K) such that X acts
transitively on Py, (o) (K n S). Moreover, * indicates that (char Yas) fails in G.

4.1. The Proof of Theorem

In this section we assume the hypothesis of Theorem |D| and use the notation given there. We
will prove this theorem in a sequence of lemmas.

1 OF (2) appears as SL2(2) 1 C2 in Case
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LEMMA 4.1. Y < Yy and Ng(Y) = MT.

PrROOF. By hypothesis, O,(M/Cp(Y)) = 1 and so Y is p-reduced for M. Hence ¥ < Y, and
so MT = MCq(Yy) < No(Y). As Y < M, [2.2|c) gives Ng(Y) < MT, and 4.1 is proved. O

LEMMA 4.2. There exists u € G such that YY" < S n S* and [Y,Y"] # 1.

PROOF. As Y is symmetric in G, there exists v’ € G such that 1 # [Y“/,Y] <YYAY, so
Y% < Ng(Y) = MM and Y < Ng(Y¥') < M,
Since S is a Sylow p-subgroup of MT and Sv s a Sylow p-subgroup of MT“/7 we can choose
me M and m’ € M such that
Yu' < Sm and Y < Su'n/.
Set u:=uw'm'm=1. Then Y™ ' =Y, Y¥™ =y¥ yuv=yvmm _yum™ 4140
Yoy =y Ly = [y £

and
—1 —1 ’ 7 —1

Ye=yemT (8™ =8 and Y =Y™ < (SYT)T = g
AlsoY < Sand Y* < S*andso YY" <5 n S%. O

NOTATION 4.3. We fix u as in Let
Ml = M7 Sl = Sa Ql = Qa QI = Q.7 Yl =Y
and
M2 = Mu7 S2 = Su? QQ = Qua Q; = (Q.)uv }/2 =YY"

Note that Y1Y2 < S1 n Se < My n M and [Y1,Y2] # 1. B o o

For i € {1,2} we further set M; := M;/C, (Y;), 4; := Cy,(Q;) and L; := [F*(M;),Q;]. Let F;
be the largest normal subgroup of F*(M;) centralized by Q;. F; and L; are the inverse images of
L; and F; in M;. If U; is a subgroup of M;, then U; := U;Cyy, (Y;)/Cas, (Y;). (So whether U; denotes
the image of U; in M, or in M, is determined by the subscript used to denoted U,).

LEMMA 4.4. Y7 acts quadratically on Ys and vice versa.

PROOF. Since Y7 and Y3 normalize each other, [Y7,Y2] < Y1 nYa. Hence [Yo,Y1,Y;] < [V;, Yi] =
1fori=1,2. O

LEMMA 4.5. (a) F; < Ng(Qy).
(b) L; and F; are normal in F*(M;)S;. In particular, L; and F; are normal in L;F;S;.

(c) F; = Crpxary(LiQi). In particular, [L;, Fi] = 1.
(d) Li = [Li, Qi]

(e) Cp(Lik;) is a p'-group.

(f)

PROOF. (a): Note that Q; < O,(QiChs, (V7)) since by Q!, Car,(Y;) < Ne(Qi). Since Q is

weakly closed (or by [L.52|[a]), Ne(0,(QiCu; (Y:))) < Na(Qq). As F; normalizes O,(Q;Ch, (Y3)),
we conclude that F; < Ng(Q;).

(]EI): Since L; = [F*(M;),Q;], L; < F*(M;). By definition, F; < F*(M;). As S; normalizes Q;,
it also normalizes L; and Fj;.

The remaining claims follow from applied to M;. O

LEMMA 4.6. Either Ya centralizes Ly or Cy,(L1) = Cy,(Y1).
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PRrROOF. Recall from Hypothesis H of Theorem |§| that OP(E) = 1. As L, F; is subnormal in
My, this gives O, (L1 Fy) = 1. Put Hy := Ly F1Q,Y> and X := Cy,(L1). By 4.5(b) both Fy and L,
are normal in Hj. Since Q; is weakly closed, [1.46|ld) gives HY = (QT*). By l.5la) F; < Ng(Q1), so
F1Q1Y3 normalizes Q1. As Ly = [L1,Q1] by ‘4.5, we get

—  TFOY.  —Tr e
HY = (@1 @ *={Q1 ") =[L1,Q1]Q1 = L1Qs.
Also [Op(Hy),L1F1] < Ou(L1F1) = 1. Since X centralizes L1 and Qq centralizes F; we have

[X,Q1] < Co-(LiF). By (E[) Cyr—(L1F1) is a p'-group, whence [X, Q1] = 1 and O,(Hy) = 1.
The first property shows that

(%) X = Cy,(L1Q1) = Cy, (HY).

We may assume that Y5 does not centralize L;. Abusing our general convention, let Y5 :=
YoChs, (Y1)/Car, (Y1), Then Yo # 1, Ly # 1 and Q1 # 1. We will now show that the hypothesis of
with (Y1, Q1, Hy,Ya) in place of (V,Q, H,Y), is fulfilled.

We already have proved that O,(H;) = 1. As Q1 # 1, this gives that Q1 € H;. Hence by
Y; is a faithful Q!-module for H; with respect to @Q;. By Y5 acts quadratically on Y;
and so Cﬁ([yl,?g]) =Y, # 1. Since Y» does not centralize Ly and Ly < HY, we get [Hy,Ya] # 1.

We have verified the hypothesis of and this result gives Cy-(H7) = 1. Thus Cy,(HY) =

Cy, (V1) and so by (x) Cy, (V1) = X = Cy, (Ly). O

LEMMA 4.7. Let U < S; with [L;,U] =1 and [Y;,U] # 1. Then [A;,U] # 1.

PrOOF. Put U := UCy;, (Y:)/Cu, (Yi). Since U < S; and [Y;,U] # 1, U is a non-trivial p-
subgroup of M;. By Csr(LiF}) is a p'-group. Thus R;:=[F;,U] # 1 and so [Y;, R;] # 1. By
S; and so also U normalizes F;. So R; < F;, and we get [R;,Q;] = 1. Since R; << F*(M;)
and O,(M;) = 1, we have R; = OP(R;). Hence the P x Q-Lemma gives [A;, R;] = [Cy,(Q;), R;] # 1.
Since F; < F*(M;) we conclude that (M;, F;,U) satisfy the hypothesis on (H,L,Y) in By
7 [F;,U] = [F;,U,U]. Thus R; = [R;,U]. Together with [A;, R;] # 1 this implies [A4;,U] # 1.
O

LEMMA 4.8. [L1,Y2] # 1 and [Lo, Y1] # 1.

PROOF. By symmetry it suffices to show the claim for [L1,Y3]. Therefore, we assume by way
of contradiction:

1°. [L1,Y5] =1.
By the choice of u, [Y1,Ya] # 1 (see . So we can apply with U = Y5 and 7 = 1, and

conclude that [A7,Y5] # 1. Assume that also [Lg,Y;] = 1. Since A; < Y7, also [La, A;] = 1. Thus
applied with U = A; and i = 2 gives [Ag, A1] # 1. As A; < Z(Q;), this is a contradiction to
2.3(fa). Thus

2. [Lo.vi] #1.
Then [L.6] gives
3°.  Cy,(L2) = Cy,(Ya).

We now use the Fitting submodule Fy, (M;) defined in Appendix@ By Fy, (M) is faithful
for M, and by Fy, (M) is semisimple for M. Since L; << My, Fy, (M) is also semisimple for
Ly, and since Fy, (M) is faithful, [Fy, (M), Y2] # 1. Hence there exists a simple L;-submodule I;
of Fy, (M) such that [I1,Y3] # 1; in particular, by

4°. [La L] # 1.

Next we prove:
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5°. Put Iy := I}*. Then there exists Jo € IQF*(E)@ with [Ja,[La, I1]] # 1; in particular
[J2, I1] # 1.

Put U := <IQF*(E)@> and F := Cps 57;)(U), and let F be the inverse image of F in M. Note
that Cry(Q2) # 1 and so by Q!, F < Ng(Cy(Q2)) < Ng(Q2). Also F is normal in F*(Ms). Hence
[F, Q2] < Q2 0 F < Op(F) < Op(Mz) = 1,

and thus F < F. o B - o o

Suppose that [Lg,I;] < F. Then [Ly, I;] < Fy and {.5f]) implies [L2, ;] = 1, a contradiction
to (4°). Hence [Lo, 1] € F, that is, [U,[La, I1]] # 1, and (5°) holds.

Let J, be as in (5°). Observe that |I1| = |Io| = |J2|. Let x € Jo with [I;,2] # 1. Thus, Cp, (z)
is a proper subgroup of ;. By [L1,2] < [L1,Y2] = 1. Hence Cy, () is a proper L;-submodule
of I;. Since I is a simple Li-module we conclude:

6°. Cr, (x) = 1. In particular, |I| = |[I1, z]|.

Suppose that Cy,(I1) # 1. Let y € I;. Then 1 # Cy,(I1) < Jo n JY. Since Jy is a simple
Ly-module and y normalizes Lo, J and Jj are simple Ly-modules and Jy n JY is a non-trivial Lo-
submodule of Jy and JY. Thus Jo = Jo n JY = JJ, and so I; normalizes Jo. But then [I1, Jo] < Ja
and so |[I1,z]| < |Jo| = |I1], a contradiction to (6°). We have proved:

. Cpn(lL)=1.

By [J2,[La, I1]] # 1, and so there exists y € I; such that [Ja, [La,y]] # 1. Put W := JoJy.
By[4.4] Y; acts quadratically on Y. So [J2,y] < Cw (1) and [W, 1] < Cy, (I1). By Cy,(L) =1,
and we conclude that

8°. [Jg,y] < Ow(Il), Jo N [Jg,y] =1 and Jo N [VV,Il] =1.

In particular, [JQ,N[l(JQ)] < Jon [W, Il] = 1 and so Nh (Jg) = C[1<J2) < Ch (l‘) By
Cr,(z) = 1 and thus

9°.  Np(Jy)=1.

In particular, Jy # JY. Since J; and J§ are simple Lo-modules, we conclude that Jo n JY = 1.
By §), J2 1 [J2,y] = L and so W = JoJ§ = Jo[J2,y] = J2 x [J2,y]. This gives

10°. WZJQX[JQ,y]IJQyX[Jz,y]ZJQXJZy.

Suppose for a contradiction that [J2,y] is La-invariant. Then (10°)) shows that Jo and [Jz, y] are
both isomorphic to W/J§ as La-modules. Moreover, y centralizes [Ja,y] and so [Ls,y] centralizes
[J2,y]. Hence [La,y] also centralizes Ja, which contradicts the choice of y. Therefore,

11°. [J2,y] is not Lo-invariant.

By [J2,y] < Cw (1) < WA WY for every y' € I;. On the other hand, .J, is a simple
Lo-module and W n WY is an Ls-submodule. By W = Jy x J%’ . Hence every non-trivial
Lo-submodule of W has order |J5|. Since |W n W¥| = |[Jz,y]| = |J2|, we conclude that either
W=WnWY =WY or WAWY = [Ja,y]. In the latter case, [J,y] is Lo-invariant, a contradiction
to . Thus W = W',

We have shown that I; normalizes W. By Ny, (J2) =1, and so there are |I;| I;-conjugates
of Jy. Since Jo n [Jo,y] = 1 and I; centralizes [Ja,y], each of these conjugates intersects [Ja,y]
trivially and is Le-invariant. Since Js is a simple Ls-module, the conjugates have pairwise trivial
intersection. Note also that |I1]| = |Jz| and by W\ = |J2||JY| = |J2|* and |[J2,y] = |J2|. We
conclude that these conjugates together with [Ja,y] form a partition of W. Thus, Lo also leaves

invariant [J2,y], a contradiction to ([11°). O
LEMMA 4.9. (a) [M?,Ya] # 1 and [M7, Y] # 1, in particular M° # 1.

(b) Y; is a faithful Q'-module for M; with respect to Q;.
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(¢) Y3 or Ylu_1 is a non-trivial quadratic offender on Y7. L
(d) The hypothesis of the Q!FF-Module Theorem is fulfilled for (M;,Y;, Q;) in place of
(H,V,Q).

PROOF. @: Recall from {.3[that L; = [F*(M;),Q;] and so L; < M7. By 4.8 [L1, Y2] # 1 and
[L2,Y1] # 1 and so also 4%\515, V1] # 1 and [M7,Yz] # 1. Conjugating the last equation by u=! gives

[M7, Y '] # 1, and so () holds.

(]Eb: Since M? # 1 we also have Q; # 1. As O,(M;) = 1 this implies Q; € M;. Hence by |[1.57|(b)
Y; is a faithful Q!-module for M; with respect to Q;.

(c): By Y7 acts quadratically on Y5 and vice versa. If Y5 is not an offender on Y7, then
|Y2/Cl, (Y1)] < |Y1/Cy, (Ya)], and since Y> = Y{¥, conjugation with u~! gives

-1 1
Y1/Cry()* )l <V /Cyur (Y1)
Hence Y;* ' is an offender on Y;.

@: According to we can choose Y3 € {Yg,Yf‘fl} such that Y3 is a non-trivial quadratic
offender on Y;. By @ [M?,Y3] # 1. Thus Y3 fulfills the condition for Y in the Q!FF-Module
Theorem. By (]EI) Y; is a faithful Q!-module for M; with respect to Q1. Also O,(M;) = 1 and so

the Hypothesis of the Q!FF-Module Theorem is fulfilled. O

LEMMA 4.10. Suppose that the following hold:
(i) M°/Chro(Y) =Q5,(2), 2n =4, and M £ M°Cy(Y).
(ii) [Y, M°] is a natural 5,,(2)-module for M°.
(iil) [Y1,Y2] contains a non-singular vector of [Y1, M7] or [Ya, MS].
Then Theorem[D|{8)) holds if (2n,€) # (4,+), and Theorem[D|[3) holds if (2n,€) = (4, +).

PRrROOF. By , N aut(y,me1)(M°) = 05,(2). Since Q5,(2) has index 2 in 05,(2) and
M # Me°, we conclude that M =~ O5,,(2) and [Y, M°] is a corresponding natural module.

If Y # [Y, M°] then|C.22|shows that M = OF (2) and |Y/[Y, M®]| = 2. In particular, [Y, M°] =
Y, M
[ Blf and since the setup is symmetric in M; and Ms, we may assume that [Y7,Y2] contains
a non-singular vector t of [Yy,M;i]. As Mllr = M,Cq (Y1) fixes the Mj-invariant quadratic from
on [Y1, M;], we know that the non-singular elements of [Y7.M;] are precisely those elements that
are not centralized by a Sylow p-subgroup of Mf . In particular, C’le (t) does not contain a Sylow
p-subgroup of M. We claim that Cg(t) € M;.

For this suppose first that ¢ is singular in [Ya, M3]. Then Cjy,(t) contains a Sylow p-subgroup
of My and so also of G. As CMI (t) does not contain a Sylow p-subgroup of MI, we conclude that

Oty (8) £ Cpy1 () and s0 Co(t) £ M.

Suppose next that ¢ is non-singular in [Y2, Ma]. Recall that My = M7, so as ¢ is non-singular
in [Y7, M;], t* is non-singular in [Y5, M>] = [Y1, M;]*. Since My is transitive on the non-singular
vectors of [Ya, Ms], there exists m € My such that t“™ = ¢. Since Y*™ = YJ" = Y, # Y7 we have
um ¢ M{r and so again Cg(t) £ MT.

We proved that Cg(t) < MlT . Since My = M and M acts transitively on the non-singular
vectors of [Y, M], we conclude that Cg(y) £ MT for all non-singular y € [Y, M].

Suppose that M =~ OF (2). Then M =~ SLs(2) ! Cy and Theorem holds.

Suppose next that M # Of (2). By hypothesis M° ~ QS (2). Assume in addition that ¥ =
Y. Then Theorem [C] shows that Ci(y) is not of characteristic 2 for every non-singular element
y € [Y, M]. Thus Theorem holds in this case. O

By [4.9(d) the Hypothesis of the Q!FF-Module Theorem is fulfilled for (M;,Y;,Q;). In the
following we will discuss the various outcomes of the Q!FF-Module Theorem.
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NotaTION 4.11. Let {7,5} := {1,2}. Put
Ji = Jur, (V3) and R, := F*(J;).
Let R; be the inverse image of R; in M;. Put
W, = [Y;, R;] and T; :=Y;R;.
LEMMA 4.12. Suppose that holds. Then Theorem @(@ holds.

PROOF. By there exists an M;-invariant set K of subgroups of M; such that Y; is a
natural SLy(q)-wreath product module for M; with respect to K, M7 = OP((K))@; and Q; acts
transitively on IC. By this set is unique. By , Yues < Y and since Yy, is a simple
M?°S-module, Yy = Ypog. So Theorem holds. O

LEMMA 4.13. Suppose that[C.24|(9) holds and W1 is not a simple Ry-module. Then Theorem

@ holds.

PrROOF. Note that by . ) Ya(= Y7*) or Yf‘fl is an offender on Y;. Also u~! in place of u
fulfills the conclusion of |4 So possibly after replacing u by ™! we may assume that Y5 is a offender
on Yy. Also [Y1,Ys] # 1, and so we can choose a minimal non-trivial offender A on Y; with A < Y5.
By A is a quadratic best offender on Y7, so A < J.

Recall that {i,j} = {1,2}. For now let I; be any simple R;-submodules of W;. From [C.24][2:a)),

(2:b]) we conclude that
1°.
(a) R; is quasisimple and R; < M.
(b) Cy.(R;) =1, W; is a semisimple J;-module, and M; acts faithfully on W;.
Next we prove:

2°. Let x € M with Cr,(x) # 1. Then x normalizes I;.

Note that 1 # Cp,(x) < I; n I7. Since R; < Mj, I; and I7 are simple R;-modules, and so
Ij :Ijﬁff:.[jw.

3°. Let X; <Y;. Suppose that [X;,Y;] # 1 and X; normalizes all the simple R;-submodules
of Wj. Then [R;, X;] = R; # 1, [I;, X;] # 1 # [1;,Yi], and Y; normalizes all simple R;-submodules
Of W] .

Suppose for a contradiction that [R;, X;] = 1. Since X; is a p-group and normalizes the simple
Rj-submodule I}, we conclude that X; centralizes I;. By (1°)(b) W; is a semisimple J;-module.
Since R; < J;, W is also a semisimple R;-module. It follows that X; centralizes W;. As by (L°) @j
Wj is a faithful M;-module, We conclude that [X;,Y;] = 1, a contradiction to the hypothesis

i Lj
Thus [R],X] # 1. By @ R, is quasisimple, and we conclude that [R;, X;] = R;. By
.@ Cy,(R;) =1 and so [I;, R;] # 1. Together with [R;, X;] = R; this gives [I;, X;] # 1. Since

Y; acts quadratlcally on Yj, we conclude that 1 # [I;, X;] < C, (YZ) and so shows that Y
normalizes I;, and (3°) is proved.

Recall from [E.11] that T; = Y; R;.

4°. T; normalizes all simple R;-submodules of W;. In particular, W; is a faithful semisimple

T;-module and O, (T;) = 1.

We apply |D Since R; is quasisimple, R; is a Jir (Yl) -component of M7, and since Cy,(R1) =
1 and I is simple, I is a perfect Ri-submodule of Y1 Hence by [A744] J; and so also A normalizes
I;. Since I, is any simple Rj;-submodule of Wi, A normalizes every simple R;-submodule of Wj.
Thus, we can apply with Xo = A and conclude that also Y2 normalizes I; and that [I1,Ys] # 1.
Therefore Ty = Y5 R normalizes I.

In particular, |[I1,Y2]| < |I1]| = |I2|. This implies that Cy,(y) # 1 for all y € I, and shows
that I; normalizes I. Hence, I; normalizes all simple Ra-submodules of Wa. As [Y3, 1] # 1 we can
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apply with X; = I; and conclude that also Y; normalizes all simple Rs-submodules of Y5. So
the same holds for T5 = Y1 R».

5°. Cy, (I3) = Cy,(Y2) and Cy,(I1) = Cy,(Y1); in particular [I, I2] # 1.

By X; := Cy,(I;) normalizes all simple R;-submodules of W;. If [X;,Y;] # 1, then
shows that [I;, X;] # 1, a contradiction. Thus [XZ,YJ] 1 and Cyl.(IJ) X; < Cy,(Y;). The other

inclusion is obvious.

6°. W; is not selfdual as a T;-module.

Suppose that W; is a selfdual T;-module. Since W; < l.i shows that Cy, (I;) = Cw,(Y;). As
W; is selfdual, this gives [W;, I; ] Wz,YJ (ct. [B.6f -. 4°) W; normalizes I, thus (W,,Y;] =
(Wi, ;] < 1. As [Y;,W;] # 1, (3°) gives R; = [R;, W], and we conclude that W; = [Y}, R;] < I,

so W; = I; is a simple Rj—module a Contradlctlon

Put Ki = EJ?’LCU%Z (Iz)

7°. T; acts K;-linearly on I;.

In this paragraph choose I; = I* if i = 1 and I; = I* ' if i = 2. So |K;| = |Ki|. By
and ( . ) I; normalizes and acts non-trivially on each of the simple R -submodules of W;. Suppose
that I; does not act K;-linearly on I;. Then p < |K;| = |K,|, and [1.22 implies that dimg, [; = 1,
a contradlctlon since R; is quasisimple (and so perfect) and I; is non—central K;R;-module. Thus

I; acts K;-linearly on I;. As Y acts quadratically on I;, Y; centralizes the non-trivial K;-subspace
[1;, I;] of I;, and so Y; acts K;-linearly on I;. Since T; = R;Y, follows.

8°. One of the following holds.

(1) (a) Ry =Jin M? = SL,(q), n >3, Sps,(q), n =3, SU,(q), n =8, or Qt(q), n > 10.
(b) Wl is the direct sum of at least two isomorphic natural modules for Ry.
(¢) M7 = RiCy>(Ry).
(d)

Z ;éﬂ/i, then R; = Sp,,,(q), p =2, and n > 4.
, Ji = R; = SL4(q), and Y; is the direct sum of two non-isomorphic natural modules

(2) p
for R

We consider the three cases of [C.24] -.
In Case (1), .. holds.

In Case (2), Wy = [Y1, R1] is a simple R;-module, contrary to the hypothesis of this lemma.

In Case (3) .. holds.
9°. T; acts faithfully on I;.
By (4°) O,(T;) = 1, and by R; acts faithfully on I;. As T;/R; is a p-group, we conclude

Cr (1) < O,(T;) = 1.
10°. Ry =J;, Ji=SL,(q),n=>3,W; =Y;, M° = IC’W(I), and Y; is the direct sum of m
isomorphic natural modules for J;, m = 2.

Suppose first that holds and R; = SL,(q), n = 3. Then |C.24{[2:a) shows that J; = R;,
so also R; = J;. The remaining assertion in now follows from (8°))([1]).

Suppose next that holds and R; 2 SL,(q), n = 3. Then R; = Sp,,(q), n = 3, SU,(q),
n =8, or QE(q), n = 10, and I; is a corresponding natural module. Note that T; = Y;R; = O (T})R;.
Also I; is a selfdual as an F, R;-module and T; acts K;-linearly on I;. Thus, shows that there
exists a T;-invariant non-degenerate symmetric, symplectic or unitary K;-form on I;. Hence I; is
selfdual as an F,T;-module. Since this holds for any simple R;-submodule I; of W; and W; is a
semisimple R;-module, this shows that W; is a selfdual T;-module, a contradiction to .

Suppose now that (8°] .. 2)) holds. Then W; = I, ® I}, where I; and I} are non-isomorphic natural
SLy(q)-modules for R;. It follows that I} is dual to I; as an F, R;-module, and so W; is a selfdual
R;-module. By (7°) and (9°), T; acts faithfully and K; hnearly on I;. As T;/R; is a p-group and
GLy4(q)/SL4(q) is p' group we conclude that T; = R; and so again W; is a selfdual T;-module, a
contradiction.
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1°. Y, < Ji.

_Just as in the previous paragraph, I; acts K;-linearly on I;, GLy,(q)/SLn(q) is a p’-group and
T;/R; is a p-group. As there we conclude that T; = R; = J;, and 1) is established.

Since Y; is a direct sum of m isomorphic simple J;-modules, [MS3] 5.2(d)] implies that there
exists an S;-invariant simple J;-submodule in Y;. From now on I; and Iy denote such S;-invariant
submodules with I = I5.

Let C; be the inverse image of C77=(J;) in M. By , [I1,15] # 1. Pick 1 # x € [I1, 5] and
put X; :=K;x '

We use the following simple facts about the action of .J; on the natural SL, (q)-module I; and
the structure of J; = SL,(q) and J;C;/C; =~ PSL,(q).

(i) J; is transitive on I;.

(i) O”(N7(X;)) = C7 ().

(iii) Op(Cy(x)) induces Homg, (I;/X;, X;) on I;. In particular, X; = Cr,(0O,(C5(x))) and
Xi = [L,O (C7,(2))]-
(iv) Op(Cy,(x)C;i/C; ) is a natural SL,_1(¢q)-module for C, (x). In particular, since n — 1 > 2,
0,(Cy,(z)C;/C;) is a non-central simple C, (z)-module.

(v) Let W be an K;-subspace of I;. Then O’ (NI (W)/CT(W)) =~ SLg, (W) and N5-(W) acts
transitively on W.

Note that C7,(Q;) # 1. So by (i) there exists y; € J; with z € Cr,(Q;)¥" < Z(QY") By-.
Z(Q) is a TL-set, so Q' = Q% =: Qo. By , M? = J;,C; and thus Qp < JC and Qo £ C;.
By Q!, Cj,(z) normalizes Q. Observe that Cj,(z)C; contains a Sylow p-subgroup of J;C; and so
Qo < Cy,(2)C; and QoC;/C; is a non-trivial normal p-subgroup of Cj, (z)C;/C;. Now implies
that

0,(Cy,(2)C;/C;) = QuCi/Ci = [Qo, Cy,(2)]C;/Ci < (Qo N J;)Ci/Cs < Oy (Cy, () Ci/C).
Thus

12°. Op(CJi (x)Cl/C’z) = QoCZ/Cl = (Qo M JZ)CZ/01

In particular, QoC; = (Qo n J;)C; and so Qo = (Qo N J;)(Qo n C;). From Qo = QY < J;Q;
we get that ()9 normalizes I;. Since J; centralizes the p-group Qg n C; and acts simply on I; we
conclude that Qg n C; centralizes I;. Thus

13°. Qo = (QO N Ji)(Qo N Oz) = (Qo N Ji)CQU (Iz) < Ny, (Ii).
As J; n C; is a central p’-subgroup of J;, implies
140. Op(07L (m)) = QQ N Jz

Hence using 7 we get X; = C,(0,(C3,(2))) = Cr,(Qo n J;) and X; = [I;,0,(C5 (v))] =
[1i; Qo N Ji]. As by Qo = (Qo N J;)Cq, (1), this gives X; = Cr,(Qo) and X; = [I;, Qo].

Observe that [I1,I5] is a K;-subspace of I;. As x € [I1, ]3] this gives X; < [[1,]2] and so
[I;, Qo] < [I1,I2]. In particular, Qo normalizes Il, Put H : Ng([Il,Ig]) Then H; :=
Ny, ([I1,12]))Qo < H. Since Qq is weakly closed, gives HY = <QO > and since [[;, Qo] <
[I1, I2] and H; normalizes both, I; and [I1, I2], we conclude that [ IZ,H] [I1, 2]

By . ) H; acts transitively and so simply on [I1,I3]. Thus [I;, HY] = [I1,I2]. Moreover, the
transitive action and [1.57||d) imply H® = Hy. In particular, [I;, H°] = [I1, 5] and [I;, H®,I;] = 1
This holds for any {¢,j} = {1,2}. So [I1,H°, 2] = 1 and [I2, H°,I;] = 1. The Three Subgroups
Lemma now gives [I1,Is, H°] = 1. As Qo < H° and, as seen above, Cf,(Qo) = X, this gives
[I1, 2] = X1 = X3. We have shown:

15°. X; =[I1, 2] = [L;, Qo] = Cr,(Qo). In particular, [I1,I5] is a 1-dimensional K;-subspace
of I; and |[I1,I5]| = gq.

Put Z; := [1;,Y;] and K; := Ng(Z;). We calculate the size of Z; by comparing the action of
Y; on I; Wlth the action of Ii on Y;. By m ) Y; < J;j and Y < J;. Slnce Y; is a direct sum of m
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copies of I, (15°) shows that |[Y;, ;]| = |[11, I2]|™ = ¢™. Since Y; acts K;-linearly on I;, it follows
that Z; is an m-dimensional K;-subspace of I;. We have proved:

16°. Zj is an m-dimensional K;-subspace of ;.

Assume that Y; < Q7. Since @ is weakly closed, Q7 and @ are conjugate in M;, and as Y; < M;,
we get ¥; < QF. Thus V; < J; n Qf < O,(Cy,(z)). Hence shows that [I;,Y;] < X;. Thus
Z; < X, a contradiction since |Z;| = ¢" > g = | X;|. We have proved:

17°. Y, €Q;.

By Qo normalizes I;. As Qo < M;, Qo normalizes Y; and so also normalizes Z; = [I;,Y]].
Thus QQ < K

By (1 ; < O, (C)). So Cj normalizes Z; = [I;,Y;] and C; < K;. Since I is
a simple J; module <[IHI ] Jiy = I;. As'Yj is a direct sum of simple .J;-modules isomorphic to ;
we conclude that {[I;,Y;]7) = Y;. Thus <ZJ‘-]j> =Y;, and since J; centralizes C;, we conclude that
Cg,(Z;) centralizes Y;. We record:

18°. QoC; < Kj and ? acts faithfully on Z;.

By (13°) Qo = (Qo n J;)Cq,(I;). Since Qo < K and Z; < I;, this gives

Qo = (Qon Ji)Cqy(Z;)  and Qo = (Qo N (Ji 0 K;))Cqo(Z5) < (Ji 0 K;) O, (Z5).

By E ) Z; is an K subspace of I; and so shows J; n K; acts transitively on Z;. Hence
three apphcatlons of [1.57|lc) give

° JinK ° o o

190 {Qp ’> = Kj = ((Ji n K)Qo) = ((Ji n K;j)Cm,(Z))

Put K, := K;/Cx,(Z;). By (v), Z; is a natural SL,,(g)-module for O (J; n K;). By (19°),
K§ = ((Jin Kj)CMi(Zj))O and so I?; < OPI(J;_ET(]') ~ SL,,(q). As SL,,(q) has no non-trivial
proper normal subgroup generated by p-elements, we conclude that K3 = Op,(Ji N K;). Thus

20°. Zj is a natural SLp(q)-module for K3, and K3 acts K;-linearly on Z;.

By (15°) Qo centralizes [I1, 2] = [I;,I;]. Since Z; = [I;,Y;] and Y; is, as an J;-module, the
direct sum of copies of I;, we conclude that Qo J; centrahzes Z;. By E Qo = (Qo mJ )(Qo mC’ )
and thus Qo = (Qp N C’ )CQD( i)

By 1) QonJ; =0 »(C7-(z)). Hence, by (i , Qo n J; induces Homg, (I;/X;, X;) on I;. As
by [15°) X; = [I1, 1] < Z; and by (16%) Z; is a K;-subspace of I;, we conclude that Qo nJ; induces
Homg,(Z;/X;, X;) on Z;. Since

(Qo 1 Ji)Cqy(Z;) = Qo = (Qu N Cj)Cq,(Z;)

we infer:

21°. Qo N C; induces Homg,(Z;/X;, X;) on Z;.

In this paragraph, X := XC\y, (Y;)/Ca, (Y;) for all X < M;. Define

J=Qon )"y and  CF:={(Qon C;)%).

Recall from (10°) that R; = J; and J; = SL,(q), n > 3, and that by (14°) Qo n J; = O,(C5(x)).
Thus, we have J; = J;, and by (L), M7 = T;C;. Also [J;,Cj] = 1, and by (139 Qo =
(QQ N J])(QO N CJ) It follows that

o M5 Fxw _ T .
M =(Qo *)=J;Cr=7J;C;  and  [J;,CF]=1.
In addition, O,(CY) < O,(C)) < Op(M;) = 1, and by li Cj is faithful on Z;.
Recall that C; < K; and K; = K /Cr,(Z;). Hence Cf < K3, CF = Cr and 0,(C}) = 1. By

1) Zj is a natural SL,,(¢)-module for Kj and by (21°) Qo n C; induces Homg,(Z;/X;, X;) on
Zj. Now [MS3, 7.2] implies that
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22°. 5} = I?;’ ~ SL,,,(q). In particular, Z; o natural SL,,(q)-module for 8;‘

Since Y is, as a J;-module, the direct sum of natural SL, (¢)-modules isomorphic to I; and since
[J?, Cij*] =1, Y} is, as a module for V]" = TjC;, isomorphic to I; ®x; U; for some K;C¥-module U;
(see for example [MS3l Lemma 5.2]).

Since I; < J; by (11°) and [I;, I2] is 1-dimensional in I; by (15°),

Uj =L, LI®U; = [I; ®U;, I;] = [Y;, Ii] = Z;

as a C* module. Thus Uj is a natural SL,,(¢g)-module for C7. Hence in order to establish Theorem

it remains to prove that p is odd.
By 1' we have C* KO Since C7Qo < K we get C Qo = KO Hence H gives

23°. K9 = (CIQo)°.

By Zy = [I1,Y»] is an m-dimensional K;-subspace of I;, so Z¥ is an m-dimensional
Ky-subspace of I} = Iy with [I1, L]* < Z¥. Also [I1,I3]* and [I1, 3] are 1-dimensional Ks-
subspaces of I by , and again by Zy1 = [I,Y1] is an m-dimensional Ky-subspace of
I, with [I1, 5] < Z5. As Iy is a natural SL,,(¢)-module for J,, Jo is transitive on the pairs of
incident 1- and m-dimensional Kg-subspaces of I. Hence, there exists v € Jp with Z3¥ = Z; and
[I1, I]"" = [I1, I2]. Put g := uwv. Then

([, L) =[L,1], =1=05L, Y/=Y=Ys Z§=217

and
Zg [Ig,yg] [Ig’YQ]v [15712] [IngIg] [Ilv[Q]Q = [11512]'

Since In < Ys < Ji, I§ < J{ = Jo. Also I < Jp, and since Y3 is the direct sum of copies of the
Jo-module I, we conclude from [I3, I1] = [I1, I2] that [I§,Ys] = [I1,Y2] = Z;. Thus Z{ = Z5 and
so g acts non-trivially on the sets {Z1, Z2}. Thus g also acts non-trivially on {K7, Ko} and {K7, K5}.
By K9 = (CQo)° and by K3 = ((Ji n K2)Qo)°. Thus

{Kf7K§} = {(CIQ0)07 (Jin Kz)Qo)o}-

Recall that Sy normalizes I) and 1 # x € [I1, I2]. Note that the number of pairs (xg, Zp), where
Z is an m~dimensional Kj-subspaces of I; and 1 # zy € Zp, is not divisible by p and that J; acts
transitively on such pairs. Hence every such pair is normalized by a Sylow p-subgroup of M;. Since
Z5 is an m-dimensional subspace of I1 and z € Z3, we conclude that Ny, (Z2) n Chy, (x) contains a
Sylow p-subgroup Sy of M;. Then Sy < M1 n K3 and by Q!, Sy normalizes (Qy. It follows that Sy
acts trivially on {(CIQO)O, ((J1 N KQ)QO)O}, that is on {K7, K3}. Since Sy is a Sylow p-subgroup
of G and g acts non-trivially on {K7, K3}, this shows p # 2. O

LEMMA 4.14. Suppose that [C-.24(3) holds and W, is a simple Ry-module. Then Theorem [D]
holds.

PRrooOF. Smce 2) holds and W is a simple R;-module we are in case (2:c:2|) of - Thus
1°.
(a) R; is quasisimple, R;
G2(2).
(b) Cy.(R;) =1 and M; acts faithfully on W;. In particular, Cypr,(W;) = Car, (Y3).
(c) Either MY = R; = M7 N J; or M = Spy(2), 3:Sym(6), SUs(q).2 (= Og (q) and W; is the
natural S’U4( )- module) or Go(2 )
(d) One of the cases (1) - (9), (12) applies to (J;,W;), with n = 3 in case (1), n > 2 in
case (2), andn =6 in case (12).

Recall that M;, = OP(M;). Next we show:

M7, and either J; = R; or p = 2 and J; = O3 (q), Spa(2) or

O
1 )

2°. R; = F*(M?) = M;o. In particular, W; = [Y;, Mys].
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Suppose first that R; = M °. As by R is quasisimple, we conclude that 1) holds.

Suppose next that R; # M?. Then by ., M? = Sps(2), 3:Sym(6), SUs(q).2 or G2(2).
In each case F*(My) is quasisimple and has index 2 in M7. Thus F*(M7) = O?(M7) = M;,. As
R; < M and R; is a quasmunple normal subgroup of M; we conclude that R; = F*(M;) and again

. holds Hence is proved.

Note that
[W1/Cw, (Wa)| < [Wo/Cw,(W1)|  or  [Wa/Cw,(W1)| < [W1/Cw, (W2)|.

In the second case, conjugation by u~! shows that |Wy/Cy, (W )| < |[W ' /C,, -1 (W1)]. Also
1

u~! in place of u fulfills the conclusion of So possibly after replacing v by u~!, we may assume
Wy is an offender in Wj.
Put Z := [Wy1, Ws]. Abusing our general convention, define

Wi := W;C, (Y;)/C, (Y5) (and not W; = W;Chr, (W;)/Car,(W3) ).
By (1 (]EI) Cur, (Y, v, (W;) and so W; = Cy, /Cw, (W) as an My n My-module.

3°. Wy is a non-trivial quadratic offender on W1y; in particular Z # 1.

Recall from that Y5 acts quadratically on Y7 and from that [Y7,Y2] # 1. In particular
W5 is a quadratic offender on Wi. It remains to prove that Wi acts non-trivially on Ws.

By [@°)(®) Ca, (Vi) = Car, (W;). For i = 1 this shows that [V3,Y2] # 1 implies [Wy,Ya] # 1,
and then for ¢ = 2 that [W1,Y2] # 1 implies [W7, Wa] # 1.

Let v € G* and suppose that v is centralized by a conjugate Q9 of @ in G. Since Ce(Q) < Q
we get v e Z(Q9). By -(ED is a TI-set. Thus QY is unique determined by v and we define
Qv = QY.

Let V be the set of all 1 # v € Z such that for each i € {1,2} there exists Q,; € Q¢ with
Qv,i < Mz and [U;Qv,i] = 1. Note that Qv = le = ng < Ml N MQ.

Let L:={(Q, |veV). Then L < M; n My.

4°.
(a) My n My normalizes Wi, Wa and Z; in particular L < N, (Z).
(b) L= (M1 M3)° <Ny, (Z2)° n Ny, (Z)°.
(c) Suppose V = Z*. Then L = Ny, (Z2)° = Nar,(2)°.
@: M; n Ms normalizes Wy and Wa, so also Z = [Wy, Ws]. Since L < M1 n Mo, @ follows.

@: As L < My n Ms and L is generated by conjugates of Q, L < (M1 n M3)°. Let g € G with
Q9 < My n My. Then Q9 normalizes Z, and since Z # 1 by , there exists 1 # v € Cz(Q9).
Thus Q, = Q9 < My n Ms. Hence v € V and Q9 = Q, < L. Thus (M; n M3)° < L and so
(M1 N Mg)o =L. As M1 n My < NMl(Z); we have L = (M1 N Mg)o < MMI(Z)O

: Suppose that V = Z# and let g € G with Q9 < Ny, (Z). Again there exists 1 # z € Cz(Q9)
and so z €V and Q9 = Q, < L. Hence Ny, (Z)° < L and so Ny, (Z)° = L.

5°. Suppose M; acts transitively on W;. ThenV = Z*.

Since M; acts transitively on W; and Cyw,(Q;) # 1 each elements of W; (and so also of Z) is
centralized by a conjugate of Q; in M;. Thus Z% = V.

6°. Suppose 1 # z € Cz(L) and K; < M; acts transitively on W;. Then L = Q, and
7t < Nk (D)

Let ve Z¢. By , V =Z%and so Q, < L and [2,Q,] = 1. Thus Q, = Q., and we conclude
that L = Q.. Since K; acts transitively on W;, there exists k € K; with 2¥ = v. Then Q* = Q, = Q.
and k € Nk, (L). Hence, holds.

Let {i,75} := {1,2} and put K; := Endg,(W;).

7°. T; acts Kj-linearly on Wj. In particular, Z is a K;-subspace of Wj.



4.1. THE PROOF OF THEOREM [DI T

Suppose for a contradiction, that W; does not act K;-linearly on W;. Then p < |K;| = |K;|,
and shows that dimg, W; = 1, a contradiction. Hence W; acts K;-linearly on W;. Recall that
Y; acts quadratically on Vj;, so Y; centralizes the non-trivial K;-subspace [Wj7 W;] of W;. Thus Y;
and so also T; = Y;R; acts K;-linearly on W;.

We now discuss the cases of [C.3|listed in (T%)(d). Observe that a natural Sym(6)- or Alt(6)-
module (Case of [C.3| for n = 6), is also a natural Sps(2)- or Sps(2)’-module, respectively. We
will treat this case together with the symplectic groups in (Case 2)).

Case 1. Case (1) of holds with n > 3, that is, J1 =~ SL,(q) and Wi is a corresponding
natural module.

By @, J1 = Ry = My. Also hows that either Y7 = [Y7, Ri] = Wy or J; = SL3(2)
and |Y;| = 2%. In the first case Theorem [Df (1)) holds. So we need to rule out the second case.

Assume that J; =~ SL3(2) and || = 2%, so J; = M;. Put Zy := [Y1,Ys] and note that
Zy < Wi n Wy < Cy,(Y;). Since J; acts transitively on W; each v € Zg is centralized by some
Qui € QM. Thus Q, = Qui = Qua < My n My and Lo := (Q, | v e Z8Y < My n My. Choose
{i,7} such that Y; is an offender on Y;. Then Y; contains a non-trivial best offender A on Y;.
From we conclude that Cy,(A) = [Y;, A] has order 4. Since Y; acts quadratically on Y,
this implies that Cy,(Y;) = Cy,(A) = [Y;, A] = [V;,Y;] = Zy. Thus Z, has order 4. Note that
Lo =4(Q? | g € J;,Cw,(QY) # 1), and so [B.38||c)) shows that Z, is natural SLs(2)-module for L.
As Zy <Y this implies that O%(Lo) € Cay, (Y;). Since |Y;/W;| = 2 = [W;/Zy|, O*(Lg) centralizes
Y;/Zo and so [Y;,0%(Lo)] < Zo. As Zy <Y < Ciy, (Y;), we conclude that [Y;, 0%(Lg)] < Cay, (Y5).
On the other hand, Ly < My n M, and M;/Cy, (Y;) = J; = SL3(2). Hence, the centralizer of an
involution in M;/C\y, (Y;) is a 2-group, so O?(Lg) < Cy, (Y;), a contradiction.

Case2.  Case (2) of holds with n > 2 or Case(12) holds withn = 6, that is, J; = Span(q),
n =2, or Sps(q) (and g =2), and Wy is a corresponding natural module.

Suppose that p is odd. Then by @7 Ji1 = Ry = M7 and so by Wi < @Q°. Since p is
odd, |Z(J1)| = 2, and coprime action gives

Y1 =[Y1,Z(71)] x Cy, (Z(J1)) = Wi x Cy, (J1).

Moreover, by @, Cy,(J1) =1 and so Y; = W;. Thus Theorem holds.

Suppose that p = 2. Then @, show that also M} = Spa,(q), n = 2, or Spa(q)’ (note that
J1 and My do not need to be equal if one of them is isomorphic to Spy(g)’). Since Cy, (J1) = 1,
shows Wi = [Y1, R1] = [Y1, /1] and |Y1/W1| < ¢. Since either My = Ry or ¢ = 2 and |My/R;| = 2,
this gives Wy = [V, M7]. If Wi < Q°, then R.25|[b) shows that Y7 < Q°. So again Theorem
holds.

Case 3. Case (3) of holds, that is, J; = SU,(q), n = 4, and Wy is a corresponding
natural module.

Note that K; =~ F,2. By Wi is p-group acting Kj-linearly on W;. As W; normalizes Tj,
we conclude from that W; < J;. Since W; acts quadratically on W;, Z is an isotropic
and so also a singular subspace of W}, see (]ED and It follows that each element of Z is
p-central in M; and so centralized by a conjugate of ;. Thus Z# = V. Put m := dim]Fq2 Z and
E := C5-(Cw,(W2)). Note that 1 # W/Cy, (W) = W, < E. Let H; be an K;-hyperplane of W,
with Cy, (W2) < Hy. Then |C5 (H1)| = g and so

|Cyw,, (H1)/Cyw, (Wh)| = [Wa n C5 (H1)| < q.

As Wy acts Kap-linearly on Wj this gives Cy, (H1) = Cw,(W1). In particular, Hy # Cw,(W1) and
so m > 2. Moreover, Wo n C3 (Hi) =1, and as 1 # C5 (Hy) < E, we get

1< Wy <E.

Since L normalizes this series, F is not a simple L-module. As Z% = V, shows that
L = N, (Z)°. Now [B.3§||c) implies that there exists a subgroup F' < L n.J; such that Z is a natural
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S Ly (g?)-module for F. Since GLy,(¢%)/SLym(q?) is a p'-group this implies that OF (N, (Z)) <
FCy,(Z). Note that C, (Z) centralizes W1/Z~ and so (for example by the Three Subgroups Lemma)

also E. By 1@ E = C3-(W1/Z)nC5-(Z). Hence, by B.22|4 %]) E is a simple OP (N, (Z))-module
and we infer that F is a simple F- and a simple L-module, a contradiction.

Case 4. Case (4) of holds, that is, J; =~ Q3 (q) for 2n =6, Q5. (q) for p =2 and 2n > 6,
03,.(q) forp odd and 2n = 8, Qap11(q) for p odd and 2n+1 =7, O (2), or O%,,(q) for p =2 and
2n = 6, and W7 is a corresponding natural module.

Note that in all these cases R; = F*(J;) = Q¢ (q) for appropriate ¢ and m. Moreover, by
M7 = R; and so W; = [Y;, M7].

Recall that T; = Y;R;. Since Y; is p-subgroup acting K;-linearly on W; and since Y; normalizes
Ry, we conclude from that either 7; = R; =~ Qf,(q) or p = 2 and T} = O%,(¢q). Moreover,
Wj; is the corresponding natural module.

Assume first that |Z| < ¢. Then by p =2 and Z is not singular in Wy, and [Ws| = 2.
Since W5 is an offender on Wy, we get ¢ = 2 and Ty = O5,,(2). Hence shows that Theorem
holds.

Assume next that Y7 # Wp. Then shows that J; =~ Of (2) =~ Sym(8). Hence by
every offender in T; on Y; is a best offender. Choose i and j such that Y; is an offender (and so a best
offender) on Y;. Then shows that image of Y; in E is generated by transpositions and thus
[Y;,Y;] contains a non-singular vector of Y. So using a second time, this shows that Theorem
holds.

Assume finally that Y; = W and |Z| > q. Suppose that J; =~ O} (2) =~ Sym(5). Then
Ty =~ Alt(5) or Sym(5). Since Wy is an offender on Wy, shows that W, is generated by
transpositions in 7;. Thus Z contains a non-singular element of W, and so using a third time,
this shows that Theorem @ holds. If J; % Oy (2), then 2n > 6, and Theorem [D| (4:1)) holds,
except that we still need to show that Y £ Q°.

Suppose that ¥ < Q°, so Y; < @7, ¢ = 1,2. Since W; acts quadratically on Ws, an isotropic
subspace of W, see. By the singular vectors of W5 contained in Z form a Ky-subspace of
Z of codimension at most 1. Thus, as |Z| > ¢, there exists 1 # v € Z such that v is singular in Ws.
Hence there exists € My such that [v,Q%] = 1. By Q!, Cg(v) < Ng(Q3), and since Yo < (Q3)%,
we get Yo < O0p(Cq(v)). In particular, Wo < O, (Chy, (v)).

Suppose that v is singular in Wj. Then v is centralized by a Sylow p-subgroup of M, and since
W5 is a non-trivial offender on W7, we obtain a contradiction to the Point-Stabilizer Theorem
Thus v is non-singular. It follows that |O,(Cy(v))| = 1 if p is odd and |O,(Cyp-(v))| < 2 if p = 2.
Hence |[Wo/Cy, (W1)| < 2 and then |Z| = |Cy, (W;)*| = 2 < ¢, a contradiction.

Case 5. Case (5) of holds, that is, p = 2, J; = Ga(q), and Wy is a corresponding natural
module.

Put L; := N, (W;Cn,(W;)), so L; = N(W;). Since W» is a non-trivial offender on Wi, we
conclude from the Best Offender Theorem that Z = Cy, (Wa), |Z| = [W1/Z| = [Wa| = ¢,
and L, is a maximal parabolic subgroup of J;. Note also that L; normalizes Z and by the action of
J1 on the natural Ga(¢)-module Wy, Ly = Ny, (Z;) for some 1-dimensional K;-subspace Z; of Wj.
Observe that [Z;,07 (Ly)] = 1.

By M = Ry or My = J;. Thus M{ < J;. In particular, My < Jy, My acts K;-linearly
on Wy and L < Nye(Z) < Ly. Since Op'(Ll) centralizes Z; and L is generated by p-elements, we
get that L < Cy,(Z1). Note that J; acts transitively on Wi. Thus by VY = Z% and by ,
Zt < 2Nn(D) where 1 # z€ Zy. As V = Z*, L, normalizes L and so, since L; is maximal subgroup
of Ji, we get Ny, (L) = Li. But then Zf C 2zl  Z;, a contradiction.

Case 6. Case (6) of holds, that is, J; =~ SL,(q)/{(—id)"~ '), n = 5, and W is the

corresponding exterior square of a natural module.

Then Y; = W; by Since W; is the exterior square of a natural SL,(q)-module, there
exists a central p’-extension L; of L; and a natural SL, (q)-module N; for L; such that Y; =~ A%2N;
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as E—module. By W5 is not an over-offender on W7 and so W; is an offender on W5. This also
shows that W; is a best offender on W and so W; < J;. Let V[//\'Z be the unique Sylow p-subgroup
of the inverse image of W,C, (Y;)/Cy, (Y;) in J;. By there exists a K;-hyperplane H; of N; with
W; = C5.(H;). Put L; := C(N;/H;). The action of J; on N; shows that W; = O, (H;) = Oy(L;)
is a natural SL,_q(¢)-module for L; isomorphic to H;, Z = Cw,(W;), W;/Z = H; and Z = A?H;,
as L;-modules. Let X < Wj such that Z < X and |X/Z| = p.

Consider the action of Ly on Ny and Wa. Note that | X /Cx (W2)| = p and so X acts as a subgroup
of the transvection group with axis Hs and center say P» on Na. It follows that [Wa, X| = P, A Ho
and so [Wa, X] is a natural SL,,_3(¢)-module isomorphic to Hy/P for Cp,(P2). Thus each element
of [Ws, X] is centralized by a Sylow p-subgroup of Cp,(P») and so also by a Sylow p-subgroup of
Ja, since Cr,(Ps) is a parabolic subgroup of Ly and j;

Next consider the action of L; on Ny and Wj. Identify Wy with A2N;. Then X = (n A 2)Z,
where n € N1\H; and 1 # = € Hy. If T is the transvection group with axis H; and center say
Py, then [X,T] = Py A z and so [X, W3] = [X,Cr,(H1)] = Py A Hy. So as above each element of
[X, W3] is centralized by a Sylow p-subgroups of .J;.

Let 1 # v € [X, W3]. We have proved that v is centralized by a Sylow p-subgroup S} of J;. By
(T)(d), M7 < J; so SF contains a J;- conjugate of Q; and thus v € V. Since v € Cy, (S5), C,(v)
contains the point-stabilizer of Jo on Wy with respect to So. Since the exterior square of a natural
module does not appear in the conclusion of the Point-Stabilizer Theorem and since W is an
quadratic offender on Wa, we conclude that W1 € O,(Cy,(v)) and so also Y7 = W7 € QF. Hence

Theorem |§| (4:2) holds.
Case 7. Case (7) of holds, that is, J, = Spinz(q) and W is the corresponding spinmodule.

Observe that J; is quasisimple and so gives ﬁf = R, = J;. Hence M? < R; = J;. Put
L; == O” (Nus(2)).

Note that W; is a selfdual J;-module (see for example . Since by T; acts K;-linearly
on W; and T;/J; is p-group we conclude from @) that W; is also a self-dual T;-module. Hence
Cw,(W;) = Z+ (in W;) and so |Wi/Cw,(Wa)| = |Z| = |W2/Cw,(W1]. Thus W; is non-trivial
quadratic offender on W; and we can apply .

Let A; be maximal offender in J; on W, with WJ < A;. We conclude from H that Z =
Cw,(W;), |Z| = ¢* = |W;/Z|, |[Wi, Ai]ll = ¢* and OPI(NTi(Ai)/Ai) >~ Sps(q). It follows that
Z = [Wi, Ai], N7 (A;) < Nj(Z), and Ny (A;) is maximal parabolic subgroup of J;. Therefore
L; = Op/(Nji(AZ-)), and Z is natural Sps(¢)-module for L;. Hence L; is transitive on Z. In
particular, each element of Z is p-central in L; and so also in J;. As M} < J;, this shows that each
element of Z is centralized by a conjugate of Q; in J;, and so Z# = V. Thus shows that
L=I1?<L,.

Let g € J; with Q7 < L;. Suppose for a contradiction that [Z,Q?] = 1, and let Z; be a 1-
dimensional K; subspace of Z. Then Q! implies that Q7 < L; and Q7 < N,,(Z;); in particular
(Li;Ny,(Z;)) < Nj,(QY). On the other hand, by the action of J; on the spin module W;, N, (Z;) is
a maximal parabolic of J;. We conclude that Ny, (Q9) = Ny, (Z;) and L; < Ny, (Z;), a contradiction
since L; is transitive on Z. Thus [Z,L] # 1. As Sps4(q) is quasisimple, except for ¢ = 2, we
conclude that L/CL(Z) = Spa(q) or Spa(2)’. Put E := C5(Z). In J; we see that E is natural
05(q)- respectively Q5(2)'-module for L and so by E has no L- submodule of order ¢*, Put
E := C5=(Z). On the other hand, W5 < E and [Ws| = [W2/Z| = ¢*, so Wy is an L-submodule of E
order ¢*, a contradiction.

Case 8. Case (8) of holds, that is, J, =~ Spin{,(q), and Wy is the corresponding half-
spinmodule.

Just as in the previous case, the fact that J; is quasisimple implies that ﬁf = R; = J;, and
M§ < R; = J;. Put L; := OP (Nase (2)).

Since W is a non-trivial offender on W7, shows that |Ws| = ¢® = |W;/Cyw, (W2)|. Hence
also Wy is a non-trivial offender on Wy, so W; is a best offender on W;, W; < J;, and we can apply
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C.4fld) to Jy and Jo. It follows that Z = Cy,(W;), |Z] = ¢°, and OF (N-(W))/W; = Sping (q).
In particular, Nj,(W;) contains a Sylow p-subgroup of .J; and O,(N5-(W;)) = W;. The structure
of J; now implies that NT(WJ) is maximal parabolic subgroup of J;. As Ny, (W;) normalizes
Z = [W;,W;], we conclude that L; = OP (N, (W;)), and Z is a natural QF (¢)-module for L; (note
here that a half-spin Sping (¢)-module is also a natural € (¢)-module). Thus L; preserves a non-
degenerate quadratic form ¢; of +-type on Z. Note that the g;-singular elements in Z are p-central
in L; and so also in J;. Hence each of these singular elements is centralized by a J;-conjugate of
Q;. Observe that more than half of the non-trivial elements in Z are g;-singular and so there exists
1 # v € Z such that z is singular with respect to ¢; and gs. Thus, v € V and Q, < M; n M>. Let Z;
be the 1-dimensional K;-subspace of Z with v € Z;. From @, < M7 < J; we conclude that @, acts
K;-linearly on Wy, and so [Z1,Q,] = 1. Thus by Q!, Nj,(Z1) < Ng(Q,). By the action of J; on the
half-spin module W7, Ny, (Z1) is a maximal parabolic subgroups of J; distinct from the maximal
parabolic subgroup N, (Z). Hence O,(N7(Z)) € Op(N7(Z1)). As seen above Wy = O0,(N5-(Z))
and so Wy € O,(Ny,(Z1)) and Ys € Op(Ne(Q,)). Thus Ys € Q8 and ¥ £ Q°. Moreover [C27
shows that Y7 = W;. Therefore Theorem |§| holds.

Case 9. Case (9) of holds, that is, J; = 3- Alt(6) and |W;| = 26.

As in the Spo,(q)-case for odd ¢, the action of Z(J;) on Y; and Cy,(J1) = 1 give W; = Y
and thus also Wy = Y5. This action also shows that K; =~ F4. Since W; = Y;, Y5 is an non-
trivial offender on Y;. Hence shows that |Y2/Cy, (Y1)| = 4 = |Y1/Cy, (Y2)|. In particular,
Y] is a non-trivial offender on Y. Now shows that the non-trivial offenders in .J; on W; are
conjugate in J;, |Z] = 2%, and Z = Cy,(Y;). Since also Y3* is an offender on Y* = Y> we see in
M, that Yj** = Y7 for some h € M,. Put g := uh. Then Y{ = Y] = Y5, ng =Y (in M) and
79 =Y, V)] = [Y2,Y]] = [Ya,Y1] = Z. Define

A= A{[y1,y2] | y1 € Y1\Z, y2 € Y2\Z}.
For y; € Y;\Z, [Y;,y;] is a 1-dimensional K;-subspace of Y;. It follows that
Ap = {[Viy;)* ly; e Y,\Z }
is a partition of A into three subsets of size three. From (V1,Y3)9 = (Ya,Y{) and Y = Y] (in My)
we conclude that A9 = A, A = Ay and A = Ay. Thus g € Ng({A1,A2}). On the other hand,
in Mj, Y, is normalized by a Sylow 2-subgroup of M;. It follows that Cq({A1,As}) contains a
Sylow 2-subgroup of G. Thus Ng({A1,As}) = Ca({A1,A2}) and Ay = Ay, and so [y;, Ya]f € Ay
for y; € Y1\Z. But [y, Y>]* has an element in common with each [Y7, 2], y2 € Y2\Z of A; (namely
[y1,92]), a contradiction since A; is a partition of A. O

4.15. Proof of Theorem

By 4.9|(d)) the hypothesis of the Q!FF-Module Theorem [C.24] is fulfilled for (M;,Y;,Q;) in place

of (H,V,Q). Hence Theorem @ follows from if C.24(]I holds, from if [C.24{(2) holds and
W1 is not a simple Ri-module, and from if |C.24{|2) holds and W is a simple R;-module.




CHAPTER 5

The Short Asymmetric Case

In this chapter we begin to investigate the action of M € Mg (S) on Yy, when Yy, is asymmetric.
This investigation will occupy the next five chapters. In this chapter we treat the short asymmetric
case, that is, in addition,

Y < Ou(L) forall L <G with Op(M) < L and O,(L) # 1.

For all such L asymmetry shows that L n M is a parabolic subgroup of L and then shortness that
(Y is an elementary abelian normal subgroup of L (see .

The proof of Theorem [E]is carried out using particular choices for L, namely the Y;-indicators
L; of a symmetric pair (V1,Vs). It is here where for the first time p-minimal subgroups enter the
stage. Apart from technical details, Y; is a conjugate of Yy, V; = <YlL> is elementary abelian, and

ViVo < LinLyand 1 # [Vi,V5] < Vi nVa.

From a formal point of view the last property is very similar to the one discussed at the beginning of
the previous chapter. But in contrast to the situation there neither is V; a p-reduced normal subgroup
of L; nor are we really interested in the structure of L; but in the structure of Ng(Y;)/Ca(Y:). So
we use the action of L; on non-central L;-chief factors of V; to get information about the action of
N¢(Y;) on Y;. This is carried out be a rather technical argument. A maybe easier way to understand
how the action of L; on V; influences the action of N (Y;) on Y; is by studying the more transparent
situation of the gre-Lemma in [MS4], from where some of our arguments are borrowed.

Here is the main result of this chapter.

THEOREM E. Let G be finite ICp-group, S € Syl,(G), and let Q < S be a large subgroup of G.
Suppose that M € Mq(S) such that
(i) Q< M and Mg(S) # {MT}, and
(ii) Yas is short and asymmetric in G.
Then one of the following holds, where q is a power of p and M := M /Car(Yar):
(1) (a) M° = SL,(q), n =3, and [Y, M°] is a corresponding natural module for M°.
(b) If Y # [Y, M°] then M° =~ SL3(2) and |Y/[Y, M°]| = 2.
(2) (a) M° = Span(q), n = 2, or Spa(q)’ (and q¢ = 2), and [Y, M°] is the corresponding
natural module for M°.
(b) If Y # [Y,M°], then p =2 and |Y/[Y, M°]| < q.
(3) There exists a unique M-invariant set K of subgroups of M such that Yas is a natural
SLs(q)-wreath product module for M with respect to K. Moreover, M° = OP({K))Q and
Q acts transitively on K.
(4) (a) M =~ 05,(2), M° =~ Q5,(2), 2n > 4 and (2n,€) # (4,+) and [Y, M] is a corre-
sponding natural module.
(b) IfYM #* [YM,M], thenﬂ = 03(2) and |Y]\/[/[Y]\/[,M]| = 2.
(c) Cg(y) € M and Cg(y) is not of characteristic 2 for every non-singular element
ye Y, M].

1 OF (2) appears as SL2(2) 1 C2 in Case

81



82 5. THE SHORT ASYMMETRIC CASE

Table |1f lists examples for Y3;, M and G fulfilling the hypothesis of Theorem

TABLE 1. Examples for Theorem [E]

Case [Yar, M°] for M° ¢ examples for G
3 nat SLQ(q) 1 2F4(q)
3] nat SLy(2) 1 Mati5(.2), 2Fy(2)'(.2)
3 nat SLy(3) 1 Th
Here ¢ = |Ya/[ Y, M°]|

We fix the following hypothesis and notation for the remainder of this chapter. For the definition
of a symmetric pair and a Y-indicator see Definition

HYPOTHESIS AND NOTATION 5.1. The groups G, S, Q, M*, and M have the properties given in
the hypothesis of Theorem In particular Q < M, Mg (M) = {MT}, and Ya; = Y+ is asymmetric
and short in G

By there exist conjugates Y7 and Ys of Yy, such that (Y7, Y3) is a symmetric pair; i.e., there
exist Y;-indicators L; for ¢ = 1,2 such that for V; := <Y1L’>

‘/1‘/2 <L1 ﬁLQ and [‘/1,‘/2] # 1.

Recall from that V1 and V5 are elementary abelian p-subgroups. We choose such Y7, Ys, L; and
Lo with the additional property that |L;||Ls| is minimal. We further fix:

( ) {Zaj} - {132 :
(b) (1) If case -1i holds for (Y, L;) then Q; € QY such that Q¢ < Ng(V;) and L; <

If case ? holds for (Y;,L;) then S; € Syl,(Ng(Y;)) such that S; n L; €

S and [Y;, 07 (Ly)] £ [Q4Z(S), 07 (Ly))] # 1.

(c) R

(d) gZ € G such that Y =Y, and M9 n L, is a parabolic subgroup of L;. Note that that
such a g; exists since Nip,(Y;) is a parabolic subgroup of L; and M a parabolic subgroup
of ]\4'T = Ng(YM)

(e) M; := M9 and MZ-T := M9, In particular, MZT = M;Cc(Y;) = Ng(Y;), see .

LEMMA 5.2. (a) Vi < Ry < Np,(Y;) < M. In particular, [Y},Vi] < Y{AVi and [V}, R;] <
Y! " R; for allte L;.
(b) Suppose [2.19 m@ holds for (L;,Y;). Then OP(L;) < Mj and [Y;, OP(L;)] # 1.

PROOF. Since by definition V; is normal p-subgroup of L;, V; < R;. Also Np,(Y;) < Ng(V;) =
M.

7

Suppose that Case :2.19 holds. Then Y; < L; and @ holds.
Suppose that 2)) holds. Then Np,(Y;) is a maximal and parabolic subgroup of L;. In

particular, Ny, (Y;) # L; and Np,(Y;) contains a Sylow p-subgroup T; of L;. Hence R; = O,(L;) <
Ti < NLI(Y;), Lz = TZOP(Ll) = NLL(Y;)OP(LZ) and Op(Ll) $ NLL<Y;)7 in particular, Op(Ll> $
O

Thus @ and (]E[) hold.

LEMMA 5.3. Suppose that one of the following holds:
(i) There exists Y € Y, with 1 # [Y,V;] <Y, or
(i) V; < R;.
Then
(a) Case[]] of[2.19 holds for (L;,Y;).
(b) L, =Y;V; = R;. In particular, V; < R; and L; is a p-group.
(¢) Y; < L;. In particular, V; =Y.
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PROOF. Suppose first that holds. Then YV} is a p-group with Y < Y'V;. Thus Y'V; fulfills
Case [1]in the Definition of Y-indicator, so Y'V; is a Y-indicator. Moreover

YV; < ViV < L and 1+ [Y,V].
Hence (Y,Y]) is a symmetric pair and [Y'V;||L;| < |L;||L;| = |L1]|Lz2|. The minimal choice of | L1 ||Lo|

now implies L; = YV;. Then Y < L; and so Y = V; =Y. If Case |2| of holds for (L;,Y;) then
Y; €0 L;, which is not the case. So Case [l| holds for (L;,Y;), and the Lemma is proved in this case.

Suppose next that holds. Since V; = <Y1L7> and [V;,V;] # 1, we can choose Y € Y;Li with
[Y,V;] # 1. By [.2la) [Y,R;] <Y and by assumption V; < R;. Hence 1 # [Y,V;] < Y. Thus ({
holds, and we are done by the previous case. O

LEMMA 5.4. Suppose that V; £ R;.

(a) Case of holds for (L;,Y;). In particular, Y; € L; and L; € M;r.
) Cv; (Vi) < R;.
(c) L; is V;Vj-minimal.

) There exists X; € Y,"' such that [V;, X;] = 1 and Np,(X;) is the unique mazimal sub-
group of L; containing V;V;. In particular, Y; € L; and L, = (V}, V]x>Vl for every

PRrOOF. Since V; € R; we know that L; is a not a p-group, so Case |2| of holds for (L;,Y;).

Then Np,(Y;) is a maximal and parabolic subgroup of L;. In particular Y; 1 L;, and as Vj is a p-
subgroup of L;, V¥ < N, (Y;) for some g € L;. By [5.2(a) also V¥ = V; < Np,(Y)). Put X, := Y7 .
Then V;V; < Np,(X;) and V; = (X1,

1°. There exist L¥ < L; and h € L; such that for Y;* := X!
(a) L¥ is V;Vj-minimal and NL;;: (Y;*) is the unique mazimal subgroup of LY containing V;V;.
In particular, V; € Op(L¥).

%
(b) (V" )V; = LF and (V;, ViV = LF for all w € LY\Np#(Y;¥).

Observe that the L-Lemma applies with (L;,V;, N,(X;)) in place of (H, A, M). Hence,
there exist L < L; and h € L; such that for Y* := Xh

7
(%) L ={V;,Vi")Op(L) for all z € L\N(Y;*),
and Np(Y;*) is the unique maximal subgroup of L containing V;0,(L).

Pick t € L\NL(Y;*) such that L¥ := (V;,V})V; is minimal. Let z € L;"\NLT (Y;*). Then
V5, ViP)Vi < LY, and the minimal choice of L} shows (V;, Vi)V, = L¥. By (%), L = LFO,(L).
Since V;O,(L) < Nr(Y;*) < L we conclude that V;V; < N «(Y;*) < L¥. In particular, N, «(Y;*) is
the unique maximal subgroup of L¥ containing V;V;. Thus, there exists = € LI\N (V¥ )1, and so

L¥ =V}, VoY, = (V). Hence (1°) holds.

We fix the groups L} and Y;* given in ; in particular, Y;* = X! = v? TP for certain
%
g,h € L;. Furthermore we set V;* := <YZ*L ). Note that V; < Cp+(V;*) < Np«(Y;*). Since Ny (Y;*)
is the unique maximal subgroup of L} containing V;V;, the assumptions of [1.42|(e) are fulfilled with
(Cpx(V*),Nyx(Y;*)) in place of (N, Lo). Thus C«(V;*) is p-closed. Also by 1' V; € O, (L),
and it follows that

2. Oy, (V) < Op(LF) and [V}, V] # 1.
Next we show:

3°. L¥ is an Y;*-indicator.
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By (E[) L} is V;V;-minimal and so also p-minimal. Moreover, N L*(Y*) is a maximal and
parabolic subgroup of L¥. Recall that (VZ7 V) is a symmetric pair with V; € R;. Thus, L; is not a

p-group and one of of the cases [2 or ) holds for L; and Y;.
Suppose that [2.19|(2:i) hOldb for L and Y Then L < L; < Ng(Q;) < Ng(Q?) and QF <

<

Ng(Y;). Since Y;* = X! = ng " and g 'h e L; < Ng(Q}), this implies QF < Ng(Y;*) and so L¥
is an Y*—lndlcator

Suppose next that 2.19 n holds for L; and Y;. Let T} € Syl,(N L¥ (Y;*)) with V;V; < T
and let T; € Syl, (N, (Y;*)) with Tj* < T;. Since S; n L; € Syl,(N,(Yi)) and Y;* € Vb there
exists t € L; with Y/ =Y*and T; = S! n L;,. Put Sf := S} Then T, = Sf n L;, in particular
TF < S} n Lf. Since S; € Syl,(Ng(Y;)) we have Sj € Syl (Ng(Y;*)). As Npx(Y;) is a parabolic
subgroup of L, T} € Sy, (L*) and T;* < SF n L} gives T = SF n L. We collect:

53 € Syl (Na(Y;*)), ViVy < TF = SF 1 LE € Syl (Np+(Y)) and SF n L = T; € Syl, (N1, (¥7)).
Also [1Z(S;), OP(L;)] # 1 implies [:.Z(SF), OP(L;)] # 1.
Note that L; is p-minimal, Nz, (Y;*) is the unique maximal subgroup of L; containing S n L;,
L} € N, (Y*) and L¥ = OP(L;)(SF n L¥). Hence
Li = (87 n Ly, L) = (S 0 Li, OP(LY)).
Thus [41Z(S}),OP(L¥)] # 1. Moreover,
Li = (OP (LY TOH (ST L) and OP(Ly) = (OP(LE)¥°h).
Suppose that [Y;*, OP(L¥)] < [Z(SF),OP(L¥)]. Then
[V, 0P (Lo)] = [V COP(LH)TPI0] = (Y, 0PI ) < ([ (7). 0 (L))
= [0Z(S7), 0P (L) 7E0) = [Z(5F), 07 (L))

Conjugation by t~! shows [Y;, OP(L;)] < [1Z(S;), OP(L;)], a contradiction to --
Hence [Y* OP(L¥)] € [1Z(SF),OP(L¥)] and so also in this case LY is a Y;* indicator.

By (2°) and ( . we know that [V;*,V;] =# 1 and that L} is a Y;*-indicator. So (Y;*,Y;) is
a symmetric pair, and the minimality of |L;||L;| yields L; = L* Hence V* =V, and (2°) gives
Cv,(Vi) < Op(L¥) = R;. Since V; normalizes Y* we have [VJ,}Q*] < Y* If [V;,Y*] # 1 then
hypothesis E. is satisfied, and [5.3|(b) shows that L; = R;. But then Vj < R;, contrary to the
hypothesis of the lemma. If [V], Y*] = 1 then shows that . ) holds with Y.* in place of X;. [J

K2

Recall from Definition that a strong dual offender A on a module V satisfies [V, A] = [v, A]
for every v € V\Cy (A).

LEMMA 5.5. Suppose that there exists A < M such that the following hold:
(i) A is a non-trivial strong dual offender on Ya;.
(i) If |A/Ca(Yar)| = 2, then Ca([Yar, A]) < MT.
Then Theorem [H holds.

Proor. By Yy is a faithful p-reduced Q!-module for M with respect to Q. Since A is
a non-trivial strong dual offender on Yj;, we can apply This shows that Theorem [E] holds,
except that, in Case ([Yar, M] a natural O§,,(2)-module for M), we still have to verify that
Ca(y) is not of characteristic 2 for every non-singular element y € [Yas, M].

By |A] = 2. Since A is a strong dual offender this gives |Yar/Cy(A4)| = and
[Yar, A]| = 2. Let 1 # y € [Yar, A]. Then, for example by [B.9) , y is non -singular, and by
every non-singular element of [Yjs, M] is conjugate to y. By HypOtheblb i) Ca([Yum, A
so also Cg(y) € MT. Hence the hypothesis of Theorem |C|is fulfilled, and we conclude that Cg( )
not of characteristic 2. |

LEMMA 5.6. Suppose that V; £ R; and let D < Vj.
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(a) [Y;,0P(L;)] # 1. In particular, [V;,OP(L;)] # 1 and there exists non-central chief factor
for L; on'V;.

(b) L; is p-irreducible.

(c) Let X be any L;-section of V; with [X,0P(L;)] # 1. Then Cp(X) < DnR;. In particular,
if D € R; then [X, D] # 1.

(d) Let X be any L;-section of V; with [X,0P(L;)] # 1 and [X,0p(L;)] = 1E| Then Cp(X) =
DR and

| X/Cx(D)| = |D/Cp(X)| = [D/D n Ri| = |DR;/R;|
PrOOF. Note first that by @ Caseof holds for (L;,Y;). In particular, L; is p-minimal.

@: This holds by (]ED

(]ED: Since L; is p-minimal, L; is also p-irreducible, see m

: As V; is an elementary abelian p-group, X is an [F,L;-module. Since L; is p-irreducible and
D is p-subgroup of L;, (]ED shows that Cp(X) < Op(L;) = R;. Thus holds.

(d): By () Cp(X) < D R;, and since by hypothesis R; centralizes X, we get Cp(X) = DN R;.
Since L; is p-minimal, [C.13(le) shows that no subgroup of L; is an over-offender on X. As D <V, D

is an elementary abelian p-group, and we conclude that |X/Cx(D)| = |D/Cp(X)|. Together with
Cp(X) = D n X this gives (d). O

LEMMA 5.7. Suppose that Y; € R;.
(a) [‘/Z,‘/] N RIL] < }/z N Z(LZ)
(b) Y n Z(Li) = 1.

(c) [VinR;,V;]nZ(L;) = 1.

(d) [VinR;,V; nR;] = 1.

(e) Cv.(Vj) = [Vi, ViICv. (Li) = [Vi,v]Cv; (Li) = Cv, (v) = Cv,(Yj) for every v € Vj\R;.

PROOF. Since V; € R; we can apply [5.4] By |5.4{(d) there exists X, € Y;Li with [X;,V;] =1 and
(+) L; =V;, Vi)V for every x € L;\Np, (X;).

Recall from [2:20] that V; and Vj are elementary abelian p-groups.
: Let t € L;. Since [X;,V;] = 1 we have [Xf,Vjt] =1. By @ (X! R] < X! nR;. AsV;
is abelian, it follows that
[XL,V; 0 Ri] < X!V < Cx (V3 VIOVa),
Ift € Np,(X;) then [ X!, V;] =1, and if t ¢ Ny, (X;) then by (+) and the previous line [ X}, V;nR;] <
X! n Z(L;). Since X! n Z(L;) = Y; n Z(L;) for every t € L;, (a)) holds.

@: Suppose that Y; n Z(L;) # 1. Then N := N¢(Y; n Z(L;)) is a p-local subgroup of G. Also
Op(M;) < N since Y; < Z(O,(M;)). Hence Y; < O,(N) since Y is shortﬁ But this contradicts
L; < N and Y; € R;.

: According to (]E[) it suffices to show that
(%) [Vi,Vin R;] <Yj.

If V; < Rj, then gives V; = Y and so () holds. If V; € R;, then the hypothesis of this lemma
is satisfied with ¢ and j interchanged, and (a)) yields ().

(d): By () and (), [Vi " R;,V; n Ri] < Z(L;) n [V; n R;,V;] = 1.

@: Let v € V;\R;. By 5.47@ L; is V;V;-minimal and Ny, (X;) is a maximal subgroup of L;
containing V;V;. So by |1.42((d)) () Ni, (X;)" is p-closed. Hence there exists t € L; with v ¢ Ny, (X}).
Thus by (+)

t tv t

20bserve that condition holds for any non-central chief-factor of L; on V;
3Apart from the existence of symmetric pairs, this is the only place in this chapter where one needs shortness
and not only char p-shortness
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Since V; normalizes Vj and Vj is abelian, [V;, V;] < VinV; < Cy,(V;). As [X],V/] =1, we get

Cv, (v) N [Vi, VI1X] < C, (v) 0 Oy, (V) = Cv, (v, VHVE) = Cy, (L)

19 Vi
and
= (Y =(X{P) = [V, LilX] = [Vi, o] [Vi, VX
Therefore,

Cv, (v) = [V;,v](Cv, (v) 0 [Vi, VI1XT) = [V, v]Cv, (L) < [Vi, V510V, (Lj) < Cv, (V;) < Cy, (v)

(2] Vi
so equality holds everywhere in the preceding chain of inclusions; in particular Cy,(V;) = Cvy,(v).
Since Y; € R; we can choose v € Y;\R;. Then v € Y; <V}, and we conclude that albo Cy,(Y;) =
Cv,(V, ) Thus @ holds. O

LEMMA 5.8. Suppose that Y; € R; and L; has a unique non-central chief factor on V;. Then
Theorem [ holds.

PROOF. As Y; € R;, [5.4(al) shows that we are in case [2.19)(2) Suppose that [2.19 -. ) holds
for the Yj-indicator L;. Then [:Z(S;),0P(L;)] # 1, and [Y;, p( )] € [1Z(S;),0P(L;)] (see
5.1{(b)). Hence L; has a non-trivial chief factor on both, [£1Z(S;), OP(L;)] and V/[ Z(S:), 0P (L;)],
a contradiction.

Thus holds for L;, so Ly < Ng(Qi) < Ne(Q?) and Q Ng(Y;). Since V; = (Y1,
we conclude that Qf < Ng(V;). Hence L;Q? acts on V;, QF < (L Q?) and Q7 centralizes any
chief factor of L;Q; on V;. It follows that L;Q); has a unique non-central chief factor on V;. Set

= [OP(LiQ?), Op(LiQ7)].

1°. Suppose that [Cy, (A;),OP(L;)] = 1. Then Theorem [E] holds.

Note that we can apply With (L;Q2,Y;, A;, S;, Vi) in place of (H,Y, R, T,V). We conclude
that one of the following holds:

(A) [Vi, Ai] =1

(B) A; is a non-trivial strong dual offender on Y;,

(C) There exist A;O0P(L;Q?)-invariant subgroups Z; < X; < Zz < X3 of V; such that for

1 =1,2, X;/Z; is a non-central simple OP(L;Q?)-module and X; n'Y; € Z;.

Suppose that holds. Then Cvy,(4;) = V;, a contradiction since [Cy,(A;), OP(L;)] =1 in the
current case while L; has a non-central chief factor on V.

Suppose that holds. By any strong dual offender is quadratic and so [Y;, 4;] <
Cv,(A;) < Cy,(OP(L;)). Since OP(L;) MJ by , this gives Cq([Yi, Ai]) € MiT. Thus the
hypothesis of is fulfilled, and we conclude that Theorem [E] holds.

Suppose that holds. Let I € {1,2} and put X := ((X; n ¥;)?"F)). Then X < X7 < Z»
and X < XJ. Since X;/Z; is a non-central simple OP(L;)-module and X; n'Y; € Z;, we have
(X[, 0P(L;)] € Z;. Thus [X{,0P(L;)] # 1, and since X§ < Zy, [X5,0P(L;)] € X{. By [5.4{(d) V,
centralizes an L;-conjugate of Y;. Thus there exists t € L; with [V}, Vj] = 1. Also by H L; is
ViVj minimal and so L; = OP(L;)V;V; = OP(L;)V;V}. As V;V} centralizes Y; and so also X; n'Yj,
this implies that X;* = ((X; n Y;)). Hence X} is L;-invariant for [ = 1,2, and L; has at least two
non-central chief factors on V;, a contradiction.

2°. Suppose that [Cv,(A;), OP(L;)] # 1. Then Theorem [E] holds.

Put D; := Cy,(0,(L;Q3)). Since Q; is large, Ca(Q;) < Q; < Q7,50 D; < Z(Q3) < Z(Q;). Also
as QF < 0,(L;Q}), we have D; < Cy,(4;) and

[0p(LiQ7), OP(Li)] < Ai < CL,q: (Cv; (4)),
so the P x @Q-Lemma implies
(%) [Di, OP(Li)] # 1.

Since V; € R;, 5.6 - c) applied Wlth (V;,D;) in place of (D, X) gives [V;,D;] # 1. Moreover, as
[D;, R; ] = 1 we can also apply [5.6/{d)) and conclude that

() |Vj/Vj N Ril = [V;/Cv; (Di)| < |Di/Cp,(Vj)]-
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Suppose for a contradiction that [V}, D; n R;] # 1 and choose Y;* € Yij with [Y*, D; 0 R;] # 1.
By [5.2{fal) [Yj*,Rj] < Y/ and so [Yj*,Di N R;j] < D; nY*. Thus D; n Y # 1. Since D; < zZ(Q2)
and Y]* is short and so also Q-short, we conclude from [2.3{lc) that [Yj*, D;] = 1, a contradiction.

We have shown that [V}, D;] # 1 and [V}, D; n R;] = 1. Hence D; € R; and so also V; € R;.
Thus we can apply [5.6] with the roles of i and j interchanged. In particular, there exists a non-central
chief factor W for L; on V;. Moreover, shows that Cp,(W) = D; n R; = Cp,(V;) and

V;/Cv,(D3)| = |W/Cw(Di)| = |Di/Cp,(W)| = |Di/Cp,(V;)].
Combined with (##) this gives
\W/Cw (Dy)| = [V;/Cv; (Di)| = [Di/Cp,(V5)].
In particular, there exists a unique non-central chief factor of L; in Vj, so also L; satisfies the
hypothesis of this lemma (for some L;-conjugate of Y;). Put A; := [OP(L;Q3), Op(L;QF)] and
Dj = Cv;(0p(L;Q3))-
If [Cv,(A;),0P(L;)] = 1, then , with j in place of ¢, shows that we are done. Otherwise

(%), again with j in place of i, gives [D;, OP(L;)] # 1. Since D; € R;, we conclude from [5.6{(c) that
1+#[D;,Dj] <D;nD,;. As D; < Z(Q;), this contradicts [2.3|(al). O

LEMMA 5.9. Suppose that V; < R;. Then Theorem@ holds.

Proor. By Y; = V;. Assume that also V; < R;. Then V; = Y¥; and V; = Y} and so
1#[Y;,Y;] <VinV; =Y; nY,. Hence Yy, is not asymmetric in G, a contradiction.
Thus Y; = V; € R;, and we can apply with the roles of ¢ and j interchanged. By [5.7|(d))

[V, Vin Rj] = [Vi Ry, Vi Rj] = 1.
Since Y; = V; and by [5.4{[b]), again with ¢ and j interchanged, Cvy,(V;) < Rj, this gives
Yin R; =Vin Rj = Cv,(Vj) = Oy, (V).

Byp.7(b) VinZ(L;) = Y;nZ(L;) = 1, in particular [Y;, V;] n Cy, (L;) = 1. Let v € Y;\Cy, (V}).
Then v € V;\R;, and |5.7|le]) shows

[Yi, Vi] < Cv; (Vi) = [v, V;]Cv; (L;).

Thus [Y;, V;] = [v, V;]([Vi, V;1n Cv, (L;)) = [v,V;]. We conclude that V; is a non-trivial strong dual
offender on Y.

If [V;/Cv, (Y;)| > 2, we are done by If [V;/Cv, (Y;)| = 2, then L; has a unique non-central
chief factor on Vj; since Y; € R; and L; is 2-minimal. So we are done by O

LEMMA 5.10. Let q be a power of p, H =~ SLs(q), W a natural SLa(q)-module for H and
V' an F,H-module isomorphic to W", n > 1, the direct sum of n copies of W. Let B1,By < H
with BBy € Syl,(H) and By # 1 # By. Suppose that there exists A <V with Cy(ByBz) < A,
[A,B1] n[A, B3] =0 and |V/A| < |A/Cv(B1B2)|. Then
(a) There exist a subfield F of K := Endyg(W) with dimp K = 2, a 3-dimensional F-subspace
D of W with Cw(B1B2) < D and F,H-monomorphisms o; : W — V, 1 < i < n, such
that

V= (—BVZ- and A= A;,  where V; := o;(W) and A; := a;(D).
i=1 i=1
(b) |V/A| = |A/Cv(B1B2)| and |B,| = |Ba.
(c) There exists h € H with [A, By] < A" and [A, By] n A" = 0.
PROOF. Let T be the set of simple F, H-submodules of V' and put Z := Cy(B1Bz). Since W
is a natural SLs(g)-module for H, Cy (B1B2) = Cw (B;) is a one dimensional F,-submodule of W.
So Z = Cy(B;), i = 1,2, since V.= W™. Observe that V = |J;.,(I + Z) and so, since Z < A,
A=Uez (AnI)+ Z). Put

Ji={IeT|AnI&Z} and X:=)>J.
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Then A = (XnA)+Z and Cx(B1B2) = XnZ < X nA. By assumption |V/A| < |4/Cy(B1B2)| =

|A/Z|. Thus
(%) IXnA/XnZ = | XnA/(XnA)nZ = |[(XnA)+Z/Z] = |A/Z|
> |V /A > | X + A/A| = |X/X A

So (X, X n A) in place of (V, A) fulfills the assumption of the lemma. Suppose that X # V.
Then induction on |V| gives | X n A/X n Z| = |X/X n A]. Thus equality holds in (%) and so
V=X+A=X+(AnX)+Z =X+ Z. But then [V, By B3] < X, a contradiction.

Thus X =V and so there exist Vi,...,V,, € J with V = @, Vi. Pick a € W\Cy (B1Bz) and
choose an F, H-isomorphism «a; : W — V; for each 1 < ¢ < n. By definition of J, V; n Z < V; n A.
Also W = Cw (B1B2) + Ka and so there exists k; € K with «;(k;a) € V; n A\V; n Z. Replacing «;
by «; o k; we may assume that a; := «;(a) € V; n A\V; n Z. View V as a K-module such that each
«; is a KH-isomorphism.

Ifde Athend+ Z = (3, fi(d)a;) + Z for some f;(d) € K. Put F; := {f;(d) | d € A}. Then
F; is an additive subgroup of K and A < Z + "' | F;a;.

For I = 1,2 fix 1 # b € B; and put z; := [a,b;] and z; := «;(z;). Define K; € K by
[a, B;] = Kjz;. Since [a,b] = 12, 1 € K;. Also K; is an additive subgroup of K and |K;| =
|Bi|. Thus Z; := >, | Kjx; has order |Bj|". Since [a;, B;] = Kjz; we have Z; < [A, B;]. From
[A,B1] n[A, Bs] =0 we get Z3 n Zy =0 and By n By = 1. We conclude that

|21 + Za| = | 21| Z2| = |B1]"|Ba|" = |B1Ba|" = ¢" = |Z].

Thus Z = Z; ® Z5 and [A, Bi| = Z;.

Fix m and [ with 1 < m < n and [ € {1,2}. Let g,, € F,, and k; € K;. Then there exists
d € A with g,, = fn(d) and e € B; with kjz; = [a,e]. Since a; is an H-monomorphism we get
kixy = [a;, €] for all 1 < ¢ < n. Thus

= [Z fidaie] = Y f@as,e] = ) fld)kaza.
i=1 i=1 i=1

As [d,e] € [A, Bi] = Z; we get that f;(d)kxy € Kjzy and so f;(d)k; € K; for all 1 < i < n. For
i = m we infer g,,k; € K; and so

(**) F,. K, € K.

Since 1 € K;, we conclude F,,, < K; and so |F,,| < min(|]K4], |Kz|). From |K;||Ks| = |B1||Bz2| = g
we get |F,,| < \/6 for all 1 < m < n. Recall that A < Z + " | Fya;, so |A/Z| <[]/, [Fi| < /g™
As |V/Z| = ¢™ and |V/A| < |A/Z|, this gives |[V/A| = |A/Z|, and equality holds in all of the
preceding inequalities. So |F,,| = [Ki| = /g, Fp, = Kj, and A = Z + > Fia;. In particular,
[Bil = [Ki| = y/g and [By]| = |By|.

Hence F:=F,, =K; foralll <m<nand1<!<2 and A=Z2Z+)"  Fa, By (**) FFCF
and so F is a subring of K. Thus IF is a ﬁnlte integral domain and so a field. Since |K| = q = IF‘|2
dimp K = 2. Put E:= Cyw (B1Bs) and D := E+Fa. Then A =Z+ %" Fa; = Y a;(D). @

and hold.

Let h € H\Ng(E). Note that W = E® E". So D" = (D" n E) ® E" and thus D" n E is
a 1-dimensional F-subspace of E. Since Ny (F) acts transitively on E, we can choose h such that
z1 € D" n E. Then D" n E = Fz;. Applying the a;’s gives A? n Z = Fa;1. As A = @] A; and
Z =@, Vin Z, this yields A" n Z =¥ | Fx;1 = [A, By]. In particular, [A, B;] < A" and, since
[Av BQ] < Za
[A,By] n A" = [A,By] n (A" n Z) < [A, B2] n [A, By] = 0.

o is proved. O

LEMMA 5.11. Suppose that Y1 € Ry and Y2 € Ry. Then Theorem[E] holds.

PROOF. Since Y; € Ry and Y5 £ R,, we can apply .4 with (¢,5) = (1,2) and (i,5) = (2,1). As
the hypothesis is symmetric in ¢ and j7 we choose our notation such that

1°.  |ViRa/Rao| = [VaRy/Ry|.
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By p.7|le) Cv,(V;) = Cv,(Y;). Also[5.4)[b) (applied to (7,:) in place of (4, j)) gives Cv,(V;) < R;.
Thus
2°. COy(Y;) = Cv(V;) < Vin Ry

Let 7; be the number of non-central chief factors for L; on V;. By We have [V;,0P(L;)] # 1.
So r; = 1. If r; = 1 then [5.8] shows that Theorem E holds. So we may assume that r; > 2 for

i =1,2. By [5.6|d) we have
|X/Cx (Vi) = |V;/Cv, (X)| = [V Ri/R;]
for any non-central chief factor X of L; on V;. Thus

3. Vi/Ov.(V))| = [ViRi/Ri|" = |V;Ri/Ri|?. Moreover, if |V;/Cv,(Vj)| = [V;Ri/Ri|?, then
r; = 2 and V; is a non-trivial offender on each non-central chief factor of L; on V.

As Cvy, (Y;) = Cy,(V;) by (2), this gives

£ V/OnY)] > VR R

Hence

2. /) E ka2 € aRy RV R R = [Va/Va o RV R /R
Since Vi € Ra, this gives |V2/Cy, (Y1)| > |V2/Va n Ry], so

6°. [Yi,Von Ri]# L

By [5.7(d) [Y1 » R2,Va mn Ry] = 1. Let 2 € Vo n R1\Cy, (V1) and y € Y1\Rs. By [5.7(€)
Cv, (V1) = Cy, (y). Thus [z,y] # 1, so Cy,(x) <Y1 n Ra, and
<

Cy,(z) <Y1 n Ry < Cy, (Vo n Ry) < Cy, ().
Hence
7. Cy,(x) =Y1 n Ry =Cy,(Van Ry) for x € Vo n R1\Cy,(Y7).
Recall from that Cy, (Y1) < Va n Ry. So Cy, (Y1) = Cyynr, (Y1) and
[V2/Cv,(Y1)| = [V2/Va 0 Ra|[V2 0 R1/Cryar, (Y1)l
By
[Vo/Cv, (Y1)| = [V2/Va 0 Ra|[ViR2/ Ryl
Comparing the last two displayed statements gives
8°. Vo n R1/Cvynr, (Y1) = |[ViR2/Ra| = [Y1R2/Ra| = [Y1/Y1 N Rs|,
and so, since Y1 n Ry = Cy, (Vo n Ry) by ,
9°. |[Van Ri/Cvyng, (Y1)| = [Y1/Cy, (V2 0 Ry)|.
Combining , and we get:
10°. A :=Vy n Ry is a non-trivial strong offender on Y.
By [A234] all strong offenders are best offenders, so
11°. A is a mon-trivial best offender on Y;.
By b7, Vi, Va m Ri] < Z(L1), so L1 < Ca([V1, A]). By pdlfa) L, € M. We record:
12°. Ly € M} and L, < Ca([Y1, A]) € M.
Next we prove:

13°. Let N < My with N = N° and 1 # OP(N) < M, then N does not normalize any
non-trivial subgroup of [Y1, A].
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Suppose that there exists 1 # U < [Y7, A] with N < Ng(U). Pick Qo € Q¢ with Qo < N. Then
Cu(Qo) # 1 and thus by Q!, Cq(U) < Ng(Qo). Now [1.52] gives (NC(U))° = N° = N, so N is
normalized by C¢(U). Hence

Ca([Y1,4]) < Ca(U) < Ng(N) < No(O"(N)).

By hypothesis, 1 = OP(N) < M, and so gives Ng(OP(N)) < M]. Thus Ce([Y1, A]) < M,
a contradiction to .
14°. [M?, Al € Chp, (Y1).
Otherwise, M7 normalizes Y7, A], a contradiction to applied to N = M7.
Define
M := My /Cy, (Y1), J = Jy, (Y1), J = J/Ch, (Y1) K :=F*(J).
Since Q; is large and Q1 < My, [1.57|(b) shows that Y] is a Q!-module for M with respect to

Q1. Since Y; is p-reduced for My, O,(M;) = 1. By A is a best offender on Y;. By ,
[M7, A] # 1. Thus the assumption of the Q!FF-Module Theoremare fulfilled for (M7, Q1, A, Y1)
in place of (H,Q,Y,V).

Suppose that holds. Then there exists an M;-invariant set K of subgroups of M; such
that Y7 is a natural SLy(q)-wreath product module for M; with respect to K, My = OP((K))Q1

and Q; acts transitively on K. By K is unique. So Case of Theorem [E| holds.
Thus, we may assume from now:
15°. (@ holds for M, and Y;.
In particular, by and
16°.

(a) K is quasisimple.
(b) Cy,(K) =0 and [Y1, K] is a semisimple J-module.

Note that by all non-trivial J-submodules of [Y;, K| are perfect. Thus shows that
all K-submodules of [Y1, K| are J-invariant. In particular, the simple K-submodules of [Y;, K] are
exactly the simple J-submodules of [Y7, K].

By A is a best offender on ;. Thus A < J. Put T := KA and let I be a simple
T-submodule of [Y7, K].

Suppose that there exists a simple T-submodule Iy in Y7 such that I* =~ Iy as a T-module,
where I* is the dual of the Fj,J-module I. (Note that we can choose I = Iy if I =~ I*). By
A is a strong offender on Y7, so A is also a strong offender on the submodules I and Iy. It follows
that A is strong offender on I'*, and so by A is a root offender on I. Hence shows
that |I/Cr(A)] = |A/Cx(I)| and A is strong dual offender on I. As A is strong offender on Y7,
Ca(Yr) = Ca(I). Thus

|4/Ca(Y1)| = |[A/Ca(D)] = [I/C1(A)] = [ICy, (A)/Cy, (A)] < [Y1/Cy, (A)] < [A/Ca(Y1)].
Hence equality holds everywhere, Y7 = ICy, (4), and A is a strong dual offender on Y;. By (12°)),
Ca([Y1, A]) € M and so M; and A satisfy the hypothesis of and Theorem [E| follows. So we

may assume from now on:

17°. I* is not isomorphic to any T-submodule of Yyr; in particular I is not selfdual as an
F,T-module.

Since K = F*(J) is quasisimple and A < J, we get T = AK = <ZT> and K = F*(T). As seen
above, A is a strong offender on I, so we can apply the Strong Offender Theoremto (T,K,I,A)
in place of (M, K,V, A). Hence one of the following holds:

(A) T~ S Ly (q) or Sp2,(q) and I is a corresponding natural module. -
(B) p=2, T = Alt(6), 3- Alt(6) or Alt(7), |V| = 24, 26 or 2%, respectively, and [A| = 4.
(C) p=2,T = 05,(2) or Sym(n), V is a corresponding natural module, and |A| = 2.
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Note that the natural SL3(§)-, Span(q), Alt(6)-, OS5, (2)- and Sym(n)-modules all are selfdual and
so are ruled out by (|17°). Moreover, the module of order 2 for Alt(7) is rule out since it does not
appear as a conclusion of the Q!FF-module Theorem (in fact this module is not a Q!-module).

We have proved:

18°. T = SL,(G), n =3, or 3-Alt(6), and I is a corresponding natural module for T.
Next we prove

19°. J =T =K < M° and one of the following holds:
(1) K = SL,(q), n >3, M° = KC3p-(K), and Y1 = @le Y1, where k = 2 and the modules
Y1, are isomorphic natural SL,, ( q)-modules for K.
(2) K =~ 3-Alt(6), M° =~ 3- Alt(6) or 3:Sym(6) and Y, = [Y1, K] has order 25.
(3) K = SL,(§), n >3, M° = K, and [Y1, K] is natural SL,(§)-modules for K. Moreover,
either Y1 = [Y1, K] or K =~ SL3(2) and |Y1/[Y1, K]| = 2.

Since T =~ SL,(§), n = 3, or 3 Alt(6), we have K = F*(T) = T. Recall that holds. By
K < M7 and either J = K or J =~ 05,,(2), Spa(2) or G2(2). As K =~ SL,(§), n > 3, or
3 Alt(6), we get J = K or K =~ SL4(2) and J =~ Of (2). In the later case, recall that [ is J-invariant,
which contradicts the fact that J =~ Of (2) induces graph automorphisms on K =~ SL4(2) and SO
does not act on that natural SLs(2)-module I. Thus J = K and the initial statement in is
proved. We now consider the three cases of [C.24] -.

Suppose that |C.24] - ) holds. Since 3 Alt(6) does not appear in we conclude
that K =~ SL,(¢). Moreover, [Y1, K] is a direct sum of at least two isomorphic natural modules
and M° = KCyz(K). Since SL,(q) does not appear in , we have Y7 = [Y1, K| and so
m. ) holds.

Suppose that - holds. Then [Y7, K] is a simple K-module and either M° = K or
M° =~ Sp,(2), 3:Sym(6), SU4(q).2 or Go(2). Thus I = [Y1, K].

Assume that I is natural SL,(§)-module for K. Then M° = K. Moreover, by (]EI)
Cy,(K) = 1, and shows that either Y7 = [Vi,K| or K =~ SL3(2) and |Y1/[Y1,K]| =
Thus holds.

Assume that I is a natural 3- Alt(6)-module for K. Then M° = K = 3- Alt(6) or M° = 3-Sym/(6).
As Cy, (K) = 1, the fixed-point free action of Z(K) on I shows that I = Y;. Thus holds.

Suppose that holds. Then Y7 is the direct sum of two non-isomorphic natural
SL4(G)-modules for K. Since non-isomorphic natural SL4(G)-modules are dual to each other, this
contradicts . This completes the proof of .

Observe that

20°. If (@ holds, then Case of Theorem@ holds.

So we may assume from now on that (19°) (1) or (2)) holds. The next statement will allow us to
derive a contradiction in these two cases, simultaneously.

21°.
(a) Nar ([Y1,A]) is a parabolic subgroup of My. In particular, there exists an M;-conjugate
Q3 of Q1 ’U}Z'th,QQ < NMl([Yl,A])-
(b) Put Ey := OP (N;([Y1,A4])). There ezist isomorphic Ei-submodules Y1;,1 <1 < k, with
Y1 = @f:l Yll and k > 2.

Suppose first that holds Then Y] = @f 1 Y11 as an F,J-module and so also as an E-
module. Since [I, A] is an IF bubbpace of I and I is natural SL,,(q)- module Nj([I, A]) is a parabolic
subgroup of J and [I, A] = [I Op(N7([1, A]))]. Since each Y7; is isomorphic to I, this implies that
E; = OV (N,([I,A])), E is parabolic subgroup of J and [Y1, A] = [Y1,0,(E7)]. Since I* is not
isomorphic to any J-submodule of Y7, no element of M; induces a non-trivial graph automorphism
on J = SL,(qG). It follows that

i = Ny (BT = Ny (Op(E0)T = Nyp([Yi, AT = Nag, ([¥1, A]) .
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As FEy < Ny, ([Y1, 4]) and E4 is parabolic subgroup of J, this shows that Ny, ([Y1, A]) is parabolic
subgroup of Mj.

Suppose next that (19°)(2) holds. By [C.16|[b), Cy, (4) = [Y1, A], so by [C.T6|[d), Nas, ([Y1, A])
is parabolic subgroup of M;. Put Kj := Cy(Y1/Cy, (A )) and let V be the set of 3-dimensional
Ky-submodules of Y;. Then by -. Y = {Yll,le,Ylg} and Z(K) acts transitively on V. By
C.16{d), K; = E;, and we conclude that Y71 and Yi5 are isomorphic Ej-submodules of Y;. By
C.16({), Y = Y71 x Y79, and so (]ED holds with k& = 2.

22°. M7 =J and Cly,, 4)(Q3) # 1 for all1 <1< k.

Put I := Cye (J) and Fy := OP((FQ3)°). Note that Fy is normalized by F Ny, (Q3). We claim
that Fy is normal in Mj.

Define Jy := (J n M7)®, so Jy is the largest perfect subgroup of J n M7. By (19°) J = K < M7
and so J = (J n MP)Chr, (Y1). As J is perfect, we conclude that J = JoCas, (Y1). By [1.52fc)
[Car, (Y1), M7] < Op(M7). Since [F, Jo] < Car, (Y1) and Jo < M7, this gives [F, Jo, Jo| < Op(M7).
As Jy is perfect, the Three Subgroups Lemma implies [F, Jo] < O,(M7). In particular, Jy normalizes
FoO,(M7). Since O,(M7) < F, Op(M7) normalizes Fy. Hence OP (FyO,(M7)) = OP(Fy) = Fy, and
Fy is normalized by Jy. As seen above, also F'Nyy, (Q3) normalizes Fy. Since Chy, (Y1) < Ny, (Q3)
by Q! and J = JyCyy, (Y1), this shows that Fy < JENy, (Q3).

By either J =~ SL,(q) and My = FJ or J ~ 3-Alt(6) and |[M°/J| < 2, thus in any case
M? = FJQ;. Moreover, since ()3 is a weakly closed subgroup of G, a Frattini argument shows
My = FJNy, (Qs). As proved above Fy < JF Ny, (Q3) and thus Fy < My, as claimed.

Suppose that Fy # 1. Then we can apply with N = (F'Q3)° and conclude that (FQ3)°
does not normalizes any non-trivial subgroup of [Y1, A]. But A < J, so [4, F] = 1, and F normalizes
[Y1, A]. By the choice of @3, also @3 normalizes [Y7, A], a contradiction.

Thus Fy = 1, (FQ3)° is a p-group and (FQ3)° = Q3. Hence

[F,Q3] < Fn Q3 <Op(F) <Ou(M;) =1

If J ~ 3-Alt(6) we get [Z(J),Q3] = 1 and so M7 # 3-Sym(6) and J = My.
Suppose now that J ~ SL, ( ). We have

— Q4" =@ ) — @) < Qs
and so M} = Q3J. Hence FJ/J is a p- group Since F' n J < Z(F) this 1mphes that F is nilpotent.
As O,(F ) = 1 we conclude that F is a p’ group Since F'J/J is a p-group, we get F=FnJ<J
and again M7 = J. So the first statement in holds. In particular, Qs < O (N;([Y1, A])) and
Q3 normalizes each Y7;. Hence also the second statement holds.

Recall that A = V5 n R;.

23°. Put q :== |V1Rs/Rs| and ‘//; :=Vo/Va n Z(Ls). Then the following hold:
(a) ¢ =|ViRs/Rs| = [VaR1/R1| = |V2/ Al
(b) k=2= 9.
(c) |Va| = ¢*, and every composition factor for Ly on Va is a natural SLy(q)-module for Lo.

In particular, every non-trivial proper Lo-submodule of Va is a natural SLs(q)-module for
Lo.

By (2°) Cv, (V1) = Cy,(Y7). Since A=Von Rl, also Cx(V7) = Ca(Y7) and

M [A/Ca(V1)| = \A/CA(Yl)I ' ViRy/Ral S |V2R1/R1| = |[Va/Va n Ry = [V2/A].

From E@ we get Ly = (V1, V")V for a suitable @ € Lo, and [X5, V1] = 1 for suitable X5 € Y2L2.
Note that [V, V1] < Vi n Vo < Cy, (V1) and so Xo[Va, V1] < Cy, (V1) and recall that V3 is abelian.
It follows that

Vo = (¥y?) = (X3?) = Xa[Va, L2] = Xa[Va, Vi, Vi')Va] = Xa[Va, Vi][V2, Vi] = O, (Vi) Crs (V')

and
Cv,(V1) n Oy, (Vf") = Cv, ((V1, Vi)Va) = Cv, (La) = Va 0 Z(L2).
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Thus

(IT) Va = Cy,y (V1) x Cv, (V).

and so

(1) v, (Vi)] = [Va/Cry (ViF)| = [Va/Cva (Vi2)] = [Va/ Oy (V)] = [Va/ Al A/Ca(V2))-

As by (I) [V2/A| < |A/Ca(V1)], this gives

(Iv) ICv, (V1)] = [Va/A[|A/Ca(VE) < |A/Ca (V)]
By [.7lc) [V1, A] n Z(L2) =1 and so
(V) Vi, Al = |[Vi, A]l < |Cv, (Vi)] < |A/Ca(V) 2.

Let y € Y1;\Cy, (4) and a € A\C4(Y1). Since by (10°) A is a strong offender on Y7, Cy, (A) = Cy, (a)
and so [y,a] # 1. Thus Ca(y) = Ca(Y1). Hence

[Yu, All = [[y, All = [A/Ca(y)| = [A/Ca(Y1)]-
Since this holds for all 1 <[ < &,
[V, A]| > [4/Ca(V1)[".
Now implies
|A/Ca/V)P = |[Vi, Al| = |[Y1, A]| = [A/Ca(V1)[* = |A/Ca(V)IF.
Hence k = 2 since k > 1, and |[V1, A]| = |A/Ca(V1)|?. From this we conclude that equality holds in

@, SO

(VD) Crv, (V)] = [4/Ca(V1)P.
As a consequence equality holds in so [Va/A| = |A/Ca(V1)|, and then equality holds in (), so

(VII) q = |ViRa/Ra| = [VaR1/Ry| = [A/Ca(V1)] = [V2/A].
In particular, |i is proved. Moreover,

(Vi) Cn)l @ e @ @ and w/ovnh) B 0y = ¢
Hence
v @ |CV2(V1) % Cry (V)] = |Cv2(V1)||CV2(V1 ) = 10w ()P = ()2 = ¢*.

Also [Va/Cy, (V1)| = ¢*> = |V1R2/Ra|?, and so shows that 7 = 2 and V; is a non-trivial offender
on each non-central chief factor X of Ly on Vg Since Ly is Vi Vo-minimal we can apply [C.11] and
conclude that X is natural SL;(g)-module for L. In particular, |X| = ¢?. Since ro = 2 and |V2| =q*
this show that all composition factors of Lo on Vg are non-central. Thus 1) 1" holds.

As proved above k = 2 and 72 = 2. So also (23 (]ED holds, and ( is proved.

Deﬁne J2 = Jua, (Ya). By (23° E@ |[ViRs/Ra| = |VaR1/Ri1|, so our initial choice of notation
given in ((1°) holds with 1 and 2 interchanged. Hence also all the results proven are also valid with 1
and 2 interchanged. In particular, (21°) shows that there exist isomorphic O (N, ([Ya, Vi N Ra]))-
submodules Y5;,1 <1 < 2, such that Y5 = Y51 x Yas.

Put Vo = (Y?) and E = {(Vi n Rz)"2). By b7, [Ve, Vi n Ra] < Ya 1 Z(Ls), and so
conjugation in Ly gives [V, F] < Yo n Z(Ls). Note that Y3 < V. So [Ya, F] < Yo n Z(Ls) and
again by conjugation in Lo, [Ya;, E] = [Va, E]. Hence

[Vai, E] = [Yar, E] < Y2 0 Z(L2).
Moreover, since [Y2, Vi n Ra] < Y2 n Z(Ls) and E < Lo, E centralizes [Ys, V) n Rs].

We first show that F < Jo. Let « € Ly. Note that (Y3, Y7") is a symmetric pair with indicators
Ly and LY. Moreover, Y{* € Rs.
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Suppose that Yo € Rf. Then (Y, Y;®) fulfills the hypothesis of the lemma and so by ,
applied to the symmetric pair (Y7*,Y3) in place of (Y3,Y1), Vi* n Rs is a best offender on Y,. Thus
V¥ N Ry < Ja. Suppose that Y2 < RY. By applied with (Y}*,Y2) in place of (Y},Y;) we have
[Va n R, Vi n Ry] = 1. In particular, [Ya, V¥ n Ry] = 1 since Yo < RY. So again V¥ n Ry < Ja.

We have shown that all Ly-conjugates of Vi n Ry are in Jo, and so E = (Vo n Ry)2) < Js.
Therefore, £ < Op/(C 1,([Y2, V1 n Rs3])). Thus Ys; and Yao are isomorphic E-submodules of Y5.
Hence

(IX) [Vat, E] = [Yar, E] < Yar 0 Z(Ls).

Note that [Y3, Vi n Ra] # 1, Yo = Ya1 x Y23 and Y21 and Yy are isomorphic Vi n Re-modules.
Thus [Y51, V4 n Ry] # 1. Suppose that V51 < Vag. Then

()
1 #* [}/21,‘/1 N RQ] < [‘/22,V1 M RQ] < [‘/QQ,E] 2 Y22 N Z(Lg),

which contradicts [Ygl, V1 N Rg] < Ygl and Y21 N Y22 =1.

Thus \72\1 <« ‘72\2 and by symmetry ‘72\2 £ ‘72\1 By every non-trivial proper Ly-submodule
of ‘//; is natural SLs(g)-module. It follows that X//; = V5 x ‘72\2, and 1//2\1 is a natural SLa(¢q)-module
for Ls.

Put E; = Ly/Cp, (‘//;) By 172\1 and ‘72\2 are isomorphic Ls-modules and E; ~ SLy(q).
Since by @) [ViR2/Rs| = g, this gives Vl € Sylp(f;). By there exists X5 € YQL2 with
[X2,V1] = 1. Since Np,(X3) is a maximal parabolic subgroup of L containing V;, we conclude
that Np-(Xz) = NL~2(171) As V3 is the direct sum of isomorphic natural SL(g)-modules, Cg; (V1)
is a direct sum of simple Ny, (X2) submodules (of order ¢), and any simple Ny, (X2)-submodule of
Cy, (V1) is contained in a simple Ly-submodule of V4. Since [)/(\2, V1] =1 and Vs = <EL2> = <)/(\2L2>,
this implies that )/(\2 = C@(Vl) In particular, either )/(\2 = {/; or f/; = )/(\2?;

By |Cv, (V)] = ¢2. Since also |C; (V1)| = ¢*, we conclude that Cy, (V1) = Cg (V1)
Together with [Ya, V4] # 1 this gives E £ C@(Vl). Thus ‘//'; = )/(\232 and Vo = Cy,(V1)Y2. In
particular, since by Cy,(V1) < Van Ry = A, YoRy = VoR;. By symmetry, also Y1 Ry = Vi Ry
and so

Pt = Vi = V5 < Sul,(B3)

By @), Va/A| = |Va/A| = q. Also |Cy, (Y1) = |Cy; (V)] = ¢* and therefore \A/C’@(Yl)\ =q=
[Va/ Al

By [Yar, E] < Yo, so [Ya;, Vi N Ra] < Y. By symmetry also [Yy;, Vo n Ry] = [Y1;, 4] < Y75
Since Y11 n Yio = 1, we get [Y11, A] n [Yi2, A] = 1. By [5.7(c) [V2, Vo n R1] n Z(L3) = 1, and since

~

A = V5 n Ry, we conclude that [ﬁ, Yii] n [A4,Y12] = 1.

~ ~ o~~~ A

h e Ly with [Yi1, A] < A and [Yi2, A] A A" = 1, so [Yi1, A] < A" and [Yia, A] 0 A" < Yy A Z(Ly).
By B.74[b), Y1 N Z(Ls) = 1. Thus

[Yi2, Al n AP <Y1~ Z(Ly) = 1.
On the other hand, (22°) gives C; := Cly;, 41(Q3) # 1. We conclude that 1 # C; < A", Co n AP =1

and Cy « A",
Put U := (Y] n Ry)". Recall that Vo = Oy, (V})Ya, so

A= ‘/2 M R1 = CVQ(Vl)(}/Q M Rl)

Since [Y7, A] # 1, this gives [Y1,Ya n Ry] # 1. By symmetry [Y2,Y; n Rs] # 1. By applied with
1 and 2 interchanged, Cy, (z) = Yo n Ry for all x € V1 n R3\Cy, (Y2) and so Cy, (Y1 n R2) = Yo N Ry.
Thus

Cv,(Y1 0 R2) = Cey, (vi)y, (Y1 0 R2) = Oy, (V1) Oy, (Y1 0 Rp) = C (Vi) (Yo 0 Ry ) = A.

Conjugation by h gives Cy, (U) = A", As C; < A" and Cy € A", this shows that [C7,U] = 1 while
[02, U] # 1.
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By , [Va,Vi n Ry] < Z(Ls). Since Cy < Vo and U < Vi n Ry, we get [Cy, U] < Z(Lo).
Since C7 < Ce(Q3), Q! implies U < Ce(C1) < Ng(Q3), and since Co < Ca(Q3), also 1 # [Co, U] <
C:(Q3). We conclude, again by Q!, that Ng([C2,U]) < Ng(Qs). As seen above, [Co, U] < Z(Ls),
S0

Y1 < L2 < Ng([C2,U]) < Na(Q3).
Since Y1 € Ry = O,(L2) this gives Y5 € O,(Ng(Q3)), a contradiction since Y; is short and so also
Q@-short.
This contradiction completes the proof of [5.11} O

5.12. Proof of Theorem [E:

If Vi < Ry or Vi < Ry, then Theorem [E] follows from

Suppose that V7 € Ry and V5 € R;. Since V; = <Y1L> there exist h; € L; with Ylh1 £ Ry and
Y2h2 € Ry. As also (Y1h1,Y2h2) is a symmetric pair for every hy € L, ho € Lo, we may assume that
Y1 € Ry and Y5 € Ry. Now Theorem [E] follows from






CHAPTER 6

The Tall char p-Short Asymmetric Case

In this short chapter we will show that Y, is char p-tall in G provided that Y, is tall and
asymmetric in G and the centralizers of the non-trivial elements of Y, are of characteristic p. In
other words we show that the tall char p-short asymmetric case does not occur if the centralizers of
the non-trivial elements of Yj; are of characteristic p.

THEOREM F. Let G be finite K,-group, S € Syl,(G), and let Q < S be a large subgroup of G.
Suppose that M € Mg (S) such that
(i) Yar is tall and asymmetric in G.
(ii) Cea(y) is of characteristic p for all 1 # y € Y.
Then Yy is char p-tall.

Proor. By @) Op(M) € Syl,(Ca(Yar)). Since Y) is tall we conclude that there exits a
subgroup L of G with O,(M) < L, O,(L) # 1 and Ya; € O,(L). By R2f]) C(0,(M)) < O,(M).
Since Y); is asymmetric in G, shows that O,(M) is a weakly closed subgroup of G. By
Yu = Z(0,(M)) and so by Hypothesis of Theorem [F| C (y) is of characteristic p for
all 1 # y € \Z(0O,(M)). Thus the hypothesis of is fulfilled and we conclude that L is of
characteristic p. Hence Y, is char p-tall. O

We remark that G = Sym(9) and M = Sym(3)1Sym(3) provides an example for p = 3 where Y,
is tall and asymmetric in G, but not char p-tall. Similar examples occur in Alt(9), Alt(10), Sym(10)
and Alt(11).
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CHAPTER 7

The char p-Tall Q-Short Asymmetric Case

In this chapter we treat the char p-tall Q-short asymmetric case. That is, M € Mq(S), Yas is
asymmetric in G, and there exists a subgroup L such that

(%) L has characteristic p, Op,(M) <L and Yy € Oy(L),

but Yar < Op(Ng(Q)). Here and in the next two chapters the subgroups in H5(O,(M)) introduced
in Chapterplay a prominent role. These subgroups can be seen as being minimal satisfying (). But
the crucial trick is to choose even smaller subgroups by looking at subgroups L < H € ¢(0,(M))
such that L is minimal satisfying Y3 < L and Yy € O,(L). According to the Asymmetric L-Lemma
these subgroups L are in £5(Ya/), see so they have a very transparent structure. For example,
Op(L) = {(Yar 0 Op(L))") and

L/Oy(L) = SLs(q),52(q), q :== |YamOp(L)/Op(L)|, or Da,.
Since Yy is @Q-short we have [Z(0,(H)), H] # 1, see %ﬂund one can investigate the action

of L on quasisimple H-submodules U of 0,Z(0,(H)). By [2.17, W := [U, L] is a strong offender
on Yy, so the action of (WM on Yy, can be investigated via some of the FF-module results from

Appendix [C]

Here is the main result of this chapter.

THEOREM G. Let p be a prime, G be finite K,-group, S € Syl,(G), and let Q < S be a large
p-subgroup of G. Suppose that M € Mq(S) such that
(i) Yar is Q-shortﬂ and Q € M,

(ii) Yas is char p-tall and asymmetric in G.
Then one of the following holds, where q is some power of p and MT := M /Oy (Yar):

(1) M° = SL,(q), n = 3, and Y is a corresponding natural module.

(2) p =2, M =~ O;(2), Sp4(2)’ or Sp4(2), Yar is a corresponding natural module, Ya; =
O2(M), and Ng(Q) < MT. Moreover, (in the O} (2)-case) for all non-singular x € Yy,
Ca(z) is not of characteristic 2.

(3) There exists a unique M-invariant set K of subgroups of M such that Yas is a natural
S Lo (q)-wreath product module for M with respect to K. Moreover,

(a) Y = Op(M).

(b) No(Q) < M.

(c) M° = 0P ((K)Q.

(d) @ acts transitively on K.

(e) If IK| = 2 then q = 2 or 4 and, for all K € K, Ca(([V,A] | A e K\{K?})) is not of
characteristic 2.

Table [I] lists examples for Yy, M and G fulfilling the hypothesis of Theorem [G}

INote that by lEi this is equivalent to Yas < Op(Ng(Q)).
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TABLE 1. Examples for Theorem [G]

Case [Yp,M°] for M° ¢ Remarks examples for G
0 nat SLu(@) 1 Ne(Q) <M Loa()
1 nat SL3(2) 1 Ng(Q) <M Alt(9)
T nat SL4( ) 1 NG Q) < M Mat24
* Pl nat Qj (2) 1 M=0;(2) Alt(10)
D) nat Sp4(2)' 1 - Matgs(.2)
Dl nat Sp,(2) 1 - Matgy.2
B nat SLy(q) 1 - Ls(q)
B nat SLs(2) 1 - Spa(2)’
3 nat SLQ( ) 1 - Mat12
3] nat T'SLy(4) 1 - I'L3(4)
* 3 nat SLy(q) wreath 1 |K|>1 (T")L3(q) 1 2-group, q = 2,4

Here ¢ = Yy /[Yar, M°], and = indicates that (char Ys) fails in G.
7.1. The Proof of Theorem

Throughout this section we assume the hypothesis of Theorem|[G] and use the notation introduced
there. Note that by 2.10] ¢ (0,(M)) # & (for the definition of (O ) see [2.1).
Choose H € (0 (M)) By definition of $H¢(O (M)), Op(M) < H and so we can choose
T € Syl,(H n MT) with O,( <T. By .. ) Op( is a weakly closed subgroup of G, and so
T < Ng(O (M)) < Ng(YM) Thus there exists g € Ng(Op(M)) with 79 < S. Since g normalizes
Op(M) and Yy, H? € Hc(0Op(M)), and replacing H by HY9 we may assume that 7' < S.
LEMMA 7.1. (a) T'e Syl,(H) and Op(H) < T < S <M.
) Yar < 0,(M) <T and Yy < O,(H).
) ( )<91Z(T)<Y]\/IGYH
) [ Z(S),Hl#1, [Yu,H] #1, [NZ(O,(H)),OP(H)] # 1 and Yy = NMZ(O,(H)).
) YM < 0,(Ci(Cy, ().
) Yar 0 Vi = Oy (0p(M)) = Cy,, (Op(H)).

(b
(c
(d
(e
(f
PRrROOF. @) By.. ) H A M is a parabolic subgroup of H and so T € Syl,, (H). In particular,
H) < T. By the above choice T'< S < M and so @ holds.

(B): The first statement is true by choice of T' and the second by definition of (O, (M)).

: By [2.2f[a)) and (]ED7 Cc(0p(M)) < Op(M) and 21Z(0,(M)) = Y. Since Op(M) < T < S
this gives 01Z(T)Q1Z(S) < Yar and

MZ(S) = Cyy, (S) < Cy,, (T) = Z(T).
Thus 21Z(S) < WZ(T) < Y, and by [1.24)(g), :Z(T) < Yg, and (c) holds.
(d): Suppose that [©1Z(S), H] = 1. Then Q! shows that H < C(1Z(5)) < Ng(Q). But then
by -15

2([a) Yas is @-tall, a contradiction.
Hence [2.Z(S),H] # 1. By (d), 9:1Z(S) < Yy and so [Yy,H] # 1. Since by R.11|fd) H is
) holds

Oy(

p-irreducible, implies [11Z(O,(H)),OP(H)] # 1 and Y = 0Z(O,(H)). Hence (d
(e): By () ©.2(S) < Y and so 0Z(S) < Cy,, (T). Put C := Cy(Cy,, (T)). Then
Y < Op(M) < C < Ca(hZ(9)).

By Q!, Co(11Z(S)) < Ng(Q), and by Hypothesis (il) of Theorem |G| (and its footnote) Y <
0,(Ng(Q)). Hence Yy < C n Op(Ng(Q)) < O,(C), and so () holds.

@: Both groups, H and M, are of characteristic p, and by @ and @, respectively, Yy =
MZ(0,(H)) and Yar = 201Z(0,(M)). Hence Cy(0,(H)) < O,(H) and so

Y 0 Y < Cy,, (Op(H)) < WZ(0p(H)) = Y,
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and with a symmetric argument Y N Yy < Cy, (0p(M)) < Yar. Now @ follows. O

According to [7.1{{d) [©:Z(0,(H)),OP(H)] # 1. Hence H satisfies the hypothesis of In
particular, £5(Yar) # & and there exists a quasisimple H-submodule of Y),. We fix the following
notation:

NOTATION 7.2. (a) U is a quasisimple H-submodule of Yy, U = U/Cy(OP(H)), H =
H/Cy(U) and § = |Yas)-
(b) Le SH(YM), W .= [U, L], R .= CYM (L), A= OP(L) and [ € L\NL(YN[).
(c) K is the subnormal closure of W in M, K* := (WM) = (KM) and Y := [Yi, K].

REMARK 7.3. Note that we can apply with (H,L,U,W) in place of (H,L,V,W). In par-
ticular, W is a strong offender on Y.

By definition of £c(Yar), L is Yar-minimal with L n MT the unique mazimal subgroup of L
containing Yar. In particular, O,(L)Ya < L n MT. So O,(L) normalizes Yas, and we can apply
with Yar in place of Y.

We will use these two results, [2.17 and[I.43, frequently.

LEMMA 7.4. (a) If [Op(H), Yar] < [W, Yas] then [O,(H), 0P (H)Ya] = [0, (H), OP(H)] =

S

(b
(c
d

) K = (WK = o

) W< Z(A) S A< Op(H).

(d) A=LnOy(H) and Yy n A=Yy n O,(H).

(e) Cyy(A) < CYM( ) =Ca(Yn) =Yu nA=[y, A]JR = Ca(y) for every y € Ya/\A.
(f) Op(H) normalizes K, Q and any perfect K-submodule of Y.

PROO (a): Suppose that [O,(H), Y] < [W,Ya]. As W < U < H this gives [Op(H), Yar] <
U. By <YH> OP(H)Ypr, and since U is H-quasisimple, U = [U, H| = [U,OP(H)]. So
= [U,07(H)] < [Op(H),07(H)Ya] = [Op(H),{Y31)] < U.
and @ holds.
(]E[): Since K is the subnormal closure of W, this follows from m

: By 2.17([b) W < Z(A) and A < O,(H).

(d): Note that A < L nO,(H) < Op(L) = Aand so L nO,(H) = A. Since Yy < L we also get
YM NA= YM @) Op(H)

@: By [1.43(lg) applied with Y =Yy, and B = A,
YynA= CA(YM) = CA( ) = [A y]CYM( ) [Avy]R

for y € Yas\A. Since L is p-minimal, L is p-irreducible. Also [W,OP(L)] = W # 1, and [1.34|[a) gives
Cyy (W) =Y nOp(L) = Yy n A. Since by . ) W < A, Cy,,(A) < Cy,, (W).

({): Since W < U < Yy, Op(H) centralizes W. As Op(H) < T < S < M, we get O,(H)
Ny (W). Hence Op(H) normalizes the subnormal closure K of W in M. Since O,(H) < S, O,(H)
also normalizes ().

Let X be a perfect K-submodule of Y, and let h € O,(H). Since X < L, X normalizes W
and since W < K, W normalizes X. So [X,W] < X n W < Cx(h) < X". Since h normalizes K,
K normalizes X". Also K = (WX) and thus X = [X, K] = [X,(WK)] < X" andso X = X". [

N

LEMMA 7.5. (a) R = Cy,(H). In particular, RnU = Cy(H).
(b) U Yar = [W,Yy](U A R) = [U,Yar](U A R).

() W A Yar = [W, Y] and W A R = [W, Yas] A R.

(d) Cu(Ym) =U n Op(M) and Cy(Op(M)) =U n Y.

(e) Cr(Q9) =1 forallge .

(f) Ca(M°) =1. In particular, Cy,, (M°) =

(8) Cr(U) = Cr(U) = Oy(H).
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ProoF. (@): By ), Cvy (Op(M)) = Yar A Y = Cy,, (Op(H)). Since O,(M)O,(H) < H
this gives CYH( ) CYHHYM( ) = CYM (H)

By [2.17] H = {0p(M), L). Recall that R = Cy,,(L) and both O,(M) and L centralize R.
Thus R = CyM( , and (@) holds.

(]E[): Since B := U n A is an L-invariant subgroup of A, [1.43|(g)) gives
Bn YM = [B,YM]OBQYM (L) = [B,YM](B M R)

Note that U n Yar < O,(H) n Yp and by , OpH)nYy = AnYy. SoUnYy =
Un(AnYy) =BnYy. ByR17|) U = WCy(Ya). Since W < Un A = B < U this gives
(W, Yym] = [B,Yu] = [U, Yu], and so (b)) holds.

: Recall from Notation [7.2(b) that [ € L\Ny(Yas) and so by [L.42f) L = (Yas,Y},). Since
W = (U, L], shows Cyw (Yar) = [W,Yy]. Thus W n R = Cw (L) < Cw(Yar) = [W, Y] and so
WnR=[W,Yy]nR.

(d): Note that U < O,(H) < S and by ) Cs(Yar) = Op(M). Thus Cy(Yar) = U 0 Op(M).
Also U < Yy, and by [7.]] -., Cy, (Op(M)) =Yu nYa. So C’U(O (M)) =U n Yy, and holds.

@: Assume that there exists g € G such that Cr(Q9) # 1. By @ H centralizes R and so
also Cr(Q7). Thus by Q!, H < Ng(Q9), and by [2.12|(a]) Y, is Q-tall, a contradiction, since Yy is
Q@-short by Hypothesis (i) of Theorem

(f): By Hypothesis (i) of Theorem [G] @ <t M. Thus M° # Q and [L.55|{d)) implies C;(M°) = 1.
(g): Since U is quasisimple, U is a non-central simple H-module. Thus [ﬁ,OP(H)] # 1. By

2.11|(e) H is p-irreducible, and so [L.34{fa]) gives . O

LEMMA 7.6. Put Hy := (Y}F).

(a) U is a non-central simple Hy-module, and U is a quasisimple Hy-module.

(b) PutK:= EndHD(A). Then K is a finite field and O, (M) and H act K-linearly on U.

© Cu®) = Cu(@). )

(d) Suppose that O ( ) < Hy. Then H = HyCy(U) = HiCu(U) = HiOp(H) and U n R =
Cu(OP(H)).

() Cg(Ho) < Hy.

Proor. By R1Ijd). (), B = 07(m)0,(M) and vi,0r(H) = vy = (vl = Hy. So
Hy = (Y,[l°), and since U is a non-central simple H-module, Cy, (HO) =1.
Note also that [U, Yar, O, (M)] < [Yar,Op(M)] = 1 and so [U, Yy] < Cp(Op(M)).

(@) Let I be a snnple Hy-submodule of U. Since U is a simple H-module with [U H] #1
and Hy < H, also [I Hy] # 1, and since Hy = (Yo, [I Y] # 1. Hence also C; (O (M)) # 1,
and since distinct simple Hp-submodules have trivial intersection, O, (M) normalizes I. Thus I is

invariant under HoO,(M) = H, and since Uis a simple H-module, I =U. Since U is a perfect
H-module and OP(H) < Hy, U is a perfect Hy-module. As Hy < H and U is a p-reduced H-module,
U is a p-reduced Hp-module. Hence U is a quasisimple Hy-module, and @ holds.

@: Since by @) Uisa simple Hy-module, Schur’s Lemma shows that K is a finite division ring
and so by Wedderburn’s Theorem a field. Since H normalizes Hy, H acts K-semilinearly on U. Note
that [ﬁ , Y] is a non-trivial K-subspace of U centralized by Op(M). Thus O,(M) acts K-linearly
on U, and since H = HOO (M), also H acts K-linearly on U.

(: By 8l Ccr(@) = Op(H) < Cu(U). Also [U,Cu(0)] < Cy(OP(H)) and therefore
[U,07(Cy (U ))] ~ 1L Thus Cr(0) = OP(Cy(0)Cr(T) < Cp(U) < Cpr (D).
@: Suppose that O,(M) < HoCy(U). Then H = HyO,(M) = HoCy(U), and by also
)

H = HyCy(U). Hence O,(M) < T < (T n Ho)Cr(U). By [7.5(lg) Cr(U) = O,(H) and so
Op(M) < (T ~ Ho)Op(H). This shows that H = HyOp(M) = HoOp(H), and the first part of (d) is
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proved. By R.17(d)), Cv (OP(H)) = Cy(Hy). Since H = HyCy (U), Cy(H) = Cy(Hy) and by [7.5(),
Cy(H) =U n R. Thus Cyx(OP(H )) UnR.

(EI): By (d) H = H/Cy(U A) Since U is a simple Hy-module we conclude that C~(H0) is p/-group.
As H = HyO,(M), H/H, is a p-group and so Cﬁ(Ho) < H,. O

LEMMA 7.7. (a) Cy,,(K)n Cy,, (Q) = 1.
(b) Co, ) ((K?)) =1.

PROOF. @ Suppose for a contradiction that Cy,, (K) n Cy,, (Q) # 1. Then by K <
N+7(Q), and by |A.54] m K acts faithfully on X := Cy,,(Q). In particular, [X, K] # 1 and since
K = (W) also [X,W] # 1.

Suppose first that |[X/Cx (W) > 2. Then 2.17|f) shows that [W,Yy] = [W, X] < X. Using
K = (W) this gives [K,Yy] < X = Cy,, (Q) and [Yas, K,Q] = 1. Since K # 1, this contradicts
ASA().

Hence |X/Cx(W)| = 2. By [T4d), () A < Op(H), and Op(H) normalizes Q and K. In
particular, A normalizes @) and K, and so

(1) [K A< K and [X,A]<X
Choose y € X\Cx (W). By[T4[d), W < Z(A). Soy ¢ A, and-@ gives Yyy n A = Cy,,(W) =

[y, A]R. Also by [7.5(é), Rn X < CR(Q) =1 Note that Cx(K) = Cy,,(K) n Cy,,(Q) # 1, and by
() [y, A] < [X, A] < X, s0

1#Cx(K) <Cy,(W)n X <[y,A]JRn X = [y, Al(Rn X) = [y, A].
By LR
A' = [Yar 0 A, A] < Oy, (L) = R.

On the other hand [Yyy n A4, A] < [XR,A] = [X,A] < X andso A’ = [YyynA,A] < RnX =1.
Thus A is abelian and so [y, A] = {[y,a] | a € A}. As 1 # Cx(K) < [y, A] we can choose
a € A with 1 # [y,a] € Cx(K). From Cx (W) < Cy,,(W) = Yy n A we also get [Cx (W), A] =
1. Since | X/Cx(W)| = 2, X = {(y)Cx (W), and it follows that [X,a] = ([y,a]) < Cx(K) and
Cx(a) = Cx(W). By (I) [K, A] < K, and so K, a] centralizes the factors of the K-invariant series
1 < Cx(K) < X. As X is a faithful K-module we get [K,a] < O,(K) < O,(M) = 1. The
Three Subgroups Lemma now shows that [X, K,a] = 1 and [X, K] < Cx(a) = Cx(W). But then
[X,K,W] =1, and since K = (W) [X, K, K] = 1, a contradiction since K is not a p-group and
acts faithfully on X. This completes the proof of (ED

@: Put Ky := OP((K?)) and C := Co, () (Ko). Since K is subnormal in M, Op(M) nor-
malizes OP(K) and thus also Ky and C; in particular C' < O,(M). Assume that C # 1. Then
CnZ(0,(M)) # 1, and since 0:Z(0,(M)) = Y, also C nYy # 1. On the other hand, {Q, K)/Ky
is a p-group, and so C' N Yy # 1 implies Cony,, ({Q, K)) # 1. This contradicts @ Hence C =1,
and (b)) holds. O

LEMMA 7.8. Let 1 # X < R and suppose that
OpCa(X) =1 o [Cry(Op(Cyr(X)), W] # 1.

Then Cq(X) is not of characteristic p.

ProOOF. Note that O,(C37(X)) = 1 implies Yas = Cy,, (Op(Cy7(X))). Thus, also in this case
(%) [Cya (Op(C37(X))), W] # 1.
Put P := 0,(Cg(X)). Since R < Yy, X < Yy and O,(M) < Ce(X). Hence shows that
M n Cg(X) is a parabolic subgroup of Cg(X), and so P < MT. Thus P < O,(Cy(X)). As
MY = MCq(Yy), M = MT and so P < O,(C37(X)). Hence Cy,, (0,(C57(X))) < CyM( ). Now
(%) implies [Cy,, (P), W] # 1. By [7.4{le) Cy,,(W) =Yy n A, and so Cy,,(P) £ A = O,(L).
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As X < R = Cy,, (L), L < Cg(X), and since Cy,, (P) € Op(L), Cy,,(P) £ Op(Ce(X)) = P.
Thus C¢(X) is not of characteristic p. O

LEMMA 7.9. Suppose that Ng(Q) < Ng(Yar). Then there exists t € A\Ca(Yar) such that
[Cp(t), L] < A for all p-subgroups D of M with [Yar, D] < A.

Proo¥. By [TH|d), 01Z(S) < Yar n Yy < Yar 0 Op(H), and by [7.4(d), Yar 0 Op(H) = Yar 0 4,
so MZ(S) < Cy,na(Q) # 1. Let I € I\NL(Y) and choose 1 #te Cy,nal@ l. By ..

Cr(Q"Y) =1,s0t ¢ R. Since L = (Y}, Yyr), this gives [t,Yay] # 1. By Q!, Ca(t) < Ng(Q ), and
as Ng(Q') < Ng(Y},), Cg(t) normalizes Y},. Since D normalizes Yy, Cp(t) < No((Yar,Y})) =
Ng(L). In particular, Cp(t) acts on Y}, A/A, and since Cp(t) is a p-group, we can choose h € Y}, \A
with [h,Cp(t)] < A. By [L43|) Nr(Yar) n Yl < A. So h ¢ Ni(Ya) and L = (h,Yar). Since
[Yar,Cp(t)] < Yar n A< A and [h,Cp(t)] < A this gives [L,Cp(t)] < A. O

LEMMA 7.10. Suppose that Yy is an offender on W. Then Yo € Sylp(f/), and both, W/W n R
and W, are natural SLo (§)-modules for L.

PRrROOF. By Cwwnar(L) = 1. Also W = [W,0P(L)] € W n R and [W,0,(L)] = 1.
Hence [1.34{(b)) shows that W and W /W n R are p-reduced for L and Cy,,(W/W nR) =Yy n A=

Cy,,(W). So Yus is an offender on W/W n R. Since L is Y/-minimal, shows that W/W n R
is a natural SL;(q)-module for L/A and Yy A/A € Syl,(L/A). By [14({d) A = L n Oy(H), so

L =LO,(H)/O,(H) = L/A and Yy € Syl (L).
By 2.17e) W A R = W ~ Cy,, (L) = Cy (OP(H)). Hence W~ W /W n R and so also Wis a
natural SLs(q)-module for L, and the lemma is proved. O

LEMMA 7.11. Suppose that Yy is an offender on W. Then one of the following holds:
(1) U is natural SLs(§)-module for H, Yy = O,(M) = Cq(Ym), M = M, Ng(Q) < M,
H=LandU=W.
(2) U is a natural SLy,(§)-module for H, m >3, U AR =1 and Yy = Z(T) is a transvection
group on U.

PRrOOF. Since Y}, is an offender on W, shows Y, € Sylp(z) and W is a natural SLy(q)-
module for L. It follows that
Cupy) =Cxr(Ya)  and  [W,y] = [W, Y]
for all y € Y/ \Cy,, (W). Also |§/\]\;| = |q~| |I7I\//C’A (Yar)| and so Yy, is a root offende on W. By

2.1;|(c , U =WCy(Yar). Hence U=wc; o (Yar). Tt follows that Yas is a root offender on U. By
A.37|[b) any root offender is a strong dual offender Thus

1°. Yur is a strong dual offender and a root offender on U.

Put Hy := (Y{l) and K := Endy, (U) By [7.6/(al) U is a non-central simple Hy-module. Hence
we can apply the Strong Dual FF-Module Theorem and get:

2°. One of the following cases holds:

A) HO ~ Alt(7), p=2, and U is a spin module of order 24 for H.

B) HO ~05.(2),m=>2andp=2, |Ya| =2, and U is a natural OQm( )-module for Hy.

C) HO ~ SLy(q1), m =3, and U is a natural SL, (g1)-module for H.

D) Hy = Spgm(ql), 1, or Spa(2)’ (and p =2), and U is a corresponding natural module
for HO

(E) ﬁo ~ Sym(m), m =25, m # 6 and p = 2, and U is a natural Sym(m)-module for ﬁa.

(
(
(
(

=
=

2For the definitions of a root offender and a strong dual offender see li 7(EI)
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Note here that Alt(6) = Sp4(2)" and a natural Alt(6)-module is also a natural Sp,(2)’-module.
Similarly, SLa(q1) = Sp2(q1), and a natural SLs(¢q)-module is also a natural Spz(g;)-module. So
these two cases are included in Case @

Suppose that Case holds. Then Hy =~ Alt(7) and |U| = 2. Since Alt(7) is a maximal
subgroup of Alt(8) =~ GL4(2) and Hy < H, we conclude that H = Hy =~ Alt(7). It follows that
there exists a proper subgroup P of H with Oy(M) < P and P =~ Alt(6). Note that Oy(P) = 1 and
s0 Yar € Oy (P). Hence also Yy, € Oy(P). Since H € $¢(O2(M)) this contradicts the definition of
H6(02(M)).

Suppose that Case holds. Then U is a natural 05,,(2)-module for Hy and |?J\;| = 2. Since
Yy < T and [ﬁ,YM] = 2 we conclude that [ﬁ,YM] < Cp(T), a contradiction since [ﬁ,YM] is
non-singular and Cp(T') is singular by and respectively.

Suppose that Case holds. Then U is a natural SL,, (q1)-module for Hy, m > 3. Recall that
K = EndHo(ﬁ). Hence K is a finite field of order ¢;, and by
Since GLy,(q1)/SLm(q1) is a p’-group this gives m) < Hy. So

H = HyCy(U) = H)Cy(U) = HyO,(H).

Since Yy < T we can choose y € Ya\Cy,, (U) with § € Z(T'). Note that Z(T) is a transvection
group. So [U,y] and U/Cy(y) are 1-dimensional over K and

2(T) = C([U,y]) n C3(Cp(v)).
By YM is a root offender on U. Thus [U,Yy] = [U,y] and Cy(Yn) = Cp(y). It follows
that Yy, < Z(T), and since Yj, is an offender on U, Yy = Z(T), Yy, is a transvection group, and
a1 =|2(T)| = Yu| =7
Suppose that Cy(H) # 1. Since U = [U, H] and Y}, is a offender on W and so on U,

shows that U is a natural SL3(2)-module for H and |i/\1\2| = 4, a contradiction to 2 = ¢; = § = |Yu|.
Thus Cy(H) =1, U is a natural SL,,(g)-module and U n R = 1. So holds in this case.

For the remainder of the proof we can assume now that Case @ or holds. We show next:
3°.  H = HyO,(H) = HCy(U) = HCy(U), and one of the following holds:

(i) U is a natural SPou, (G)-module for H, m =1, and Y acts as a transvection group on U.
(ii) p = 2, U is a natural Sym(m) module for H, m =5 and m # 6, and Yy is generated by
a transposition of H.

Suppose that Case @ holds, so U is a natural Spam(g1)-module, m = 1, or Spy(2)-module for
Hy. By 7 H acts K-linearly on U. Note hat K is a field of order ¢1 and the set of Hy-invariant
symplectic forms on U form 1-dimensional K-space. Since O,(M) acts K-linearly on U and is a p-
group, we conclude that O, (M) acts trivially on this K-space. So any Ho-invariant non-degenerate
symplectic form on U is also Op(M)-invariant.

Let X = Cp(T) and P = Cy(X). Note that X is a 1-dimensional singular K-subspace of U and
[X*,0,(P)] < X, cf. [B-23|(g) and [B-2§|[b:b). Since O,(M) < T < P < H and H € $(0,(M)) we
have Yy < O,(P). Suppose that [X+,Yy/] # 1. By Yy is a strong dual offender on U and so
[U,Ya] = [X*,Yar] = X. But then Cp(Yar) = [U,Yar]* = Xt contrary to [X*,Vas] # 1. Thus
[X+, Y] = 1. Hence

@ = |U/X*] = |U/Cy(Yar)| < [Yar| < |CH’“0(XL)‘ <qr-

Thus Yy, is a transvection group on ﬁ, and ¢ = |/Y\]\_4/| = ¢. Moreover, since Sp4(2)" does not
contain a transvection, Hy = Span(q). As Op(M) fixes the Hy-invariant symplectic forms we get
O/p_(\]\i)) < Hp. Now shows that the first statement of holds. In particular, H = Hy and
holds.
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Suppose that Case holds, so U is a natural Sym( ) module for Hy, m > 5 and m # 6,
and |YM| = 2. Since |YM| — 2 and Yj; is an offender, Y, is generated by a transposition. Note
that Out(Sym(m)) = 1 since m # 6. Hence O, (M) induces inner automorphisms of Hy. Bylr ,
Cﬁ(]‘f@) < Hp and thus 0,(M) < Hy. Now @) shows that the first statement of lb holds.
Thus H = I/%, and follows. This completes the proof of .

4°. UnR= C’U(OP(H)). In particular, U = UJU  R.

By [15f) U n R = Cy(H), by %) H = HoCu(U), and by RI7d) Cu(Ho) = Cu(OP(H)).
Hence U n R = Cy(Hy) = C’U(Op( ))

Let Z; be maximal in U n Op(M) with [Z, O,(M)] < U n Yy and put E := [Z, O, (M)].

5°. 2; and E are K-subspaces of ﬁ, E < [ﬁ,YM], [ﬁ,YM] is 1-dimensional, and E is at
most 1-dimensional over K.

By |7 (EI) UnYy = [U Yu](U n R). Since by (4 U U/U n R, it follows that UnYy =
[U Yu] is a K-subspace of U,andas U N R < U n Y, Z2 is maximal in U with [2270 (M)] <

Un Y, YM By |7 , M) acts K- hnearly on U and so Zg is a K- subspace of U. Hence also
E= [ZQ,O (M)] is a K—subspace of U. By definition of E and Z,, E = [ZQ,O (M)] < UnYy =
[U Y]

Since by i’}/[/ is a transvection group (in the Spa,(g)-case) or generated by a transposition
(in the Sym(m)-case), [U,Ya] is 1-dimensional over K.

6°. EnR=1.

If U N R = 1 then also E N R = 1. So we may assume that U n R # 1. Suppose first that
Case holds, that is, U is a natural Sp,,, (§)-module. Note that Cyy(H) = U n R # 1 and
U= [U H] Thusshows that p = 2, and U is a central quotient of a natural Qg,,+1(¢)-module
U for H. For X € U, let X be the inverse image of X in U. Since Zy < U n Oy(M) = Cyy(Yar),

ZQgUﬂOQ(M)<C’\( ):[UYM] .

As [Za, 05(M)] < [U, Yay] this gives [Z2, Oo(M )] Zg Hence by.' ZQ,OQ ]is a singular
subspace in U. Since all the non-trivial vectors in U~ are non-singular, this gives [Zg, O (M)] AU+ =
1. Taking images in U gives EnR=FEn (UnR) = 1.

Suppose next that Case holds, that is, U is a natural Sym(m)-module. Since Un R # 1,
shows that m is even and U is the even permutation module for Sym(m). Let U be the
permutation module for H with H-invariant basis vy, ..., Um. Identify U with [U, H] = (v; + vj |
1 <i < j < m)such that Yas acts as {(1,2)). Put P := NH(YM) Then P =~ Cy x Sym(m — 2),

UnOxy(M)=Cu(Yu) =1 +v2,v,+v; |3<i<j<m)
and
[UnO(M),P]<{vi+v; |3<i<]j

Thus [UnO3(M), Pln R = 1. Since Zy < UnO2(M) and Oz(M)
[UnN Oy(M),P] and so En R = 1. Thus is proved.

my.

<
< P we have E = [Z5,02(M)] <

7. E=1.

Suppose that £ # 1. Note that £ < Yy, W < U, K* = <WM> = (KM and by
Co,(m)({K?)) = 1. Hence Cy,, (K*) = 1. It follows that [E,U9] # 1 for some g € M. By definition
of Zy and E, [Z3,U% n Op(M)] < [Z2,0,(M)] = E. On the other hand Z, < U n O,(M) <
O0,(M) = 0,(M)? < H9 and so Z, normalizes UY. Since UY is abelian we have

[U9 ~ O,(M), Zy] <U? n E < Cg(U?) < E.
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As by R n E =1, this gives
[U9 ~ O, (M), Z] < E.

Since U9 n O, (M) acts K-linearly on U and Zs is a K-subspace of U, also (U9 nOp(M), 2;] is
a K-subspace of U. As by E is at most 1-dimensional over K, this gives [U9 N 0,(M), 2;] =1
and [U9 n O,(M),Zs] < RN E =1.

We now shift attention to HY and the H9%-modules U9 and U9 := U9/Cyq(OP(HY)). Ob-
serve that O,(M) < HY since g € M. From [U9,0,(M)] < U9 n O,(M) we conclude that
[U9,0,(M),Z3] =1 and so also [[7\9 0,(M), Z3] = 1. Since U9 is selfdual as an HY module,
shows [(/]\9 ZQ,O (M)] = 1, and the Three Subgroup Lemma gives [E, U9] = [Z3,0,(M), (/]\9] =1.
By Cr(U) = Cp(U), and thus also Cre (U9) = CTg(Ug) so [E,U9] = 1. This contradicts the
choice of g. Hence . ) holds.

8°. UnOp,(M)=UnYy.
By , [Z2,0,(M)] = E = 1. By the definition of Z5 this means
Cuno,(00)0aYy (Op(M)) = Z2/U 0 Yy =1,
and so U n O,(M) =U n Y.

We are now able to prove the Lemma. From we have, [U, O,(M)] < UnYy < Y, and since
W <Uand K = (WK [K,0,(M)] < Yy = Q.Z(0,(M)). Thus, gives [0(0,(M)), K] = 1
and so also [®(0,(M)),(K?)] = 1. By [1.7Y{b), Co, ) ((K?)) = 1 and so ®(0,(H)) = 1. It follows
that O,(M) is elementary abelian. Hence O, (M) = :Z(0,(M)) = Yas. Since M € L&(S) we have
v < Cg(0p(M)) < Oy(M), and so Cg(Yar) = Yar and MY = MCq(Ya) = MYy = M. Since
Y is @-short, Op(M) = Yar < @, and since by R.6|[b) O,(M) is a weakly closed subgroup of G,
No(Q) < No(0y(M))) < M' = M. N
Also by [2.17a) H = (L,0,(M)) = (L,Ya) = L and so U = W. By W is a natural
SLy(q)-module for L, and so Case of the lemma holds. O

LEMMA 7.12. Suppose that there exists a non-degenerate K*S-invariant symplectic form on
V = [Yur, K¥]. Put Hy := (Y;F).
(a) Yy = VCy,, (W) and Cy,,(W) = Yy n A; in particular [V,W] = [Yar, W] and Cw (V) =

(W= W/Cw (V)| =[[V,W]| = [V/Cv(W)].
A=W xR, Cy,,(W)=[V,W|xR, [Yu,O0,(H)| = [V,W], [O,(H),OP(H)| =U, and W
is a natural SLoy ((}') -module for L.
) Cvy(W) = [V,W]+ =[V,W] x (VA R), and [V,W] is a singular subspace of V.
(8) VI =W}V R
(h) Ca(Yar) = Op(M) = Yar = VR, M = M and Na(Q) < M.
(i) H = LandO( )=Yg=A=W x R=Cr(W).

)

¢) V and Yy are root offenders on W.
)
)

PROOF. Since V carries a K*S-invariant non-degenerate symplectic form, V is selfdual as an
F,K*S-module. By [2.17|(c), W is a strong offender on Yj; and so W is also a strong offender on the
submodule V' of Y);. Since V is selfdual, shows that W is a root offender on V. In particular,

by [A.37
@ W, V][ = [V/Cy(W)| = [W/Cw(V)].
@: Since W is an offender on Yas, |Yas/Cy,, (W)| < |[W|, and (1) yields
[Yar/Cya (W] < |W| = [W/Cw (V)| = [V/Cy (W)| = [VCy,, (W)/Cryy, (W)| < [Yar/Cy, (W)
Thus Y = VCy,, (W), and [7.4] -(ED gives Cy,, (W) =Yy n A.
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(]ED: We already know that W is a root offender on V. Since Yy = VCy,, (W) by @, W is also
a root offender on Y),.

(): Since W is a root offender on V, shows that V is a root offender on W. Since
Yy = VCy,, (W), also Y is a root offender on W.

@: By @) Cw (V) = Cw(Yn), and so |[W/Cw (V)| = [W|. Now @ follows from .

(e) and (f): By () [Yar, W] = [V, W]. Let w € W\Cyw (V). Then by[L.43i), [w, Yar]nCy,, (L) =
1. By V' is a root offender on W and so by , V' is a strong dual offender on W. Thus
[w,V] = [W,V], and we conclude that [W,V] n R = 1. By|7.5(d), W n R = [Ya, W] n R. Since
[Yar, W] = [V, W], this gives W n R = [V,W]n R = 1. By H Y is an offender on W, so
shows that W = W/W n R is a natural SLy(g)-module for L.

By (&) Cy,,(W) =Yy n A, and we conclude that

VAaAd=Cp(W)=[V,W]*
As [V,W] <V n A, this implies that [V, W] is singular.
By [L.43|fa]), A" < Cy,,(L) = R and so
[A,VANAIn[W, V]S Rn[W,V] =

v
Hence there exists a subgroup Vp of V.n A with [A,V n A] < Vp and V n A = [V, W] x V. Note
that A normalizes V, and so also Vg-. From Vo n [V,W] = 1 we get V = Vg-[V,W]+. Since
VnA=[V,W]* this gives V = V5H(V n A). Also

[A VG <V n[AVISVE a(Vad) =V n VW] = (W + [V.W])*
=(VnA*t =[v,wH = [V, W] < W.
Since V = V5-(V n A) and Yy = VCOy,, (W) = V(Yar n A) we have Yy < VA < Vit A, and so
[A, Y] < [A, V5 A] = [A, ViH[A, A S WA < WR

From L = (Y;) we conclude [A,L] < WR. By L has no central chief factors on A/R and
so A=WR, and since W n R=1, A=W x R. In particular, A is abelian.

Note that [W, V] < WV < W nYy < Cw (V). Since W is a natural SLs(¢) module for L
we have [W,V] = Cw (V) and so [W,V] = W nV =W nYy. Recall that Cy,,(4) = Yar n A,
A=W x Rand R <Yy n A. Hence

Cy,y(W)=YynA=YunW)R=[V,W] x Rand Cy(W) =[V,W]n(RnW).
Since A < WR < UR we have [4,0,(H)] = 1. In particular, V n A < Cy(O,(H)) and so
[V,O,(H)] = Cv(Op(H)) < (V 0 A)* = [V, W].

Since by @) Yu = V(Y n A) we get that [Yar, Op(H)] = [V, W] = [Yar, W]. Hence, (ED and @
are proved.

(@): By @ cv(w) = [V,W] x (V o R) and by (d) [W] = |[V,W]| = [V/Cy(W)|. Thus
V| = [V/Cy(W)||Cy(W)| = W[V A R].

(]}_—1[) and : Since Y)s is an offender on W, we can apply We now treat the two cases
arising there separately.

Case 1. Suppose that holds ((7 is a natural SLo(q)-module for H ).
According to we have
Vi = Op(M) = Ca(Yar), M=M', No(Q) <M, H=L, U=W.

Then O,(H) = O,(L) = A, and by @ AnYy =[W,Yy]Rand A=W x R<Yy,s0 A=Yy
follows. By (&) Cy,, (W) = [V,W]R, so (@) implies

Yar = VCy,, (W) = V[V,W]R = VR.
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Since H is of characteristic p and A = O,(H), Cu(A) < A. As Ais abelian, Cy(A) = A. By|7.5(4),
R = Cy,(R) and so H centralizes R. Thus

CL(W)=Cyg(W)=Cyg(WR)=Cg(A) = A=WR.
Hence (h)) and (i) hold in this case.

Case 2. Suppose that[7.11[3) holds.

According to {i U is a natural SL,,(¢)-module for H, m > 3, and Yar is a transvection
group on U. Our goal is to derive a contradiction in this situation.

Put H; := OP(Cy(Ya n A)) and B := (VH). We show:

1°. Cyyna(Q) # 1. In particular, Hy < Ng(Q).

By (@) Ya n A = Cy,, (W). Note that W < S and Q < S. Thus 1 # Cy,, (S) < Ya n 4 and so
Cyyna(Q) # 1. Then Q! implies H; < Ca(Cy,,~a(Q)) < Na(Q).

2°. B/B n Op(H) is a non-central simple Hy-module and B n O,(H) = Cp(Hy).

By ([ Yu n A = [W,Yy] x R = [U,Yy] x R and by [T.B|f) [R,H] = 1. Hence H; =
OP(Cu([U,Ya])). Since Yas acts as a transvection group on U, [W, Y] = [U, Yas] is a 1-dimensional
K-space, where K := Endy (U). Note that U/[U, Y] and Cx(U/[U,Ya]) are natural SL,, 1(q)'-
modules for H; dual to each other. In particular, H; acts simply on C3([U, Y ]) and Cz([U, Yui]) =
O,(Hy). As

1# Yy =V < Cx([U,Yn]) = Op(Hy),
the simple action of H; gives B = Op(Ifi). Since B/B n Op(H) = B the first statement in
holds.

As Hj acts simply on U/[U, Y)/] and centralizes [U, Yys], we have

Cu(B) = [U,Yu] = Cy(Hy).

Since Yy is @Q-short, Y < Op(Ng(Q)). Also S < Syl,(Ng(Q)) and so O,(Ng(Q)) < S

and Yy < O,(Ng(Q)). Now shows that <Y]\]/[VG(O”(Q))> is abelian. Since V' < Yjs and by

[I°) Hi < N¢(Q), we conclude that B is abelian. Moreover, by (a) Yar = V(Yar n A) and so
[U,Yr] = [U, V]. Hence

[U,Yy] =[U,V]<Un B<Cy(B) = [U,Yy] = Cu(Hy)

and so U n B = Cy(Hy).
By (d) [Op(H),0P(H)] = U. Since Hy < OP(H) this gives [O,(H), H;] < U. Thus

[BnO,(H),H]| <U n B < Cy(H),

and since Hy = OP(Hy), B n O,(H) < Cp(H1). Since B/B n O,(H) is a non-central simple H;
module, Cp(H;) < B n Op(H) and so holds.

3°. [V,W,Q] = 1. Moreover, Q = Q9 for all g€ M with Cy,,~a(Q9) # 1.

Let g € M with Cy,,~a(Q7) # 1. Suppose for contradiction that [V, W, Q9] # 1. Then
gives [V* Q9, W] # 1, where V* is the Fj-dual of V. Note that V is a selfdual K*Q-module and
so also a selfdual K*Q9-module. Since WQ9 < K*Q9 we conclude that [V,Q9, W] # 1. Hence
[V,Q9] € O,(H) and so also [B, Q7] # O,(H).

Note that [Hy,Cy,,~a(Q9)] = 1 and Q! show that H; normalizes Q9. Since Q9 normalizes
V, we conclude that Q9 normalizes V" for any h € H;. It follows that Q9 normalizes B, and H;
normalizes [B,Q9]. By H, acts simply on B/B n Op(H) and Cp(H1) = B n Op(H). As
[B,Q9] £ B n O,(H) this gives B = [B,Q7]|Cp(H1). Hence [B, H,] < [B, Q7] and H; normalizes
[B,Q9]V. Thus

B =V =[V,H]V < [B,Q7]

and B/V = [B/V,Q9], so B = V. But since m > 3, V < Y # Op(ffﬁ) —Bandso B#V,a
contradiction.

We have proved that [V, W, Q9] = 1. But then also [V, W, Q] = 1, since by Cyyna(Q) # 1,
and so 1 # [V, W] < Cx(Q) n Ce(QY). Hence gives Q = QY and is proved.
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4°. Put q :=JW|. Thenq=q, W =Q =U, K = K¥ = M° = SLy(q), and V is a natural
SLs(q)-module for K.

Let g € M with Q # Q9. Then shows that Cy,,~a(QY) =
[V,IW9,Q9] = 1. Since [V, W] < Cy (W) =V n A, this gives

(I1) Cy(W)n VWP <Cy(W)nCy(QY) =V nAn Cy(QY) =1 for all g e M\Ny (Q).

In particular, |Cv(Q9)] < |V/Cv(W)]. By (d), |[V/Cv(W)| = |[V,W]], and so |Cv(Q?)| < [[V, W]].
Since by [V,W] < Cy(Q). we conclude that |[V,W]]| < |Cy(Q)| = |Cv(Q7)| and so [V, W] =
Cv(Q). Now Q! shows that Np([V,W]) = Ny (Q). Hence gives Cy (W) n [V,W]9 =1 for all
g€ M\Nun([V,W]).

Since [Yar, W] = [V, W] we have V = [V, K*]. Moreover, by (b) W is a root offender on V.
Hence M, D := W' and V satisfy the hypothesis of We conclude that V is a natural SLo(q)-
module for K*. Moreover, [W| =g = |[W,V]| = §. As [V,W,Q] = 1 and Ny ([V, W]) normalizes
Q, Q = W. Hence

—_

and [V,W,Q] = 1. So also

I < _KE.
Mo =(Q =W >=K*=K.
By [2.17)c) U = WCy (Yar). Hence U = W, and holds.
5.  O,(H) =Yy =U, Cy(U)=U and H/U = SLy(q).

As R < Cy,, (W) and by W =@, [RQ] =1 By[r.5), Cr(Q) =1, and so R = 1.
Hence by [7.5(fa]) Cy, (H) = R = 1. Since Yy = 01Z(0,(H)) by [7.1{{d), this gives Co ) (H) =

Co,m)(OP(H)) = 1. By (h)),
[Op(H),OP(H)] =U < Yg = WZ(0,(H)),

and yields [®(O,(H)),O0P(H)] = 1. Hence ®(O,(H)) =1 and Op,(H) = 0Z(Op(H)) = Y.

By (4°) V is a natural SLs(g)-module for K* and ¢ = |W|. Since Yy centralizes the F,-
subspace [V, W] of Yy we conclude that Yy acts Fy-linearly on V. Hence Yy < K*, Yy =W =U
and Yg < UCp (V). Thus Yy = Oy, (V)U and V is an offender on Yz. Hence shows that
Yy = UCy(H) = U. Thus O,(H) = U, and since H is of characteristic p, Cy(U) = U and
H/U =~ SL,,(q), and is proved.

We are now able to show that leads to a contradiction. By , M° =~ SLy(q) and Q =
U. So we can choose M; minimal in M°U with U < M; and [V,U] < M. It follows M; = M° and
Cs(Yar)U = Op(M)U = Op(M)Q. Thus U < M°O,(M) and My < M°U < M°O,(M). Also M,
acts transitively on V', and so by7 M° =(QM) < M10,(M). Thus M10,(M) = M°O,(M).
The minimal choice of M; shows that M; = (UM). Thus, since O,(M) normalizes U, it also
normalizes M;. Therefore

OP(My) = OP(M10p,(M)) = OP(M°O,(M)) = OP(M°) = M.
Since by 1.55@ Co, ) (M°) = 1, this gives Co, (ar)(M1) = 1 and thus Cy(M;) = 1. Note that

U € My and Ny, ([V,U]) is the unique maximal subgroup of M; containing U. Hence M; is

U-minimal, and we can apply

Put D := (U n O,(M;)*1) and let m € Mi\Nay, ([V,U]). Then by [1.43|[), D = (U n D) x
(U™ n D), by [L43f), ®(D) < Cy(M;) = 1, and by [1.43|[p) M has no central chief factor on
D/Cp(M;) = D. Hence D = [D, M;]. Note that

(U, Op(M)] U 0 Op(M) <U N Op(My) < Cy(V) <U 0 Op(M),

and so
[U,0p(M)] <UNOp(M)=Cy(V)=UnOp(M;) =Un D.
Hence D = [0,(M), 0P (M7)] = [Op(M), M,] < M.
Recall that U is a natural SL,,(§) module and Yz is a transvection group on U. By q=q,
and by @ V =Yy. Hence Un D = Cy (V) is an F,-hyperplane of U. In particular, U n D has
order ¢™~1. As D = (U n D) x (U™ n D), D has order ¢>™~Y) and UD has order ¢>"*.
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Put Hy := Ny(Cy(V)) = Ng(U n D). By (5%) Cu(U) = U and thus |Cy(U)| = ¢™. Since U
is a natural SL,,(¢)-module for U, CH(CU( ))/Cu(U) is a natural S Ly, _1(q)-module for O (Hy)
(isomorphic to Cr;(V)), and so has order ¢™~1. Thus, |Cx(Cy(V))| = ¢m¢™ ! = ¢>*~1 = |UD|.
Note that D and V are abelian. Hence UD < Cyg(Un D) = Cy(UV) and UD = Cy(Cy(V)) < Ha.

As U n D is an Fg-hyperplane of U and the elements of D act Fy-linearly on U, for every
de D\CD(U)

CDU(d) = DCU(d) = D(U N D) =D.
In particular, for every elementary abelian subgroup E < DU either E < D or EnD = EnCp(U).
In the latter case |E/E n Cp(U)| < g since |DU/D| = g, while |[D/Cp(U)| = ¢™ L. Asm > 3 we
conclude that D is the only maximal elementary abelian subgroup of order ¢("~1 in DU. Since
UD < Hy we get Hy < Ng(D)

As we have seen above, D < M and so M < Ng(D). The basic property of M gives My <
N¢g(D) < < MV and Yy, < H,. But YM is a transvection group on U and since m > 3 we get YM By HQ,
a contradiction. O

LEMMA 7.13. Put K := Fﬁ. Then
(%) K*¥= X F and[Yy,K¥] = X[V, F].
FeK Fek
Moreover, one of the following holds, where q is a power of p:

(A) K<M, K=M°=>SL,(q), n>3, and Y is a natural SL,(q)-module for K.
(B) M° = OP(K*)Q and there exists a non-degenerate K* S-invariant symplectic form on

[Yar, K*]. In addition, one of the following holds:

(1) K< M, K =~ Span(q), n = 1, or Sps(2)" (and p = 2), and Y is a corresponding
natural module for K,

(2) K< M,p=2, K=>05,2),n=>2 and (n,e) # (2,+), and Y is a corresponding
natural module for K. Moreover, M° = K =~ 05,,(2) and [W| = |Yar/Cy,,(W)| = 2.

(3) K € M, Yy is a natural SLo(q)-wreath product module for M with respect to K, and
Q acts transitively on K.

(C) (a) KSM,Y =Yy and |Y/Cy(W)| = 4.

(b) Put My := Ny (Cy (W) and Ky := Cp, (Y/Cy (W)). Then Ky < K, and there exists
an Ms-invariant set {V1,Va, Va} of Ko-submodules of Y such that Y = V; x V; for all
1<i<j<3.

(¢) Foralll1 <i<3 and 1 # x e Cy,(W) there exists g€ M with [x,Q9] = 1.

(d) One of the following holds:

1) p=2 K= K =~ SL,(2), n =3, {V1,Va,Va} is the set of proper K-submodules
of Yar, and the V;’s are isomorphic natural SL,(2)-modules for K. Moreover,
M° =~ SL,(2), SL,(2) x SLa(2) or SLy(2), with K < M?° in the first two cases
and [K,M°] = 1 in the last case.

2)p=2, K= K <M°, K~ 3-Alt(6) and M° = 3- Alt(6) or 3:Sym(6), and Y
1s corresponding natural module for K.

PROOF. Recall that Yy, is a p-reduced Q!-module for M. By , W is a non-trivial strong
offender on Y);, and by , [W, Y] = [W, X] for all X < Yy with | X/Cx(W)| > 2. Thus we
can apply Hence (*) holds. Also most of the other statements follow directly from but
we still need to show:

(Task 1) In cases|[C.25|[1:b:2)), (1:b:3),(L:b:5),([@) (Y is a natural Spo,(q)-, Spa(2)-, Spa(2)’-, 05,,(2)-
or SLa(g)-module for K) show that there ex1sts an K* S-invariant non—degenerate sym-
plectic form on [Yas, K*] over F,, (to prove .
(Task 2) In case|C.25] m- Y is natural 3 Alt(6)- module for K) show that Yu=Y,|Y/Cy(W)| =
4, K, < K, and prove the existence of {Vi, Vs, V3} fulfilling (C:b) and .
(Task 3) In case m. Y is a direct sum of two 1bomorph1c natural SL ( )-module and [K, M°] =
1) show that K < M and Y = Y} (to prove )
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(Task 4) In cases [C.25(3) and (Y is a direct sum of two isomorphic natural SL, (¢)-modules)
prove K < K and the existence of {V4, Vs, V3} fulfilling (C:b)), (C:c) and (C:d:1)).

(Task 1): Put K := Endg(Y). Then K is a finite field (of order ¢ or 2 depending on the case).
Also in each case there exists a K-invariant non-degenerate symplectic form s on Y over K. Note
here that SLs(q) =~ Sp2(g) and a natural SLs(g)-module is also a natural Sps(q)-module. Moreover,
s is unique up to multiplication by a non-zero k € K. Since |K| — 1 is not divisible by p, we can
choose s to be Ng(K)-invariant. If K << M we are done.

Assume that K €2 M. Then we are in Case (2)) of Theorem so K =~ SLy(q), Y is a natural
SLs(g)-module for K, and Q and so also S acts transitively on k.

Let FF € K with F # K. Then (%) shows that [F, K] = 1 and [Yar, K] n [Yar, F] = 1. So
F< CF(Y) and

K = KO (Y).
For any F € K choose g € K* S with F = K?. Define a symplectic form sp on [Yys, F] = Y9 via
sp(v9,w9) ;= s(v,w) for all v,we Y. If also F' = K" for some h e K*S, then

and we conclude that the definition of s is independent of the choice of g.
By (%), Yar = X pexc[Ymr, F], and so there exists a unique symplectic form ¢ on Yj; such that
the restriction of t to [Yar, F] is sp for all F' € K, and [Yar, F] L [Yar, F*] for distinct F, F* € K.

Then t is K*S-invariant, and (Task 1)) is accomplished

(Task 2): By coprime action Yy = Cy,,(Z(K)) x [Yar, Z(K)], and since Z(K) acts fixed-point
freely on Y = [Yas, K], Yar = Cy,, (K) x Y. Since M, < K and by |1.55(|d)) Cy,,(M°) = 1, this gives
Yy=Y.

As W is a nontrivial (strong) offender on Yy, the Offender Theorem [C.4Yle]) gives

Y/Oy (W) =4=[W| and  Cy(W)=[W,Y].

Let V be the set of 3-dimensional Ks-submodules of Y. By Mo is a parabolic subgroup of
M, My = Ny (W), Ky = O (N(W)), V = {V1, V2, V3}, Z(K) acts transitively on V, Y = V; x V;
for all 1 <i < j < 3, and Cy, (W) is a natural SLy(2)-module for Ky. In particular, Ko < K. Let
1 # z € Cy,(W). Since Z(K) < My, M acts transitively on the three elements of V and, since
Koy < N, (Vi), Nag, (V1) acts transitively the three elements of Cy, (W) Thus Cy,(z) has index
9 in Ms, so Cpr(x) contains a Sylow 2-subgroup of My and of M. Hence Cj(x) also contains a
conjugate of () in M.

Gi Since [K, M°] =1, <KQ> = K. Thus shows that
CYM (K) = CYM (<KQ>) < COP(M))<KQ>) =1L

Hence (#) implies Yar = [Yar, K] x Cy,, (K) = [Yar, K] =Y and K = K. Thus K < M and (Task
3) is accomplished.

(Task 4)): Since Y is the direct sum of two isomorphic natural SL,,(2)-modules for K, there exist
exactly three simple K-submodules V1, V5 and V3 in Y. Moreover, Y = V; x V; forany 1 <1i < j < 3.
Since K induces Aut(V;) on V; and K < M, M = K x Cy7(K). Also Cy7(K) is isomorphic to a
subgroup of SLy(2) and Os(M) = 1. Thus Cy7(K) is isomorphic to one of 1, C5 or SLa(2). So M acts
either trivially or transitively on {Vi, V5, V3}. In either case V; is normalized by a Sylow 2-subgroup
of M, and since K acts transitively on V; each 1 # x € V; is centralized by a Sylow 2 subgroup
of V. So again Cjs(z) contains a conjugate of @ in M. Note that Cy (W) = Cy, (W) x Cy, (W)
and C37(K) normalizes Cy (W). It follows that My = (M2 n K)C37(K), Cq7(K) acts faithfully on
Y /Cy (W), and My n K centralizes Y /Cy (W). Thus Ko = My n K < K, and all assertions in
hold. O

LEMMA 7.14. Suppose that Case holds. Then Yy =Y and Theorem @ holds.
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PROOF. In this case Y is a natural SL, (q)-module for K = M° with n > 3, and by @),
Cy,, (M°) =1. If Ypy =Y we conclude that Theorem |G{|1)) holds.
Suppose that Y, # Y. Then Y), is a non-trivial non-split central extension of Y. Since, by

2.17((c), W is a (strong) offender on Y3y, shows that p = 2, and
K =~ SL3(2), |Yu| = 2%, Cy,, (W) = Cy (W) and § = |Ya/Cy,,(W)| = [W]| = 4.

In partlcular [YM, M1 =[Y,M] =Y, and Y); is an offender on W. Now implies L =~ SLy(4)
and YM € Syl (L ) By definition of £ (Yas), N.(Yar)(= L n MT) is unique maximal subgroup of L
containing Yy, and the structure of SLo(4) shows that [Yas, L n MT] = Y. Tt follows that

Yur = [Yar, L 0 MT]Cy,, (U) = YCy,, (W) = YCy (W) =,
which contradicts Y # Y. |

LEMMA 7.15. Suppose that Case|7.13] “@ holds. Then Theorem @(@ or Theorem @(@ holds.

PROOF. Put Hy := (Y#). Note that in Case [7.13||B) there exists a K* S-invariant non-
degenerate symplectic form on V := [Yys, K*]. Thus we can apply We will now treat each of
the three subcases of [7.13{|B|) separately.

Case 1. Suppose that holds, that is, K < M andY =V is a natural Sp,(q)-module
(n=1) or a natural Sps(2)'-module (p = 2) for K.

Put n := 2 and ¢ := 2 in the Sp4(2)’-case. Note that K’ acts transitively on the natural
Span(q)-module V', and so each non-trivial element of V is centralized by a conjugate Q9 of Q
under K. Since by [7.5|fe) Cr(Q7) = 1 for all such @9, this gives V A R = 1.

Suppose for a contradiction that Y # Y. By [7.7(a) Cy,, (K) n Cy,,(Q) = 1. Since K < M,
this gives Cy,, (K) = 1. Hence, Y)s is a non-split central extension of Y. Also by Wis a
strong offender on Yj;. Since strong offenders are best offenders, [C.22] shows that Y); is a submodule
of the dual of a natural Oa,41(g)-module, n > 2, or a natural O5(2)-module for K.

By Yu = VR, and so there exists y € R\V. Since YM is a submodule of the dual of the
orthogonal module for K, Cx(y) = 05, (q) or Q5(2). Since by [7 @ W is a root offender on V,
and since W < Cx(y), Shows that |W| = 2 Hence by -@D [VI=|WEVAR =22-1=4,a
contradiction since |V| = ¢*" and n > 2.

We have shown that

Y=Yy=V and R=RnV=L1

By Op(M) = Ca(Yar) = Yar = V and Ng(Q) < M. So if K = Sp4(2)’, then Theorem
holds. We therefore may assume that K =~ Spa,(q).

Since R = 1, [7.12f}¢])) gives A = W x R = W, and A is a natural SLs(§) module. Put D :=

Cx(V/[V, W) N C’K([V W1). Then D acts nilpotenly on V and so D/Cp(V) is a p-group. As

( ) = (V) Y, D is a p-group. Since V = Y) we have [Yy, D] = [V, D] < [V, W] < A.

Iso by [7.12|(h)) Ng(Q) < M. Thus, by there exists t € A with [¢,Yy] # 1 and [Cp(t), L] <
A =W. Put B := Cp(t)W. Then B and W are normal in LB, and since W is a simple L-module,
[B,W] = 1. Hence ®(B) = ®(Cp(t)) is centralized by L = (Yi;). From Cg(Yy) = Yur we get
C¢(L) < Cy,, (L) = R = 1. In particular, ®(B) = 1, and B is elementary abelian with Cp(L) = 1.
It follows that B is isomorphic to a submodule of the dual of the natural Q3(§)-module for L. Let
de Cp(t) < B. Then C;(d) is isomorphic to F; or O3 (q),

I 1Y /Cy, (d)] € {1, ,q}

Since t € A = W and W is the natural SLs(q)-module, {[t,y] | y € Y} = [t, Y] = [W, Y]
Let d € D. Using the definition of D we have [t,d] € [D,V] < [W,V] = [W,Yy]. Thus [¢,d] = [¢t,v]
for some y € Yy, Hence t¢ = Y, dy~' € Cp(t) and D = Cp(t)Yy. By - [V, W] is singular
subspace of V and [V,W]+ = [V,W] x (V n R) = [V,W]. Hence [V,W] is a max1mal singular
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subspace of V' and |V| = ¢". The action of D on the natural Spa,(¢)-module Y3; now shows
{|[Yar/Cy,, (d)| | d€ D} = {¢" | 0 < i < n}, and so also

(IT) {IYar/Cyy (@) | de Cp(t)} = {q" | 0 < i < n}.

A comparison of (I) and shows that either n = 1 and § = gorn =2, § = 4 and ¢ = 2. We
already know that Yy = O,(M) and Ng(Q) < M. If n = 1 and ¢ = ¢, then Yjs is a natural
SLs(g)-module for K, and Theorem holds with r = 1. If n = 2 and ¢ = 2, then Y, is a natural
Sp4(2)-module, and Theorem holds.

Case 2. Suppose that holds,that is, K < M, p
K,

(n,e) # (2,+), Y is a corresponding natural module for Me
Y2 /Criy (W)| = 2.

Since K < M, K* = K and so Y = [Ya, K| = [Ya, K*] = V. Moreover, M fixes the unique
K- invariant quadratic form h on Y and so M = K. Note also that the K-invariant symplectic form
on V given by is exactly the symmetric form associated with h.

Note that each singular vector in V' is centralized by a Sylow 2-subgroup of M and so also by a
conjugate of Q. By Cr(Q9) =1 for all g € R, so this implies that R contains no non-trivial
singular vectors. Thus R n V has dimension at most 2 and so |R n V| < 22. Hence, by ,
V| = |W]2|V ~R| <2222 =2% Thus n = 4. Since (2n,¢) # (4,+), V is a natural O, (2)-module
for M.

As above, since K < M, @ shows that Cy,, (K) = 1. Thus implies that Yy = V.
Hence R = RNV, R has order 4, and all non-trivial elements in R are non-singular vectors of V.

Pick 1 # 2 € R and put B := O3(C37(x)). Then Cyz(z) = C3 x Spa(2) and [Yar, B] = {(z). Since
Yy, W] € R this means [Cy,, (B), W] # 1. Thus by Ca(z) is not of characteristic 2. Since by
7.124(h) Oo(M) = Yy = V and Ng(Q) < Y, and since M = K = Oy (2), Theorem |Gf2) holds.

Case 3. Suppose that lwlds, that is, K € M, Y is a natural SLo(q)-wreath product
module for M with respect to K := KM, M° = OP(K*)Q, and Q acts transitively on K.

Put £ =: {Ky,...,K,} and V; := [V, K;] with K = K;, so Y = V5. Since Yjs is a natural
SLs(q)-wreath product module, Y is a natural SLs(g)-module for K, and

Yyuy=V=VixVex...xV,.

05,(2), n = 2 and
05,,(2), and |W| =

=2 K
- K

e 0

Since K €« M, r > 2. Put
S:={veV |[v,F]#1forall Fek}.

In the following we apply to K*S in place of H. Since Q acts transitively on /C, |A.28(le)) shows
that K* acts transitively on S and Cy(Q)* < S. Thus Cs(Q) # J, and every element of S is

centralized by a conjugate of Q. As by Cr(Q9) =1, we get
RnS=.
Since W < K = K, we get
Cy(W)=Cy,(W) x Vo x...x V.
Since V; is 2-dimensional over Fy, [V, W] = [V1, W] = Cy, (W)). Thus by
Cy(W)=[V,W]x R=Cy,(W) xR.

As |Cy, (W)| = q this gives |Cy(W)/R| = q. Let 2 <i < r. Then V; < Cy(W), and since |V;| = ¢*
and |Cy(W)/R| = q, we get |V; n R| = ¢. In particular, there exists 1 # t; € V; n R.

Suppose that V; € R for some 2 < j <. Say j = 2. Since Vo < Cy(A4) = Cy, (W) x R there
exist 1 # s9 € Vo and 1 # s1 € Cy, (W) with s189 € R. Put t = s189t3...t.. Thente RnS =, a
contradiction. Thus V; < R and so V5...V, < R. Together with

CVI(W) X ‘/2 X oee- X‘/T:C‘/(W) =CV1(W) x R

this gives R = Vo x --- x V,.. In particular, K7 < Cy7(R) and so [V1,0,(C57(R))] = 1. Since
[Vi, W] # 1, shows that C(R) is not of characteristic p.
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We will now show that ¢ € {2,4}. For this put M; := Cpr(R) n Npy([V,W]) and let 1 # = €
Cy({(W®)) n Cy(Q) and x1 be the projection of z onto V;. As already seen above, gives
Cv(Q)f < S. Thus z € S and so 1 # 1. Moreover, € 1Vo---V, = 21 R, and so Q! implies
Cu, (11) < Ca(z) < Ng(Q). Thus [Q, Car, (1)) < Q.

Let m € Cpy, (21) and ¢ € Q with V; = VJI. Since m centralizes Va, m? centralizes V;. Hence

m = mq[q_l,m] e miQ CM(VI)Q7

and so m acts a p-element on Vi. It follows that Chay, (z1)/Car, (V1) is a p-group. Since Chy, (V1) =
Cu(ViR) = Cx(V) = Cu(Yar) and by [T12[) Ce(Yar) = Yar, Car, (1) is a p-group.

Put By := MinKV. Then By < M, VW € Sylp(Bl), B, /VW = Cy_1, and By acts transitively
on [V,W]. It follows that My = Cyy, (z1)By and M;/B; is a p-group. Thus OP(M;) < Bj. Since
[R,L] = 1 and [V,W] < N.(V), N(V) < M, and since L/A = L/WR = SLs(q) and VW €
Syl,(L), N(V)/VW is cyclic of order ¢ — 1. Let H; be a complement to VW in Nz(V). Then
H, < OP(M;) < By. As B1/VW has order q — 1, we get By = H1VW = N (V).

Suppose that p is odd and let ¢ be the involution in Hy. In L we see that [VW,i] = W and in
M we see that [VW,i] = V1, a contradiction.

Thus p = 2. In L we see that the Fo H1-module W /Cy (V) is isomorphic to the dual of [V, W]
and in M that the FoH;-module V/Cy (W) is isomorphic to the dual of [V, W]. It follows that
W /Cw (V) and V/Cy (W) are isomorphic Fo Hij-module. Let Hy =: (hy). In L we see that there
exists £ € F, and Fy H;-module structures on [V, W], W/Cw (V) and V/Cy (W) such that h; acts
as multiplication by &, &7 and &2, respectively. It follows that there exists o € Aut(F,) with
(€2)7 = €71, Since [¢] = || = ¢ — 1 = |F¥| and also squaring is an field automorphism of Fy, we
conclude that p : Fy — Fg, A — (A?)7, is a field automorphism and A* = A~! for all A € F%. It
follows that Fy is the fixed field of y, and p as order 1 or 2; so Fy = Fy or Fy = Fy.

Thus indeed g € {2,4}. We already know that Cg(R) = Ca(Va. .. Vii not of characteristic 2.

3

By || we have Ng(Q) < M and O2(M) = Y. Hence, Theorem 1) holds with K := FM,

where the uniqueness of I follows from |A.27)(c|). O

LEMMA 7.16. Case (@) does not hold.

PROOF. Let {i,j,k} = {1,2,3}. Recall from [7.13|[C)) that p = 2, Y = Yy, Mo = Ny (Cy (W)),
Ky = Cu,(Y/Cy(M)), Ko < K and that there exists an Ma-invariant set {Vi, Vs, V3} of Ka-
submodules of Y with ¥ = V; x Vj;. Note that the projection of V}, onto V; and V; shows that V} is
isomorphic to V; and V; as an Ke-module. In particular, K» acts faithfully on V;.

Define n by 2" := |V;|. Then by [7.13|[C)) either n = 3 and Y is a natural 3- Alt(6)-module for K,
or n = 3 and each V; is a natural SL,(2)-module for K.

1°. VinR=1.

Since [R,W] =1, Vin R =Cy,(W) n R. Let 1 # z € Cy,(W). According to [7.13|(C:c) for all
1 # a € Cy, (W) there exists g € M with [2,Q9] = 1. By Cr(Q?) =1 for all g € G and so
r¢ R. Hence V;, n R = 1.

2°. AnY =Cy (W) and A < Ks. In particular, W and A normalize V;.

By |7.4le) An Yy = Cy,,(W). Since Y =Y thisgives AnY =Cy(W). As[A,Y]<ANY,
we conclude that A normalizes Cy (W) and centralizes Y /Cy (W), so A < Ko. As W < A and Ko
normalizes V;, holds.

3°. AnY =(AnV) x (AnVj).
By AnY =Cy(W), and W normalizes V;. As Y =V, x V;, this implies
AnY =Cy(W) =Cy,(W) x Cy;(W) =(AnV;) x (AnV)),
and is proved.

4°. A is elementary abelian.
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By A normalizes V;, and by @,
®(A) =[AnY, Al <Cy(L) =R,
S0 _
[AnV,Al<Vink © 1.
By AnY = (AnV,) x (AnV;)and so [AnY,A] = 1. It follows that ®(A) = 1 and A is
elementary abelian.
5°.
(a) |A| =23"=Y) and [A] = |A/AnY|=|R|=2""".
(b) ANV is a hyperplane of Vi and A = Cz(A ' V;).
(c) Let B be any L-invariant subgroup of A. Then |Y n B/Rn B| < |R n B.

By- Y /Cy (W)| = 4. Since Y = V; x Vj}, this gives |V;/Cy,(W)| = 2, and since by .
Cy(W)=Y nW,V;n A= Cy,(W). Hence V; n A is a hyperplane of V;. As by (4°) A is abelian,

A centralizes V; n A and so V; n A = Cy;, (4).

Let B be any L-invariant subgroup of A. Pick v; € V;\A. By|[1.43(lg), Y n B = [v;, B](R n B),
and so Y n B = [v;, B](Rn B). Since by Vi n R =1, we have [v;, B]| n (Rn B) = 1. This gives
(%) |Y n B| = |[vi, B]||R n B.

Also |Y n B| = |[Y, B]| = |[vi, B] x [vj, B]| = |[vi, B]|?, and we conclude with (*) that
|[Rn B| = |[vi,B]| =Y n B/Rn B|.
Thus (i) holds.

Using A = B in (%), |Y n A| = |[v;, A]|R| and so |R| = |Y n Al|[vs, A]|7!. On the other hand,

by VinAn R=1and so

IRl = |R(V; n A)/V; n A| < |Y 0 AJV; 1 Al
Since [v;, A] < V; n A, we get

Y nA/V;n Al <|Y nAf[vi, A]| = |R| < |Y n A/V; n Al
It follows that equality holds in the preceding inequalities. In particular, [v;, A] = V; n A and so
[[vi, A]| = |[Vi n A = 2771,

Thus

= [A4/Ca(V))| = |A/Ca(wi)] = |[vi, A]| = 2"7".

Since A < C= (AmV) and [C (AN Vi)| < [An V| = 2" this gives A = C(A N V;). So all
parts of are proved

6°.
Y = YM — 05(M), M = M' and Ng(Q) < M.
(b) H=1L,U=W,U is natural SLs(4)-module for H, and U is a natural Q3(4)-module for
H.
Recall that L € £4(Yy) and so L/A = SLy(q), Sz(q) or Diha,. In the Sz(g)-case ¢ is an odd

power of 2 and in the Dihg,- case § = 2. Since ¢ = |Ya/Cy,,(W)| = |Yn/Yar 0 A] = 4 we get

L~SL

By U is a faithful simple minimal asymmetric Fgﬁ module, so we can apply the Minimal
Asymmetric Modules Theorems [C.28| and Put Hy := (Y. Since L =~ SLy(4), Hy is not
solvable. Thus we are in Case (E of |C - In partlcular HO is a group of Lie-type defined over Fy
and Yy; is a long root subgroup of Hy. Note that U nY = (Un A)nY and U n R = (U n A) A R.
Thus by appliedto B=Un A
(%) [UNY/UnNR|<|UnR|.
In particular, U n R # 1. So by [7.5|la)) Cuy(H) = U n R # 1 and Cy(Hp) # 1. By [7.6(a) U
is a quasisimple Hg-module. A comparison of |C.29(|1) with shows that p = 2 and either
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ﬁo >~ Spam(4) and U is a quotient of the natural Qg,,41(4)-module for ﬁo, or ﬁo ~ (G3(4) and Uis
the corresponding natural module of order 4°. In the first case |[U, Y)/]| = 4 and in the second case
[[U, Y]] = 16, and in both cases |[U n R| < |Cy(Hp)| < 4.

By [2.17(e)

It follows that
WAY = (WAY)Cy(O*(H))/Cy(O*(H)) = WAY /WAR = (WAY)(UnR)/UAR < UAY/UAR.

W N R=Cw(O*(H)) =W n Cy(O*(H)).

Hence
W Y| < |UmY/UmR| |UmR| |Cu (Ho)| < 4

On the other hand, by U = WCU(YM) Thus [U,Y] = [W Y] < < WAY and so
|[U Y]\ < 4. This excludes the Gg( )-case and shows that |Cy (Hp)| = 4, so U is a natural ng+1(4)
for Hy and |[W Y| = 4. Moreover, by [L43|ld) [W/Cw (Y)| = [W A Y/Cway (L) = W A Y] = 4.
Hence Yy, is an offender on W, and so also an offender on U since U = WCy(Y). Thus we can
apply In the second case of U n R =1, a contradiction. So the first case holds. Hence U
is natural SLo(q)-module for H and

Yar = O02(M), M = M", No(Q) < M, H= L and U = W.
Since § = 4 and U is a natural Qgp,41(4)-module, this gives .
. Cu(Y)=Y,M=Ng(Y), AY = O, (Y n A) and A< My.

By (6°)(e) ¥ = 02(M) and Ng(Y) = Mt = M. By (59 (b) 4 = Cz; (Y n A) and so AY =
AC(Y) = Ck,(Y n A). In particular, AY < Ms.

Let v € Y\Y n A. Then v € Vi(Y n A) for some i. Since V; is a faithful Ks-module and
[Vi/Vi n A] = 2 we get Cx(v) = Cx(V;) = 1 and so Ca(v) = AnY. It follows that [v,a] # 1 for
all v € Y\A and a € A\Y. Hence va is not an involution and so Y and A are the only maximal
elementary abelian subgroups of AY. Since Ms normalizes AY and Y, My normalizes A.

8.  n=3and O*(M)/Y =~ C3 x SL3(2) or 3-Alt(6).

By Y = Cy(Y). Thus if YV is a natural 3- Al¢(6)-module, then holds. So suppose that
Y is the direct sum of two SL,,(2)-modules, n > 3. In particular, M/Y = K x C where C is
isomorphic to a subgroup of SLs(2) with 02(0) =1. Thus C = 1,C3 or SLQ( ). Note that My n K
centralizes Y/Y n A and that N.(Y) < Ny (A nY) = Ms. Since by (6°)(B) L/A = SLy(4), we
infer that N(Y)/Cn, v)(Y/Y n A) = Cs. Thus 3 divides [M/K|. Hence C =~ C3 or SLy(2) and
O?(M))Y = C3 x SL,(2). It remains to show that n = 3.

If n = 4, then by (5°) |A] = 23"~ = 29 and |R| = 2"~' = 23, and so |A/R| = 2°. Since
L/A =~ SLs(4) all non-central simple L-modules have order 2%, and we conclude that L has a central
composition factor on A/R, a contradiction to .

Suppose that n > 5. Let X < M such that X C3 and XY < M. Since [K2, X] <Y and X
acts fix-point freely on YV, Ky = Ck,(X)Y. Fori = 1,2 put 4, := AnV;. Then AnY = A; x As.
Put Ag := C4(X). Since X < My, X normalizes A and so A = (AnY) x A3 = A; x Az x As.
Let v € V1\A; and put K7 := Ck,(v) n Ck,(X). Note that K; is a complement to As in Ck,(X),
Ky = SL,-1(2) and the A4;, 1 <14 < 3, are isomorphic natural SL, 1 (2)-modules for K.

According to|7.9| there exists t € A\C4(Y’) such that [Cp(¢), L] < A for all 2-subgroups D of M
with [V, D] < A. Since t € A, t = t1tot3 with ¢; € A;. Since n — 1 > 3, there exists a transvection
de K, Wlth [ti,d] =1 for all 1 <4 < 3. Then

1A, d]] = |[Ar, d]° =

Since d € K1 < Ky, [Y,d] <Y n A< A. Also [d,t] = 1, and the choice of ¢ implies [d, L] <
A < Cg(A). Thus L normalizes [A,d]. Since L/A =~ SLy(4) and |[A,d]| = 8 we conclude that
[A,d,L] =1 and [A,d] < C4a(L) = R <Y, a contradiction since 1 # [A3,t] < A3 and A3 nY = 1.
Thus is proved.
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We are now able to derive a final contradiction. Since n = 3, @ shows that |A| = 236-1 =
26 = |Y|. By (]H) U is the natural Q3(4)-module for L and U = W. Hence |U| = 26 and A = W.
In particular, A/R = U is a natural SLo (4)-module of L,

Note that either K/Y =~ SL3(2) and Y = V; @ Vo, or K/Y = 3-Alt(6). Since |W| = 4 and
[Vi| = 8, it is straight forward to verify that Ko/Y = Sym(4) and V; n A is a natural SLo(2)-
module for K5. In particular, Y n A is a direct sum of two natural SLs(2)-modules for Ko, and
Vi A, 1<1i<3, are simple Ks-submodules in Y n A.

Put F := Ng(A). Then L < F and by A< My and so My < F. Also Fn M <
Ny (Cy (A)) = My and so F'n M = M.

In particular, Lo := L n M = L n M,. Since L/A =~ SLy(4), Ly/AY =~ C5 and Lo acts
transitively on AY /Y 2 Y /Y nA =Y /Cy(W). Hence Ly also acts transitively on {V;, V5, V3}. Since
VinA,1 < i< 3, are the simple Ks-submodules of Y n A we conclude that Y n A is a simple module
for LoK3/AY =~ C5 x SLy(2). Also LyKy acts transitively on the nine elements in Vlﬁ U V; U Vf
Let 1 # r € R. Note that O?(K3) normalizes Ly and so also Cy~a(La). Moreover, O?(K3) acts
fixed-point freely on Y n A, R < Cy~a(L2) and |R| = 4. We conclude that R = Cy~4(L2) and
O?(K3) acts transitively on R. Since KyLs acts simply on Y n A and |LyKa/L2O?(Ks)| = 2 we get
|RE2K2| = 2 and |rl2K2| = 6.

Let 1 # z € \Z(S). By [T)[d), 2Z(S) < Yu n Yy = AnY and by [T5fg), Cr(Q9) =1
for all g € G. Since [2,Q] = 1 we conclude that z and r are not conjugate in G. It follows that
2Mz — K202 has size nine and rM2 = rK2L2 has size six.

Put Fy := Np(R) and note that L < F} and L,O?(K3) < Fy. In particular, 2271 = ;M2 We
now calculate the size of 2z, 2t and r¥. Note that each of these sets is an L-invariant subset of A.

Since A/R is the natural SLo(4)-module for L, A/R is partitioned by the five L-conjugates of
ANnY/R. Also 2M2 A R = & and |[r™2 n R| = 3. Hence 27| = [¢f1| =5 -9 and || >3+ 5 3.
Now |AF| =26 — 1 = 45 + 18 gives || = |2f1| = 45 and || = 18.

By Neg(Q) < M. Since [z,Q] = 1, Q! implies Cg(z) < M. In particular, Cp(z) <
M ~n F = M,. Note that Ko < M, and R is one of the two orbits of Ko on 7M2. Thus |My/M; N
Fi| = |My/Nu,(R¥)| = 2. Since Cr(z) < My this gives |Cr(2)/Cr, (2)] < 2. Together with
|F| = 45|Cr(2)| and |Fi| = 45|Cp, (2)| we conclude that |F/Fy| < 2. Thus |RF| < 2 and |rf| <
|R¥||RF| = 3-2 = 6, a contradiction to |rf| = 18. O

Note that the three cases in have been treated in [7.14] [7.15] and [7.16] Thus, the proof of
Theorem [G] is complete.




CHAPTER 8

The Q-Tall Asymmetric Case I

In this chapter we begin the investigation of the Q-tall asymmetric case. That is, M € Mq(.9),
Y is asymmetric in G, and Y € O,(Ng(Q)). The main result of this chapter reduces the problem
to what might be called the generic case, namely, where [Ya;, M°] € Q, M/Cps(Yar) possesses a
unique component K, and [Yis, K] is a simple K-module, see Case of Theorem [H| for more
details. This is achieved by studying the action of M on the Fitting submodule I of Y}, introduced
in Appendix rather than on Y}, itself. The Fitting submodule is close to being semisimple and
so much easier to work with. And, since I is faithful for M/Cas(Yar), it still allows to identify
M /Crn (Yar).

As in the previous chapter a member H of $¢(O,(M)) is used to obtain a subgroup L of H
with L € £5(Y). But in this chapter internal properties of L, like

A:=0y(L) ={(Yar n O,(L))*) and Oy, (L) =Yy Y, for ge I\Ln M",

are in the center of our attention. Due to Q-tallness, H and thus also L can be chosen in Ng(Q). It
is then easy to see that @, L and A normalize each other. We subdivide the proof into three cases,
treated in separate sections:

(1) I<A (2) I<Aand[QZ(A), L] #1, (3) I« Aand[2Z(A),L]=1.

In the first case it is easy to see that I is symmetric in G (see B.13|[b)). So the main result of
Chapter [4] can be applied to I, and the different outcomes of this result are then discussed.

In the second case the non-trivial action of L on ©:Z(A) shows that also H acts non-trivially
on 1Z(0p,(H)), and similar to the previous chapter we get a strong offender that allows to apply
the FF-module theorems from Appendix [C]

In the third case we prove that A acts nearly quadratically on I. We then apply the Nearly
Quadratic @Q!-Theorem proved in Appendix [D] and treat each of its cases.

Here is the main result of this chapter.

THEOREM H. Let G be a finite Kp-group, S € Syl,(G), and let Q < S be a large subgroup of G.
Suppose that M € Mg (S) such that Yy is asymmetric in G and Q-tall.

Then Hng ) (Op(M)) # & and for every H € Hn,0)(Op(M)) also Ly (Yar) # &. More-
over, one of the following holds, where Y := Yy, M1 := M*Y/Cy1(Y), I := Fy (M) is the Fitting
submodule of Y, and q is some power of p:

(1) For every H € Hn, Q) (Op(M)) and every L € £5(Yar) and A := O,(L):
(a) Q normalizes L and A,
(b) A is a non-trivial elementary abelian subgroup of M,
(€) Y = ICy(4), 1% Q" and Cy(4) = Z(4) = Cy (L),
(d) K := [F*(M), A] is the unique component of M, K < M°, and I is a simple K-
module
) A acts nearly quadratically on'Y and not quadratically on I, and [Y, KA] =1,
) [Y/Cy(A)] < AP,
) AQ acts K-linearly on I, where K := Endg (1),
) Ifge M and Oy (Q9)nCy (A) # 1, then [Q9,A] < QInA and [Y, Q9] < [V, A]Cy (A).
(2) p=2, M° = L3(2), I is a corresponding natural module, |Y /I| =2, I is symmetric in G,
and I < Q.

(e
(f
(g
(h
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p=2, M° =~ QZf(2), I is a corresponding natural module, |Y /I| = 2, I is symmetric in G,
I€Q",Y =0y(M), M =M, and Cq(t) is not of characteristic 2 for any non-singular

~ Spon(2), n =2, I is a corresponding natural module, I £ Q* and |Y/I| = 2.
Me =~ SL,(q), n =2, and Y is a corresponding natural module.

p=2, M°=S8ps,(q), n>2, and Y is a corresponding natural module.
p=3, M°=Q3(3), and Y is a corresponding natural module for M°.

8) p =2, M ~ I'SLy(4), M° =~ SLy(4) or T'SLs(4), I is a corresponding natural module,
1< Q nd |Y /I < 2.

(9) p=2, M =~ 3-Sym(6), M° = 3- Alt(6) or 3:Sym(6), and Y is a simple M-module of order
26

(10) There exists an M-invariant set {K1, Ko} of subgroups of M such that K; =~ SL,,.(q),
[E, 72] =1, K1Ko < M, and Y = I is the tensor product over Fy of corresponding
natural modules for K1 and Ks. Moreover, either M = M° ~ SLs(2)1Cy, or M?° is one
of K1,Ky or K1 K>.

In particular, I = [Yar, M°], and (9) is the only case where I < Q°.

Table [I] lists examples for Yy, M and G fulfilling the hypothesis of Theorem [H] and one of the

cases - .

the
the

TABLE 1. Examples for Cases of Theorem [H]

Case [Yar, M°] for M° ¢ Remarks examples for G
2 nat SL3(2) 2 G#G° Aut(G2(3))
nat Q7 (2) 2 - Q4 (3).Sym(3)
nat Sp,(2) or Sp,(2) 2 - Qg (3){w) or POg (3)
nat S_Ly(q) L - Ln+1(q)
nat SLy(2) 1 - Spa(2)
nat SLQ(S) 1 - Mat12
nat SL2(4) 1 - Matoo, Matog
nat SLs(2) 1 - Alt(9)
6] nat Sp,(2) 1 - PSOg (3), PQg (3){w)
6] nat Sp,(2) 1 - Q5 (3), Suz
nat 23(3) 1 - Q5(3)
* 7 nat 3(3) 1 - Spg(2), Qg (2)
8 nat FSL2(4) 1 FL3(4), Mat22
* 8 nat SLQ( )[ 2] 2 M FSL2(4) Aut(Matgg)
9 26 for 3- Alt(6)[.2] 1 M~ 3Sym(6) Mata
* 26 for 3-Sym(6) 1 M~ 3Sym(6) He
nat SLy, (q)[®5Le,(¢)] 1 - Lty 14,(q); Lot,+1(q) P2 t1 = t2
nat SLQ( ))[®5L3(2)] 1 - Mat24
nat SL2< ))[@SLQ(Q)] 1 - Alt(g)
nat SLy(2) ® SL2(2) 1 - Sym(9), Alt(10)
nat SLy(3) ® SLa(3) 1 - HN

In the table ¢ := |Yar/[Yar, M°]| and @5 is a group of graph automorphisms of order 2. In
examples with G = PQg (3){w), w is a reflection in POg (3). An entry of the form A[B] in
[Yar, M°] column indicates that there exists more than one choice for @ in the example G.

Depending on this choice the structure of [Yas, M°] as an M°-module is either described by A or

AB.

* indicates that (char Yis) fails in G.
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8.1. Notation and Preliminary Results

In this section we assume the hypothesis and notation of Theorem [H} in particular Y = Yj; and
I=Fy(M).

LEMMA 8.1. Y € O,(Ng(Q)).
PrOOF. By Hypothesis, Y is Q-tall and so by [2.6{le) Yar € O,(Ne(Q)). O

LEMMA 8.2. Hn(0)(Op(M)) # &, and for H € Hng(q)(Op(M)), £a(Yn) # O

ProoF. By[1.55(la)) N¢(Q) has characteristic p, and byYM £ 0,(Ng(Q)). Hence[2.9|implies
that $1v,(0)(0, () # 2.

Pick H € Hn,(0)(0p(M)), and let L be minimal among all subgroups of H satisfying ¥ < L
and Y € Op(L). Then the Asymmetric L-Lemma [2.16{fe]) shows that L € £5(Yar). O

NoTATION 8.3. According to [8.2] we are allowed to fix H € Hn,(0)(Op(M)) and L € £ (V).
Recall from the definition of £ (Yas):

(i) L is Y-minimal of characteristic p, and Np(Y) is the unique maximal subgroup of L
containing Y.
(ii) L/A = SLy(q), Sz(q) or Dihg, and |Y/Y n A| = ¢, where p = 2 in the last two cases, r is
an odd prime, and § = 2 in the last case.
(iii) A=Y n AL,
Also observe that L satisfies the hypothesis of [[.43] since by [L.42{[b) O,(L) < NL(Y).
(b) Ng(I) = MT = Ng(Y) = MCg(Y) = MCg(I).
) Ca(I) = Ca(Y) = Copt (Y) = Cyyr(I/rad; (M)).

PROOF. @: By I and I/rad;(M) are faithful M-modules, so Cys(I) = Crr(I/rad;(M)) =
Cr(Y). This is (a).

(]Eb: By the basic property of M, MT = MCg(Y). Since I <Y, this gives MT = MCy+(I). In
particular, M1 < Ng(I) and M' < Ng(Y). Again by the basic property of M, MT is a maximal
p-local subgroup of G, and so MT = Ng(I) = Ng(Y). Hence Cyi(I) = Cg(I), and (]EI) is proved.

(d): By () No(I) = MT = MCg(Y), and Co(Y) centralizes I and I/rad;(M). Hence
Ce(I)=Cy()Ce(Y) and Cuy(I/radr(M)) = Cuy(I/rad;(M))Ce(Y).
Thus follows from @
@: Otherwise implies Yar < Yng(0) < Op(Na(Q)), contrary to
@: By @ M £ Ng(Q) and by Cc(Y) = Cg(I). Since @ is a large subgroup of

shows that Y and I are faithful Q!-modules for M with respect to Q). So we can apply 7With
V =Y and H = M and conclude that also I/rad;(M) is a @Q!-module for M with respect to Q.

@: By (EI), Y is a faithful, p-reduced Q!-module for M with respect to @. Thus by Iis
a semisimple M°-module and so also a semisimple M°-module. Since by @ M £ Ng(Q), we get
Q # M°, and so by [L.55||d) Cr(M°) < Ce(M°) = 1. As I is a semisimple M°-module, this gives

I=[I,M°] =[I,M,]. O
LEMMA 8.5. (a) Let g€ G with Q9 < M' and L < Ng(Q9). Then Q9 normalizes L and
A.

(b) L and A normalize Q, and Q normalizes L and A.
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PROOF. @: Since Q9 < MT, Q9 normalizes Y. Since L normalizes Q9, Q9 also normalizes Y
for all [ € L, and we conclude that QY normalizes (YL). As L is Y-minimal, L = (Y’*) and so Q¢
normalizes L and O,(L). Since A = O,(L) this gives (a)).

(]E[): Since L € £5(Yar) and H € Hn, () (Op(M)), L < H < Ng(Q). So @ follows from @ O

LEMMA 8.6. Suppose that [(1Z(A), L] # 1. Then I £ A and [Yuq, HQ] # 1.

[
Proor. By [8 . c) Ca(I) = Cq(Y) and thus also Cqz(4)(Y) = Ca,z(a)(I). Since L = (Y'F),
[MZ(A),L] #1 1mphes Q2 1Z( ), Y] # 1. Hence also [QlZ(A) Il # 1 and I € A. It remains to
prove [Yuq, HQJ] # 1.

Since L € £(Yas), [L.43|applies to L. So[L.43|[h) gives Ca(L) = C4(OP(L)). As [WZ(A),L] # 1
this implies [Q1Z(A),OP(L)] # 1. By 7O,,(H)] < Op(L) = A < Op(H ) So O,(H)
normalizes L and A, and [L, O,(H)] centralizes 2;Z(A)

Now the P x Q-Lemma gives [Cq,z(4)(Op(H)),OP(L)] # 1. Since A < Op(H), we have
Ca,z(4)(Op(H)) < Z(0p(H)). Thus [1Z(O,(H)), OP(L)] # 1 and so [Q Z(Op(H)) OP(H)] # 1.
Since by H is p-irreducible, m gives [Yg,H| # 1. As OP(HQ) < H, [1.26{|c)) shows that
Vi HQ] # 1. 0

LEMMA 8.7. Let U <Y be A-invariant and U € A. Suppose that U is Nr(Y)-invariant or
Y <UA.

(a) YA=UA and Y n A= [U,A|Cy (L) = (U n A)Cy(L).
(b) [A,Y] = [A,u]Ca,11(L) = [A, U] for every u e U\A.

PROOF. By assumption, U is N (Y)-invariant or Y < UA. We will first show that in either
case YA =UA.

Suppose that U is N (Y)-invariant. Since L € £4(Yy), shows that Nz (Y)/A has a unique
non-trivial elementary abelian normal p-subgroup. Thus YA/A = UA/A and so YA = UA. Suppose
that Y < UA. Since U <Y, this gives YA = UA.

Since YA=UA we get Y =U(Y n A). Let ue U\A. Then |1.43|lg) shows that
(%) Y nA=[Au]lCy(L).

In particular,
YnA=[AU]|Cy(L)=UnACy(L) and Y =U(Y nA)=UCy(L).
This gives [A,Y] = [A,U] < U. Intersecting both sides of the equation in (*) with [A, U] gives
[A4,U] = [A,u]([A,U] n Cy (L) = [A,u]Cra,u)(L).

So all parts of the lemma are proved. O

LEMMA 8.8. Put U :=Ci(L) and E:={Q9 | g€ G, Cy(Q9) # 1). Suppose that U # 1. Then
(a) Q< E<<M° and [E, L] < A. In particular, E normalizes L.
(b) [E,Y] <Y A A.
(©) E = Nu(U)° = Na(U)" B
(d) Let x € LN\NL(Y). If I < A, then I/U = I* as an F,E-module.

ProoF. (a): By.7(b) E < M°, and by [8.5|fa)) @ normalizes L and so also U. Hence Cy(Q) # 1
and Q < F.

Let g € G with Cy(Q9) # 1. Then L < Cg(U) < Ca(Cy(Q?)), and Q! implies L < Ng(Q9).
Also Q9 < E < M° < M, and [8.5|fal)) shows that Q9 normalizes L and A. In particular,

[L, Q] < Ln QY <Oy(L) = A,
and (@) follows.
([B): Since Y < L (@) gives [E,Y] < A. By (@) E < M° < M and so also [E,Y] <Y.
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: By @) E normalizes L. Since L centralizes U, we conclude that L centralizes (UF). By
@, E < M° < M. So E normalizes I and since U < I, (U¥) < I. Thus U < (U¥) < C((L) = U,
and E normalizes U. Hence F < Ny (U). Since E is generated by conjugates of @ this gives

E < Ny(U)°.
Clearly,
Ny(U)® < Ne(U),
and by E-7E)
NG(U)O < Ea
SO . holds.
(d): Let x € L\N.(Y). By [L.43ffa)), A’ < Cy(L) and so, since I < A and I is A-invariant,

[I,A] < In A < Ci(L) =U. Since by (b [ E x] < A, we conclude that [E, ] centralizes IU/U
and so IU/U — IrU/U yU — y*U, is an E-isomorphism. Note the IU/U =~ I/T n U. Also by
[[42)ff), L = (Y,Y?) and so since Y is abelian, Cy=(Y) = C=({Y,Y*)) = Cy=(L) = C;(L) = U.
Hence Cr=(Y) = I* n U and

rroju=rjrni=I"/C.(Y) = Iz,
Thus @ holds. |

LEMMA 8.9. Let K < M with 1 # K < F*(M) and K = [K,Q]. Suppose that I < A and
[F*(M°),Q] < Ny ([K,Q)O,(M°)). Then C#(K) = 1.
PROOF. Let F be the inverse image of F*(M) in M' and R := KCu+(Y) n M°. Since

F normalizes K, F normalizes KCj;1(Y) and R. Note that K = [K,Q] implies K < M°, so
KCMT (Y) < MOCMT (Y) and

KCy1(Y) = KCy1(Y) 0 M°Ciy(Y) = (KCypt (Y) n M°)Cppt (Y) = RCpyr (Y).
Hence K = R. By |[1.52(c) (applied with L := M),
[Crrt (V), QR] < [Ca(Y), M°] < Op(M®).
In particular [Cy+(Y), Q] < Op(M?). Using KCpt(Y) = RCyt(Y) we get

@ [K, QIO (M) = [R,Q]Op(M")  and  [Cr(Y), RQ] < Op(M?).
Put £ := OP([R,Q]) and N := Ng(E). Since 1 # K < F*(M) and O,(M) = 1 we have
1 # K = O (K). As K = [K,Q] = [R,Q] this gives E = K # 1. Since F normalizes R,

Nr(Q) < N. In particular, by Q!,

(1) 0,(M?) < Cys1 (V) < Np(Q) < N.
Thus O, (M°) normalizes [R, Q] and so
E=O"([R,Q]) = O"([R, QlOp(M?)) = OP([K, Q]Op(M")).

It follows that Ny ([K,Q]O,(M°)) < N n M. By assumption, [F*(M°), Q] < Ny ([K, Q]O,(M?))
and so

(111) [F*(M°),Q] < N n M.

By[L§F = [F,Q]C+(@Q) and [F,Q] = [F,Q.Q]. As [F,Q] < F*(M°) < F this gives
(V) F=[F*(M°),Q]C#(Q).

Since by (]E[) Q@ is a weakly closed subgroup of GG, a Frattini argument gives

(V) Cr(Q) < N#(Q) = Np(Q) < N n M.

Combining , and we get ' < N n MT, and since by Cyt(Y)< N, F<N.
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Note that E is subnormal in M and so, since M is of characteristic p, by [L.2fla)) also E is of
characteristic p. As E # 1 we get 1 # O,(E) < N and Op(N) # 1. Clearly @ < N, and shows
that N has characteristic p. Since FF < N implies Y = Yy < Yy, s0

(VI) Y < O,(N).
By [1.43{(a) A’ < Cy(L). By the assumption of this lemma I < A. Put B := C4(K). Then
(VII) [I,B] <[4, A] < Cy(L).

Suppose for a contradiction that Cx(K) # 1,s0 B # 1 and [Y, B] # 1. By Ca(Y)=Cq(I)
and so [I,B] # 1. By @ normalizes A. Since @Q also normalizes K, @) normalizes B. As seen
above R = K and so B = C4(R). Hence R normalizes B. We conclude that RQ normalizes B. As
[1, B] = [I, B] this shows that RQ also normalizes [I, B]. Hence, by Ce([I, B]) normalizes
(RQ)°. By L centralizes [I, B], and so L normalizes (RQ)°. Since @ is weakly closed
gives (RQ)° = (Q®) = [Q, R]Q and so OP((RQ)°) = OP([Q, R]) = E. Thus L normalizes E and
L < N. Since Y € Op(L) we get Y € Op(IN), a contradiction to . O

LEMMA 8.10. Suppose that Q is homocyclic abelian. Then Q is elementary abelian.

PROOF. Put N := Ng(Q) and F := (YV). Note that Q' < Cp(Y) and so Y < Cp(Q'). Also
[Q,Y] <Y is elementary abelian and now shows that OP(F') centralizes ®(Q).

Suppose for a contradiction that ) is not elementary abelian. Since @ is homocyclic this gives
Q1(Q) < D(Q)0,(M). Then [Q,Y] < Q nY < 1(Q) and [24(Q), Y] < [2(Q)0,(M), Y] < B(Q).
Since 1(Q) and ®(Q) are N-invariant, we get that [Q, F] < 21(Q) and [Q1(Q), F] < ®(Q). Hence
OP(F) centralizes each factor of the series 1 < ®(Q) < Q1(Q)P(Q) < Q. Coprime action shows that
OP(F) centralizes @. Since Cg(Q) < @, we conclude that OP(F) = 1. Hence F' is a p-group and
Y < F < Oy(N) = Op(Ne(Q)). This contradicts [8.1] O

8.2. The Case I < A

In this section we continue to assume the hypothesis and notation of Theorem [H] Furthermore,
we assume [ < A. We start with a summary of the notation used in this section:

NOTATION 8.11. — weLwith1#[[,I*] <In I see
- D:= (IFY, U := Cy(L) and W := C1(Q).
-Y:=Y/IL

- E:={Q9]geG|Cy(QI) #1), as in
— K := Endy, (I), as in[8.18]
If T is a natural QF (2)-module for M°:
— I is natural SLy(2)-module for M°.
- Wy := C1,(Q) and Uy := Cy,(A), with Iy chosen such that Uy is a hyperplane of Iy, see
the discussion before [8.23] R R
— N:=Ng(U), C:=Cg(U), B:={IN), B:= B/U, and Ny := Cn(B).
X = (B 0 Oa(M)M),
— K := Homg(Uy, B), and s is a C-invariant symplectic form on K, see
— Cy:=Co(K1). For F < C, F is the image of F in Sp(K/K*1).

LEMMA 8.12. Suppose that I < A. Then there exists x € L such that 1 # [I,I*] < I n I”.
Moreover, I* and A are non-trivial quadratic offenders on I, and Q normalizes I*.

PROOF. Since Y € O,(L), {(Y'F) is not abelian. Thus there exists x € L with [Y,Y*] # 1. By
BAE).(,
(*) N(;<Y) = Ng(l) and Cg(Y> = Cg(f).
As [Y, X*] # 1 this implies [I,Y?] # 1, and since also Ce(Y*) = Ca(I®), [I,I*] # 1.

Since A normalizes Y and I* < A we conclude that I” < Ng(Y), so by (x) I* < Ng(I). By
symmetry also I < Ng(I”) and thus [I,I"] < I n I*. Since I is abelian, this shows that I acts
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quadratically on I*. Possibly after replacing = by !, we also have |I/C7(I*)| = |I*/Cy=(I)], so I*
is a quadratic offender on I.

Again by (%) Ca(I) = Ca(Y), and [1.43(lg), Ca(Y) = Y n A. Hence Cyu(I) =Y n A. Put
A:= A/Cy(L). By[L43lle) A= AnY x AnY! for l e L\N.(Y). Thus
[A/Ca(D)] = [4/AnY| = |A/AnY| = |AnY!| = |An Y| > |I] = 1/C1(L)| > |1/Cr(A)]
Also by [L.43|(a)) [, A] < A’ < Cy (L) and so [I, A, A] = 1. Thus also A is a quadratic offender on I.
Finally, by 8.5{|b) L normalizes @, and Q < Ng(I). Hence Q < Ng(I%). O

Put D := ), U := C;(L) and W := C;(Q), and (if I < A) let z € L be as in

LEMMA 8.13. Suppose that I < A.
(a) D < A and D is not abelian.
) I is symmetric in G.
) L ={Y,Y*). In particular, L = (Y'L).
) Cr(D) =Z(L) and Cy(I*) = Cy(L).
) Ci(I") = C1(A) = Cr(D) = Cr(L) = U.
) D is a non-trivial quadratic offender on I.
(g) [
(h) [D,A]<Ci(L) =TU.

PROOF. @ and @: By hypothesis I < A and so D = (I¥) < A. Let x be as in Then
1% [I,I"] < I nI* so D is not abelian and I is symmetric in G.

(c): Since I is abelian, I # I”. By RBAb), Na(I) = Ne(Y) and thus = ¢ Np(Y). Since
L e £6(Yy), NL(Y) is the unique maximal subgroup of L containing Y, and so L = (Y,Y*) by
T.22([).

@: By Cg(I) = Cg(Y). Thus by
Cr(D) = Cp({I")) = CL(Y ")) = Cu(L) = Z(L).
Since Y is abelian,
Cy(I*) = Cy (I, I7)) = Cy (Y, Y™)) = Cy (L).
(€): Note that I* < D < A < L and by (d) C;(I*) = C;(L). Hence (g) follows.

@: By A is quadratic on I. Since D < A, also D acts quadratically on I. By I”is a
non-trivial offender on I, and by (&) C;(D) = C;(I”). Since I” < D we get

[1/CH(D)| = |I/C1(I*)| < |I"/Cy=(I)| < |D/Cp(I)].
So D is a non-trivial offender on I.

and (h): By definition of £ (Yar), Ni(Y) is a maximal subgroup of L and A < N (Y). This
gives and [I,A] < I. By|1.43(a), A’ < Cy (L), and since I < A, [I,A] < I n Cy(L) = C((L).
Conjugation with L gives [D, A] < C(L) =U. O

LEMMA 8.14. Suppose that I < A and |D/Cp(Y)| < |Y/Y n A|?. Then [Y,D] < I.
Proor. By [L.43|[h), (¢). (g) applied with B = D,
(1) Cp(L)=DnCy(L)=Cpny(L), |D/DNY|=|DnY/Cp~y(L)| and Cp(Y) =D nY,
and so
(I |D/Cp(L)| = |D/Cpry (L) = |D/D A Y||DAY/Cpay (L) = |D/D nY|* = |D/Cp(Y).
Put ¢ := |Y/Y n A|. By assumption |D/Cp(Y)| < |[Y/Y n A]? = §*. Thus gives

(II) [D/Cp(L)] <7
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Recall from [8.3] that
L/A =~ SL5(q),Sz(q) or Dihy, and |Y/Y n Al =7,
where p = 2 in the last two cases, r is an odd prime, and ¢ = 2 in the last case.

Suppose that p = 2 and L/O3(L) =~ Dihy,. Then § = 2 and by |D/Cp(L)| < 16.
Since GL3(2) has order 2 - 3 - 7 and contains no dihedral group of order 14. We conclude that
L/OQ(L) ~ Dihg =~ SL2(2)

So we may assume that L/A =~ SLs(q) or Sz(q). Since [D,Y,Y] < [Y,Y] =1, Y acts quadrati-
cally on D/Cp(L). Thus shows that all non-central chief factors of L on D/Cp(L) are natural
SLy(§)- and Sz(§)-modules, respectively. The natural Sz(g)- module has order ¢*, a contradiction

to ([II)). Hence L/A = SLs(q).

The natural SLs (@) module has order 32, and so shows that L has a unique non-central
chief factor on D/Cp(L). By [L.43|[p) L has no central chlef factors on D/Cp(L). Thus D/Cp(L) is
a natural SLs(q)- module In particular, L acts transitively on D/Cp(L).

By Cp(L) <Y, so0 ICp(L) <Y, and ICp(L) is elementary abelian. The transitivity of
L on D/Cp(L) now implies that D has exponent p. As D is not abelian by , this shows
that p is odd. Since L/A = SL2(q) and D/Cp(L) is a natural SLy(q)-module we conclude that
there exists an involution ¢t € L with [¢, L] < A, and t inverts D/Cp(L). Thus Cp(t) = Cp(L) and
Cr(t) = Cr(L). Since t € N(Y) = N (I), coprime action shows

I=[1,t]Ci(t) = [I,t]Cr(L) < [D,t]Cr(L).
By E, (L). Thus [D,{t)A]C;(L) = [D,t]C;(L) is L-invariant and contains I. Since
D = {I%), thls glves D [D,t]Cr(L). As D' < [D,A] < Cyr(L), D/Cyr(L) is abelian. Coprime
action now shows
D/C[( ) = [D t]C[(L)/C[(L) X CD(t)/C[(L)
Since D = [D, t]C(L), this gives Cp(t) = C;(t) and so Cp(L) = C;(L). Thus D/C;(L) is a natural
SLy(g)-module. It follows that Np(Y') acts simple on Cp,c, (1) (Y). Note that

1#1/Ci(L) < (Y nD)/C1(L) < Cpjcyr)(Y)

and that Np(Y) normalizes this series. Thus I/C;(L) =Y n D/C(L) and I =Y n D. Hence
[Y,D] <Y n D <1, and[8.14]is proved. O

Put Y := Y/I, and recall from H and [8.4{(b) that D < Ng(Y) = Ng(I), so D acts on Y and
Y.
LEMMA 8.15. Suppose that I < A.
(a) [Y,D,D] < Cy(L) and [Y,D,D] = 1.
(b) Bither [Y,D] =1 or |Y/Cy(D)]> < |Y/Y A A]> <|D/Cp(Y)).
(c) If I* = A, thenY n A = IC’y(I‘”) =ICy(L) and A = IIICY(L).

Proor. (): By[8.13([h) [4, D] (L). Since [Y, D] < D < A, this gives [V, D, D] < [A4, D] <
C;(L) < I. Hence [V, D, D] =1 and @) holds.

(]Eb: Suppose that |Y /Y n A2 > |D/Cp(Y)|. Then8.14{shows that [Y, D] < I and so [Y, D] = 1.
Suppose that |Y/Y n A]?2 < |D/Cp(Y)|. Since [Y n A, D] < [A,D] < Ci(L) < I we have
Y n A< Cp(D) and so |}N/'/C’~( D)< |Y)Y nA?<|D/Cp(Y )|

. Assume that I* = A, so A = [*Cx(Y By-. Ca(Y)=AnY,s0 A=IT(ANnY) and
AnY* =T"(AnY*nY). By[l.43(h) Am Y NnY?® = Cy(L) and so AnY?® = I*Cy(L). Hence
ED

also AnY = IC(L), and [L43|(e) gives A = (A N Y)(A nY?®) = II*Cy(L). Finally, by [8.13|(d)
Cy (I*) = Cy (L), and (d]) is proved. O

According to [8.13|(b|) I is symmetric in G. Thus, we can apply Theorem |§| with I in place of
Y. We will do this considering the various outcomes of Theorem |D| separately, and we will use the
notation of Theorem
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LEMMA 8.16. Suppose that I < A. Then Case (@) of Theorem@ does not hold for I in place of
Y.

PROOF. Assume that Case (3 of Theorem [D]holds. Then I is a natural SLs(g)-wreath product
module for M with respect to some K, M, = OP({K))Q, and @ acts transitively on K.

Put P := M°S and let P* be the inverse image of {({C) in M. Then I is also a natural SLy(q)-
wreath product module for P and OP(P) = M, = OP({K)). Hence shows

1°. P is p-minimal.

Moreover, by , Op(P/Cp(I)) =1 and by 8.4{|c) Cp(I) = Cp(Y). Thus

2. 0,(P)=1.

We now investigate the action of P on Y. Note that Cp(Y) < Cp(Y), so P/Cp(Y) = P/CF(EN/).
Since P is p-minimal and so p-irreducible, we either have

3. C5(Y) < 0,(P) or OP(P) < C5(Y).
We now discuss these two cases separately and show that both of them lead to a contradiction.
4°. C’g(f/) < O,(P) does not hold.

Suppose that Cg(?) < 0,(P). By O,(P) = 1 and so Cg(?) = 1. In particular Cp(Y) =
Cp(Y), and [V, D] # 1 since D € Cp;(Y). This gives

¥/05.(D)] < [7/05 (D)2 22 |Djcn ()| = [D/Co ().

So D is an over-offender on Y. On the other hand, since Cg(f/), Y is p-reduced for P. Moreover, since
P is p-minimal, shows that also ?/Cﬁ(?) is p-minimal. Hence H yields a contradiction.

5°.  OP(P) < Cﬁ(?) does not hold.

Suppose that OP(P) < C5(Y). Then [Y, M.] = [Y,0P(P)] < I, and by [8.4{{) Cy (M) = 1.
Since [ is a natural SLy(q)-wreath product module for M with respect to K,

PF =)= X K, and = X|[I,K],
KeK KeKk
and for K € K, K = SLy(q) and [I, K] is a natural SLs(q)-module for K.

Assume first first that p is odd or ¢ = 2. Put Z := O, (P*). Then Z is a normal p’-subgroup
of P and I = [I,Z]. Coprime action shows Y = Cy(Z) x I. Since M, normalizes Cy(Z) and
[Y,M,] < I, Cy(Z) < Cy(M,) = 1. But then Y = I, which is impossible since I < A and Y £ A.

Assume now that p = 2 and ¢ # 2. Then ¢ > 4 and K =~ SLy(q) is simple. Since [Y,0P(P)] < I,
C5(I) is a p-group, and since O,(P) = 1, we conclude that I is faithful P-module.

Let K € K. Observe that K n S is an offender on I. Since K is simple, K is Jx (V' )-component
of K, and since K << P, we conclude from that K is a J5(I) component of P. By there
exists subgroups E1, ..., E, of P such that

Js(I) = By x - x B, Js(I) = {E},... E.}
Q acts transitively on {E1,..., E.}, and either F; = SLy(¢*) and [[1, E;]/C[I, E;](E;) is a natural
SLs(¢*)-module for E; or F; =~ Sym(2™ + 1) and [I, E;] is natural Sym(2™ + 1)-module for E;.

As we have seen, K € J5([) and so K = E] for some 1 < i < r. Since [I, K] is natural
SLy(q)-module for g = 4, [I, E;] cannot be a natural Sym(2™ + 1)-module. It follows that K = E;.
Now the transitive action of @ on K and {Eh,..., E,} gives K = {E1,...,E.} and J5(V) =<(K) =
OP((K)) = M.

By A is an offender on I and so by

A=(AnE) x -x(AnE,) <{(K)=M..
Since [Y, M,] < I this implies [V, A] < I.
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By @ normalizes A. Thus there exists de A with 1 #d e C4(Q). Since [1,{K)] = I we
have [I, K,d] # 1 for some K € K and since ) centralizes d and acts transitively K, [I, K, d] # 1 for
all K € K. Since [I, K] is a natural SLs(g)-module for M, and d is a 2-element, [I, K, d] = C; x(d).
As I = X epc[I, K] we get [I,d] = Cr(d). On the other hand, A is elementary abelian and so
|d| = p = 2. Hence d acts quadratically on Y and

[V,d] < [Y,A] A Cy(d) < I~ Cy(d) = Cr(d) = [I,d].

,d] = [I,d] and Y = Cy(d)I. Note that d € A\Y, and so by [1.43([f) Cy(d) < A. Now
Y = Cy(d)I < A, a contradiction. O

Recall that M, = OP(M°). For the definition of J57(I) and a J57(I)-component of M see
LEMMA 8.17. Suppose that I < A. Then Case of Theorem@ does not hold for'Y in place
of I.

PROOF. Assume case (4:4) of Theorem @ Then p is odd, M° = LiLy with [Ly,Ls] = 1,
; = SLy,(q), n; =2and ny +np =5, and I = V; ®r, V2, where Vj is a natural SLy,, (¢)-module for
;. Note that for n > 2 and odd g¢:

&

1°. OP(SL,(q)) = SL,(q)', and SL,(q) is either quasisimple or isomorphic to Qs (and
n=2andq=3).

Let {i,7} = {1,2}, and let L; be the inverse image of L; in M°, and put K; := (L;Q).. Note
that M°® = L1Ls and [L1, L] < Oy (Y) < Ny (Q). Also @ is a weakly closed subgroup of M, and
so we can apply [[.47] It follows that

2°. K,<M°, M, = K1 K>, KZZ[K,,Q] and F*(M)gNM(K)

In particular, Ki = Op(Kl) < Op(Lz) < Mo = KILKJ’ and so OP(LZ) = KZ(OP(Lz) N LJ) Since
L; = SL,,(¢) and L; n L; < Z(L;) we conclude from conclude from (1°) that

3. K,=1L; = 0°(L;) = SLy,(q)'.

We will now verify the hypothesis of with K; in place of K. By , K; < M° and
K; = [K;,Q). Hence [M,Q] < M° < Ny ([K;,Q]) and thus

[F*(M°), Q] < [M, Q] < Nu([K;, Q) < N ([Ki, Q]Op(M°)).
Moreover, by @7& 1 and K; = F*(E).jince @g Me°, K, is subnormal in M. Hence
K; = F*(K;) < F*(M). Now shows that K; < F*(M). Thus, indeed M and K; satisfies the
hypothesis of [8:9] Hence

4. Ox(K;) =1

By [B.12] A is a non-trivial quadratic offender on I. Thus, there exists a best offender B < A on
I with [I, B] # 1. Then B # 1 and so by [K;, B] # 1. On the other hand, since L; =~ SL,,(q),
[L1,L2] =1 and M° = L; Ly we conclude that IT and E/ are the only minimal non-central normal
subgroups of M,. Thus {fl/,fgl} is M-invariant. In particular O?*(M) < NM(E/). Since p is odd,
we get that B < Jy7(I) < No7(L; ). But then by (3°) [K;, B] = K; < J57(I), and K; is minimal with
that property. Hence K; and K, are Jy7(I)-components of M. Now The Other P(G,V)-Theorem

IMS1] (or @) implies [I, K1, K>] = 1, a contradiction to the fact that I =~ Vi ®g, V2 as an
M°-module. |

LEMMA 8.18. Suppose that I < A. Then M, is quasisimple, I is a simple My-module, and A
acts K-linearly on I, where K := Endy (I).
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PROOF. Note that we have excluded cases and (4:4) of Theorem [D] see and In

all the remaining cases of Theorem |§| M, is quasisimple and [I, M°] is a simple M,-module. By
I =[I,M°] =[I,M,], and so I is a simple M,-module. In particular, K is a field, and since
A normalizes M,, A acts K-semilinearly on I. By A is an offender on I and so by [MS5] 2.5]
either A acts K-linearly on I or |I| = 4. The latter case is impossible as M, is quasisimple. O

For the next step recall that U = C7(L), W = C7(Q) and D = {I). As in 8.8 define
E:=(Q7[ge G| Cu(Q%) #1).
Moreover K = Endyy, (I) as in

LEMMA 8.19. Suppose that I < A. Then
(a) L normalizes E.
(b) U is a non-trivial K-subspace of I.
(¢) E=Ng(U)° = Ny (U)°. In particular, E < M.

(d) I/U = I" as an F,E-module for all h € L\N(Y).

PROOF. Since L centralizes and so normalizes U, L normalizes E. By 818 A acts K-linearly
on I and by B13|[), U = Cr(L) = Cr(A). So U is a non-trivial K-subspace of I. By
E = Ng(U)° = Ny (U)°; in particular, E < M. Since I < A, [B.8[d) shows that I/U =~ T% as an
F, E-module. |

LEMMA 8.20. Suppose that I < A. Then [Y, M,] < I.
Proor. We first show :
1°. E normalizes D and [Y,E, D] = 1.

By 8.19(c) E < M and so E normalizes I. By |8.19(la)), L normalizes F, whence E normalizes
D = (P By B, [V, E] <Y n A and by B13[[) [4,D] < Ci(L) < I. Thus [V, E,D] <
[A,D] < I and [Y,E, D] = 1.

For the next steps recall that M, = OP(M°) and W = C[(Q).
2°. Suppose that [I,E,D] = 1. Then [Y,M,] < 1.

By [B.13|[e) Cr(D) = U and so, since [I, E,D] =1, [I, E] < C;(D) = U, and E centralizes I/U.
By @) the F, E-modules I/U and I* are isomorphic for all h € L\Ny(Y). This gives [I%, E] = 1
for all such h, and so also [D, E] = 1 and [D, E, I] = 1. The Three Subgroups Lemma now implies
that [I, D, F] = 1. In particular, [I, D] < C7(QY) for all g € G with Q9 < E. By [I,D] # 1,

and so for all such Q9, 1 # [I, D] < Ca(Q) n C(Q9), and [1.52)(e) gives Q = Q9. Hence

(1) E=Q and [I,D,Q]=1.
Put
T:={seM|[I,s]<W and [I,s,s] = 1}.
Let ¢ € T with [I,t] # 1. Since W = C1(Q), |A.55|d) (with V' = I) shows that W = [I,¢]. From
[I,t,t] =1 we get [W,t] = 1. In particular

(II) [I,t] =W for all t e T\Cp(I) and T = Cpy (W) n Cpr (I/W).

By [I,D,Q] =1 and so [I,D] < C1(Q) = W, and by @) D is a non-trivial quadratic
offender on I. This shows that D < T, so [I,T] # 1 and C;(T) < C;(D). By B13|[e) C:(D) =U
and so C(T) < U. Since [I,T] # 1, gives [I,T] = W. Moreover, since Ny (Q) normalizes
Cr(Q) =W, shows that Nj;(Q) normalizes T, and Q! shows that T' < N/ (Q). We record:

(I1T) D<T<Ny(Q), Ci/(T)<U  and [I,T]=W.
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Next we prove:
(Iv) T is a weakly closed subgroup of M.

Otherwise, shows that there exists g € M such that T9 # T and [T9,T] < T9 nT. In
particular 79 < Ni7(T). Then T normalizes [I,T] and so [I,T,79] < [I,T]. Thus [I,T,T9] <
[I,T] n[I,T9]. By (1) [I,7] = W and so

[I,T,T9]<W A W?Y.

By N (Q) normalizes T. Thus T9 # T implies that g ¢ Na(Q), so Q # QY, and
gives Ca(Q) n Ce(Q9) = 1. Then also W n W9 =1 and [I,7,79] = 1. By (III) [I,T] = W and
Cr(T) < U. Hence W < C[(T?9) < UY. Thus Cpys(Q) # 1 and Q < EY. B7 E = Q and so
Q < FE9=0Q9 and Q = @9, a contradiction. Hence is proved.

Note that by , D <T < Ny(Q), and by Q!, N37(Cr(5)) < Nu(Q), and so

D <T < O,(N37(C1(5))).

By D is a non-trivial quadratic offender on I, and by [MS6, Corollary 3.7] every offender
contained in O, (N37(C1(S))) is a best offender. Thus D is a best offender on I. Since by M,
is quasisimple and [ is a simple M,-module, we are allowed to apply the Point-Stabilizer Theorem
to M,Dj.

Nowshows that M,D =~ SL,(q), n =2, Span(q),n = 2, G2(q) or Sym(n), n > 6, and I is a
corresponding natural module for M,D. The last two cases are impossible since they do not appear
in Theorem

Suppose that [ is a natural Spa,(¢) module with n > 2. By W is 1-dimensional. Hence
by [I,T] = W is 1-dimensional, and T acts as a transvection group on I. But then T is not
a weakly closed subgroup of M since n > 2. Therefore M,D =~ SL,(q). Note that the natural
S Ly (q)-module also is a natural SLs(¢q)-wreath product module and so has been ruled out by
Thus n > 3 and M,D is perfect. Hence D < M, and

(V) M, =~ SL,(q), n >3, and I is a corresponding natural module for M.

Again by [B.37, W is 1-dimensional. Let 1 # u € U. Since M acts transitively on I, [u, Q9] =1
for some g € M. Thus Cy(Q9) # 1 and Q9 < E. Since E = @ by (), this gives Q9 = Q and ue W.

So U = W, and by [B.13|(e)
W =U = C;(I*) = C1(D) = C1(A),

and since by A acts quadratically on I,
[[,I"]<[I,D]<[[,A] < Ci(A)=U=W.

By B.37(l) Q@ = C5(W) n Cy=(I/W), and so |Q| = |¢g" | = |I/U] and I* < D < A < Q. Since
by B1old) 1/U = T2, [T7] = |1/U] = [Q] and

(V1) A-D-T =0

As I* = A, [8.15||c) shows that Y n A = ICy(I*), and since Q = 17, Y n A = ICy(Q). Put
a:= Y)Y nA| and b := |W/|. (Actually b = ¢, but this will not be important.) Let s € @ with
S$# 1. Then [Y n A,s] = [ICy(Q),s] = [I,s] < W and so |[Y n A, s]| < b. Hence

Y/Cy(s)| <|Y/Y nA|lY n A/Cy~a(s)|| < al[Y n A, s]| < ab.
Since s € @, [Cy(Q), s] = 1. Now [A5E|[d) gives
[Cy (@) < [[Y,s]| = [Y/Cy (s)| < ab.
As Cy(Q) n I =W has order b, |Cy (Q)I/I| < %b =a. Using Y n A = ICy(Q) we get
Y/I| = Y)Y A A|lY n A/I| = Y)Y n A||Cy(Q)I/I| < aa = a?.
We are now in the position to prove .
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Assume that that |D/Cp(Y)| < |Y/Y n A|?. Then implies [Y, D] < I. Since D = @ and
M, < M° = {(QM), this gives [V, M.] < I, and holds.
Assume that |D/Cp(Y)| = |Y/Y n AJ?. Then
Y/Il <a® =|Y/Y n AP < |D/Cp(Y)| = [D| = ¢" .

Since SL,(q) has no non-central simple (FF-)modules of order at most ¢" ™!, we get [V /I, M,] =1
So again [Y, M,] < I, and is proved.

Suppose now for a contradiction that [Y, M,] € I and choose an M,D-submodule X of Y
minimal with respect to [X, M,] € I. Put

Xi/I:=Cx; (M), V:=X/Xi, M,D:=M.D/Cyrp(V),.
Next we show:
3°. V is a simple M,D-module, F*(]\Z\D) = ]\/4\0, J\7c>\D = <ﬁM°\D>, and
(VII) [V/Cv(D)| < +/|D/Cp(V)| < |D/Cp(V)].

Note that [M,,Ca,p(V)] = 1 since My is quasisimple and M, £ Cy,p(V),. Since also I is
a simple My-module and O,(M) = 1, shows that Cyy, p(V), is a p’-group and so Cp(V) =
Cp(Y). In particular, D#1.

By the choice of X, V is a simple M,D-module with [V, M,] # 1. Since Cp, (V) < Cpr, (V),
M is a non-trivial quotlent of the quasisimple group M., and so also M is quasmunple AsVisa
sunple M, D-module, O (M D) = 1. Thus @} implies that F*(M D) = M, is quasisimple, and
[MO,D] = M,. Hence M,D = <DM°D>.

Moreover,

|2 -.

V/Cv(D)? < |Y/Cy(D) |D/Cp(Y)| = |D/Cp(V),

and so
[V/Cv(D)| < v/ID/Cp(V)| < |D/Cp (V).

Hence is proved.

4°. [I,E,D]#1, and V is not selfdual as an F,M,D-module.

Since [Y, M,] £ I, shows
(VIII) [I,E,D] #
By -. Cr(D) = U, and so [I,E] € U. Since by -. I* =~ J/U as an E-module, also
[E, 7] # 1 and thus [E,D] # 1. Hence [E,D] € Cp(Y) = Cp(V) and [E,D,V] # 1. By (1
[Y,E,D] = 1 and hence also [V, E,D] = 1. Since [E,D,V] # 1, the Three Subgroups Lemma
implies that [V, D, E] # 1.

Let V* be the Fp-dual of the F, M, D-module V. Since [V, E, D] = 1, [B.§| gives [V*, D E] =1

Hence [V, D, E] # 1 1mpheb that V is not isomorphic to V* as an ]F M, D-module. Thus ) has
been established.

By @) D acts quadratically on Y and so also on V. Hence, according to 1} Disa
quadratic (over-) offender on V. Now shows that we can apply the FF-Module Theorem to
M.D. We will discuss the various outcomes of this theorem.

In cases [C3|2)-() V is a natural Span(q)-, SU,(q)-, Qs (g)-module,respectively. But then V is
selfdual over IF,,, which contradicts .

In cases [C.3|[))-(12), the Best Offender Theorem shows that either
V/Cv(D)| = |D/Cp(V)],
or
[V/Cy(D)| = ¢* < |D/Cp(V)] < ¢° (in the Spiny(g)-case),

or
2|V /Cy(D)| = |D/Cp(V)|, |D/Cp (V)| = 2% and n = 2k = 6 (in the Sym(n)-cases).
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In either of these cases [V /Cy (D)| > A/|D/Cp(V)|, which contradicts (VII).

Thus-. holds. So V is a natural SL,,(p')-module, m > 2 If m = 2 we get (for example by
C.13(lg)) \V/C’V( )| = |D/CD( )| which again contradicts . Thus M,D = SL,,(p"), m = 3.
In partlcular M.D = MO, so D < M,. Since Ca,p(V) is a p/-group, this gives D < M,. Moreover,
comparing M with M, in Theorem EL we get:

5°. D < M° = M,, and one of the following holds:

(A) I is a natural SL,(q)-module for My, n =m >3, ¢ = p'
(B) I is a natural Q0§ (q) module for M., m = 4 and q = p'
(C) I is the exterior square of an natural SL,(q)-module for My, n =m =5, ¢ = p'

We now derive a contradiction to our assumption [V, M°] « I by showing that none of the above
three cases holds. And we do this by comparing the action of M, on V with that of M, on I.

Suppose that Case (A)) holds, so I is a natural SL,, (q)-module for M,. Then by |B.38(b) [, E] <
U, a contradiction to (VIII])

Thus does not hold and so m > 4. Hence shows that H'(M,,V*) = 0. Thus
X/I =[X/I,M,] x X;/I and the minimality of X shows X; = and V = X/I. So

6°. X/I is an natural SL,,(q)-module for M,, where m > 4.

Suppose next that Case ' holds, so I is a natural € (¢) module for M, and m = 4. In
particular V' has F,-dimension 4, where [, := EndA( ) is a field of order ¢q. By -, W is 1-
dimensional and Q = Cy- (WL/W) N Cy ( ). It follows that |Q| = ¢*, and Cy(Q) = [V, Q] is a
2-dimensional subspace of V. Since by (1°) [V, E,D] =1, [V,Q] < [V, E] < Cv (D).

If Cv (D) = [V, Q], the quadratic action of D shows [V, D] < [V, Q] and so

D < C([V,Q)) n i (V/IV,Q)) = Q.

Thus D < @, a contradiction, since, for example by the Point-Stabilizer Theorem no subgroup
of Q is a non-trivial offender on I, while by @) D is a non-trivial offender on I.

We have shown that [V, Q] < Cy (D) < V. Since dimp [V, Q] = 2 and dimp, V' = m = 4, we get
that Cy (D) is an F,-hyperplane of V.

Put T := Cpy, (Cy (D)) n Cpr (V/Cy (D)), so D < T and T is the unipotent radical of the
normalizer of a hyperplane in ]\/4\0 Note that T centralizes a 3-dimensional singular subspace Wy of
I. Since DT, Wy <C[(D)=U, and so by 2.7(B) Nar(Wo)° < E. By E normalizes U, so
also Njs(Wp)© normalizes U. Now [B.38|[al) shows that W, <U<x Wgt, so U = WO since Wy = Wg-.
Thus |I#| = /U|—q IT|, and I$<D T gives [* =T

By [8.13(h) [ < Cr(L) < Cp(Y) and since I* < D, A centralizes I* = T. Since T is a
Sylow p- bubgroup of C’ +7(T), we conclude that A < T, and

IT| = |7 < |A] = [T1,

so A =T and by-. Y nA=1ICy(L). Hence also X n A =ICx (L) = ICx(A). In particular,
Cx(A) € I. Since a natural Qf (¢)-module is isomorphic to the exterior square of the natural
SL4(g)-module and since A = T, we can apply [MS5, 6.3]. We conclude that X is not a Q!-module

for M° with respect to any p-group, a contradiction to @!. This shows that also Case does not
hold.

Suppose that Case (C) holds. Then I is the exterior square of a natural SL,,(g)-module Vj with
n = 5. By and B.I3|[f) I®, D and A are non-trivial offenders on I. Hence shows that there
exist a F,-hyperplane V7 of V{ such that

D=1=A=Cy(Vi) and [D] = ¢" .

If Vp is dual to V as an F,M.,-module we get |Cy(D)| = ¢ and so |V/Cy(D)| = ¢"~' = |D|. But
this contradicts l) Thus, Vj is isomorphic to V as an F,M,-module. As above, using I* = A
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and [8.15((c)), we conclude that X n A = ICx(A). Since [X, A] < X n A, we have X n A € I and so
also Cx (A) € I. Applying [MS5| 6.3] shows that X is not a @Q!-module, a contradiction.

We have seen that each of the three cases in lead to a contradiction, and so is proved.
O

LEMMA 8.21. Suppose that I < A. Then one of the following holds:
(a) p =2, M° = SL3(2), I is a corresponding natural module, |Y /I| = 2, and Case (@ of
Theorem [H holds.
(b) p =2, M° =~ Qf(2) =~ Alt(8), I is the corresponding natural module, |Y /I| = 2, and Y is
the central quotient of the permutation module on a set A of eight objects.

PROOF. According to [Y,M;] < I. By BA(f), Cy (M) = 1 and so Y does not split over I.
Moreover, byﬁO is quasisimple. Comparing Theoremb (for quasisimple M) with yields
p = 2 and one of the following three cases:

(A) I is a natural SL3(2)-module for M°, and |[Y/I| = 2.

(B) I is natural Spa,(q)- or Sps(2)’-module for M°.

(C) M° =~ Qf(2) =~ Alt(8), I is the corresponding natural module, |Y/I| = 2, and Y is the

central quotient of the permutation module on a set A of eight objects.

Suppose that (A} holds. By |[W| = 2 and Q = Cy7(I/W) has order 4. Suppose that
I[Y,Q]| = 2. Then |Y/Cy(a)| =2 for any 1 # a € Q. Since Q is generated by two such elements,
|Y/Cy(Q)| < 4 and Q is an offender on Y. But this contradicts [C.22] Hence W < [Y,Q] < I, and
since Ny (W) acts simply on I/W, I = [Y,Q] < Q. Thus, case Thoorem holds, and (@) is
verified.

Suppose that holds. Note that I < A< L and A < M. So shows that Y < Op(L), a
contradiction to L € £5(Yas).
Finally in Case , @ holds, and so the lemma is proved. O

By the preceding lemma, [ is either a natural SL3(2)-module or a natural ¢ (2)-module for M°.
Moreover, if I is natural SLz(2)-module then Theorem [H| holds. So we assume for the remainder of
this subsection that I is a natural 2§ (2)-module for M°. In particular, Case (]E[) of holds and
so Y is the central quotient of the permutation module on a set A of eight objects.

We will make use of the fact that Qf (2) =~ SL4(2) =~ Alt(A) =~ Alt(8). Let Iy be a natural
SL4(2)-module for M° and Wy := C,(Q).

LEMMA 8.22. Suppose that I < A and I is the natural QF (2)-module for M°.

(a) M =~ QF(2) = Alt(8) or M =~ OF (2) =~ Sym(8). In particular, M = M, S.

(b)) YNnA=1and A=D.

(c) W is a singular 1-space in I, Q = Q°* = Cy=(WL/W) n Ci=(W) = O2(Ngz(W)), and Q
is a natural Qf (2)-module for Myp=(W).

(d) |Q| = 16, Q has two orbits of length 4 on A, Wy is a 2-subspace of Iy, Q@ = Cy=(Wo) N
Cyra(Lo/Wo) = Oz (Ny=(Wo)).

(e) I* = A is elementary abelian of order 8, A acts reqularly on A, A < M°, and I = [Y, A].

0 I€Q.

PROOF. @: Since I is natural Qf (2)-module for M, and since M normalizes M,, M fixes
the unique M,-invariant non-degenerate quadratic form on I. Now |Of (2)/QF(2)] = 2 implies
M~ Qf(2) or M =~ Of (2).

(]E[): Wehave I < YNnA<Yand|Y/I| =2,thusYnA=1. Since L e £c(Yy), A=Y nA)L)
and so A = (I¥) = D.

(c): Since both @ and Q* are large subgroups of G, shows that W is a singular 1-space
in I and @ = Q* = C3=(W+/W) n Cy=(W). Now implies that @ = O2(N77(W)) and Q is a
natural 7 (2)-module for My=(W).
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@: Since @ is a natural Q} (2)-module, |Q| = 16. Up to conjugacy
((12)(34), (13)(24)) x {(56)(78), (57)(68))

is the only (elementary) abelian subgroup of order 16 in Alt(8), and so @ has two orbits of length
4 on A. If Wy is 2-subspace of Iy, then Oy(Nyz=(W1)) is elementary abelian of order 16, and so (d)
holds.

(ED: For A € A let y) be the unique non-trivial element in Y fixed by Cps(N). Then yy ¢ I and
since by (]ED YnA=1 y\¢ A. Hence gives Y n A = [yx, A]Cy (A). Since [Y n A, A] =
[1,A] # 1, we get [yx, A, A] # 1. Thus |\4| = 4. So either A acts regularly on A or has two orbits
of length 4. On the other hand by A is an offender on I. The Offender Theorem now
shows that A acts regularly on A. In particular, all orbits of I* on A have the same length. Again
by I% is an offender on I, and shows that also I acts regularly in A. Hence A = I,
The regularity of A also gives

Y =) = olY Al < ol =Y,
so I = [Y, A]. Moreover, every element of A is an even permutation, so A < M°. Thus @ holds.

@): Suppose that I < Q°®. Since L < Ng(Q) < Ng(Q*®) this gives I” < Q*. By () Q = Q*, so

I* < @Q, and by @ @ has an orbit of length 4 on A. Hence I® is not regular on A, which contradicts
O

Put Uy := C,(A). Note that M° has two classes of regular elementary abelian subgroups,
interchanged by the outer automorphism. By @ M =~ Alt(8) or M =~ Sym(8), and we conclude
that Ny7(A) < M°. Moreover, each member of one of these classes centralizes a hyperplane in Io,
each member of the other a 1-subspace. So replacing Iy but its dual, if necessary, we may assume

that A centralizes a hyperplane in Iy, so Uy is a hyperplane of .

LEMMA 8.23. Suppose that I < A and I is the natural QF (2)-module for M°. Then
(a) Uy is hyperplane in Iy, I* = A = C5=(Up), Ny7(A) = N3=(Uo), Ny7(A)/A = SL3(2), and
A is a natural SL3(2)-module for N7(A) isomorphic to Up.
(b) U is a singular 3-space in I, Nyp(U) = N47(A) = My=(Uo), U is natural SL3(2)-module
for N37(U) dual to Uy, I/U and A are natural SL3(2)-module for Myz(U) isomorphic to

U(), andﬁ =A= CM(U) = CM(I/U) = Cm(Ug)
PROOF. @: By the choice of Iy, Uy is a hyperplane of I, and by [8.22}e) A = I* has order
eight. This gives A = C47(Up), and @ follows.

(b): Observe that I = Iy A Iy as an M.-module and recall from [B.13|[¢) that U = C;(A). Thus
(]ED follows from @ |

LEMMA 8.24. Suppose that I < A and I is the natural QF (2)-module for M°.
(a) B = Nyr(U) = Nyr(A) = Nyr=(U). -
(b) EJA = SL3(2), U is a natural SL3(2)-module for E dual to Uy, and I/U and A are natural
SL3(2)-modules for E isomorphic to Uy.
(c) AS E and A = Oy(E) = Oy(E).
(d) I =[I,E] =[Y,A] = [Y,05(E)].
(e) U=I[I,A] =[I,0:(E)].

PRrOOF. () and (b)): Recall from[8.19[d) that E = Ny (U)°. By[B.-38|[d) U is a natural SLs(2)-
module for E and so N37(U) = ECy(U). By (]Eb C3(U) = A is a natural SLz(2)-module
and thus non-central simple module for N7(U). Since E < Ny (U) we conclude that A < E and
E = N47(U). Now @ and (]Eb follow from (]Eb

(c): From (b) we get I = [I, E]. Since I normalizes U and so E, we have [/, E] < E and thus
I < E. As L normalizes U and thus E, we conclude that E normalizes (I*) < E. By [8.22|(b))
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A =D ={I*)and so A< E, in particular A < Oz(FE). By (]EI) E/A ~ SL3(2) and thus O5(E) = A.
Hence A < O2(E) < O2(E) = A, and () follows.

(d) and (&): As we have already seen above, (b)) gives I = [I, E], and by B.22|[) I = [V, A].
Moreover, since by both, U and I/U, are simple E-modules, [I, A] = U. Since by (c) A = O2(E),
@ and (ED follow. |

Put
N:=Ng(U), C:=Cg(U), B:=UN), B:=BJ/U Ny:=Cy(B).

LEMMA 8.25. Suppose that I < A and I is the natural Qg(?)—module for M°.
(a) EQ N, and L <C.

A< B<0y(E)<O03(N) and A =

<

(b) 02(E) = Cyr(U) = Cyro(Uh).
() [B.Oy(E)] = B/ = 9(B) = U

(d)

(©)

B =
1Z(B).
O2(F) < Ny < <Cn M,

e) [B,Y]=1.
(f) N = EC, Ny(Y) = EC&(Y) and [E,C] < O5(E) < Np.

PrOOF. (a): By E = N¢g(U)®, so E< N, and by definition, U = CI(L) and so L < C.

(b): By [R-22|(b) (I*) = A = D < B, and by [8.24(d), A < E so I < A < Oy(E). Since by
() £ < N also O5(FE) < N, whence B = (IN) < O5(FE) < Oo(N). By -. A = Oy(F) and by
8.23|[b) A = C57(U) = C375(Up). So also the second part of (b holds

(d): Recall from (&) that O5(E) < N and from (b)) that A < B < Oy(E). By [B24(¢), U
[I,A] = [I,02(E)]. Since U and O4(E) are N-invariant and B = <IN> this gives [B, 02( )] =
and

U

=[I,A] < [I,B]<[I,02(E)] =[B,02:(E)] =U.
Since [B, B] < [B, 02(E)] we conclude that U = B’ = [B, O2(E)]. Moreover, as I/U is elementary
abelian and [U,I] =1, also U = ®(B) and U < 1Z(B).
(d): By [B,02(E)] = U and so Oz(E) < Cn(B/U) = Ny. Since I < B, we get [I, Ny] <
[B,No] <U < I and so Ny < Ng(I) = Ng(Y) = MT. Since [B, No] < U < Q0.Z(B), Ny centralizes
®(B) = U, see[1.18] Thus Ny < C.

(€): By (B) A < B < O2(E) and by [824|(d) [Y, A] = [V, 02(E)] = I. Hence [V, B] = I, and (¢)
holds.

{: By B24([) U is a natural SLs(2)-module for E and thus E induces Aut(U) on U, so
N = EC. By[R.24(la) E = N37(U), and we conclude that Ny(Y) = Ny, v)(U) = ECG(Y). From

11.52(c) we get [Ng(U)®,Ca(U)] < O2(Ng(U)°). As E = Ng(U)®, this gives [E,C] < Oz2(E). Also
by (d) O2(E) < No. O

LEMMA 8.26. Suppose that I < A and I is the natural QF (2)-module for M°.

(a) Nn(Y) is a parabolic subgroup of N, and Nn(Y No) = Ny (Y).

(b) B is the direct sum of m natural SLs(2)-modules isomorphic to 1)U (and Uy) for E, for
some m = 2.

() [B,Ce(Y)] <U < I and Cx(U) = EnC < Ny

(d) F = [F, E] = [F, E] for any E-invariant subgroup of F of B. In particular, B = [B, E,] <
E, < M.

(e) B is a 2-reduced N-module.

PROOF. (a): Since O2(M) < N and Y is asymmetric, Ny (Y') is a parabolic subgroup of N (see
2.6{|c))). By definition of Ny, [B, No] < U < I, and by [8.25|(e), [B,Y] = I, so

Nx(Y) < Ny(YNo) < Ny ([B,Y No]) = Nx([B,Y]) = Ny(I) = Ny(I) = Ny (Y).

(]Eb By |8 -lﬁb E,C] < Ny and N = EC. Hence I¢ ~ I as an E-module for every ¢ € C, and
B = (INy = (I°). Since by 8 -QE) I =1I/U = U as an E-module, (]EI) follows.
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(c): Since Cp(Y) centralizes I/U, dEb gives Cg(Y) < Cp(B) < Ny. Hence [B,Cy(Y)]| <U < I
and Cg(Y) < C n Ny.

@: This is a direct consequence of (]E[)

@: By @) Nn(Y) = ECg(Y). As I = I/U is a natural SLs(2)-module for E, we conclude
that [ is 2-reduced for Ny (Y). Since B = (I") and by @) Nx(Y) is a parabolic subgroup of N,
shows that B is a 2-reduced N-module. O

Put X := {(B n Oz(M))M"). Moreover the integer m is chosen as in [8.26{(b)).

LEMMA 8.27. Suppose that I < A and I is the natural QF (2)-module for M°.

(a) X = 02(M,) = [X,M,] = [O2(M), M,] and Mo/X =~ SL4(2). In particular, Cp, (V) =
X.

(b) X' <®(X) <.

(¢) [X,E.] = X n B.

(d) X/I is the direct sum of m — 2 natural SL4(2) modules for M, isomorphic to Iy. In
particular, | X /I| = 24"=2) and | X ~ B/I| = 23(n=2),

(€ YAX=1I,|X/X~B|l=2""2and Y X/X ~ B| =27 1.

PROOF. (a): Note that [B,0o(M)] < Bn Oy(M) =B n X and X = (B n X)M"). Since M°
is simple, [1.54)|c) shows that M, < (BM"). Thus
@ [05(M), M,] < [02(M),(BM")] = ([02(M), B]'") < X.

<
Since B n O3(M) is E-invariant, [8.26||d) gives B n O2(M) = [B n O2(M), E,], and since E, < Mo,
we get B n O3(M) < [X, Ms], so

X ={(BnOx(M)M) <[X,M,] <
It follows that X = [X, M°] = [X, M,] < O2(M,); in particular X
By () [O2(M), M,] < X and thus
X = [X, Mo] = [02(Ms), Mo] = [O2(M), Ms].
As M? is normal in M, also [O2(M,), M,] is normal in MT, so X < MT.
Since M° is simple, |1.54{(b) shows that M,/[Os(M,), M,] is quasisimple, that is, M,/X is
quasisimple. Note that

X.
< 02(M,) < O2(M°) < Oz(M).

Cpx(Y)=BX nOy(M) = (BnOy(M)X = X.

By [8.25(b) B = C=(Uo) and by [8.26]{d) B < M.. Together with M, = M° we get BCyy, (Y) =
Cu, (Uo). Since by [B:24|(a)) Nase(Uo) = Nase(U) = Mo AN, Ny, (Up) normalizes B. Hence BX/X is
a Nz, (Up)-invariant complement to Car, (Y)/X in Cae(Up)/X. Now|[C.2]shows that Cyy, (Y)/X =
1 and so M./X = SL4(2). So (@) holds.

Before proving (]E[) — (ED we have a closer look at the structure of E.
1°. E=E.Cg(Y), Mo n N =E,X and O3(M, n N) = BX = Cp, (U) = Cpr, (Up).

By[8.24[) M~ N = Nps(U) = Eand so MAN = ECy(Y), and by[8.24|[b) E/A =~ SL3(2) and
Ais anatural SL3(2)-module for E. Thus O?(E) = F andso E = E Cp(Y)and MnN = E,Cy(Y).
Since E, < Mo, this gives My n N = E,Cy, (Y). Moreover, () shows that X = Cp, (V) and so
M,nN=FE, X

By [8.26(d), B < E, and so BX < O3(M° n N). Since B = O3(E) = O, (M N N), we get
BX = O4(M, mN) By [8-25(b)), B = C57(U) = C=(Us) and hence Cyy, (U) = BCyr, (Y) = BX =
Ch, (Up).

2°.  [X,B,Bl<I and [X n B,B] <[X n B,04(E)] < I.
Note that [X, E] < X n E < O2(E), B < O2(E) and by B25|[d) [O2(E), B] = U < I. Thus
[X,E,B] < [02(E),B]< I and [Xn B,B] S [X 0B, 02(E)] < [B, 02(E)] <
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3°.  [X,E.]<XnBand X' <®(X)<I.

Let g € M,\N. Since M, is doubly transitive on the hyperplanes of Iy and Ny (Up) = Ny, (U) =
Mo N < Ny (Bn X),
(B X)Mo = (B~ X)Me"N U (B9 ~ X},
Also by (1°) M, n N = E,X, and X normalizes B n X. Thus (B n X)M"N" — (B n X)®¢ and

X ={(BnX)M) = (B n X){(B n X)MN"
= (BY n X){(Bn X)) = (B~ X)(B n X)[X, EY].
By [B9nX,B9] < I and [X,E9, B9 < I. Also BY n N normalizes B n X. Hence
yields
[X,BINnN]|=[(BInX)(BnX)[X,E9],BINN|<[BnX,BINnN|I<(BnX)I=BnX.
By [8.25((b) B = C3=(Up). It follows that BI n N = C3(Ug) n Ci=(Io/Us N Ug) has index 2 in
B9 and acts faithfully on Uy. Thus [Up, B n N] # 1 and so also [U,BY n N] # 1. Note that
E/Cg(U) = SL3(2) is simple and E = Ng(U)° = E°. Hence U and Ng(U) satisfy the hypothesis of
and [1.54flc) shows that E, < ((BInN)F). As[X,BInN] < BnX and Bn X is E-invariant,
this implies [X, Fo] < B n X, and the first statement in is proved.
Then also [X, E] < BY n X, and gives
X=(BnX)BnX).
Again using that [BY n X, BY9] < I we have [BY n X,BY n N]| < I < Bn BYn X and since
B n X and BY n N normalize each other, [B n X,B9 n N] < B n B9 n X. We conclude that
[X,B9 " N] < BnBYnX. Since by ®(B)=DB'<U,
[X,BPA"N,X]=[BnB'nX,X|=[BnBnX,(BnX)(BnX)|<BBY=UU9<1I.
As before, m gives M, = {(B9 n N)Mo) and as X is M,-invariant, [X, M,, X]| < I follows. By
() X =[X,M.] and so [X, X] < I, and by B25|[d) ®(B) = B’ < U < I. Since ®(X n B) < ®(B)
and X = ((X n B)M"), X/I is elementary abelian. Thus, is proved.

4°. [X,FEo]=[X,MonN]=XnBand [X n B,02(M;nN)] < I.
By[8.26|(d), X "B = [X n B, E,] and by [X,E.] < XnB. Hence [X, E;] = X nB. Since by
M,nN = E,X and again by (3°) X’ < I < XnB, wealso get [X, M,nN] = [X,E.X] = XnB.
By [.25[c) [X n B, B] < B’ < I and by O2(M, n N) = BX. Hence
[X " B,03(M,nN)]=[XnB,BX]=[XnB,B]X'<I.
After this preparation we are now able to prove (]ED — .

(]ED and : This follows from and , respectively.

(d): By ®(X/I) =1, so X centralizes X /I, and X/I is an M,/X-module. Moreover, by
(a) Mo/X =~ SL4(2). By E., X = M;nN = Ny, (U) = Ny, (Up), and so E; X is the normalizer
of the hyperplane Uy of the natural SL4(2)-module Iy for M,. Also by BX = 0:(E.X) =
Chr, (Up).

Let Ry be a 1-dimensional subspace of Uy. Put P := Cjy, (Ry) and note that

Ry = [Ip, 02(P)] = [Uy, O2(P)] < Up.
Hence Oy(P) < Nu (Up) = Mo n N. Thus using both statements in ([{%):

[X,02(P)] < [X,M.nN] =X n B and [X,03(P),02(Ms " N)] < [X nB,02(MsnN)|] < I.
Note that P/X ~ 23SL3(2) and X < O2(M, n N) £ Oo(P). Thus P = (O9(M, n N)¥), and since
X and O3 (P) are P-invariant, [X,O2(P), P] < I.

Let Uy be an Es-submodule of B n X /I isomorphic to Uy. Since X centralizes X /I we conclude
that E,X normalizes U;. Thus U; = Uy as an EX-module and so Ry := [U;,O2(P)] is an 1-
dimensional subspace of U;. As [X,05(P),P] < I we get [R1,P] = 1. Let 1 # r € R; and h €
E,X\P. Since E, acts transitively on Uj, rrt e rBo < #Mo | Since M, acts doubly transitive on the

(1
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l-spaces in Iy and since Cpy, (r) = P = Cyy,(Ro), M, also acts doubly transitive on 7M. It follows
that e U {1} is closed under multiplication and so I} := (r™°) has order |M,/P|+1 = 15+1 = 2%

Note that U; < I;. So I; = <U:f\/]°>7 and I; is a natural SL4(2)-module for M, isomorphic to
Iy. As B/B n X and I/U are natural SL3(2)-modules for E, and as by B.26{fa)) X /I is the direct
sum of m natural SL3(2)-modules for F, isomorphic to Uy, B n X /I is the direct sum of m — 2
E,-submodules isomorphic to Uy. Since X/I = {(B n X/I)M°) we conclude that X/I is the direct
sum of m — 2 natural SLy(2)-modules for M, isomorphic to Iy. So (d) is proved.

(€): Recall from that |Y/I| = 2 and so [Y, M,] < I, and by (d) M, has no central chief
factorson X/I. ThusY n X < I <Y nX,s0YnX =Tand |[YX/X|=2. By @ | X /1| = 24(m=2)
and | X nB/I| = 23("=2) 50 | X/X AnB| =2"2and [YX/XnB| = |[YX/X||X/XnB| =2-2""2 =
2m=1 Hence (EI) holds. |

Recall that B = B/U and Ny = Cn (E) We now investigate B as an N /Ny-module.

LEMMA 8.28. Suppose that I < A and I is the natural QF (2)-module for M°.

(a) N/NO = O/No X EN()/NO

(b) Put K := HomE(UO,E). View K as an FaN-module with E < Cn(K) and Uy as a
natural SLs(2)-module for N with C acting trivially. Then |K| = 2™ and there exists an
FoN isomorphism

K®r, Uy — B with a®v — av.
(¢) For a,b € B define [&,A] = [a,b] and @®> = a®. [| Put F := Hompg(Uy A Uy,U). Then
|F| = 2 and there exists a C-invariant symplectic form
s: KxKw—TF, (a,p) — s(a,f)
on K such that
s(a, B)(v A w) = [av, fw]
for all v,we Uy and o, f € K.

ProoF. (): By BZ9[) No < C, by BZf) N = EC and [E,C] < Ny, and by B26d
EnC < Ny. Thus, C n ENg = Ny and

N/NO = C/NO X ENo/No
dEI): By [8.26/(b) B is the sum of m natural SLs(2)-modules isomorphic to Uy for E. Since
Endg(Uy) = F> this gives (b)).

(c): Let 1 # v e Uy. By [B24|(b) U is dual to Uy as an E-module. So Cg(v) is the normalizer in
E of a hyperplane of U and so Cy(Cg(v)) = 1. Let , 5 € K. Since o and 3 are E- homomorphisms
from Uy to B, Cg(v) centralizes aw, fv and so also (aw)? and [av, Bv]. As Cy(Cg(v)) = 1 this
gives (av)? =1 and [awv, Bv] = 1. Thus the inverse image of a(Up) in B is elementary abelian, and
for given «, 8 € K we obtain a well defined E-linear function

s(a,B8): UgAnUy—U, varw — [av,fw].

Thus s(o, ) € F = Homg (U A Uy, U). Note that Uy A Up is a natural SLs(2)-module for E

dual to Up and so isomorphic to U. Thus |F| = 2 and so
st KxKoF, (0,8) — sa,f),

is a well-defined C-invariant bilinear form on K.
Since the inverse image of a(Uy) is abelian, it follows that s(a,a) = 0 and s is a (possible
degenerate) symplectic form on K. O

Note that s induces a non-degenerate symplectic form on K/K*. Put Cy := Co(K*). For
F < C let F be the image of F in Sp(K/K™).

INote that this is well-defined since U < ©1Z(B).
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LEMMA 8.29. Suppose that I < A and I is the natural QF (2)-module for M°.
(a) K is a faithful 2-reduced C/No-module, and K /K= is faithful 2-reduced Cy/No-module.
( ) ny(K/KJ‘) YXﬂN(]:ny(K):XﬁB.
(¢) K+ =1 and C = Cy.
(d) C/No C = Sp(K).
(e) No(Y) is the normalizer in C' of a 1-subspace of K.
(f) m=2 ord.
(8) O2(Nc(Y)/No) = YXNo/Ny and No(Y)/Y XNy = Spin—2(2).

PROOF. @: By @ B is a 2-reduced N-module, and since C € N, also a 2-reduced C-
module. Since by mi B ~ K ®U, as an N-module, B is as an C-module the direct sum of
(three) copies of K. Hence Co(K) = Cc(B) = Ny, and K is a faithful 2-reduced C/Ny-module.

Since Cy < C we conclude that K is a 2-reduced Cp-module. Note that Cg, (K/K*) acts
nilpotently on K and so centralizes K. It follows that K /K" is a faithful 2-reduced Cy/Ny-module
and @ holds.

@: Put
K := HomE(UO,IA) and Ky := HomE(Uo,m).
By (EI}, [B,Y] =TI and so [E,Y] =Tis isomorphic to Uy. Hence K; is 1-subspace of K.

~

Since Y < C and B = K ® Uy we have [B,Y] = [K,Y]® Uy and so
K = [K,Y].
As B/Bn X =~ B =~ Uy, K is hyperplane of K. From [Bn X,Y] =1 we get [m,Y] =1
and [K3,Y] = 1. Thus
K> < Cr, (Y) < [K,Y]' = Ki
Suppose that Ki- = K. Then s(a, 3) = 0 for all a € K, 3 € K and
1=s(a,B)(v A w) = [a(v),B(w)] for all v,w € Uj.

But this implies [I, B] = 1, a contradiction.
Hence Ki- # K, and since K- contains the hyperplane K5, we get Ky = Ki. Moreover, since
Ky < Ck(Y),
K, =[K,Y] and K,=Cg(Y)=K{.
Since [B NX,YX]<Tand[I,YX] =1, YX centralizes Ko/K; = Ki-/K; and K;. Note that
K+ < K{ = Ky, [K2,YX] < Ky and K; n K+ = 1. Thus [K4,YX] =1and YX < Cy. Put
Zy := Ky K+/K*. Then Z; is a l-space in K/K*, Z}- = K{-/K* and

() VX < Cq(2t2).
Observe that Cp,(B) = Uy = [lo, Es], and by X/I is a direct sum of copies of I, so
Cx,1(B) = [X/I, E.]. ByB27(d), [X, E.] = X n B and thus
Cxr(B) = (X A B)/I.
Regarding the action of X on B/I, this means Cx(B/I) = X n B and so
Cyx(K/K:1) = Cyx(B/I) =YCx(B/I) = Y(X n B).
Note that |Y/I| = 2 and I but not Y centralizes B/U. So Cy(B/U) = I and
Cyx(K)=(XnB)Cy(B/U)=(XnB)I=XnB.
By both K and K/K* are faithful Cy/Nop-modules. So
Cyx(K/K*) =YX n Ny =Cyx(K)=Xn B,
and (]E[) holds.
(d): By[R-27(e) |YX/X ~ B| =21, and we get

(11) Y X|=2m"1
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Put ¢ := dimp, (K/K*). Then ¢ < dimp, K = m and

[Csp( K/KL (Zi)Z)| =27

Since YX has order 2™~ and by is contained in Cgpr k1) (Z1/Z1), we conclude that
2m=1 < 2¢71 Now ¢ < m gives ¢ = m,

K = 1, CO =C and )\;X = CSp(K/Kl)(Z%/Zl) = CSp(K)(Kll/Kl)Q

in particular holds.

(d): Since [I,1%] # 1 we have K; £ K{. By [B.26|(a)

( Csp(i) (KT /K1), Coprey(KTH/KT) ) = Sp(K),

and so (Y X, (Y X)*) induces Sp(K) on K. Thus C' = Sp(K), and (@) holds.

(EI): Since [K,Y] = K;, Y is a transvection group on K. It follows that

Y =Cx(Ki) and Ng(Y) = Ng(K1),

and @ holds.

{): Since Co(K) = No, No(V) = No(YNo). By [B26[fa) Na(YNy) = Ny(Y) and so
Ne(K1) = Ne(Y) < M. Since MT normalizes Y and X we conclude that X is an Ny & (Kq)-
invariant complement to YinYX. In particular, Y is not the only Ngp(k)(K1)-invariant subgroup
of Cp(x) (KT /K1). Henceshows that m < 4, and @) holds.

: Note that Ox(Ngpx)(K1)) = C’Sp ) (KT /Ky) = YX and that Ki-/K; is a natural
Spm—2(2)-module for Ng,x)(K1)) = NC(Y) so also holds. O

LEMMA 8.30. Suppose that I < A and I is the natural Qf (2)-module for M°. Then M°® = M,
Ny = B, and one of the following holds:

(1) m=2,0o(M) =Y, M' = M, MT = Qf (2) or Of (2) and
M~ 204104 (2) or 257105 (2)  and N ~ 22T328L4(2) x SLy(2),
(2) m=4, [M°,Cq(Y)] =X, M = M,Cg(Y),
MI)YX = M,)YX x Cq(Y)/Y X = SLy(2) x SL4(2),
X/I 2YX/Y is a tensor product over Fo of corresponding natural modules and
M~ 26+14429 1 (2) x SLy(2)  and N ~ 237345 Lg(2) x Spa(2).
PROOF. We first show:

1°. N/Ny = Spm,(2)xSL3(2), m =2 ord, and B is a tensor product over Fo of corresponding
natural modules.

By -@ N/N0 — C/Ny x ENo/Ny, and by [8.28|b) B =~ K ®g, Uy, where K = Endg(Us, B).
By [B:29|(d) C/No =~ Sp(K) and so K is a natural Sp,,(2)-module for C, and by [B29(f) m = 2 or 4.

Also UO is a natural SL3(2)-module for E, and so holds.
20, Oyt (X/I) A Copr(I) =YX and Ny = B.

Put
X1 = COZ(M)(X/I) and XQ/I = OXl/I(Mo)-
Then [X;, X] < I and so M,/X acts on X;/I. By@ X’ < I and thus X < Xy, and by,
[O2(M), M°] = X and so [X71, M,] = X. Since Ij is a natural SL,(2)-module for M,/X =~ SL,(2),
shows that H'(M,/X,Iy) = 1. By X/I is a direct sum of copies of Iy. Hence also
HY(M,/X,X/I)=1and so X; = X5X.
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Pick t € Xo. Then [t, M,] < I < Z(X), so [t, X] and Cx(t) are M,-invariant. Hence [t, M,] and
X /Cx(t) are isomorphic M,-modules. But I is the natural QF (2)-module for M, and by each
M-chief factor of X /I is a natural SL4(2)-module. It follows that [X,¢] = 1 and so [X2, X]| = 1.

Since [O2(M), Ms] = X and [Mo, X2] < I we get [O2(M), Mo, X2] =1 and [M°, X5,05(M)] =
1. The Three Subgroup Lemma now implies [X3, O2(M), M°] = 1. By [L.55||d) Ca(M®) =1, s
I:X2702(M)] =1 and X2 < Z(OQ(M)) Since [XQ,MO] < I < le(XQ) glVGS [ (XQ),MO]
1. As Cg(M°) = 1, X5 is elementary abelian. Therefore Xy < QlZ(OQ( ), and by ,
MZ(O2(M)) =Y. Hence X5 =Y and so

X1 =X X =YX.
Let X3 := Cp1(X/I) n Cpyi(I). Then
[02(MT) X3] [02( ) 3] <02(M)mX3 :Xl :YX,

[YX, X3] = [V, X3][X, X3] < I and [I, X3] = 1. Hence X3 acts nilpotently on Oy(MT), and since
MT is of characteristic 2, we conclude that X3 is a 2-group. So X3 < Oa(MT) < Oo(M) and
X3 < X1 =YX < X3. Thus

o

X;=YX.
This is the first part of .
By 8:25(d) No < MT. Put N2 := Cp,(Y). By -. M°,Cp1(Y)] < O2(M°) and so
[Mo, N3] < O2(M°) n My, = O2(M, By-. a) Ox(M,) = X and so M, normalizes No X . Since

[B, No] < U < I and by [B:27([b) [ X X < I, we get [X n B ,NoX] < 1. As M, normalizes Ny X, we
conclude that
[X,NoX] = [((X n BYMe) NoX| < I
Thus Nj centralizes X /I and I and so Na < X3 = Y X. Hence
N2 = YX(\NQ = YX(\CNO(Y) =YX n No.

By [8.29(b) YX n No = X n B and so No = X n B. Since Ny < C37(U) = B, this gives Ny =
BNy = B(X n B) = B, and is proved.

3°. E=FE, and M° = M,.

By B2 Cu(U) < No, by @) No = B, and by B2G[) B < E.. Thus E = E.Cp(U) =
E.B = FE,. Since E, < M07 this gives Q < E < M, and so MO = <QM> < M,.

4900 O(M") =YX and Ca(Y)/Y X = Spp_(2).
By [B:29[g), O2(Nc(Y)/No) = Y X Ny/Ny and by B = Ny. It follows that
O2(Ne(Y)) S YXNy = YXB < O2(Ne(Y))

and so
I O2(N¢(Y)) = YXB.
Thus
YX <Oy(M") < O3(Ne(Y)) =YXB =YXN,
and

Ox(MT) = YX(OQ(M A B))
Also Ox(MT) n B < O3(M) n B < X and so 02( T =
Note that MT = M and by (Eb C+(U) = B. As NC( ) = Cyr(U) this gives No(Y) =
Ce(Y)B = Cg(Y)Y X B. Hence

Ne(Y))YXNy 2 Ne(Y))YXB =Co(Y)YXB/YXB
~ Co(Y)/YXB A Ca(Y) = Ca(Y)/YXCp(Y).

Since Cp(Y) = Cu(Y) n B = Bn Oz(M) < X, we get that No(Y)/YXNy = Ce(Y)/YX. By
829, No(Y)/Y XNy = Spm—2(2) and so Ce(Y)/Y X = Sp,,_2(2), and is proved.
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We are now able to prove the lemma. By M = Qf(2) or M = Of (2), and M = M, S,
and by m = 2 or 4. Moreover, shows that N/Ny = Sp,.(2) x SL3(2) and B = B/U is
a tensor product over o of corresponding natural modules. By Ny = B. Also U is the natural
SL3(2)-modules for E dual to Up, and so the structure of N is as described in (for m = 2) and
in(@) (for m = 4).

By X/I is a direct sum of m — 2 natural SL4(2)-modules for M, isomorphic to Iy, and
by () Ca(Y)/YX = Spp—2(2).

Suppose first that m = 2. Then m —2 =0and so X = I, YX =T and Cg(Y) = Y. Thus
M' = MCg(Y) = M and since Y < O2(M) < Cg(Y), Y = Oz(M). Thus (1)) holds if m = 2.

Suppose next that m = 4. Then X/I is a direct sum of two natural SL,(2)-modules for M,
and Cq(Y)/XY = SLy(2). By Cut(X/I) n Cyr(I) =YX and so Ca(Y)/XY acts faithfully
on X/I. By [1.52[d) [M°,Cc(Y)] < O2(M°) and so [M,,Ce(Y)] < X. Thus Ca(Y)Mo/Y X =
SLo(2) x SLy(2), and X /T is a tensor product over Fy of corresponding natural modules.

Note that S normalizes at least one of the three simple M,-submodules of X/I. Let R be
such a simple M,-module. Since M, induces SL4(2) =~ Aut(R) on R we conclude that S induces
inner automorphism on M,/Cys (R) = M,/X. Since M = M, S this gives Mt = M = M, and
Mt = M,Cg(Y). Thus (2) holds. O

LEMMA 8.31. Suppose that I < A and I is the natural Qf (2)-module for M°. Then m = 2. In

particular, holds.

PROOF. Suppose not. Then holds. In particular, m = 4, MT = M,Cg(Y) and Ny = B.
Since M =~ SL4(2) =~ QZF(2) and I is a natural 2§ (2)-module for M, Ny (U) is a parabolic subgroup
of M. So we may choose notation such that S normalizes U. Then S < N. Recall from that
K is a natural Sp4(2)-module for C/Ny = C/B.

Let K, be as in the proof of that is, K7 = [K,Y] and K; is 1-space in K. In particular,
S normalizes K;. Let K3 be the 2-subspace of K such that K; < K3 < Kf- and S normalize K3.
Then K5 is a singular 2-subspace of K. Put

Cs:= Nc(K3), Y3:=(), I3:={I%).
Note that K3 is the natural SLy(2)-module for Cs. Thus K3 = (K7*) and so
Ig/U = K3 ® UO and Ig/U = <OZ(U) | (NS Kg,’l) € U0>

Since K3 is a 2-space, we get |I3/U| = 2 and |I3| = 2%, and since K3 is singular, I3 is abelian.
As Cg(I) = Cg(Y), we conclude that Ys is abelianﬂ

Since C'3 acts transitively on the 1-spaces in K3, C3 also acts transitively on the corresponding
transvections. It follows that Y3B = C¢(K3) and |Y3B/B| = 23. Hence Ck(Y3) = K3, and since
B = K ®Uy, we infer C5(Y3) = K3 ® Uy and C(Ys) = I3/U.

Since Y3 is abelian we get Y3 n B/U < Cp/y(Y3) = I3/U and so Y3 n B = I3. Hence Y3 has
order 2'2. As Y3 is abelian and generated by involutions, Y3 is elementary abelian.

Since Y3 is abelian, Y3 < C¢(Y). Note that Y B/B is the only transvection group contained in
O2(N¢(K1)/B). As Neo(K1) = No(Y) we get Y3 € O3(C(Y)) = XY. Since Ca(Y)/XY = SLy(2)
and Y X/Y is the tensor product of natural modules for

MT/XY =MY/X x Ca(Y)/XY =~ SLy(2) x SL4(2),
we get
Y3X/YX|=2 and [Cyx;(Y3)|= 2%,

Since Y3 has order 2!2 and Y has order 27, we conclude that Y3nY X has order 2!%, |Y3nY X /Y| = 2¢
and
ny/y<Y3) = YE), (@) XY/Y

It follows that Y3X /Y has exactly two maximal elementary abelian subgroups, namely Y X /Y and
Y3/Y.

2 This also follows from the fact that Y is asymmetric in G
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Since [M,,Ca(Y)] = X, M, normalizes Y3 X. As M, normalizes Y X /Y, it also normalizes the
unique other maximal elementary abelian subgroup of Y3/Y. Hence M, normalizes Y3. Since S
normalizes K3, S normalizes Y3 and so M = M,S < N¢(Y3). The basic property of M now implies
Ng(Y3) < MT = Ng(Y), a contradiction since C3 < Ng(Y3) and Y <1 Cs.

This completes our proof-by-contradiction, and the lemma holds. O

It remains to analyze Case [8.30(L).

LEMMA 8.32. Suppose that I < A and I is the natural QF (2)-module for M°. Let t be a
non-singular vector in I. Then Cq(t) £ M.

PROOF. Recall that U = Cy(L) and so L < C. Since C/Ny = C/B = SLy(2) we infer
Nc(Y) = YB and |C/Ng(Y)| = 3. So [I€] = 3. Let I¢ =: {I,, I, I3} with I = I;. Let 1 be a
2-subspace of U. Note that for ¢ € {1,2,3}, U is singular 3-subspace of I; and so V; is a singular
2-space in I;. Hence Vj is contained in a unique singular 3-space V; of I; different from U. Note also
that VbL = UV; in I;. Define

Mi = Ng(IZ'), Y; = Cg([l), Ei = Ng(‘/ﬂo, Bz = OQ(EZ)

So M; = M and Y1 =Y. Note that by [8.30, M° = M,. Since O3(M,) = X = I we have
MP/IL =~ Qf (2 By b) F; < M7, and @hows that V; is a natural SL3(2)-module for E;.
Note that Ez < N2 (Vi) and both I;/V; and Cpe (V;)/1; are natural SL3(2)-modules (dual to V;).
Hence Cye (Vi) = [Cue (Vi) Ei] < Ei. Ej = Nuye(Vi), Bi = Care(V;), and B; has order 2°.

Put

Eo:= Ng(Vo)° and By := Oz(Ep).

Since Vo < V; < [ , shows that Fy < E; < M. By Vo is natural SLy(2)-module
for Ey. Also I; = [I;, Ey] < Eo, Cane(Vo)/I; is extra special of order 25 with center Cune (UVE)/ 1,
and Care (Vo)/Care (UV;) is the direct sum of two natural SLy(2)-modules for Ey. Hence Cpre (Vo) =
[Chre (Vo) 0] < Eo. Eg = Nae(Vo), Bo = Cre(Vo) and By has order 2675 = 2!, Note also that
E =N, Mf(U) and so E; n E = Ey. Since C centralizes U, C centralizes Vy and so C normalizes Ej.
Moreover, since C acts as Sym(3) on {I1, I, I3} it also act as Sym(3) on {Vi, Vs, V3} with B the
kernel of the action.

Let {i,7,k} = {1,2,3}. Note that Y; fixes I;, Y; < C and Y; € B, so Y; acts non-trivially on
{I;, I};} and {V}, Vi, }.

Put

Vij = (V7).

1°. Vij is the unique elementary abelian subgroup of 26 in By containing ViV;. In particular,
Vij = Vji.

Put Z/Vy = Z(Ey/Vy). Note that [U, Eg] < Vy and [V;, Eg] < Vp. So UV; < Z n I;. Since
L;/UV; = I;/V5- is a natural SL(2) module for Ey we conclude that Z n I; = UV;. Also ZI;/I; <
Z(Ey/1;) = Cg,(UV;)/I;. The latter group has order 2. As E normalizes [; and I, I; n I; = U and
so V; € I;. Since V; < Z we conclude that |ZL/I;| = 2 and Z = UV;V;j is elementary abelian of
order 2°. In particular,

ZI)I; = Cp,(UV))/I; and  Cp.(Z) = UV,
Since B; = Cpre (Vi) < Ey, we have B; = Cg, (Vi) and so

(I Bin I =CIJ(V1’> =CIj<Z) =UVj.

Thus |I;B;/B;| = |I;/UV;| = 4 = |By/B;| and so By = I,;B;. Since [Z, B;] < [Z,By] < Vo < V;,
Z/V; < WZ(B;/V;). Also Zn1;/V; # 1 and ZI;/I; # 1. Since I;/V; and B;/I; are simple E;-module
we conclude that B; = (ZF") and thus B;/V; is elementary abelian. Since [B;, I;] = [Bil;,I;] =
[Bo, ;] = V;U, we get

[Bi/Vi, Bo| = [B;/Vi, I; B;] = By, 1;]V;/V; = V;V;U /1; = Z/1;.
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Note that Cg,(B;/1;) = B; and so |By/Cp,(Bi/I;)| = |Bo/B;| = 4 and
\[Bi/Vi, Bol| = |Z/1i| = 4 = |Bo/CBp,(Bi/1;)|.

Hence By is an offender on the dual of B;/V;. The General FF-Module Theorem now
implies that B;/V; is the direct sum of natural SL3(2)-modules for F;. Since B;/I; and I;/V; are both
dual to V;, the summands are isomorphic. It follows that there exists three simple E;-submodules
in B;/V;. As [B;/V;, Bo] = Z/V; has order four, each of the simple submodules intersects Z/V; in a
subgroups of order 2. Hence each subgroup of order 2 of Z/V; lies is a simple F; submodule. Recall
that V;; = <VJE> and note that V;V; < V;;. Since V;V; < Z and V;V;/V; has order 2 we conclude
that V;;/V; is a simple E;-submodule of B;/V;. So Vj;/V; is a natural SL3(2)-module for E;. Note
that I,I; is elementary abelian and E; acts transitively on V;;/V;. Thus all non-trivial elements in

Vij have order 2 and so V;; is elementary abelian of order 26. Since both I;/V; and Vij/Vi are simple
E;-submodules of B;/V;, B; = I;V;; and so

i}
Bin B; = Cp,(V;) = C,(V;)Vi; = UViVi; = UViV;Vi; = ZVi;.

Note that Cp,(Z) < Cp,(UV;) = I,Z and C1,(Z) = UV; < Z. So Cp,(Z) = Z. Also ZnV;; =
ViV has index 2 in Z. It follows that Z and V;; are the only maximal elementary abelian subgroups
of ZV;; = B; n B;. Since Z has order 2°, V;; is the only elementary abelian subgroup of order 2° in
B; n B;. As B; n B; = Cp,(V;V;) this shows that V;; is the only elementary abelian subgroups in
By of order 2° containing ViV;. Thus lb holds.

Recall that that M° >~ Alt(8) acts on a set A of 8 objects and Y is the central quotient of the
permutation module on A. Let 1 5 y\ € Y with Cy(y») = Alt(7). Note Z is 2-central in M° and so
we may assume that Z corresponds to ((12)(34)(56)(78)) in Alt(8). Then [Y, Z] = {y12, Y34, Ys6, Y78 -
It follows that [Y, Z] is a non-singular isotropic 3-space of I. Hence the elements of [Y, Z]\V; are
non-singular. Since C/B =~ SLy(2) and Y B € Syl,(C) we conclude that [C, Z]/V, has order four
and the elements in [C, Z]\V are not 2-central in G. Recall here that since Oz(M) is weakly
closed, elements of Y are conjugate in G if and only if they are conjugate in M, see [2.6(|d]). Also
Z Vo =U/Vox|[C, Z]/Vy as an C-module. Since V; # U and V; is a singular 3-space we conclude that
Vi, Vi, Viey = Z and V;V; n I, = [Yy, Z] is a non-singular isotropic 3-space in Ij. It follows that Ej
has two orbits on I;I;\I;, namely the four 2-central involutions in I;\Vj and the four non-2-central
involutions in [Yz, Z]\Vb.

Put Mij = NG(V;J) Then by V;'j = V}z and so <EZ,EJ> < Mzg Let v € Iz-[j\]z Then
Cg, (v1;/I;) = Ey and |E;/Ey| = 7. We conclude that E; has two orbits on Vj;\I;, namely the twenty-
eight 2-central involutions and the twenty-eight non-2-central involutions. Also E; acts transitively
on the seven 2-central involutions in I;. Note that the same holds with ¢ and j interchanged. Since
I; # I; we conclude that M;; acts transitively on thirty-five 2-central involutions and transitively
on the twenty-eight non-2-central involutions in V;;. It follows that 35 and so also 5 divides |M;;]|.

Let t; € [Yk, Z]\Up. Then |tkMJ = 28 and we conclude that 5 divides |Cyy,, (t)]. Since M;; N
My < N, (Vig 0 1) = Nag, ([Ya, Z]), 5 does not divide M;; n My, and so Chy,; (tx) € M. Since ty
is non-singular in I this gives C(t) £ M, and the lemma is proved. O

LEMMA 8.33. Suppose that I < A and I is the natural Q¢ (2)-module for M°. Then Case (@
of Theorem [H holds.

PROOF. Recall that case holds, in particular p = 2, |Y/I| = 2, M° =~ QFf(2), and [ is a
natural Q¢ (2)-module for M°. Let t be a non-singular vector of I. If C(t) is not of characteristic
2, then Case (3) of Theorem [H| holds.

So suppose for a contradiction that C¢(¢) is of characteristic 2. Since Y = O3(M) < Cq(t),
shows MT n Cg(t) is a parabolic subgroup of Cg(t). Since MT = M, this gives P :=
O2(Ci(t)) < O2(Ch(t)). Since t is non-singular in I and M =~ QF (2) or O (2), we have Cy7(t) =
Spa(2) or Cy x Spy(2). Hence either P = 1, or |P| = 2 and [Y, P] = {t). In either case [Y, P] < ()
and so also [(Y ey P] < (t). As Cg(t) is of characteristic 2, this implies Y < P < Cg(t). Since
Y = Oo(M) is weakly closed, we conclude that Cg(t) < Ng(Y) = MT = M. But this contradicts
B.32 O
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PROPOSITION 8.34. Suppose that I < A. Then Case (@ or Case (@ of Theorem@ holds.

ProOF. By either I is a natural SL3(2)-module for M° and Theorem holds, or I is
a natural F (2)-module for M°. In the latter case @ shows that Theorem 1’ holds. O

8.3. The Case I £ A and Q:Z(A) € Z(L)

In this short section we continue to assume the hypothesis and notation of Theorem [H] Further-
more, we assume that I £ A and 01 Z(A) € Z(L).

PROPOSITION 8.35. Suppose that I £ A and 3Z(A) € Z(L). Then Theorem @, (@) or (@)
holds.

PROOF. Then [1Z(A), L] # 1 and so by B.6] [Vug, HQ] # 1. Note that Q < O,(HQ) and so
[Yuo,Ql =1, HQ = HCn(Yng) and [Yug, H] # 1. Let V be an H-submodule of Yo minimal
with [V,OP(H)] # 1. Since H € H5(0,(M)), shows that H is p-irreducible and so by [L.34](d)),
V is H-quasisimple. Note that V = [V, H|] < H and since V is p-reduced for H, V < Yy. Hence,
according to [2.17] there exists a non-trivial strong offender W on Y such that W <V < Y and

[X, W] = [Y,W] for all X <Y with | X/Cx(W)| > 2.

Since [Yug,Q] = 1, Yug < Ce(Q) = Z(Q) and [Y, W] < W < Z(Q); in particular, W < @
and [Y,W,Q] = 1. So we can apply Since [V,W,Q] = 1 we get that M° =~ SL,(q) or
Span(q), n = 2, and [Y, M°] is a corresponding natural module. Moreover, either ¥ = [Y, M°]
or M° = Sp3,(2), n = 2, and |Y/[Y,M°]| = 2. By the definition of the Fitting submodule,
I = Yy, M°] since [Y, M°] is the unique M-component of Y.

If M° =~ SL,(q), then Theorem [H{(5) holds.
If M° =~ Spy,(q) and I =Y, then I £ Q* and so by p is even. Thus Theorem [H{|6) holds.
If I # Y, then Theorem [H|{4) holds. |

8.4. The Case I £ A and Q:Z(A) < Z(L)

In this section we continue to assume the hypothesis and notation of Theorem [H] Furthermore,
we assume that [ € A and 01Z(A) < Z(L).

LEMMA 8.36. Suppose that I £ A and 017 (A) < Z(L). Then
(a) Z(A)=Cy (L) =Cy(4) <Y n A.
(b) YA=IA and [Y,A] = [I,A] <1~ A.
(c) CA(InA) =Y nA=[IAICy(L) = (I n A)Cy(L); in particular Cx(Y) = Ca(I) =
CA(I N A)
(d) [1/C1(A)] < |A/Ca(D)?,

(e) A acts nearly quadratically but not quadratically on I.

ProOF. (d): By [L43|[d) QiZ(A) = Z(A). As Q.Z(A) < Z(L) this gives Z(A) = An Z(L). By
LA3|[) A n Z(L) = Cy (L), and by [L43](])

Cy(A) =Y nZ(A) < Cy(L) < Cy(A),
so Cy(A) = Cy(L).

() and (d): Since I is N (Y)-invariant, implies that YA = TA, [Y,A] = [I,A] < I A and
YnA=][I,A]Cy(L). ByR.4d), Ca(Y) = Ca(I) and so also C4(Y) = Ca(I). Moreover, by [1.43)(g)
Ca(Y) =Y n A and by [L43[[j) Ca(Y n A) = Z(A)(Y n A). As Z(A) <Y n A by (a)), this gives
CaY nA) =Y nA, and since Y n A = [[,A]Cy (L) = (I n A)Cy (L), Ca(Y n A) = Ca(I n A)
follows.

@ and : By @ A=Y n AL = [I,A]Cy(L))E). Since by @ [A, A] # 1, this gives
[I,A, A] # 1, i.e. Adoesnot act quadratically on I. Moreover, by[L.43|[u)) [Y/Cy (A)| < |A/Ca(Y)|2.
Since |I/C](A)| < |Y/Cy(A)| and by CA<Y) = CA(I), this gives |I/C](A)| < |A/CA(I)‘2
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By [1.43|(m]) A acts nearly quadratically on Y and so also on I. O

LEMMA 8.37. Suppose that I £ A and 7 (A) < Z(L). Then
(a) Y = IOy(A)
(b) A is a non-trivial offender on I n A.

(¢) Suppose that no subgroup of A is a non-trivial offender on I. Then A is a non-trivial best
offender on I N A.

PROOF. Recall that ¢ =Y /Y n A|. By[8.36{[b) [A =Y A, and so

@ [I/To Al =YY n Al =,
and by B35/
(I1) YnA=Cy(InA).

Moreover, by [[.43[e) |[A N Y/Cany(L)| = |A/A~Y|. Since by B36|f) Cy(A4) = Z(A) =
Cany (L), we get

(I11) |[AnY/Cy(A)| = |A/ANY]|.
(a): By[8:36{(b) YA =1AandsoY = I(Y n A). Now (a)) follows from [8:36}(d).
(]ED: By [8.36{fe)) A does not acts quadratically on I. So [I, A, A] # 1 and [I n A, A] # 1. Also

4/Ca(Tn A) @ 1apy - 4 Y A A/Cy(4)]
(I A A)YCy (A)/Cy (A)] = [T A A/Craa(A)

and thus A is a non-trivial offender on I N A.

(c): Observe that by ®(A) < Cy(L) and so A/C4(I n A) is elementary abelian. Since
InA and A are Np(Y)-invariant and A is a non-trivial offender on I n A, shows that
there exists a non-trivial Ny (Y)-invariant best offender D on I n A with C4(I n A) < D < A such
that |B||Cr~a(B)| < |D||Cr~a(D)] for all B < A. Since [I n A,D] # 1 and Y is abelian, we have
D €Y n A. Thus by , Cy (D) < A and we conclude that

(Iv) Cr(D) = Crna(D).

Note that by the choice of D, Co(I n A) < D and so Cx(I n A) = Cp(I n A). By [8.36((c]),
Ca(I)=Ca(InA)=Y n A, and we conclude that

(V) Ca(I)=Cp(I)=Cp(InA)=Cs(InA) =Y n A

By 8.36{fa) Cy(L) < Y nA. Thus Cy(L) < Cp({) < D < A and so D/Cp(I) is an Np(Y)-
invariant section of A/Cy (L). Since

IAAJCraa(L) =1 A/ AA)ACy(L) = (I nA)Cy(L)/Cy (L)

as Np(Y)-modules and Cra(L) < Crna(D), also I 1 A/Cr~a(D) is (as an Ng,(Y)-module) isomor-
phic to a section of A/Cy (L).

By any chief factor for Ni(Y) on A/Cy (L) has order § and so |D/Cp(I)] and |I n
A/Cr~4(D)| both are powers of §. As

D) alr e A/CraaD) B 11710 AL a/C10aD)] B (11 AT~ A/CH(D)] = (/e (D))
we get that |I/C;(D)| is a power of §.

On the other hand, by the assumption of (d), D is not an offender on I. Thus |D/Cp(I)| <
|I/Cr(D)| and so, since both sides are powers of ¢,

(vI) aD/Co(D] < 11/ (D) D GI1 - A/C1Aa(D)] L AD/C(T A A).
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By Cp(I) =Cp(InA)andso |D/Cp(I)|=|D/Cp(InA)|. Thus equality must hold in (VII]).
Hence
I nA/Crna(D)| =|D/Cp(In A
and so
IDIIC1Aa(D)] = | A AICH (T A A)] < |1 A A[CA(L A A).
Since A is an offender on I n A, [T n A||Ca(I n A)|| < |A||Cr~a(4)]. So
[DI[Crna(D)] < [AllCr1a(A),
and the maximality of |D||Cr~a(D)| shows that A is a best offender on I n A. O

PROPOSITION 8.38. Suppose that I £ A and 1Z(A) < Z(L). Then Case (1)), (3) (for n = 2
and g = 4), @,(@, (@) or (@ of Theorem@ holds.

Proor. We will first show:

1°. Let g € M such that Cy (Q9) n Cy(A) # 1. Then

[Q9,4] < Q9 n A and [Y,Q7] < [A,I]Cy (A).

By [8.36)la)) Cy (L) = Cy (A) and so [Cy (Q9) nCy (A), L] = 1. Now Q! implies L < Ng(Q9) and

thus by [8.5(a) @Y normalizes A. So
[A,Q)<AnQand [V, Q] S Y n@QI<SY nO,(L)=Y n A.

By B:36][d) Y n A = [I, A]Cy (A) and so holds.

2°. Suppose that I is a vector space over the field K, @ acts K-semilinearly on I and A acts
K-linearly on I. Then @ acts K-linearly on I.

As A acts non-trivially and K-linearly on I, [I, A]C;(A) is a proper K-subspace of I. Since @
normalizes 4, Cy (Q) n Cy(A) # 1 and

[1,Q] <In[Y,Q] In[AICy(A) =[AT]C[(A).

Thus @ centralizes the non-trivial K-space I/[I, A]C1(A). Hence @ acts K-linearly on I.

Note that Y is a p-reduced faithful Q!-module for M with respect to Q. By [8.36/ we have that
[Y, A] < I, and A acts nearly quadratically but not quadratically on I. By [8.5(b) @ normalizes A,
and A normalizes ). Thus the assumptions of the Nearly Quadratic Q!-Theorem [D.T1] are fulfilled
for M, @ and A. We will now discuss the seven cases of that Theorem.

Case 1. K = [F*(M), A] is the unique component of M, K < M°, I is a simple K-module,

I=[Y,KA] and A acts K-linearly on I, where K := Endg (I).

By|8.5((b) @ normalizes L and A, by, A=~ A/C4(Y) is elementary abelian and [Y, A] # 1,
and by [8.37(a), ¥ = ICy(A). Moreover, by B.36|[a), Z(A) = Cy(L) = Cy(A), and by
|I/Cr(A)| < |A/Ca(I)|?. Since A acts K-linearly on I, by also @ acts K-linearly on I. As seen
above, A acts nearly quadratically but not quadratically on I. Together with this shows that
Case of Theorem [H| holds.

Case 2. M° ~Q3(3), and Y is the corresponding natural module for M°.
Then Case of Theorem [H| holds.

Case 3. Y = I, and there exists an M-invariant set {K1, K5} of subnormal subgroups of M
such that K; = SLy,(q), mi <2, q a power of p, [K1, K] =1 and as a K1 Ky-module Y = Y1 ®F, Y2
where Y; is a natural SL,,,(q)-module for K;. Moreover, K := Endk,k,(I) = Fq, and one of the
following holds:

(1) M° is one of K1, Ky or K1 Ko,

(2) mi=mo=q=2, M~ SL2(2) i CQ, Mo = Og(ﬁ)@ and@ = 04 or Dg.

(B) mi=mg=p=2,q=4, M° = K1 K2Q = SLy(4) 1 Oz, A acts K-linearly on I and M°
does not.
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If Q is homocyclic, then shows that @ is elementary abelian. This rules out the case Q =~ Cy
in . SoQ =~ Dg and M° = K1 K2Q = M =~ SLy(2)1C5 in . In , since K1 Ko< M, M° acts
K-semilinearly on I, but not K-linear. Hence also @ acts K-semilinearly but not K-linearly on I.
Since A acts K-linearly on I this contradicts .

Now (1)) and (2)) show that Case of Theorem [H] holds.

Case 4. M =~ T'SLy(4), M° =~ SLy(4) or T'SLy(4), I is the corresponding natural module,
and [Y /1] < 2.

Then Case (8) of Theorem [H| holds.

Case 5. M =~TGLy(4), M° = SLy(4), I is the corresponding natural module, and Y = I.
Then Case of Theorem [H| holds with n = 2 and ¢ = 4.

Case 6. M = 3-Sym(6), M° =~ 3-Alt(6) or 3:Sym(6), and Y = I is simple of order 2°.
Then Case @ of Theorem |H| holds.

Case 7. M = Frob(39) or Cy x Frob(39), M° = Frob(39) and Y = I is simple of order 33.

Note that [4] = 3, |[Y, A]| = 3%, |Cy (A)| = 3 and Oy (4) < [Y; A]. ByR.36{[), Cy (4) = Cyv(L),
and by , Y nA =Y AlICy(L) = [Y,A]. Hence |Y n A/Cy(L)| = 3 and |A/Cy(L)| =
|A/Y n AllY n A/Cy(L)] = 9. Tt follows that L/Os(L) =~ SLy(3) and A/Cy (L) is the natural
SLy(3)-module for L. In particular, there exists an involution ¢t € L n M that inverts A/Cy (L) and
so also A. Thus t ¢ Z(M), a contradiction since M /Z (M) has odd order. O

8.5. The Proof of Theorem [H]

Clearly, one of the cases I < A, I £ A and 0 Z(A) £ Z(L), and I € A and 01 Z(A) < Z(L)
holds. Hence Theorem [H] follows from [8:34] B:35 and [8:38] respectively.




CHAPTER 9

The Q-tall Asymmetric Case 11

In this chapter we continue the discussion of the @-tall asymmetric case. More precisely, we
discuss Case of Theorem [H| proved in Chapter 8} As there we use a subgroup L € £4(Y)s) with
L < Ng(Q) and investigate the action of A (= O,(L)) on Y)y.

At this point in the proof of the Local Structure Theorem we have already left behind all cases
where one might have detected a non-trivial offender on Yj; or its Fitting submodule I by using
properties of conjugates of Yy, or the subgroups of $¢(O,(M)) and £¢(Yar). Also the theorems
on nearly quadratic action have already been exploited by showing that M = MCq(Yar)/Ca(Yar)
has a unique component K, that I is a simple K-module and that AQ acts K-linearly on I, where
K = Endg(I).

So in this chapter we need to apply the Theorems of Guralnick and Malle [GM1] and [GM2)]
on simple modules V' for almost quasisimple groups that allow a non-trivial 2F-offender. In our
case, A is such a 2F-offender on I. That is,

[I,A] #0 and |I/Cr(A)| < |A/Ca(I)]?.

But not all the pairs (K, I) which we obtain by applying the Guralnick-Malle Theorems appear
in the conclusion of the main theorem of this chapter. In section [9.1] we therefore provide some
generic arguments which help to trim down the Guralnick-Malle list: If K is a genuine group of Lie
type in characteristic p we show that A < K by using information about the outer automorphism
group of K; and if I is a selfdual K-module we obtain a wealth of additional information and are
able to give a fairly precise description of the action of A on I.

Here is the main result of this chapter.

THEOREM 1. Let G be a finite Kp-group, S € Syl (G), and let Q < S be a large subgroup of G.
Suppose that M € M (S) such that Y is asymmetric in G and Q-tall and that Case of Theorem
@ holds. Then one of the following holds, where Y := Yy, MT := MT/Cyt(Y), I := Fy (M), and q
is some power of p:

(1) M° = SL,(q), n =3, and I is a corresponding natural module.
(2) p=2, M° = Spa,(q), n =2, or Spa(2)’, and I is a corresponding natural module.
(3) M° =Q¢(q), n =3, (n,q) # (3,3), p is odd if n is odd, and I is a corresponding natural
module.
(4) M° = SL,(q)/{(—=id)"'), n = 5, and I is the exterior square of a corresponding natural
module.
(5) p is odd, M° =~ SLy,(q)/{(—id)"~ '), n = 3, and I is the symmetric square of a correspond-
ing natural module.
(6) M° =~ SLy(q)/{\id | X € Fy, A" = X+ = 1% n >3, ¢ = q3, and I is the unitary square
of a corresponding natural module.
(7) M° = Spiniy(q), and I is a corresponding half-spin module.
(8) M° = Egx(q), and I is one of the (up to isomorphism) two simple F,M°-modules of F,-
dimension 27.
(9) p=2, M = M° = Matyy, and I is the simple Todd or Golay-code module of Fo-dimension
11.
(10) p =2, M° = Matyy, and I is the simple Golay-code module of Fo-dimension 10.
(11) p=2, M = M° = Aut(Mata), and I is the simple Todd module of Fy-dimension 10.

149
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(12) p =3, @ >~ Matq1, and I is the simple Golay-code module of F3-dimension 5.
(13) p=3, M° =~ 2-Matqa, and I is the simple Golay-code module of Fs-dimension 6.

COROLLARY 9.1. Assume the hypothesis and notation of Theorem [l Suppose in addition that

Y # I. Then one of the following holds:
(1) M° = Span(q) or Spa(2), p =2, I is the corresponding natural module and |Y /I| < q

(2) M° =~ Q; (3), I is the corresponding natural module, |Y /I| = 3, and Y is isomorphic to

the 5-dimensional quotient of a siz dimensional permutation module for M° =~ Alt(6).
(3) E =~ O5(3), I is the corresponding natural module, and |Y /I| = 3.
(4) M° = QF(2), I is the corresponding natural module, and |Y /I| = 2.

(5) p=2, M = M° = Matyy, I is the simple Todd-module of Fa-dimension 11, and |Y /I| = 2.

COROLLARY 9.2. Assume the hypothesis and notation of Theorem [l Suppose in addition that
Cc(y) is of characteristic p for all1 # y € Ypr. Then'Y = I. Moreover, the cases (Todd-module

for Aut(Matss)) and and (Golay-module for 2-Matz) of Theorem|[] do not occur.
Table [I] lists examples for Yy, M and G fulfilling the hypothesis of Theorem [[|

TABLE 1. Examples for Theorem ]|

[Yar, M®] for M° c Remarks examples for G
nat 27, (q) 1 - R 15(q)
* nat Q3(5)) 1 - Coy
* nat Q5 (2) 1 - L,(3)
* nat 2 (3) <3 - Us(2).c(.2)
nat €, (3) 1 - McL
* nat Q5 (3) 1 - FZQQ( 2)
* nat 5(3) <3 - 2E6( ).c(.2)
* nat Qf (2) <2 - PQF(3).¢(.2)
* nat Q7 (3) 1 - F124( 2)
* nat Qf,(2) 1 - M
A?(nat)SLy,(q) 1 n>=4 P35 (q), Q2nt1(q) p odd

PQs5,.0(9), 03,(q) p =2
- PSpan(q)
- Uzn(q0); Uzn+1(qo0)
- Es(q)
- E7(q)
Golay 2 for Mata, - Coy
Todd 2! for Matoy - Jy

S?(nat)SL,(q) 1
1
1
1
1
1

Todd 2! for Matoy <2 - Fiyy.c
1
1
1
1

U?(nat)SLa(q5)
half-spin Spinf,(q)
¢*" for Eg(q)

Golay 219 for Matas - Cog

Todd 2% for Aut(Matss) - Aut(Figo)
Golay 3° for Mat1; - Cos
Golay 3% for 2-Matio - Coy

‘Here ¢ 1= [Yar/[Yar, M°]|, and # indicates that (char Y)) fails in G.

9.1. Notation and Preliminary Results

NoTATION 9.3. We will use the notation introduced in Theorem [[] and in In particular,

since L € £5(Yn),
L/A = SLy(q), Sz(q), or Da, and § = |Y/Y n Al.

Moreover, by our hypothesis we are in case of Theorem [Hl Summing up we have:
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(a) A is Q-invariant, A is elementary abelian, and A acts nearly quadratically on Y, but not
quadratlcally on I.

(b) K :=[F*(M), A] is the unique component of M, K < M°, and [ is a simple K-module.

() [¥/Cy (A)] < [A] and [Y, KA] = 1.

(d) AQ acts K-linearly on I, where K := Endg (I).

(e) If ge M with Cy(Q9) n Cy(A) # 1, then [Q9, A] < Q9 n A and [Y, Q7] < [Y, A]Cy (A).

(f ) =17Z(A) =ICy(A) and Cy (A) = Z(A) = Cy(L). In particular, I € A and [Z(A),I] =
For any group H and finite dimensional F,H-module V we denote by Yy (H) the largest p-

reduced submodule of V, i.e., the largest submodule U satisfying O,(H/Cy(U)) = 1.

LEMMA 9.4. Let X be a non-trivial p-subgroup of M. Then Cx(K) = Cx(K/Z(K)) =
Cx(M°) =1, X nCy(K/Z(K))K < K and K = [K, X].

PrOOF. From [9.3((b) we get that K is the unique component of M, K < M° and I is a simple
K-module. The last fact implies that C57(K) is a p’-group. Thus Cx(K) =1 and so Cx(M°) =1
since K < M°.

As K is quasisimple, C37(K/Z(K)) = C37(K) and X nCy(K/Z(K))K = X nCy;(K)K. Since
C37(K) is a p'-group, we conclude that O (C37(K)K) < K and so X n O3;(K)K < K.

Note that K is quasisimple, K < M and [K, X] # 1. Thus K = [K, X|, and is proved. []

LEMMA 9.5. (a) A =®(A) < Cy(L). In particular, A acts quadratically on I n A.
(b) InA=[I,A|C1(A). In particular, I n A is a K-subspace of I.
() CaAImnA)=Y nA=(InACy(A).
(d) A is a non-trivial offender on I n A.
(e) Suppose that no subgroup of A is a non-trivial offender on I. Then A is a non-trivial best
offender on I n A.

PROOF. By [9.3() I < A and Z(A) = Cy(L). Thus also 01Z(A) < Z(L) and we can apply
and B.3
@ By-. ) A" = < Cy (L) and so (a)) holds.

(B): By[R-36|[b) [Z, 4] < ImA and by [8.36(|d) Y n A = [I, A]Cy (L). Hence I n A = [I, A]C[(L).

(<), () and (&): These claims follow from [8:36{(c), B-37|(b) and [8.37|(d), respectively. O

LEMMA 9.6. Let P < M with AQ < P and A < O,(P). Then P° normalizes A and [I, P°] <
InA.

PROOF. Since A < O,(P), Cy (0,(P)) < Cy(A). Thus, for g€ P,
1# Cy (0p(P)) n Cy(Q7) < Cy (4) n Cy(QY),
and so (9.3l gives
[Q7,4] < An Q" and [Y, Q%] < [V, A]Cy (A).

Hence @9 normalizes A and since [V, A]Cy(A) < Y n A, [I,Q9] < I n A. Thus P° normalizes A
and [I,P°] < In A ]

LEMMA 9.7. Suppose that I is selfdual as an F,K-module. Put D := [I,A] n C;(A). Then
there there exists a mon-degenerate K -invariant symplectic, symmetric or unitary K-form s on I.
Moreover, for any such form s the following hold:

(a) M°(AMY acts K-linearly on I, and s is M°{AM)-invariant.
(b) K| =g

(c) D is 1-dimensional over K and I n A = [I, A]C7(A) = D*.
(d) dimg[I,a] <2 for allae A.
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(e) D < Cr(Q). -
(f) A centralizes D*/D and A < Op(N7(D)).
(g) Let X be a K-subspace of Cr(A) with Cr(A) = D x X. Put

={ge GLx(X") | s(u,v) = s(u?,v9) for all u,v e X+},
and let A be the image of A in T. Then X n X+ =1 and
ACp (Xt A DY) = Cp(D) n Cp(X*/D).
(h) s is symmetric.
() 12(5)] <2. B
(j) Let Ry < M with QA < R1, Q € Ry and Op(Ry) # 1, and let I := Y;(R1) be the largest

p-reduced Ry-submodule of I. Then Iy is a natural SL, (q)-module for RS and for (A%).
Moreover, D = [I1, A] = C,(Q).

ProoF. By [9.3(b)), I is a simple K-module and by assumption I is a selfdual F,K-module. So
we can apply [B.7|with (M, K,I,F,) in place of (H, N, V,F). In particular, the existence of s follows

from [B7ja).

For U < I put
={vel]|s(u,v) =0 forall ueU}.

Recall from basic linear algebra :
1°. Let U and V' be K-subspaces of I. Then
(a) UJ_J_
(b) U+ n VL (UV)*.
(c) (UnWV)t=Utv+t

(d) dimI = dimU + dim U+.
and

2°. Let N be a group acting K-linearly on I and suppose that s is N -invariant. Then

(a) Cr(N)* = [I,N].
(b) [I,N]* = C1(N).
(c) Let U be an N-submodule of I. Then Cn(U) = Cn(I/UL).

Next we prove:

3°. @ holds.

By B.7||d) M acts K-semilinearly on I. Let M; consists of those elements in M that act K-
linearly on I. Then by 1Ei s is Op'(Ml)—invariant. By @j QA is K-linear on I and so is
contained in OP (My). Tt follows that M°(AM) = (QA)M) < OV (M;) and @ holds.

4°. @ and (@ hold.
By [0.5|(b) I n A = [I, A]C;(A), and so (using and (29))
(I n At =[I,AY " Cr(A)r =C1(A) n[I,A] =D
and
InA=(InA* =Dt

Thus the the second part of holds.

Since

dimg I = dimg D + dimg D+ = dimg D + dimg I N A,
we have |D| = |I/I n A|l. By Y A/A is the unique non-trivial elementary abelian normal
p-subgroup of N (Y)/A. Tt follows that YA = T A, and N (Y) acts simply on
Y)Y NA=YA/A=TA/A=I/InA=1/D*

In particular, |D| = |I/I n Al = |Y/Y n A| = 4. In addition, by [9.3|(f), Cy (4) = Cy(L). Since
D < Cr(A) < Oy (A) we conclude that Nz(Y) centralizes D and so Cps(D) acts simply on I/D*.
Now [B.7(€) shows that D is 1-dimensional over K. Thus |[K| = |D| = ¢, and (b)) and (c) are proved.
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5°. [DY, Al =[InA Al =[I,A Al = D.
From ,
[D*, A] = [I n A, A] = [[1, A]C1(A), A] = [1, A, A].
By , A is nearly quadratic but not quadratic on 7. So A is cubic on I and
1 [I,A Al <Cr(A)n[I,A]l = D.
By (d), D is 1-dimensional over K, and we get [I, A, A] = D. Thus is proved.

6°. (@) and (@ hold.

Let a € A. Since a acts K-linearly on I and dimg D = 1, gives dimg[I n A,a] < 1. As by
also dimg I/I n A = dimg I/D* = 1, we get that dimg[I,a] < 2. So @ holds.

By @ A and so also D is Q-invariant, and by () @ acts K-linearly on I. As D is 1-dimensional
over K, this gives D < C7(Q). Hence (g) is proved.

7°. (m) holds.

By [D+, A] = D, by definition D < Cj(A), and by , [I,A]C;(A) = D*. Hence A
centralizes I/D*, D*+/D and D. Moreover, by , Ny (D) normalizes the chain D < D+ < I
Thus (ANM (D)> centralizes all factors of this series and so acts as a p-group on I. By @l
Cu(Y) = Cum(I) and so A < O,(N37(D)).

8. (g holds.
Note that X < C7(A) = [I, A]* and

[I,A] = Cr(A)* = (D x X)* O® pi ~ xt and DX (DnX)t =1
In particular, X+ € D+ and by (d) X < C;(A) < DY, 50 X = X n Dt and X = X n C7(A). It
follows that
XnXt=XnD'nXt=Xn[[LAl=XnCi(A)n[[,A]=XnnD=1.

Hence X is a non-degenerate subspace of I, and I = X+ x X. Let i € X*\D+. As D+ = [I, A]C;(A)
and A acts nearly quadratically on I, we have [i, A]C;(A) = [I, A]C;(A) = D*+. Intersecting with
[1, A] gives [I,A] = [i, A](C1(A) n [I, A]) = [i, A]D. As [I, A] = X+ n D* we conclude that
(%) [i, A]D = X+ ~n D*.
Put T} := Cp(D) n Cp(X+ A DY/D) and Ty = Cr(X* A DF). Recall from that [D+, A] = D,
so A < Tiy. Since by D is 1-dimensional, D+ is a K-hyperplane of I, and since X+ € D+,
X+/X* ~n D* is 1-dimensional. Hence by the choice of i € X+, X+ = (Ki)(X* n D*). Since T}
centralizes X+ n DY/D, this gives Cr, (iD/D) = Cr,(X*/D).

Observe that T' = CI(X*) (in the notation of Appendix|[B]). Hence by @ X+/X+tAD+ = D*
as KTj-modules and Cr, (X+/D) = Cr,(X*+ n Dt), and so To = Cr,(iD/D). By () A acts
transitively on i(X+ n DL)/D and so a Frattini argument implies that 7} = AT} and (g) holds.

9°. (@) holds.

Let X, T and A be as in , and let 71 and T3 be as in the proof of . Suppose that s is
not symmetric. Then s is a unitary or symplectic form, where in the latter case p is odd since s is

not symmetric. Hence [B.28][c:a]) and [B.2§|(b:a) show that ®(77) = T2. On the other hand, by (g)
Ty = AT,. This gives T1 = A, and T} is abelian, since A is abelian by 15) This contradiction
shows that s is symmetric and so holds.

10°. (@) holds.
Let k € Z(K). By [9.3(b) I is a simple K-module, and by [9.3(|d) K = Endk(I), so k acts as
b

scalar A € K on I. By (hl), s is K-bilinear and so for any v, w € I:
s(v,w) = s(vF, wk) = s(\w, A\w) = A2s(v, w).

Since s is non-zero we conclude that A2 = 1, and holds.

We now begin with the proof of (EI) Put R := (AF).
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11°. RRS acts K-linearly on I, and s is RR{-invariant.
Note that RR; < M°(AM). Hence @ implies (11°).
12°. Ci(RY)=1and I =[I,RY].

Since Q € Ry, Q! implies C7(R]) = 1. By (11°) RS acts K-linearly on I and s is R{-invariant.
Hence
[I’ R(lj] = CI(R(IJ)L =1,

and (|12°) follows.

13°. Cr(R) =1, and [W,A] # 1 and W # I for every non-trivial p-reduced Ry-submodule of
I. In particular [I,A]l #1 and I # 1.

Set Iy := C7(R) and suppose that Iy # 1. Let [ € Ry. Since A< R< Ry and Q < Ry, Iy is Ry
invariant and 1 # O, (Q') < Cy(Q') n Cy(A). Now [9.3(le) shows that [Y, Q'] < [V, A]Cy(A). By
9.3(), Y = IZ(A). So [Y, A] = [I, A] and thus

[1,Q"] < I n [Y, A]Cy(A) = [I, A]Cr(A).

By [I,A)C;(A) = I n A. Hence [I,Q'] < In Aandso [I,R}] <In A But by ,
I =[I,R{] and by 0.3|f) I « A, a contradiction. Hence Cy(R) = 1.

Let W be a non-trivial p-reduced Rj-submodule of I. Then Cy (R) = 1, and since W # 1 and
R = (AP [W, A] # 1. Moreover, since O,(R;) # 1, I is not p-reduced for Ry, and W # I.

14°.  I=[IR].

By (11°) R acts K-linearly on I and s is R-invariant, and by (13°), C;(R) = 1. Hence [I, R] =
Ci(R)* =1

15°. A is a best offender and a strong dual offender on every A-submodule of I n A.

By [9.5(ld), A is a non-trivial offender on I n A. By [I nA /Al = D and so [I n A, A]
is 1-dimensional over K by (d). Hence [A:33|() shows that A is a best offender and a strong dual
15

offender on every A-submodule of I n A. So ((15°)) holds.
16°. D=[[10A,A]<[1.

Since [ is A-invariant, [I; n A, A] < [I1, A] < I;. Recall from that D = [I n A, A]. By
(15°) A is a strong dual offender on I n A, so either D = [I; n A, A] < I; or [I; n A, A] = 1. In the
former case we are done. So suppose the latter. Then I; € A since by (13°) [I1, A] # 1. Then

(11, AICH(4) = [1, AJCy (A),
since A is nearly quadratic on I. By (d) I n A = [I, A]C;(A), and so I n A[I1, A]C;(A). Thus
D=1[InA Al =[[I,AlC;(A), A] = [I, A, A] < [ n A, A] < [I ~ A, A].
So again D = [I; n A, A], and is proved.
17°. I is a K-subspace of I. In particular, I; is a KRQ-submodule of I.

Put Ry := Cgr,(I1). By (16°) D < I, and since D is a non-trivial K-subspace of I and M
acts K-semilinearly on I, we conclude that Ry acts K-linearly on I. Thus Ry centralizes KI; and so
Cr,(I1) = Ry = Cg,(KIy). Since I is p-reduced for Ry we get

Op(Rl/CR1 (]KIl)) = O,,(Rl/CR1 (Il)) =1,
and K1 is p-reduced. Thus I; = Ky, and I is K-subspace of I.

Clearly I is Ry-invariant and so also RQ-invariant, and by (11°) RQ acts K-linearly on I. Thus
I, is a KR@-submodule of I.

18°.  D=[L,A]l< <A
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If I; < A, then D = [I; n A, A] = [I1, A] by (16°). So we may assume for a contradiction that
I; € A. Then
[I1,A]C(A) = [I,A]C1(A)=In A
since A is nearly quadratic on I.
By I n A= D" is a K-hyperplane in I, and by (17°) I; is a K-space. Hence
1= Il(I @) A) = 11[117A]O[(A) = Ich(A),
and so [I, A] < [I1,A] < I . Thus [I,R] < I . But [I;,R] = I by ([14°) and I # I; by (137), a
contradiction.

19°. U :=[I1, R] is a simple F,R-submodule of I, [U, A] = D, and A is a non-trivial strong
dual offender on U. In particular, R is generated by strong dual offenders on U.

Let U; be a simple F, R-submodule of I;. Since C7(R) = 1 by (13°), we have [Uy, A] # 1, and
since A is a strong dual offender on I by (15°), [I1,A] = [U1,A] < Uy and so U = [I;, R] < Us.
The simplicity of U; implies Uy = U, so U is a simple [, R-submodule of I;.

By (L7°) I; and thus also U = [I,R] are KR-modules. Since by D is a 1-dimensional
K-space, 1 # [U, A] shows that [U, A] = D.

By (18°) Is < Aand so U < I n A. Thus (15°) shows that A is a strong dual offender on U.
Since R = (A1) we conclude that R is generated strong dual offenders on U and so (19°)) holds.

Observe that @) normalizes I and R, so U is an RQ-module. Put H := RQ, H = H/Cyx(U)
and F := Endgr(U).

20°. U is a simple Q!-module for H with respect to @

By (19°) U is a simple R-module. Since U = [I;,R] and R < R;, U is also an H-module.
Suppose that @ < H. Since U is a simple R-module, we conclude that [U, Q] = 1. But then also
[U, R}] = 1, a contradiction since C7(R]) =1 by (12°). Hence Q ¢ H, and [1.57|(b) shows that U is
a @Q!-module for H with respect to Q.

21°. |F| = K| = ¢, Q acts F-linearly on U, and dimg D = 1.

Let Ky be the image of K in End(U). By (17°) H acts K-linearly on I, so Ky < F. As

A< [U A] is F-invariant. By (19°) [U, A] = D and so [U, 4] is 1-dimensional over K. Hence
dF € D = dKy for 1 # d € D. By Schur’s Lemma F is a division ring and we conclude that

F = Ky. Since @ acts K-linearly on I we conclude that @ acts F-linearly on U. Moreover, @ gives
Fl = Kyl = [K] = 4.

22°. (E) holds.

By lj U is a simple R-module and R is generated by strong dual offender on U. So we can
apply We conclude that one of the following holds:

(1) R~ SLy(q), n =2, or Spy, (q), n =2, and U is a corresponding natural module.
(2) p =2, R~ Alt(6) or Alt(7), U is a spin-module of order 2% and A =~ ((12)(34), (13)(24))
(3) p = 2, R~ 05,,(2), n = 3, or Sym(n), n = 5orn > 7, U is a corresponding natural
module, and |A] = 2.
Recall from @ that A is Q-invariant. Hence () normalizes A, [U, A] and Cy(A). Moreover,
by () D < C;(Q) and by D = [U, A], so Q! shows that Q < Ny ([U, A]). In particular
(%) Q<L Nu([U,A4]) and Q < Oy(N#x([U, A])).
Suppose that (2) holds. Then |F| = 2 and |[U, A]| = 4. But this is a contradiction since |K| = |F|
by 1% and |[U, A]| = |D| = [K| by ([L9.
Suppose that (3) holds. Then p = 2, and Nz ([U, A]) = Ca x E. E =~ Spgn( ) or Sym(n—2), and

[
Cu(A)/|U, A] is asmlple N([U, A])-module. By () [N,NR([ ANl < A< C; (Cu(A)), and by the
simplicity of Cy (A)/LU7 A], [Cu(A),Q, Nx([U, A])] = 1. Hence the Three Subgroups Lemma gives
[N7([U, A]), Cu(A), Q] = 1, and so, since Cy(A) = [Nz([U, A]), Cu(A)][U, 4], Cu(4) < Cu(Q).

But this contradicts Q! since Cyy(A) is a hyperplane in U.
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Suppose that (1) holds. Then |F| = ¢, and by (21°| m D is a 1-dimensional F-space and @ acts
F-linearly on U. If R =~ SL,(q) then, since GL,(q)/SLn(q) is a p'-group, Q@ < R and so H = R. If
R= Span(q), then the R-invariant symplectic forms on U form a 1-dimensional F-space. Since @) is
a p-group acting F-linearly, @) centralizes this 1-space. Thus again Q <Hand H=R.

We have shown that H = R. Suppose that R~ Span(q), n = 2. Since U is a @Q!l-module,
yields D = Cy(Q). Note that dimp U = 2n > 4, dimp[U, A] = dimp D = 1 and dimg[U, A] +
dimp Oy (A) = dimpU. Thus dimp Cy(A) > 3, and we can choose a Q-invariant 2-dimensional
F-subspace I of Cy(A). Put Ry := Ng, (I2). Then Ry induces a group on I> that contains SLy(q).
Hence, I is a simple and thus p-reduced Ro-module. Moreover, since [I3, Q] # 1, @ is not normal
in Ry, and since O,(R;1) < O,(Rz2) we have O,(Rz2) # 1. So applied to (Rz,I3) in place of
(R1, W) gives [I3, A] # 1, a contradiction to Iz < Cy(A).

Hence R =~ SL,(q), n > 2. Suppose for a contradiction that U # I;. Since Cp,(R) = 1 and
[I1,R] = U, shows that R/Cgr(I1) = SL3(2) and the commutator [U, A] is 2-dimensional, a
contradiction since by ﬁ [U, A] = D, and by m ) D has dimension 1. Thus U = I;.

Flnally ifn>3orn=2and |F| >3 then H is quasisimple and SO H RO In the exceptional
case H ~ SLs(q), g < 3, the equality H= RO is easy to check. By 7 |F| = ¢ =g, so (EI) holds.

O

9.2. The Proof of Theorem [II

We will use the notation given in [9.3] and Theorem [I}

LEMMA 9.8. Suppose that one of the following holds, where q is a power of p.
(a) K = SU,(q) or Q(q), n =3, and I is the corresponding natural module.
(b) K = Ga(q)’, and I has F,-dimension 6 or 7, depending on g being even or odd.
(¢) I is an FF-module for M.
Then Theorem [ holds.

PROOF. Suppose first that @) holds. If I is a natural SU,(¢)-module for K, then K = Fpe
and there exists a K-invariant non-degenerate unitary K-form s on I. So we can apply [9.7] and
conclude that s is symmetric, a contradiction.

Thus I is a natural Q€ (g)-module for K, n > 3. As K is quasisimple, (n,q) # (3,3). Since
I is a simple K-module, p is odd if n is odd. By -., Q@ acts K-linearly on I and thus
shows that either @ < K or p = 2 and K = Q¢(q). Suppose the latter, then n > 4, and since K is
quasisimple, K % Qf (q). Thus shows that Q < K also in this case. As K is quasisimple we
conclude that K = M°. Thus Theorem [I{{3) holds.

Suppose next that @ holds, that is, K =~ G5(q)’ and I has dimension 6 or 7. Then K = F, and
I is selfdual. In particular, we again can apply [0.7] Then for D := [I, A] n C;(A)

q=q and dimg D = 1.

Since A acts K-linearly on I, A does not induce any non-trivial field automorphisms on K. It
follows that either A < K or ¢ = 2 and KA =~ Go(2). Thus either KA =~ Ga(q) or ¢ = 2 and
KA =K =~ G5(2). Put R:= Cp5(D). Since D is a singular 1-subspace of I and K acts transitively
on the singular 1-spaces, D is centralized by a Sylow p-subgroup of KA. Thus R ~ ¢**172S5L,(q)
(if KA =~ Ga(q)) or 2272519(2) (if ¢ = 2 and KA =~ G3(2)’). In either case, Cr(D+/D) is the
unique elementary abelian normal subgroup of order ¢ in R and acts quadratically on I. This is a
contradiction, since A does not act quadratically on I by and A < Cr(D*/D) by

Suppose now that (i) holds and let X be a non-trivial best offender in M on I. ByK = [K, X]
and Cx(M°) = 1. In particular, applies to M and I. Put J = Jy7(I). Then K = [K, X| < J.

Assume that holds. Then J = SLs(q)™ and I is a direct sum of natural SLy(g)-modules
for J. Since I is a simple K-module and K < J we conclude that J = SLs(q) and I is a natural
SLy(q)-module. It follows that K = F, and dimg I = 2. Since A acts K-linearly on I this implies
that A acts quadratically on I, a contradiction.
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Thus |C.24)[2) holds. Then F*(J) is quasisimple and so K = F*(J). In the cases |C.24{[2:c:1))

and (2:c:3)) I is a direct sum of at least two non-trivial F*(J)-submodules, a contradiction since I
is a simple K-module.

Hence [C2AZ2) holds. So by [C2AE2T)
(%) either M° =K or M°=Spy(2), 3Sym(6), SUs(q).2, or Go(2),

where I is the natural SUy(¢)-module for K in the SUy(g).2-case. Moreover, by [C.24|[2:c:2:d) one of
the cases (1) - (9), (12) applies to (J,I), with n > 3 in case (1), n > 2 in case (2), and n = 6 in
case (12). We will now treat these cases of [C.3| one by one.

Suppose that (1) holds with n > 3. Then I is a natural SL,(g)-module for J. Thus
K = F*(J) = J and by (%), K = M°. So I is a natural SL,(q) for M°, and Theorem holds.

Suppose that (2) holds with n > 2. Then I is a natural Sps,(¢)-module for J. Moreover,
K = F*(J) = Span(q)’, K = F,, and there exists a K-invariant non-degenerate symplectic K-form on
1. By this form is symmetric, and we conclude that p = 2. By (%) either M° = K = Spa,(q)’
or M° =~ Sp,(2). Thus Theorem holds.

Suppose that (3) holds. Then I is natural SU(q)-module for J. Hence T is also a natural
SU4(g)-module for K = F*(J) = J, a case we have already treaded assuming (al).

Suppose that (4) holds. Then I is a natural QF (¢q)- or O (¢)-module for J for various (n, ¢, €)
with n > 4. Since K = F*(J) is quasisimple we conclude that K =~ Q¢ (q), a case we have already
treaded assuming (a)).

Suppose that (5) holds. Then J =~ G2(q), p = 2 and I is the natural Ga(g)-module of order
q®. Then K = F*(J) = J' =~ G2(q)’, a case we have already treaded assuming @

Suppose that (6) holds. Then J = SL,(q)/{—id" ), n =5, and V is the exterior square of
a natural SL,(¢)-module. Thus K = F*(J) = J and by (*) M° = K. Hence Theorem holds.

Suppose that (7) holds. Then J = Spinz(q) and I is the spin module of order ¢®. Thus
K = F*(J) = J = Spinz(q). Let R be the centralizer in K of a QA-invariant 1-dimensional singular
subspace of the natural Q7(g)-module. Put By = RQA and I; = C;(O,(R)). Then I; is a natural
Spa(g)-module for R. In particular, I; is a simple R; module and so I} = Y7(R1). Then Q! implies
that [I;,Q] # 1 and so Q €t Ry. Thus[9.7|(j) shows that I; is a natural SL, (§)-module for RS. Since
both R and R} are normal in Ry, this is a contradiction.

Suppose that |C.3(8) holds. Then J = Spin{,(¢q) and I is the half-spin module. Thus K =
F*(J) = J and by (x), M° = K. Hence Theorem [I{|7)) holds.

Suppose that 9) holds. Then J = 3-Alt(6) and |V| = 2°; in particular, K = F*(J) = J
and K = F,. Since A acts K-linearly on I and any elementary abelian 2-subgroup of GL3(4) acts
quadratically, we conclude that A acts quadratically on I, a contradiction.

Suppose finally that [C.3(12) holds with n = 6. Then J = Alt(6) or Sym(6) and I is a corre-
sponding natural module; in particular, K = F*(J) = Alt(6) = Sps(2)'. By (), M° = K =~ Sp,(2)’
or M° =~ Sp,(2) and Theorem holds. O

LEMMA 9.9. Suppose that K is a quasisimple genuine group of Lz'e-typfﬂ defined over a field of
characteristic p and I is not an FF-module for M. Then A < K.

PROOF. Let K = ©(q) (see GED for the definition). So g is a power of p and d € {1,2,3}.
By way of contradiction we assume A € K. Since K < M by 9.3{(b), the action of M on K induces
a chain of homomorphisms

M =M — Aut(K/Z(K)) — Out(K/Z(K)) := Aut(K/Z(K))/Inn(K/Z(K)).

Let ¢ be the resulting homomorphism from M to Out(K/Z(K)), and for X < MT let X := X¢.
Note that C37(K/Z(K))K is the kernel of ¢ in M.

1°. Let X < S. Then X = Y/XD K. In particular, A is a non-trivial elementary abelian
p-subgroup of Out(K/Z(K)) of order |A/A n K].

IFor the definition see
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This holds since by [9.4, X nker¢ = X n C47(K/Z(K))K = X n K.

We fix the following notation:

Let A be the Dynkin diagram of K. We often identify A with its set of vertices. For a subdiagram
A € A, let Py be the corresponding Lie-Parabolic subgroup of K with S n K < Px. In case of a
minimal Lie-parabolic subgroup; i.e., if A = {\}, we also write Py rather than Pj.

Put K := OP (Py) and Z := Cx (K/O,(K)). If A is connected then K, /O,(Ka) and Ky/Za
are genuine groups of Lie-type with Dynkin diagram A and defined over F,a or F,. If Aq,... A; are
the connected components of A then K, /O, (K,) is isomorphic to a central product of the groups
K, /Op(Kn,), 1 <i<1. Note that A = ¥ iff Py is p-closed and iff Ky = SN K. Also A = A iff
Kp = K and iff Op(K,y) = 1.

If A is QA-invariant put Rp := KAQA; in particular Ra = KQA. Observe that K n QA <
K nS < Py and so

Ry nK = Kx(K 1 QA) < O” (Py).
It follows that Ry nK = K, and that Ry is a parabolic subgroup of Ra with SAnRA = (SN K)QA <
Ry.

Conversely, let R be a parabolic subgroup of Ra with S n Ra < R and OT’/(R NnK)=RnK.
Then byN k(RN K) is a Lie-parabolic subgroups of K and so R = R, for a unique Q) A-invariant
A © A. We denote this A by A(R n K).

Finally, let I* := Homg,(I,F,) be the dual module of the F,-module I.

In the following we fix a proper (possible empty) @ A-invariant subdiagram A € A. Put R := Rj,
and let Ip := Y;(R) be the largest p-reduced R-submodule of I. If QA acts transitively on A, observe
that A = ¢ and R = S n KQA.

From applied to the adjoint version K/Z(K):

2°. There exist subgroups Diag and ® and a subset T' of Out(K/Z(K)) such that
(a) ®T s a subgroup of Out(K/Z(K)), ® < ®I', Out(K/Z(K)) = Diag®I', Diag n T =1
and Diag < Out(K/Z(K)), and
(b) Diag is a p'-group.
(c) ® = Aut(Fa). In particular, ® is cyclic.
(d) C'Dmg@r(A) = Diag®.
Observe that ®I' contains a Sylow p-subgroup of Out(K/Z(K)), since Out(K/Z(K)) = Diag®T
and Diag is p’-group. Thus, replacing ®I" by a suitable conjugate under Diag, we may assume that

3°. S<or. In particular, Sn Diag = 1.

By
4°. There exists T € T such that 72 =1 and I* ~ I7 as an F, K-module. Moreover,

(1) If K = An(q), n # 2, Dani1(q), n = 2, or Eg(q), then T' = {7) and 7 induces the unique
non-trivial graph automorphism on A,
(2) otherwise T = 1.

Next we show:

5°. Let s € S. Suppose that s acts trivially on A and induces an inner automorphism on
Ks/Zs for each 6 € A. Thense K.

By it suffices to show that § = 1. Since s acts trivially on A, @ shows that § € Diag®.
By , 5€ @I' and so 5 € ®. Choose § € A such that Ks/Zs is defined over Fa. Then s induces the
same field automorphism on K;5/Zs as on K (see the description of field automorphism in [GLS3],
2.5].) As s induces inner automorphism on Ks/Zs we conclude that § = 1.

6°. There exists € € A such that either A does not fix € or A fizes € and induces some
non-trivial outer automorphism group on K./Z.. In particular, [K., A] is not a p-group.
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We first show the existence of an € € A with the required property. For this we may assume that
A acts trivially on A. Since A € K, shows that A induces a non-trivial outer automorphism
group on K./Z. for every ¢ € A. This establishes the existence of e.

Assume that [K, A] is p-group. Then [K., A](S n K) is p-subgroup of K. Hence

[K,A]<SnK <K, and [K.,A]<O,(K)<Z..

It follows that A normalizes K., so A fixes € and centralizes K./Z,. In particular, A does not induce
a non-trivial outer automorphism group on K./Z, a contradiction.

In the following let € be any element of A such that either A does not fix € or A fixes € and
induces some non-trivial outer automorphism group on K./Z..

7°. G=p<3;and if § =3 then K = Dy(q), A=T= Cs, and A acts non-trivially on A.

Suppose that ¢ > 2. Then by Z = [A, N(Y)] and any composition factor of Ny (Y) on A
has order §. Thus A = [A, N, (Y)] < Out(K/Z(K))', and § divides |A| since by (1°) [A/AnK| = |A].
By (2°) Out(K/Z(K)) is a semidirect product of Diag by ®T', and by A< S <. It follows
that A < (®I')’. Thus @I is not abelian, and we can apply So A is of type Dy, I' = Sym(3)
and (®T')" =~ C3. Thus A =~ Cs. Since q divides \/Al|, we conclude that ¢ = 3, and so holds.

]°. K = F,, Ir = Ci(Op(R n K)) is a simple R n K-module, and C;(S) = Cr,(S) =
Cro(Sn K)=Ci(Sn K) has order p.

By g=pandso |I/I n Al =q=p. Since by I n A is K-subspace of I we conclude
that |K| = p and the first statement in holds.

Clearly 1 # Ir < Cr(Op(R n K)). Recall from that I is a simple K-module. By
Smith’s Lemma Cr(Op(Rn K)) is a simple K(R n K)-module. Since K = F,, we conclude that
C1(Op(R n K)) is a simple R n K-module. So Ir = Cr(O,(R n K)), and the second statement
holds.

Steinberg’s Lemma shows that C7(S n K) is 1-dimensional over K and so has order p.
Since Cr,,(S N K) # 1 and C7(S) < C7(S n K) also the last statement holds.

9°. QA does not act transitively on A.

Suppose that QA acts transitively on A. Then every vertex of A has the same valency, and
since A has vertices of valency 1, we get |A| = 1 or |A| = 2. This rules out the case p = 3 in
and sop = ¢ = 2. By K = F, = Fy and C/(S) = Cr(S n K) has order 2. Hence
[CI(SNK),Nk(SnK)] = 1. Let P; be a minimal Lie-parabolic subgroup of K containing Sn K and
put Ry := O% (Py). The transitive action of QA on A implies K = (R?%). Since C;(Ry) < C(SnK)
and QA centralizes C;(S n K), this gives Cr(R;1) = C;(K) = 1 and so

[C1(S),R1] = [C[(g N K), R #1.
Hence [A.66] shows that
(%) I is the Steinberg module of Fa-dimension |S n K],

and [ is, as an S n K module, isomorphic to the regular permutation module F5[S n K]. The latter
fact shows that
|I| = |[I,t]]* for every involution t € K.

Note that T is selfdual (for example I* =~ I” by and I7 is the Steinberg module by [A.66)).
Let 1 # a € A. Then[9.7(d) gives dimg[/,a] < 2 and so

(%) I[I,a]] <4 foralll+#acA.

Suppose that there exists 1 # a € A n K. Then |I| = |[I,a]|> < 4> = 2* By (%) I has
Fa-dimension |S n K| and we conclude |S n K| < 4. Hence K =~ SLy(4) and I is the natural
Sym(5)-module for KA. But Sym(5) has two classes of maximal elementary abelian 2-subgroups,
one acts quadratically on the natural Sym(5)-module, and the other is contained in Al¢(5). Since
A £ K we conclude that A acts quadratically on I, which contradicts .
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Hence An K = 1 and gives |ﬁ| = |A/An K| = |A]. Since A does not act quadratically on I,
we have |A| > 4 and so |//1\| > 4. Note that A is elementary abelian, A < I'® (by ), ® is cyclic (by
(2°)) and |I'| < |A| < 2. We conclude that |A| = [T| =2, ' < A, |/A1| =4 and ¢ # 1. In particular,
A acts transitively on A. As seen above [C7(S), Ri] # 1 and so [C7(Op(R1)),0P(R1)] # 1. Let
a€ A\Ca(A). Since ® # 1 and A acts transitively on A, R1/O,(R1) is a group of Lie-type defined
over a field of order larger than 2. Hence |Cr(O,(R1))| = 2*. Observe that

|C1{Op(R1)) 0 Cr(Op(R1)?| < [Cr(Op(R1)Op(B1))| = |C1(S 1 K)| =2,

and so |[C1(O,(Ry1)),al| = % = 8 > 4, a contradiction to (##). Thus is proved.

10°. Suppose that OP(R) # 1. Then [I,0P(R)] £ Ig.

Suppose for a contradiction that [I, OP(R)] < Ig. Since K is a group of Lie-type defined over a
field of characteristic p, K has parabolic characteristic p. So OP(R) # 1 gives E := O,(OP(R)) # 1.
In particular, [I, E] # 1. Moreover, by IR is a simple R-module and thus [Ig, F] = 1. As

[1, E] < [1,0°(R)] < Ir < C1(E),
we have Cp/c,(g)(R) # 1. Hence there exists i € I such that [i, R] < Cr(E) and [i, E] # 1.
Since E and ¢Cy(FE) are R-invariant, also [, F] is R-invariant. As Iy is a simple R-module and
[¢, F] < [I, E] < IR this gives [i, E] = Ig. Thus
|E| = |E/Cr(i)] = [[i, E]l = Ur| = |[1, E]],

so E is an offender on I'*. Since [I, F] < C[(E), E acts quadratically on I and so F is elementary
abelian. By I* =~ I as an FpK-module and therefore E™ ' is an elementary abelian offender
on I, contrary to the assumption that I is not an F'F-module.

11°. Suppose that OP(R) < <ZR>. Then Ir < I n A, and A is a quadratic best offender on
Ig.

We first apply By A acts quadratically on I n A and so also on Ig. Since [ is not an
FF-module for M, shows that A is a best offender on I n A. Thus, by A is also a best
offender on every A-submodule of I n A. Hence, it suffices to prove Ig < I n A.

So suppose for a contradiction that Ir € A. Since ¢ = p by we have Y < YA = IRzA.
Hence applied with U = Ip gives [Y, A] < [Igr,A] and thus [I,A] < Ir. By assumption
OP(R) < <XR>, and we conclude that [I,OP(R)] < Ig. If OP(R) = 1, then R is a p-group and
Ir < Cr(R) < C1(A), a contradiction as C7(A) < I n A by[0.5([b). Thus O?(R) # 1. But then
shows that [I,OP(R)] « Ig, again a contradiction.

12°. Suppose that A(R n K) # & and QA acts transitively on A(R n K). Then R is
p-minimal.

_ Since A has no closed circuits, A(R n K) contains a vertex of valency 1. Now the transitivity
of QA shows that the connected components of A(R n K) have size 1.
Note that OP(R) < R~ K and since R n K = O” (R n K),

RNnK/O)(RNnK)=Ej0oEyo0...0E,,

where n is the number of connected components of A(Rn K), and E; is a rank 1 group of Lie-type.
The latter fact shows that E; is also p-minimal. Hence the hypothesis of [[.39] is satisfied, and we
conclude that R is p-minimal.

Case 1. I is selfdual as an FpK-module.

We now refine the choice of R from the beginning of the proof. By QA is not transitive on
A. Thus, every QA-orbit of A is a proper subset of A. Choose R in addition such that
(i) A(Rn K) is a QA-orbit on A;
(i) if Cx(C1(S)) is not p-closed then R n K < Ck(Cy(S)); and
(iii) if Cx(C1(9)) is p-closed and Ng(Q) is not p-closed then R n K < Nk (Q).
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Put Ry := Raa(rnk) and Iy := Y7(R;). Observe that also A\A(R n K) is a proper QA-
invariant subset of A.

If Rn K < Cg(Cr(S)) then Q! gives R n K < Np~x(Q). So the choice of R implies Q < R
unless Nk (Q) is p-closed, and if Nk (Q) is p-closed then Ry & N7(Q). Therefore, since @ is not
normalized by K, Q € R;.

Put D :=[I,A] n C;(A). Since [ is selfdual we can apply and get:

13°.
(a) D is I-dimensional over K, |[K| = q, and D+ = [I, A]C1(A) = I n A. In particular, by
) |D‘ =q¢=p. .
(b) A centralizes D+/D and A < O,(N37(D)).
(¢) I is a natural SL,,(q)-module for RS and <ZR1>.
(d) D= [I,A] = Cp,(Q).

Next we show:

14°. D =Cy(S) < I and K. £ Ng(D). In particular, [Cr(S), K] # 1.

Note that S n K normalizes C7,(Q). By @7@ |D| = p and C,(Q) = D, and by
Cr(Sn K) = Cr(S) and |C7(S)| = p, so D = Cr(S) < I.
By (6°) [K., A] is not a p-group and by (13°) (b)), A < Op(N37(D)). Thus K. € Nk (D).

15°. For X € Ry let X* be the image of X in Aut(Iy). Then (Ry n K)*® = RlA and I is a
natural S Ly, (p)-module for Ry n K.

Since ¢ = p, shows that RiA ~ SL,(p) and |I1] = p™. So Aut(l) = GL,,(p).- As Ry =
(Ry " K)QA = O (Ry) and GLy, (p)/SLum(p) is a p/-group, we conclude that R™ = RY® = SL,,(p).
Note that, for m = 3 or p > 3, SL,,(p) = OP(SL,,(p)); and for m = 2 and p < 3, OP(SL,,(p)) is a
p/-group and |SLy,(p)/OP(SLy,(p))| = p. Since OP(Ry) < Ry n K and Ry n K = O (Ry n K) we
conclude that (R; n K)* = RIA.

16°. €€ A(RnK)and K. < RnK.

Clearly, e € A(R n K) implies K. < R n K. Assume that e ¢ A(Rn K). Then e € A(R; n K)
and K. < Ry n K. By K. ¢ Nk(D) and since D < I we get [I;,0P(K.)] # 1. Thus
Ck.(I1) < Z.. By , (Ry n K)» = RlA and so A® < (S n K)#. Hence A normalizes K~ and
induces inner automorphisms on K2 . It follows that A fixes ¢ and induces inner automorphism on
K./Z., contrary to the choice of e.

17°. Nk (D) is p-closed.

By (16°) K. < Rn K and by (14°) [C(S), K] # 1. Thus Rn K £ Ck(C7(S)) and choice of R
implies that C(C7(S)) is p-closed. Since S n K € Syl,(K), also Nx(Cr(S)) is p-closed. By (|14°)
C1(S) = D and so (17°) holds.

18°. R is p-minimal, OP(R) < (A", [Ir,OP(R)] # 1 and [Ig, A] = D.

By (16°) K. < R. Moreover, by [C1(S),Kc] # 1, and byC’I(S) < Ci(SnR) < Ig.
Hence [Ig, K] # 1 and thus also [Ir, OP(R)] # 1.

By I; is a natural SL,,(p)-module for Ry n K, by @ |D| = p and by D <.
Hence Cr, ~x(D)? is the stabilizer of a point of I;. On the other hand, by Nk (D) is p-closed
and thus also Cg, ~k (D) is p-closed. This shows that m = 2 and A(R; n K) = {6} for some 6 € A.
Note that A is connected, QA normalizes §, and QA acts transitively A(R n K) = A\{d}. Hence
(12°) shows that R is p-minimal. In particular, R is p-irreducible by

By the choice of K., [K,, A] is not a p-group. Since K, < R, we conclude that A £ O,(R), and
so, since R is p-irreducible, OP(R) < <ZR>. As [Ir,OP(R)] # 1 this gives [Ig, A] # 1, and by
A acts quadratically on Ig. So 1 # [Ig, A] < [I,A] n C(A) = D. Since |D| = p, we conclude that
[Ir, A] = D, and is proved.
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We are now able to derive a contradiction which shows that (Case 1)) does not occur. By (18°)
R is p-minimal, OP(R) < <ZR>, and by ulOa |D| = p. Hence |D shows that A is a non-
trivial quadratic best offender on I, and we are allowed to apply with R := R/Cr(Ir)) and
J := J3(Ir). Hence

J=FEix-xE, Ig=Cr()]][Ir E], and [Ig,E;E;]=1fori+#j,
i=1

where for i = 1,...,7, E; = SLy(p*) or Sym(2* + 1) (and p = 2), and [Ig, E;]/Cs,, 5, (Ei) is a
corresponding natural module for E;, and S n R acts transitively on {Ej,..., E.}. In particular,
Clin,](Ei) < Cri(J). By , Ig is a simple R-module, so Cr,(J) = 1. Thus [Ig, E;] is natural
SLy(p*)- or Sym(2¥+)-module for E; and

Ig = [Ir, E1] % - -+ x [IR, E;].

As A < J and [Ig, A] = D has order p, there exists a unique E; such that D < [Ig, E;]. Since
by D = Cs(I) we conclude that S n R normalizes [Ig, E;] and so E;. Hence the transitivity
of S Ron {Ey,...,E,} gives J = E.

If J =~ Sym(2* + 1) then [Ig, A] is not centralized by a Sylow 2-subgroup of .J, a contradiction
since [Ig, A] = D = Cy(S). Thus J =~ SLy(p*). As [Ig, A] = D has order p we get k = 1. It follows
that J = RA K = SLy(p). Thus AR n K) = {¢} and R n K = K. In particular, K./O,(K.) =
SLy(p) and Ck, (Ig) < Z.. Now A < K.Cgr(Ig) shows that A induces inner automorphisms on
K.Cr(Ir)/Cr(Igr) =~ K./Ck.(Ir) and thus on K./Z, a contradiction to the choice of e.

Case 2. I is not selfdual as an F,K-module.

19°.
(a) K =A,(t?), n>2, Dapy1(t?), n =2, or Eg(t?); in particular, A has only single bonds.
(b) p=q=2, 5 acts trivially on A, and S < ® > Aut(Fp).

(c) A is the unique subgroup of order 2 in .
By (4°) I* =~ I with 72 = 1, and since I is not selfdual, we have 7 # 1. Thus implies
K = An(q), n =2, Dapia(q), n =2, or Eg(q),

and 7 induces the unique non-trivial graph automorphism of A, so I' = {r) has order 2. In particular,
@ holds, except that we still need to show that ¢ is a square. Also K # Dy(q), and shows that
p=q=2.

Let s € S. Recall from 1) that S < T'®. If 5¢ &, we conclude that 7 € 5 since I" has order
2. But I =~ I* as an FoK-module for all z € ® and so I[* =~ J™ >~ [* = [ as an FyK-module; a
contradiction since I is not selfdual. Thus S < @, and by S acts trivially on A. So is
proved.

Recall that A is non-trivial and elementary abelian, A < S < ® and ® is cyclic. Thus H follows.

Note that d = 1 for the groups in (19°)(a) (sce , and so by O =~ Aut(F,). We

conclude that F, has an automorphism of order 2 and so ¢ = t* for some power ¢t of p, which
completes the proof of (a)).

By |D QA acts trivially on A, so all subdiagrams of A are QQA-invariant. Hence we can
choose R such Q ¢ R, A(R n K) is connected and either |A| > 3 and |[A(Rn K)| =2, or |A] =2
and [A(Rn K)|=1. Put

m:=|A(RnK)|, R:=R/Cr(Iz), P:=ARnK),
and let A be the image of 4 in R. Recall from (EI) that p = 2.

20°.  RAK = A,(t2), m < 2, |P/R NK|=2, each a € A\R N K acts as a field automor-
phism of order 2 on R n K, F*( ) = RAK is quasisimple, <AP> P and O?(R) < (AF).
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Since A has only single bonds and A(R n K) is connected of size m < 2, A(R n K) is of type
Ap,. As by K is defined over F;z we conclude that R n K/O2(Rn K) = A,,(t?). In particular,
RN K/O2(Rn K) is quasisimple. Since @ €€ R and R = (Rn K)QA, Q! shows that [Ig, Rn K] # 1.
It follows that Cr~x (Ir) < Za(r~K)- Hence, also R A K is a version of A (t?) and so quasisimple.
Let a € A\K. Note that |A/A ~ K| = |A| = 2 and a acts as a field automorphism of order 2 on K.
Hence a also acts as a field automorphism of order 2 on RAK , and P=RAK {@y. In particular,

RAK = [m,a] and so
P=RAKA=[RAK, AJA = (AP,
. . . . . . . 2 2 7R o .
Since R n K/O3(R n K) is quasisimple, this implies O*(R) = O*(Rn K) < (A ), and l) is
proved.

21°.  P/Os(P) = Sym(5), and Ir is the corresponding natural module. In particular, m =1,
t2 =4, and K/Z(K) = L3(4).

By O?(R) < <ZR>, and so shows that Ir < I n A and A is a quadratic best offender
on Ip. Moreover, since by [Ir,O0?(R)] # 1, A is a non-trivial best offender on Ix.

By P = <Zﬁ> and so Ji(Ig) = P. As Iy is a simple R n K-module by , IR is simple
a P-module. Thus we can apply the FF-Module Theorem [C.3| Since by \ﬁ/m | = 2,
m<2 and RAK = A, (t?) is a central quotient of SL,,1(t?) (2 < m + 1 < 3), we conclude that
m+1=2 12 =4, P~ Sym(5), and I is the corresponding natural module. (Note here that the
natural Sym(5)-module also appears as the natural Oy (2)-module in the FF-Module Theorem.)

Since |A(R n K)| = m = 1, the choice of R shows that |A| = 2. The only rank 2 group of

Lie-type listed in (19°)(a)) is L3(t?) = A2(t?), and so (21°) is proved.

22°. There exists an involution t in R n K with t ¢ O3(R N K) and |I/Cy(t)| < 23.

Recall that |I/I n A| = ¢ = 2 and that by (11°) A is best offender on I n A. Thus
(% %) [1/Cr(A)] = |I/I ~ Al n A/Crna(A)] < 2|1A/Ca(1)] = 2[A].

Put B := O3(R n K). Suppose first that A n B = 1. Since P/B =~ Sym(5) and A is elementary
abelian we conclude that |A| < 4. As A does not act quadratically on I, |[A| > 4 and so A n K # 1.
Let 1 #te€ An K. Then (x % %) gives |I/Cr(t)| < 2|A| = 8, and (22°) holds.

Suppose next that A n B # 1. Since K/Z(K) =~ L3(4), B is a natural I'SLs(4)-module for
P and so |[Cp(A)| < 4. In particular, |[A n B| < 4. Note that A n B = Cx(Ig) and A is not an
over-offender on Ir. Thus |Ir/Cr,(A)| = |A|/|A n B|, and so using (*  *)

[1/Cr(4)] 2|4]

|I/Cr(An B)| < |I/C1(A)Ig| = = < —— =2[An B| <23
Hr/Cr,(A)]  |A]/|An B

Since A n B # 1 and all involutions in L3(4) are conjugate, and since there exist involutions in
R n K\B, we again conclude that (22°) holds.

We are now able to derive a final contradiction. Choose t as in . Note that, for example
since t inverts an elements of order five in R n K/B = Alt(5), |[W/Cw (t)| = 4 for any non-central
simple Fo(R n K)-module. On the other hand |I/C;(t)| < 23, and so I has at most one non-central
R n K-composition factor. Thus [I,0*(R)] = [I,0*(R n K)] < Ig, a contradiction to . O

In the following we will use a result of Guralnick-Malle on simple 2F-modules for quasisimple
groups H, [GMI] and [GM2]. Here an F,H-module V is a 2F-module for H if there exists an
elementary abelian p-subgroup A < H such that

[V/Cy(A)| < |A/Ca(V)[? and [V, A] # 0.
According to [9.3{(b) I is a simple module for K. By [9.3(c) A satisfies the above inequality with
8.4{(c)

respect to Y. Clearly |I/C(A)| < |Y/Cy(A)| and by Ca(I) = C4(Y). Hence A satisfies
the above inequality also with respect to I. Moreover, the case where I is an F F-module has been
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treated already in In the remaining case, if K is the genuine group of Lie-type, A < K by
and the pair (K, I) satisfies the hypothesis of [GM1] or [GM2].

We will distinguish the cases, where K is a genuine group of Lie type, a non-genuine group of
Lie type, an alternating group, and a sporadic group, respectively. For this purpose we break up
the result of Guralnick-Malle into four parts which we will quote separately.

THEOREM 9.10 (Guralnick-Malle). Let H be a genuine quasisimple group of Lie-type defined
over a field of characteristic p and V' a faithful simple 2F -module for F,H. Put F := Endg (V) and
d :=dimp V. Let b ), = 1, if v divides y, and 6., = 0, otherwise. Then H, V, d and F are given
in the following table:

H d 1% |F| conditions
SLn (pa) n Vnat pa
SL,(p*) (5 A%V, p? n>=3
SL,(p%) (”;1) Sym?Vya . p° p odd,n >3
SLy, (p2a) n? %Vnat ® Vira p*
SLe(p") 20 N’ Vit P°
SU, (pa) n Vaat p2a
San (pa) 2n ‘gnat pa
Sp2n(pa) (Z) -1- 6p|n /\ Viat Pt n=23
orp=2,n=4
Spa(p**) 16 %Vnat RVl p°
Qr,i; (pa) n Vnat pa
Spingy,+1(p®) 2n Spin p n=3,4,5
Sping,. (p®) on—1 Half — Spin p° n=4,506
Sping,, (p*) on—1 Spin p2e n=4,5
52(22a+1) 4 M()\l) 22a+1
Ga(p®) 7= b M(A2) p”
Fy(2%) 26 M(\), M(Ay) 20
Egs(p”) 27 M(A1), M(Xs)  p"
Fy(p® 26 — dayp M(\y) p? p odd
*Es(p®) 27 M (A1) p*
Er(p%) 56 M(Ar) P

We remark that it has been shown in [GLM)] that the last three cases of the table do not occur.
But since they only add two lines of arguments to our proof, we prefer to work with the original list.

LEMMA 9.11. Suppose that K is a quasisimple genuine group of Lie-type defined over a field of
characteristic p. Then Theorem []] holds.

PROOF. By [0.8 we may assume that
1°. I is not an FF-module for KQA.

Thus byZ < K. So we can apply with (K, I,K) in place of (H,V,F). Removing all the
FF-modules and all the modules which have been treated in we are left with the following list:
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2°.

K d I K] conditions
SLn (pa) (TL'QFI) F Sym2vnat N pa Oddv n = 3
SL,(p**) n? 5 Vnat ® Vie p n =3
SLG (pa) 20 /\3 Vnat pa

~2
Span(P®) | (3) =1 = dpin A Viat ° n=23
orp=2,n=4

Spa (p2a) 16 %Vnat ® Vi p*

Spinan+1(p®) 2™ Spin p n=3,4,5
Sping. (p®) on—t Half — Spin p* n==6
Sping,, (p*) ot Spin p@ n=4>5
52(22a+1) 4 M(Al) p2a+1

F4(2k) 26 M()\l),M()\4) pa
Fy(p) 26 — b M(As) P p odd
Es(p”) 27 M (A1) p*
Er(p*) 56 M (A7) p*

If K has rank 1 we see that K =~ Sz(22%"!) and dimg I = 4. But then every elementary abelian
2-subgroup of K acts quadratically on I, which contradicts [9.3(la)) since A < K. Thus we may
assume:

3°. K has Lie rank at least two.

Put U := C;(K n S) and R := Ny5(U). By Smith’s Lemma U is 1-dimensional over K.
Since @ acts K-linear and U is 1-dimensional, Q centralizes U and Q! implies Q < R.

Let A be the Dynkin diagram of K. Observe that in all cases there exists i € A such that
either I >~ M(\;) or I is a simple KK-submodule of M (\;) ®r M ();)?, where F is the field used to
define K and o is an automorphism of F with Cp(c) = K. Thus R n K is the maximal parabolic
corresponding to A\{i}. In particular, R is a maximal subgroup of KQ and so R = N Ka(@)' Let
P be the p-minimal subgroup of KQ corresponding to the node i and containing (S n K)Q. Then
P £ R and so Q € P. Since @ is weakly closed in S, Q £ O,(P).

Suppose that one of the first two cases of holds. As [(R n K)/O,(Rn K),Q] = 1 we
conclude that @ induces inner automorphisms on K. Thus M° = K and Theorem or @ holds.

So assume for a contradiction that one of the remaining cases of holds. We prove next:

4°. I is selfdual as Fp, K-module.

In the third case of I is that the exterior cube of a natural SLg(q)-module, and so selfdual.
In all other cases [AL65] shows that I is selfdual.

As @ fixes i we can choose a proper @Q-invariant connected subdiagram A of A with ¢ € A, which
is maximal with respect to these properties. Let Ry be the corresponding parabolic subgroup of M°
with (S n K)Q < R; and note that P < Ry. Put R} := <@R1>. Since [ is a selfdual [F, K-module,
we can apply and conclude that Ig, is a natural SL,,(¢)-module for R]. As A is connected,
A is an A,,_i-diagram.

We will now derive a contradiction by showing that in all (remaining) cases R; can be chosen
such that either A is not of type A,,—1 or Ig, is not a natural SL,,(q)-module for R} or I is an
FF-module for K.

If K = SLe(q) and I is the exterior cube of a natural SLg(q)-module, then Ig, is the exterior
square of a natural SLs(¢)-module, a contradiction.

If K = Span(q), n = 3, and T is a section of the exterior square of the natural module, we can
choose A to be a B,,_j-diagram, a contradiction since n > 3.

If K =~ Spa(¢?) and I appears in Vot @ VL, then P n K/O,(P n K) =~ SLy(¢*) and R; is a
natural Q (¢)-module, a contradiction.
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If K =~ Spin&(q), n = 7, we can choose R; such that I, is a natural Spin$,_,(g)-module. Since
IR, is also a natural SL,,(q)-module, we get n = 8 and € = +. Thus I is an FF-module, contrary
to (T%).

Suppose that K =~ Fy(q), >E¢(q) or E7(q). Then we can choose A to be a Bs- or C3—diagram
(in the first two cases) or a Dg-diagram (in the last case), a contradiction. This completes the proof
of the lemma. OJ

THEOREM 9.12 (Guralnick-Malle). Let H be a finite group and V' a faithful simple 2F -module
for F,H. Suppose that F*(H) is a perfect central extension of an alternating group, but F*(H) is
not a genuine group of Lie-type over a field of characteristic p. PutF := Endgsg)(V), d := dimp V/,

Opin = 1, if p| n and 0y, = 0 otherwise. Then one of the following holds:

i d V[
Alt(n),Sym(n) | n—1—10g, natural 2
3-Alt(6), 3" Sym(6) 3 ovoid 4
Alt(7) 4 half-spin 2
Sym(7) 8 spin 2
Alt(9) 8 spin 2
Alt(n),Sym(n) | n—1—0s, natural 3
2-Alt(5),2° Sym(5) 2 spin 9
2- Alt(9), 2 Sym(9) 8 spin 3

LEMMA 9.13. Suppose that K/Z(K) is an alternating group. Then Theorem[]] holds.

PROOF. Since K is quasisimple, we have K/Z(K) = Alt(n) with n > 5. By[0.11] we may assume
that K/Z(K) is not a genuine group of Lie-Type defined over a field of characteristic p, and we may
also assume that we are not in one of the cases treated in We use with (AQK, I,K) in
place of (H,V,F). In particular, we have p = 2 or 3.

Case 1. The case p = 2.

Assume that I is a natural Alt(n)-module. Since I is also a @Q!-module, shows that n = 5,6
or 8 and K =~ SLy(4), Sps(2), and SL4(2), respectively. In the first and third case K/Z(K) is
a genuine group of Lie type in characteristic 2 contradicting our assumption. In the second case
|I] = 2%, and I is an FF-module for K, a case which has been treated in

If K ~ 3-Alt(6) and |I| = 25, or K =~ Alt(7) and |I| = 2%, then I is an FF-module for K.
Hence, also these cases have been treated in in

Observe that the fourth case of is excluded by the fact that I is a simple K-module.

Assume that K =~ Alt(9) and [ is the spin-module of order 28. Then § = 2 and [ is selfdual.
Note that all involutions in M invert a 3-cycle in K. As the 3-cycles in K act fix-point freely on I
we conclude [[I,a]| = 2% for all a € A\Ca(I). But by @, I[1,a]| < ¢* = 22, a contradiction.

Case 2. The case p = 3.

If I is the a natural Al¢(n)-module for K, then again[C.23|shows that n = 6. But then K =~ Ly(9)
is a genuine group of Lie-type, contrary to the assumptions.

If K ~ 2 Alt(5) and dimg I = 2 then A acts quadratically on I, a contradiction.

Suppose that K ~ 2-Alt(9). Then I is selfdual and K = F3. Now shows that ¢ = 3 and
I[I,a]| <9 for all a € A, a contradiction since |[I, k]| = 3% for all k € K with |k| = 3. (Indeed, there
exists £ < K with E ~ Qg, Z(E) = Z(K) and E = [E,k]. Hence Z(K) < {k,k®) for some e € E
and so 3% = |I| = |[I, Z(K)]| < |[I,k]|>. Thus |[I,k]| = 3%.) O

THEOREM 9.14 (Guralnick-Malle). Let H be a finite group and V a faithful simple 2F-module
for F,H. Suppose that F*(H)/Z(F*(H)) is neither an alternating group nor a genuine group of Lie-
type over a field of characteristic p, but F*(H) is a perfect central extension of a group of Lie-type.
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Put F := Endgsgy(V) and d := dimp V. Then one of the following holds:

F*(H) | d_|F|
Us(3) |6 2
3U43) |6 4
2:L3(4) |6 3
Spe(2) |7 3
2:Sps(2) | 8 3
2042 |8 3

LEMMA 9.15. Suppose that K/Z(K) is a group of Lie-type. Then K/Z(K) is a genuine group
of Lie type, and Theorem[] holds.

Proor. If K/Z(K) is a genuine group of Lie typ, then shows that Theorem [I| holds. So
assume for a contradiction that K/Z(K) is not a genuine group of Lie-type defined over a field of
characteristic p. Thus can be applied with (QAK,I,K) in place of (H,V,F). In particular,
p=2or 3.

Case 1. The case p = 2.

The case K =~ Us(3) =~ G2(2)" has been ruled out in (the proof of)
Suppose K =~ 3:U4(3). Then dimg I| = 6, and by [JLPW] I is selfdual as an FyK-module.
Since |Z(K)| = 3 this contradicts [0.7().

Case 2. Suppose that p = 3.

In all cases we have that |K| = 3, and by [JLPW] T is selfdual. So applies. In particular,
§d=|K|=3and |[I,a]| <9 forall a € A. Let a € A with [I,a] # 1.

Suppose that K = 2-L3(4) and |I| = 3%. Since the diagonal automorphism of order 3 of K/Z(K)
does not normalize Z(K), A < K. Hence there exists T < K with |T| = 7 and T = [T, a]. Since I
is selfdual, I = [I,T] and so |[I,a]| = 33, a contradiction.

Suppose that K = Spg(2) and |I| = 37. By [JLPWI, I is the unique simple 7-dimensional
F3;K-module, and so [ is the module arising from the isomorphism Cy X Spg(2) =~ Weyl(Er), the
Weyl-group of type E7. Choose T' < K with T = Og (2) = Weyl(Eg). Then T normalizes a 1-space
in I. Since T contains a Sylow 3-subgroup of K we may assume that Q < 7. But then Q! implies
Q< T, a contradiction to O3(T) = 1.

Suppose that K =~ 2:Spg(2) and |I| = 3%. Then we can choose T' < K witha e T, T ~
2.(Sp2(2) x Spa(2)) and @ ¢ O3(T'). It follows that there exists E < T ~ 2-Alt(6) with £ = [E, a],
E >~ Qs and Z(E) = Z(K). Thus [|I,a]| = 3, a contradiction.

Suppose that K =~ 2:QF (2). Then |I| = 3%. By [JLPW], I is the unique simple 8-dimensional
F3K-module, and so I is the module arising from the isomorphism 2-Qf (2) =~ Weyl(Eg)’. Since the
graph automorphism of order three does not centralize Z(K), Q@ < K and there exists Q < D < K
with D = C3 x Qg (2) = Weyl(As x Eg)’. Since p = 3, we see that D normalizes a 1-space in I. So
by Q!, Q@ = O,(D), a contradiction since @ is weakly closed in K and O,(D) is not. O

THEOREM 9.16 (Guralnick-Malle). Let H be a finite group and V' a faithful simple 2F-module
for F,H. Suppose that F*(H) is a perfect central extension of a sporadic simple group. Put F :=
Endgs(gy(V) and d := dimg V. Then one of the following holds:

F*(H) d__|F|
Mat127 Matgg 10 2

Matgg, Mat24 11 2
3'Mat22 6 4
Cogy 22 2

COl 24 2
Mat11 5 3
2'Mat12 6 3
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The cases Coy and Co; have been ruled out in [GLM], but again we decided to only refer to
the original list.

LEMMA 9.17. Suppose that K/Z(K) is a sporadic simple group. Then Theorem [] holds.
ProOF. We can apply with (AQK, I,KK) in place of (H,V,F). In particular, p = 2 or 3.
Case 1. The case p = 3.

By [JLPW], Mat;; has two simple 5-dimensional modules over F3. Also 2-Matqo has two
simple 6-dimensional modules over Fg interchanged by the outer automorphism of 2-Mati5. Thus
either K =~ Mat1; and I is the simple Todd or Golay code module, or K =~ 2:Mati, and I is the
simple Golay code module. Note that K has no outer automorphism of order 3, and so M° = K.
We need to rule out the case where K =~ Maty; and I is Todd-module. Then Mat;; has an orbit
of length 11 on the 1-spaces in I. Hence Matqy normalizes a 1-space in I, but this contradicts Q!,
since O3(Matqp) = 1 and Matyo contains a Sylow 3-subgroup of Matq;.

Case 2. The case p = 2.

Let Z := Cy(S) and R := C37(Z). Then by Q!, Q < O,(R).

Suppose first that K = Matoy. By [JLPW], Matos has two simple 11-dimensional modules
over Fy. Thus, I is the simple Todd or Golay code module. Since Out(Matay) = 1, we get that
M = M° = K, and Theorem @ holds.

Suppose next that K =~ Matas. By [JLPW], Matss has two simple 10-dimensional modules over
Fy. Thus, I is the simple Todd or Golay code module. Also M° = K or M = M° =~ Aut(Matss).
Assume that I is the Golay-code module. Then R ~ 2*Alt(6) or 24Sym(6) with O2(R) < K, so
Q < K. Hence M° = K >~ Matss and Theorem holds.

Assume that [ is the Todd module. If M° =~ Aut(Mataz), then Theorem holds. So suppose
that M° = K. Then R ~ 2*Sym(5) and there exists F < M° with F =~ L3(4), O2(R) < F and
C1(F) # 1. Since @ < O2(R) < F and O3(F') = 1, we get a contradiction to Q.

It remains to rule out the cases K =~ Matio, 3 Mates, Mates, Cos and Coq in(9.16

Suppose that K =~ Maty13. By [JLPW], Mat;s has a unique simple 10-dimensional modules
over [F5. Hence, I is the non-central simple section of a natural permutation module on 12 letters. In
particular, I is selfdual and |K| = 2. Thus by, I[V,a]| < 4, a contradiction, since no involution
fixes more than 4 of the 12 letters.

Suppose that K =~ 3 Mates. By [JLPW], any 6-dimensional simple 3- Matos module over Fy is
selfdual as an Fo K-module. As |Z(K)| = 3, this contradicts [9.7](i).

Suppose that K = Matez. By [JLPWIJ, Matss has two simple 11-dimensional modules over Fo.
Thus, I is the simple Todd or Golay code module of Fo-dimension 11. Since Out(K) = 1 we have
M = K. If I is the Todd-module, then there exists Q < E < K with E =~ Matyy and C;(E) # 1, a
contradiction to @!. Thus I is the Golay code module and so R ~ 2*Alt(7), Q@ = O2(R) is elementary
abelian of order 24, and |C7(Q)| = 2. Suppose that A < Q. Since A is an 2F-offender and R acts
simply on Oz(R), implies that @ is a 2F-offender. But |I/C1(Q)| = 219 > (24)2 = |Q]?, a
contradiction.

Hence A £ Q. Let Q be a set of size 23 with M =~ Matss acting faithfully on . Then
R = N7;(©) for some © < Q with |©] = 7. Let A < © with |[A| = 3 and put Ry = N7(A). Then
R1/CRr, (A) = Sym(3) and Cg, (A) =~ Matay ~ 2*SLy(4), where O2(R;) is a natural SLy(4)-module
for Cg, (A)/O2(Ry). Also Q = C37(0) < Cr, (M) and so R} = Cg, (A).

Since R induces Alt(7) on ©, Ry n R/Cgr, ~r(A) = Sym(3) and Cg,~r(A)/Q = Alt(4). Thus
|Ri n R| = 2732 |[R/Rn Ry| =5 = |R}/RS n R| and O3(R; n R) € Syly(RS). Note also that
O2(R1n Ry3)/Q corresponds to {(12)(34), (14)(23)) in Alt(7) and so by [MS5, 7.5] is, up to conjugacy,
the unique maximal quadratically acting subgroup of R/Q on Q.

Since ) normalizes A by (]Eb and A is elementary abelian, we conclude that A acts quadrat-
ically on . Hence A is contained in an R-conjugate of Os(R N R1). So we may choose A such that
A < O3(R N Ry). As seen above, O2(R N Ry) € Sylo(RS) and Oo(R;) is a natural SLo(4)-module
for RS. Hence Oz(Rn R1) = QO2(R1), and Q and Oo(R;) are the only maximal elementary abelian
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subgroups of O2(R N Ry), so A < O2(Ry) since A € Q. Thus implies that R} < Ng, (A). Since
RS acts simply on Oy(Ry) this gives A = Oz(R1),

Put U := (Zf). Since R centralizes Z and |[R/R n Ry| = 5, U is a quotient of the Sym(5)-
permutation module for Ry. Note that Cy(R;) = 1 by Q! and that the permutation module is the
direct sum of simple submodules of order 2 and 2*. Thus |U| = 2%.

Since A is not an offender on I, |I/Cr(A)| > |A] = 2* and so |Cr(A)| < 22151 = 25, Note

that U < Cr(A) since A = O9(Ry). Thus |Cr(A)/U] < g—i = 22. Since RS is perfect, this gives
[C1(A),R;] = U. Observe that H'(U, R{/A) = 1 (for example by and since Cr(R?) = 0 we
get U = C1(A), so |Cr(A)| = 2%

Since I is not an F'F-module, shows that A is an offender on I n A and therefore |I N
AJCr(A)| < |A] = 2% Thus [I n A| < 2% and § = |I/T n A| = 23. Note that A = A/C4(Y) and
I/C1(A) both are Np(Y)-invariant sections of AY /Cy(L). Thus by , both, |A] = 2% and
|I/Cr(A)| = 27, are powers of §. But then § = 2, a contradiction to § > 8.

Suppose that K =~ Cog or Co1. By [SW], Co, has a unique simple 22-dimensional module over
Fs, and by [Gr2], Co; has a unique simple 24-dimensional module over Fo. Hence I is selfdual
and isomorphic to the non-central simple section of the Leech-lattice modulo 2. Also ¢ = |K| = 2.
Thus by 0.7@), |[Z,a]| < 4 for all @ € A. But the commutator space of any involution in Co,
on the Leech-lattice modulo 2 is at least 8-dimensional, and since 224/|I| < 22, we conclude that
I[1,a]| = 28/2% = 25, a contradiction. O

9.3. The Proof of Corollary

In this section we will proof Corollary So we continue to assume the hypothesis of Theorem
[ and use the notation introduced in

LEMMA 9.18. Suppose that Y = ICy(S N K). Then'Y = I. In particular, Y = I if A €
Syl (KA).

ProoF. By[.3|ld) [¥, K] < I and, by Q!, Cy (K) = 1. As SnK € Syl,(K), Gaschiitz’ Theorem
gives Y = ICy (S n K) = Cy (K)I = I, see

Note that by Y = ICy(A). Thus if A € Syl,(KA) then AnK = SnK and Y =
ICy(SNnK),andso Y =1. O

9.19. Proof of Corollary

Suppose that Y # I. By Q!, Cy(K) = 1, and by [9.3{(b).(c) [Y: K] = I, so |Y/I| < |[H (K, T)|.
Comparing Theorem [[| with we obtain one of the following cases:
(A) M =~ L3(2), |[Y| =2* and I is a natural SL3(2)-module for M.
(B) M° = Span(q) or Spa(2)’, p =2, I is the corresponding natural module and |Y/I| < gq.
(C) M° =~ Q3(5),9; (3),Q5(3) or QF(2), I is the corresponding natural module, and |Y/I| <
and 2 respectively.
L3(4), I is the unitary square of corresponding natural module and |Y/I] < 4.
, M° = Matay, I is the simple Todd-module of Fo-dimension 11 and |Y/I| = 2.
p =2, M° =~ Matyy, I is the simple Golay code module of Fo-dimension 10 and |Y/I| = 2.
(G) p=3, M° =~ Mat1, I is the simple of Golay code module of F3-dimension 5 and |Y/I| = 3.
It remains to treat each of these seven cases. Recall first that by Y = ICy(A) and so we
can pick t € Y\Cy (A).

In Case I is a natural SL3(2)-module for M and so Cy7(t) =~ Frob(21) has odd order, a
contradiction since A < Cy7(t).
In Case , I is a natural Spa,,(2)- or Sps(2)’-module for M° and so Corollary holds.

Suppose that Case (C|) holds with M° =~ Q3(5). By [B.35{|d) we conclude that A < M°. Thus
A€ Syl;(M°) and gives Y = I, contradiction.
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Suppose that Case holds with M° = Q (3) = Alt(6). Again [B.35(|d) gives A < M°. Let W
be an F3M°-module with Y < W, Cy(M°) = 1 and |W/I| = 3%. Let X; and X, be non-conjugate
subgroups of M° with X; =~ Alt(5). Choose notation such that A; := An X; # 1. Fori = 1,2,
put W; := Cw (X;)I and note that W; is a M°-module isomorphic to the 5-dimensional quotient of

permutation module IFéVIO/ Xi Then W, = ICw, (A1) and, since A; acts fixed-point freely on M°/X,,
Cw,(A1)) < I. Tt follows that ICw (A1) = Wi. AsY = ICy(A) < ICw (A1) this gives Y = Wy.
Thus [9.1)(2) holds in this case.

Suppose that Case holds with M° =~ Q5(3) or O (2). Then I is the corresponding natural
module, |Y/I] < 3 and 2, respectively, and or 4] holds.

Suppose that Case @ holds. Then I is the unitary square of a natural SLs3(4)-module for
K =~ L3(4). Since I is not an FF-module, we can apply and conclude that A < K. Let P,
and P, be the two maximal subgroups of K containing S n K such that C;(K n S) < P;, and let
Qi := O,(P;). Then C1(Q1) = Ci(K n S) has order 2, and so |I/C1(Q1))| = 2% = |Q1]*. By Q!,
@ < P, and the simple action of P, on Q; implies Q = Q;.

Suppose that A < Q. Since |Y/Cy(A4)| < |AJ?, shows that |Y/Cy(B)| < |B|? for some
non-trivial Pj-invariant subgroup B of Q1. As P; acts simply on @, we get B = ()1 and

Y /Cy(Q1)] < |Q1]* = |[1/C1(Q1)]-

Hence Y = Cy(Q1)I. Since P, is perfect and [Cy (Q1), P1, P1] < [Cr(Q1), P1] = 1, we get Cy (Q1) <
Cy(Py) and Y = ICy(Py). Since S n K < Py, ﬁ gives I =Y, a contradiction.

Suppose now that A € Q. Since Q; and Q- are the only maximal elementary abelian subgroups
of KnS, A<Q,. Thus shows that Py (:= <@P2 ») normalizes A. As Q € Qa2, P> = PSQ2, and
as Q2 is a simple P,-module, A = Q3 and so Y = Cy (Q2)I. Since Cr(Q2) is a natural Alt(5)-module
for Py, HY(C1(P), P2/Q2) = 1 (se and so Cy (Q2) = C1(Q2)Cy (P2) and Y = ICy (P2), again
a contradiction to since S N K < Ps.

Suppose that Case holds. Then M® =~ Matsy, I is the simple Todd-module, and |Y /| < 2.
So[9.1{(5)) holds.

Suppose that Case (F)) holds. Then M = Matoy or Aut(Maty,), and I is the simple Golay code
module. Hence Y is isomorphic to the restriction of the 11 dimensional simple Golay-code module
for Matyy to M. Let (2, B) be a Steiner system of type (24,8,5), H := Aut(Q, B) = Matay, T <
with |T'| = 2. Then Ny (T') = Aut(Mataz). Let V be the simple Golay code module for H. Then
H has two orbits on V¥, one orbit corresponding to the octads in Q and the other to the partitions
of Q into two dodecads. Also [V, Ng(T)]* consists of all elements in V ’perpendicular’ to T', that
is, the elements corresponding to octads and pairs of dodecads, each intersecting T in a subset of
even size. So V\[V, Ny (T)] consists of all octads and pairs of dodecads intersecting T in exactly
one element.

Let B be an octad with |[B n T| = 1. Then Ny (B) ~ 2*Alt(8) induces Alt(8) on B while
Cp(B) acts regularly on Q\B. Thus Ng(B) n Ng(T) = Alt(7). Let {C,D} be a partition of {2
into two dodecads with |[C " T| = |D nT| = 1. Then Ny(C) = Maty acts transitively on C,
and Ng(C) n Ng(C nT) = Maty; acts transitively on D with point-stabilizer Lo(11). Hence
Ny (T) n Ng({C, D}) =~ Aut(Lo(11)).

It follows that C77(t) is isomorphic to a subgroup of index at most two of Alt(7) or Aut(La(11)).
In particular, C3;(t) has dihedral Sylow 2 subgroups. Since A is elementary abelian, we conclude
that |[A| < 4. Thus |[I/C(A)| < |A]? < 2% Since A does not act quadratically, C;(A) # Ci(a) for
some 1 # a € A and so |I/Cr(a)| < 2%. But this is a contradiction, for example, since each involution
in Cy7(t) inverts an elements of order 5, and all elements of order five in M° have an 8-dimensional
commutator on I.

Suppose that Case (G)) holds. Then M° = Mat;; and I is the simple Golay code module. Since
Out(Maty;) = 1 and Cy(I) = Cpr(Y), we get O% (M) = K. By@ A is not a Sylow 3-subgroup
of K. Thus |A] = 3 and so |[I/C;(A)] < |A|? = 9. Let R < K with R =~ Matyy ~ Alt(6).2 and
A< R, and let ge R\R'. Then A and A’ are not conjugate in R’ and we choose g such that A and




9.4. THE PROOF OF COROLLARY 171

A7 correspond to ((123)) and {(124)(356)) in Alt(6). Then R’ = (A, A”). Thus |I/C;(R')| < 3* and
so |Cr(R')| = 3, a contradiction since I is the Golay-code module (or to Q!).

9.4. The Proof of Corollary

In this section we will proof Corollary For this we continue to assume the hypothesis of
Theorem [[| and use the notation introduced in In addition, we assume

(char Yr) Cq(y) is of characteristic p for all ye Y*.

The following lemma is crucial for the proof of the corollary. Exactly here property (char Yar)
is used.

LEMMA 9.20. Suppose that property (char Yar) holds. Then Op(Nyz(B)) # 1 for all 1 # B <
Cy(A).

PROOF. Suppose that O,(N77(B)) = 1 for some 1 # B < Cy(A). Note that Op,(M) normalizes
O,(Ng(B)) and that by 2.6{[b) Op(M) is weakly closed in G. Hence O,(Ng(B)) < Ng(Op(M)) <
MT and so O,(Ng(B)) < Op(N37(B)) = 1. Thus [Yar, O,(Ng(B))] = 1.

By (char Yur) Cg(b) is of characteristic p for 1 # b € B E| and so by Ca(b) is of local
characteristic p. It follows that C(B) has characteristic p. In particular,

Yu < Ca(0p(Na(B))) < Ca(0p(Ca(B))) < 0p(Ca(B)) < Op(Na(B)).

On the other hand, by [9.3|[f) B < Z(A4) < Z(L) and so L < Ng(B). This contradicts Yas £ O,(L).
O

LEMMA 9.21. Suppose that property (char Yas) holds. Then Case of Theoremm does not

occur.

PROOF. Suppose that Case of Theorem [I| holds. Then p = 2, MT = M = M° =
Aut(Matas), and I is the Todd module of order 219, Choose a set 2 of size 22 with M acting
faithfully and 4-transitively on Q. Let o, € Q with a # (. Since M acts 4-transitively in €,
F := C37(a) and P := Ni7({a, 8}) are maximal subgroups of M. Since I is the Todd-module there
exists 1 # x € C;(F). Define {z,y} := z¥ and z := zy. By the maximality of F' and P, F = Cy7(z),
x #y, and P = Cp(2).

Note that

F K = Maty = L3(4), P~ 2""'TSLy(4), P = Pn K n F = Matoy ~ 2*SLy(4).

Moreover, Oz(P’) is a natural SLs(4)-module for P’, and Z(F) = Z(P) = 1. Since |F/F n K| =2
we conclude that O9(F) = 1. Also |M/P| = (222) =21-11, and so P is a parabolic subgroup of M.
Thus we may assume that S < P. Then z < C;(S) < C7(A) and so by @, z € Cr(L).

If 2 € C7(A) then by O5(Cy7(z)) # 1, which contradicts O5(F) = 1. Thus

1°. v¢ Cr(A) and AL F.

Since z € Cr(L), we have N (Y) < Cyz(2) = P. It follows that (x,y)/(z) is a composition factor
for N1(Y) on AY /Cy (L) of order 2. On the other hand by [2.18|[b) any such composition factor has
order §. Hence § = 2 and so |I/I n A| = 2. Since by 0.5|[b), I n A = [I, A]C;(A), this shows that

20 |I/[I, A]C(A)] = 2.

As @ centralizes z, Q! implies that Q < P. Since @ # K we have Q £ K. Also P acts simply
on R := Oy(P'), |O2(P)/R| = 2 and Z(P) = 1. Thus Q = Oy(P). It follows that (see for example
IMStl, Theorem 3])

3°.

(a) C1(Q) = [I,Q,Q] =<2),
(b) [1,Q]/{x,y) is a natural SLs(4)-module for P’,

2This is the only place in the proof of Corollary where (char Yyr) is used.
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(c) I:=1/[I,Q] is a natural Sym(5)-module for P. In particular, I is a selfdual P-module.

We claim that An R # 1. If A € @, then 1 # [Q, A] < A~ R. So suppose that A < Q. Since
A does not act quadratically on I, |A] > 4. As |Q/R| = 2 this gives An R # 1.
So we can choose a € A with 1 # @ < R < K. Since all involutions in K are conjugate,
9 € P\Oy(P) for some g € K. By (3°) P’ has two non ccntral composition factors on I and
o |I/C'1(a)| > 2% and |Cr(a)| < 2% Since @ € R < Q, (EI) gives [[1,Q],a] < (z) and thus
C1(a) A [1,Q]] = 2°. Hence |Cy(a)[I,Q]/[1,Q]| < 2 and so Ci(a)] <2
By (2 1.} (I, A]CI(A) has index at most 2 in 1. Suppose that A acts quadratlcally on I. Then
CI(A)[I A] < C3(A) and so |I/CI( )| < 2. As by T is selfdual this gives |[I, A]| < 2 and so

CI(A)[I , A] has order at most 4, a contradiction. Hence A does not act quadratically on I. Note
that the only elementary abelian subgroups of Sym(5), which do not act quadratically on the natural
Sym(5)-module, are the Sylow 2-subgroups of Alt(5). Thus T := AOs(P) € Syly(P'O2(P)).

As Z(P) = 1, Gaschiitz’ Theorem gives Co, py)(T) < R, see Since R is a natural SLy(4)-
module for P’, T'n P’ has exactly two maximal elementary abelian subgroups, namely R and say R*.
Moreover, RR* = T n P’ and so Co,(p)(R*) < R. Since [AO3(P)/O2(P)| = 4 and |P'Oy(P)/P'| = 2
we can choose b € A n P'\O(P). Then b € R*. Also [Oz2(P),b] < Cr(b) = [R,b] = R n R* has
order 4 and so B := Cp,(py(b) £ R. In particular, since Cp,p)(R*) < R, [B, R*] # 1. It follows
that Cr(b) = BR* and Cp(b) has exactly two maximal elementary abelian subgroups, namely B{b)
and R*. As A < Cr(b) and AOy(P) = T this gives A < R* < P'. Since P’ = P n K n F, we have
A < F, a contradiction to . O

LEMMA 9.22. Suppose that property (char Yar) holds. Then of Theoremm does not occur.

PROOF. Suppose that p = 3, M° ~ 2-Mat,5 and I is the simple Golay code module of order 36.
Observe that there exists a subgroup P of M° with A < P such that P ~ 32SLy(3), C1(O3(P)) is a
natural Q3(3)-module, and [I,03(P)]/C1(O3(P)) is a natural SLy(3)-module for P. If A < O3(P),
then we can choose 1 # x € C1(O3(P)) < C;(A) with Cyp(z) = Matyy, a contradiction to[9.20] Thus
A £ O3(P). Let 1 # e A. Then €9 € P\O3(P) for some g € M. In particular, e/ acts non-trivially
on C](Og( )) and [I,Q]/C1(O3(P)). Hence |[I,e]| = 3% and |C(e)| < 33. Since |I/Cr(A)| < |AJ?
by [9.3|lc), this gives A # <e> Hence, as A is abelian, |A] = 32 and |4 n O3(P)| = 3. Since

= |C1(05(P))| < |C1(A n Os(P))| < |C1(e)] < 37,

Cr(AnO3(P)) = CI(O3(P)) and so |Cr(A)| = |Cr(O3(P)A)| = 3. But this contradicts |I/Cr(A)] <
A2 = 34, 0

9.23. Proof of Corollary

In view of and it remains to show that Y = I. Hence, we assume property (char Yus)
and Y # I and discuss the five cases of Corollary By 9.3({f) Y = ICy(A), so we can pick
te Cy (A)\I

Suppose that case holds. Then p = 2 and [ is a natural Spa,(q)- or Sp4(2)-module for
Mpe. In the first case Cyz(t) = 05, (¢) and the second case Cy=(t) ~ 32.Cy or €5 (2). In either case
we conclude that Cyps(t) and so also Cy(t) acts simply on 1. Thus O2(C77(t)) centralizes I, and
since Cpr(Y) = Cpr (1), we get O2(C37(t)) = 1, a contradiction to[9.20}

Suppose that case or . holds. Then I is a natural Qj (3)- or Q5(3)-module for K.
Thus shows that S < K. Let z be a non-singular vector in I Then O3(Cyp(z)) < K and
C’K(x) ~ Qe (3), where n = dimg,(I). Thus O3(Cyz(x)) = 1, and shows that = ¢ C;(A).

n—1
Hence C7(A) does not contain any non-singular vectors. Since 3 is odd we conclude that Cy(A) is

singular.

Put D := [I,A] n C(A). Observe that K := Endg(I) = Fs, and let X be a K-subspace of
Cr(A) with Cr(A) = D x X. Since Cy(A) is singular, X < X*. On the other hand, I i IS a selfdual
K-module, and so [9.7(lg) gives X n X+ = 1. Thus X = 1 and D = C;(A). By 9.7 , |D| = 3.
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Hence Ck(D*) = 1, and by 9.7(lg), A = ACk(D*) = Cx(D*+/D) n Cx (D). If K = Q; (3) this
gives A € Syl;(K), a contradiction to

Thus K = Q5(3). Let E be 2-dimensional subspace of I with D < E and £ £ D*. Then
Ck(E) = Q3(3) is a complement to A in Cx (D). Let g € K with DI < E+ and put B := Cx(E) n
Ck(D9) n Ck(EL/D9) . Then B is a Sylow 3-subgroup of Cx(E), B < A’ and AB € Syl;(K).
Also [I,B] < E* and [I,B] n D = 1. Since Y = Cy (A)I = Cy(A”)I we have [V, A] = [I, A] and
[V, B] = [I, B]. Thus

[Cy(A), AB] < [Y,B] 7 C1(4) = [IB] n D = 1,

and so Y = ICy (AB). Since AB € Syl;(K), shows that Y = I, a contradiction.

Suppose that case [9.1{{4) holds. Then I is a natural QF (2)-module for K =~ Qf (2) ~ Alt(8).
Hence Y is the central quotient of the permutation module on eight objects, and so Cy7(t) is
isomorphic to a subgroup of index at most two of Sym(7) or Sym(3) x Sym(5). It follows that

O2(Cy7(t)) = 1, a contradiction to

Suppose that case|9.1{(5) holds. Then M° =~ Maty, and I is the simple Todd-module. It follows
that M = K and Y is the quotient of the 24-dimensional permutation module by the Golay-code
module. Hence C(t) is isomorphic to Matas or L3(4).Sym(3). So O2(C37(t)) = 1, a contradiction
to






CHAPTER 10

Proof of the Local Structure Theorem

In this chapter we prove the Local Structure Theorem and its corollary stated in the introduction.
But before doing this we prove the Structure Theorem for Maximal Local Parabolic Subgroups, which
combines the theorems proved in Chapters [ —[J] into one.

THEOREM J (Structure Theorem for Maximal Local Parabolic Subgroups). Let G be a finite
Kp-group and S € Syl,(G). Suppose that [Mq(S)| > 1 and there exists a large subgroup Q of G
in S. Then there exists M € M (S) with Q € M. Moreover, for every M € Mg (S) with Q 1 M
one of the following cases holds, where Y := Yy, M := M /Cp(Yar), Q° := Op(Ng(Q)), and q is a
power of p:

(1)

(2)

The linear case.

(a) M° =~ SL,(q), n >3, and [Y, M®] is a corresponding natural module for M°.

(b) IfY # [Y,M°] then M° =~ SL3(2), |Y/[Y,M°]| =2 and [Yar, M°] < Q < Q°.

The symplectic case.

(a) M° = Span(q), n = 2, or Sps(q)’ (and q¢ = 2), and [Y,M°] is the corresponding
natural module for M°

(b) IfY # [Y,M°], thenp =2 and |Y/[Y,M°]| < q.

(¢) If Y €£Q°, thenp =2 and [Y,M°] € Q°.

The wreath product case.

(a) There exists a unique M-invariant set K of subgroups of M such that [Y,M°] is a
natural SLo(q)-wreath product module for M with respect to K. Moreover, M° =
OP((K))Q and Q acts transitively on K.

(b) IfY # [Y,M°], then p =2, M = T'SLy(4), M° = SLy(4) or TSLy(4), |Y/[Y,M°]| =
2 and [Y,M°] € Q°.

The orthogonal case. Y « Q°, M° =~ Q¢ (q), n = 5, where q is odd if n is odd, and Y

s a corresponding natural module for M°.

The tensor product case. Y £ Q°, and there exist subgroups K1, Ko of M such that

(a) K; = SLy,(q), m; =2, [K1, K] =1, and K1 Ko< M,

(b) Y is the tensor product over F, of corresponding natural modules for Ki and Ko,

(c) MP° is one of K1, Ko, or K1 K>.

The non-natural SL,(g)-case. Y € Q°® and one of the following holds:

(1) M° =~ SL,(q)/{(=id)"'), n = 5, and Y is the exterior square of a natural SL,(q)-
module.

(2) pis odd, M° =~ SL,(q)/{(—id)""'), n = 2, and Y is the symmetric square of a natural
module.

(3) M° = SL,(q)/{Nid | X € Fg, A" = Ao+l =15 n > 2, q= ¢, and Y is the unitary
square of a natural module.

The exceptional case. Y £ QQ° and one of the following holds:

(1) M° = Spiniy(q), and Y is a half-spin module.

(2) M° = Eg(q), and Y is one of the (up to isomorphism) two simple F,M°-modules of
order ¢*7.

The sporadic case. Y £ Q° and one of the following holds:
(1) M ~ 3:Sym(6), M° ~ 3:Alt(6) or 3:Sym(6), and Y is simple of order 2°.
(2) p=2, M° =~ Matyy, and Y is the simple Golay-code module of Fo-dimension 10.

175
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(3) p=2, M° = Matay, and Y is the simple Todd or Golay-code module of Fa-dimension
11.
(4) p=3, M° =~ Maty1, and Y is the simple Golay-code module of F3-dimension 5.
(9) The non-characteristic p case. There exists 1 # y € Y such that Cg(y) is not of
characteristic p and one of the following holds:
(1) Y is tall and asymmetric in G, but Y is not char p-tall in G.
(2) p =2, M° =~ Aut(Maty,), Y is the simple Todd module of Fa-dimension 10, and

3)

(4) p=2, M = 05,(2), M° =~ Q5,(2), 2n > 4, (2n,€) # (4,+), Y is a corresponding
natural module and Y < Q°.

(5) p=3, M° =Q,(3), [Y,M?] is the corresponding natural module, |Y /[Y,M°]| =3,Y
is isomorphic to the 5-dimensional quotient of a siz dimensional permutation module
for M° ~ Alt(6), and [Y, M°] € Q°.

(6) p =3, M° =~ Qs(3), [Y, M°] is the corresponding natural module, |Y/[Y,M°]| = 3

and [Y,M°] € Q°.

=2, M° =~ Qf(2), [Y, M°] is the corresponding natural module, and |Y /[Y, M°]| =

, M° = 2-Matys, Y is the simple Golay-code module of F3-dimension 6, and

RIS
Sl [
OLQ

(7)

(8) p=2, M° = Matay, [Y, M°] is the simple Todd-module of Fa-dimension 11,
[Y/IY, M°]| = 2 and [Y, M°] £ Q.

[Nl

We remark that there is some overlap between the different cases and that the last case is not
the only case, where C¢(y) may not be of characteristic p for some 1 # y € Y. See the comment
after the Local Structure Theorem (Theorem |A]) in the introduction for more details.

10.1. Proof of Theorem [

In this section we prove Theorem [J] so we assume the hypothesis and notation given there.

The existence of M follows from [L.56][d). Now let M € M¢(S) with Q € M.

Suppose first that Y is symmetric in G. Then we can apply Theorem [D| Assume that Case
of Theorem @ holds. Then M = 05,,(2), M° = Q5 (2), (2n,¢€) # (4,+), [V, M] is a corresponding
natural module, Cg(y) is not of characteristic 2 for every non-singular y € [Y, M], and either
Y =[Y,M] or M =Of(2) and |Y/[Y,M]| = 2. If Y # [V, M°], we conclude that holds. If
Y=[Y,M]and Y £ Q* either (for 2n > 6) or (for (2n,e) = (4,—)) holds. If Y = [Y, M]
and Y < Q°*, then holds. All other case of Theorem [D]also appear in Theorem

Suppose next that Y is asymmetric in G and short. Then Theorem [E] implies Theorem [J| where
the O5,,(2)-Case of Theorem [E[is treated as in the previous paragraph.

Suppose that Y is asymmetric in G and tall. Assume that Y is not charp-tall in G. Then
Theorem [F| shows that C(y) is not of characteristic p for some 1 # y € Y and thus holds.
So we may assume that Y is char p-tall. If, in addition, Y is Q-short we can apply Theorem [G] and
conclude that Theorem [Jl holds.

Suppose finally that Y is asymmetric in G and Q-tall. Then we can apply Theorems [H] and [Il
Put I = Fy(M). Then by Theorem [H| I = [Y, M°] and I £ Q* except in Case , where [ is a
natural SL3(2)-module for M°, I < Q and |Y/I| = 2.

Assume that one of the cases of Theorem || holds and Y # I. Then Corollary [0.2shows C¢(x) is
not of characteristic p for some 1 # x € Y. Now Corollary [0.1]implies that Case[2]or one of the Cases
—[9:8] of Theorem |J| holds. Also by Corollary the Cases [11| (Todd-module for Aut(Matss))
and [13] (Golay code module for 2- Mati2) of Theorem [9.2only occur if Ci(z) is not of characteristic
p for some 1 # x € Y, and so Cases and of Theorem [J] hold, respectively.

In all remaining cases of Theorems [H] and [ a careful comparison shows that Theorem [J] holds,
see Tables [1 and B
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TABLE 1. The Cases of Theorem [H and Theorem [J]

1 Y /I Remark Th
— — leads to Theoremll' —
nat SL3(2) 2 I<Q,Y<£€Q*
nat Q¢ (2) 2 Ca(z) not of characteristic p
nat Span(2) 2 Y>IT<£Q°
nat SL,(q), n >3 1 p=2Y=1£Q*
nat SLy(q) 1 I=Y £Q°
nat Span(q) 1 Y —I<Q°
nat Q3(3) =~ S%(nat) SLy(3) 1 Y=1<Q°
nat (I')SLy(4) 2 Y>T£Q°
26 for 3- Alt(6), 3- Sym(6) 1 I=Y<Q*
nat SLp, (¢) ® SLmn,(q)) 1 I=Y<£Q°
24 for SLy(2)1Cs 1 I=Y £Q°

TABLE 2. The Cases Y = I of Theorem [[] and Theorem [l

I Remark
nat SLp,(q)
nat Span(q), Spa(2)’, p =2
nat 2 (q),n =5
nat Q3(q) =~ S?%(nat) SLz2(q)
nat Qf (q) = nat SLs(q) ® nat SLy(q)
nat , (¢) = U?%(nat) SLa(q)
A(nat) SLn(q)
S?(nat) SLy,(q)
U%(nat) SLy,(q)
half spin Spiny(q)
¢*" for Eg(q)
Todd or Golay for Matsay
Golay for M(Ztgg
Todd for Aut(Matas) not (char Y)
Golay for Matqq Y =
Golay for 2-Mati not (char Y)

[
~
#
R

I
#
2R

e R R
I

Il
NN N N N N N N N N N
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10.2. Proof of the Local Structure Theorem

This section is devoted to the proof of the Local Structure Theorem (Theorem [A]).

Let p be a prime, G a finite KCp-group, S € Sylp(G) and @ < S. Suppose that Q) is a large
subgroup of G and [M¢(S)| > 1. Recall that Q is a weakly closed subgroup of G by [L.52|(b).

Let L < G with S < L, Oy(L) # 1 and @ € L. Since L is a parabolic subgroup of H with

O, (L) # 1,|1.55(]b)) shows that C(O,(L)) < O,(L). Hence L € L(S).
[1.56{(al), (b)) there exists M € M (S) and L* € L(S) such that L* < M and

Yy =Y« <Yy, LCq(YL) = L*Cq(YL), L° = (L*)°, Q€ L*, and Q § M.

Since L° = (L*)° < M and L/Cy(Yy) = L*/Cprx(YL) we are allowed to replace L be L*, so we may
assume that L < M. Put M := M/Cy(Yy) and L := L/C(Yr). Then S < L < M. Hence by
-. ) Y7 < Y and so Yz, = Yy,, (L) (the largest p-reduced L-submodule of Yyr).

Put

Y =Yy, V= [Y,M°], U := Cy(Op(L A M°)), K := Endp(V), Z := Cy (S n M°), k := dimg U.

Then Yy, < Cy(Op(L)) < Cy(Op(L n M°)) < Cy(0O,(L°)) and Y, n'V < U. Moreover, if U is a
simple ', L-module, then Y, nV = U.
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1°.

() Cy(19) = 1.

(b) Q # 1 and Q £ O,(L°).
)

)

(¢) L n M?° is not p-closed.
(d) V nYy is a faithful L°-module. Tn particular, [V nYr, Q] # 1.

(d): Since @ < L, [L55)(d) gives C(L°) = 1; in particular Cy (L°) = 1.

dEb If é =1, then 1 # YL Cg(Q) and so Q! gives L < Ng(Q) a contradiction. Thus @ # 1.
Since Y7, is p-reduced, O (LO) O (L) = 1. Hence Q € O (LO) and so also Q < O,(L°).

(c): If L~ MP° is p-closed then Q < O,(L n M°). Since Q < L° < L n M°, this gives Q <
O, (L), which contradicts @

@ . Since Y7, is faithful p-reduced L-module, @) shows that [Y7,, L°] is faithful L5-module.
As [V, L°] < [Y,M°] nYL =V nYy, also V n Yy is a faithful L°-module.

Note that we can apply Theorem[J]to M. Our strategy is to discuss each of the cases of Theorem
where we first determine all the subgroups L of M with S < L and Q €t L and then the module
structure of Yz, = Yy (L).

Moreover, in some of the cases we will use the following observation to prove that Y, € Q°:

2°. Suppose that V £ Q° and Ny (Q) acts simply on V/[V,Q].
(a) V@ =[V,Q]
(b) [f [MQ&Q] = 17 then V. nYp é(; Q.'
() If[V,Q,Q,Q] =1 and [V nYL,Q,Q] # 1, then V n YL £ Q°.

Indeed, we have [V,Q] <V n Q°® <V, and so the simple action of Ny (Q) on V/[V, Q] implies
)@
.(]Salippose that [V,Q,Q] = 1. By @ V@ =[V,Q] and so [V n Q*,Q] = 1. Since by
() (d) [V YL, Q] # 1, this gives V n Y, £ Q°, and (2°) (b)) holds.

Suppose next that [V,Q,Q,Q] = 1 and [V nY.,Q,Q] # 1. By @ V@R =[V,Q] and
so [Vn@*,0,Q] =[V,Q,Q,Q] = 1. By hypothesis, [V nY.,Q,Q] # 1, and we conclude that
V nY, € Q°. Hence, holds.

Case 1. Suppose that the wreath product case of Theorem[] holds for M.

Then Y is a natural SLs(q)-wreath product module for M with respect to some M-invariant
set of subgroups K of M. Moreover, @ acts transitively on K. Put r = |K|, {K1,...,K,} := K and
V; :=[Y, K;]. Then

Y=Vix...xV, K:=K)=K; x...x K,
with K; =~ SLs(q), and V; is a natural SLs(g)-module for K;.

Assume that M° < L. Then M° = L°. Now shows that Y7, = Y and that Theorem
“ holds. So assume that M° « L. By 8 vV KS(S N K) is the unique maximal subgroup
of KS containing S. It follows that O,(L n K) S n K. In particular, Y7, < Cy (S n K). Since

>~ SL(q), Nk, (SN K;)/SnK; = Cq—1 and so Ng(SNnK)/SnK = Cy_q1- As L, <OP(M°) < K,
we Conclude that f; is abelian and every cyclic quotient of fL\; has order dividing ¢—1. In particular,
q> 2.

Let Uy, Us,...,Us be the Wedderburn components of L, on Y7,. Since fL\; is an abelian p’-group,
Y =U10U:®.. (—BU and L./Cy_(U;) is cyclic. Let W; := Cy.(SnK). Then Y, < W1 ®...@W,,
and each W; is a homogeneous Nk (S n K)-module. Hence W is also a homogeneous L°-module. For
1<i<s, let R; consists of all 1 < j < r such that the projection of U; onto W; is non-trivial. Put
Wg, = @jeRi W;. Then Wg, is an homogeneous L°-submodule of Cy (S K) and R, n Ry =
for 1 < i < k < r. Note that @ normalizes L, and so also | J;_; R;. Since Q acts transitively
on the subgroups W;, we conclude that, Ry, R, ..., Rs is a Q-invariant partition of {1,...,r} and
that @ acts transitively on Ry, ..., Rs. It follows that @ acts transitively on Uy,Us...,Us. Since
Sn K <0,(L), Q£ K. In particular, M° # SLy(q), and Theorem |A{{4) holds.
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Case 2. Suppose that the tensor product case of Theorem[J] holds for M.

If M° = M =~ SLy(2)1Cy, then S is a maximal subgroup of M and M = L. Thus, Theorem
l@ holds. So assume that M° is one of K7, Ks or K1 K>. Let K; be the inverse image of K; in
M, and let V; be a natural SL,,,(q)-module for K; such that ¥ = V) ®, V2 as a K1 Ky-module.

Note that either K; << M or p = 2 and 71? = K, for some T € S. In particular Np(K;) =
NL (Kg) Put

Ly := NL(K1) = NL(K2), L;:= <(S N Ki)L0>a Ui :== CVi(Op(Li))'

Then L1Ly < L, [L1,Ls] = 1 and Q < LyL,. Since L; is a parabolic subgroup of K; generated by
p-elements and K; =~ SL,,,(q), we get that U; is a natural SL;,(q)-module for L;, where 1 < t; < m;.
Moreover, Y7, < Cy(O,(L1Ls)) = Uy ®r, Uz as an LiLo-module. Since Q € L, t; > 2 for some
1 € {1,2}. Tt follows that U ®r, Uz is a simple F,L;Ly-module and so Y7, =~ U; ®r, Uz as an
Ly Ly-module. Let {i,j} := {1,2}.

Assume that ¢; = 1. Then Y7, is a natural SLy, (g)-module for L; and S n K; < L; in particular
Yr = [Yz,L°]. Since Q@ €t L we conclude that L° = L,. Hence Theorem holds, if t; = 3, and
holds if t; = 2.

Assume next that t; > 2 and M° = K, for some r € {1,2}. Then L° =1L, Let {r,s} :={1,2}.
Then K, normalizes Q* and N (Z) ~ ¢""'SLy,,_, (q), where Op(Ng~(Z)) is a natural module
for SLy,, ,(g). Thus, Ng=(Z) acts simply on O,(Nz(Z)), and Q= Op(N7(Z)). It follows that
N (Q) acts simply on Cy(Q) and V/Cy (Q). In particular, Cy(Q) = [V, Q] and [V, Q, Q] = 1, and
so by , Y, € Q°. Thus Theorem holds.

Assume now that t; > 2 and M° = K K,. Then L° = L;L; and, for r € {1,2}, Ng(Z) ~
q™ " 1SL,,, . (q). Hence as above, the simple action of Nz (Z) on Op(Ng-(Z)) shows that Q=
Op(Nz:(2))Op(N,(Z)). Moreover, V/[V,Q] is a simple Np(Q)-module, [V,Q,Q] = Z, and Q
does not act quadratically on Y. Thus by Y., € @Q°, and again Theorem holds. This
finishes .

In all the remaining cases of Theorem V is a simple M°-module. Suppose that M° < L. Then

V is a simple L-module and so [Y,M°,0,(L)] = [V,0,(L)] = 1. Also [O,(L), M°] < O,(M°) =1,
and the Three Subgroups Lemma implies [Y,0,(L), M°] = 1. Since Cy(M°) = 1 by Q!, we have
[Y,0,(L)] = 1 and so O,(L) = 1. Thus Y = Y. Moreover L° = M° and so by [1.52{(c)),

L° = (L°Cpy(Y))° = (M°Cp(Y))° = M°.
We conclude that one of the cases of Theorem [J] holds for L in place of M, which gives the corre-
sponding case for L in Theorem [A]. Thus we may assume

3°. Me° & L. In particular, L ~ M° is a proper parabolic subgroup of M°.

We first consider the case where M° is a genuine group of Lie-Type in characteristic p. Then
by O,(L n M°) # 1. Let A be the corresponding Dynkin diagram for M°. For any ¥ < A
let My be the Lie-parabolic subgroup of M° with S n M° < My and Dynkin diagram ¥. Put
Ry = OF (Mg), and let Ry be the inverse image of Ry in M°.

By there exists a unique A & A with

Ry = 0" (LA M°) <L~ M°<DM,.

Recall that K = Endpze (V). Observe also that in all cases of Theoremwhere MP? is a genuine group
of Lie-type there exists a unique 6§ € A with [Z, Rs] # 1. Moreover, Us := Cy(O,(Rs)) is a natural
S Ly (K)-module or the symmetric or unitary square of a natural SLy(K)-module, i.e Us is a natural
SLy(K)-, Q3(K)- or Q; (¢)-module for Rs. By Q!, Q < R, for all § # p € A. Since Q ¢ L n M°
we have § € A. Let = be the connected component of A containing §. Then R,z normalizes Q.
We conclude that L°(S n M°) = R=z. Smith’s Lemma applied to M and V, shows that U
is a simple KRj-module. Hence Rp\= centralizes U, and U is a semisimple [, R=-module. Since

Us is a simple F,Rs-module we conclude that U is a simple F,Rz-module. Hence U is a simple
F,L°(S n M°)-module, and U = V' N Y7, by an earlier remark. Since each R,, p € Z\{4}, centralizes
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Z, the Ronan-Smith’s Lemma implies that the isomorphism type of U as an R=-module (and
so as an L°(S n M°)-module) is uniquely determined by § and the isomorphism type of Us as an
Rs-module. We have proved:

4°. Suppose that M° is a genuine group of Lie type. Then
(a) L°(S n M) :Rg,i B
(b) U is the simple F,R=-module uniquely determined by 6, [Z,R,] =1 for p € ZE\{6}, and
the isomorphism type of Us as an Rs-module.

Next we show:

5°. Suppose that M° is a genwine group of Lie type, V. £ Q°, N7=(Z) acts simply on
O0p(N3z=(2)), [V, Q, Q1 < Z, and [Y1,Q.Q] # 1. Then Yy, € Q"

Since Nyz5(Z) acts simply on O,(N77=(2)) we have Q@ = Op(Ny5(Z)). Hence Smith’s Lemma
applied to the dual of V' shows that N/ (Q) acts simply on V/[V,Q]. From [V, Q,Q] < Z we
get [V,Q,Q,Q] = 1. Thus (2°) implies that Y7 € Q°.

6°.  Suppose that MP° is a genuine group of Lie type. Then Y, = U; in particular, Y1, is the
simple F, R=-module uniquely determined by 6, [Z,R,] = 1 for p € E\{0}, and the isomorphism
type of Us as an Rs-module.

Otherwise, Y7, € V and V # Y. Then Theorem [J| shows that one of the following holds

(A) p=2. [Y/V]|=2and V is a natural SL3(2)-module,

(B) p=2, M° = Span(q), n=>2and |Y/V] <q.

(C) p=3, M° =Q, (3), V is the corresponding natural module, |Y/V| = 3, Y is isomorphic to
the 5-dimensional quotient of a 6-dimensional permutation module for M° x~ Alt(6), and
V£ Q.

(D) p=3, M° =~ Q5(3), V is the corresponding natural module, |Y/V| =3 and V £ Q°.

(E) p=2, M° =~ Qf(2), V is the corresponding natural module, and |Y/V| = 2.

Let x € YL \U. We discuss the cases - one by one.

Suppose that M° =~ SL3(2). Then Cg(z) = 1, a contradiction to 1 # Os(L)) < Cg(x).

Suppose that M° =~ Spo,(q). Let s be an M°-invariant non-degenerate symplectic form on
V. Then Cyre(x) = 05,(q), and there exists a non-degenerate Cys(x)-invariant quadratic form
t on V with s being the associate symmetric form. With respect to the symplectic form s on V,
the Lie-parabolic subgroups of M° normalize a unique s-singular K-subspace of V. Since U is a
simple R=-module, we conclude that U is the s-singular K-subspace of V corresponding to M=, and
dimg U > 2 since 0 € Z. In particular, [U, Rz] # 1. Note that radical of ¢ on U has codimension at
most 1 in U (see , and so there exists u € U* with t(u) = 0.

Choose g € M° with [V, g] = Ku. Then g centralizes the hyperplane u* in the symplectic space
V', and since U is singular with respect to s, U < Cy(g). Thus g centralizes U, V/U and Y/V. It
follows that g€ S and g€ O2(M° n L) < Oy(L). Hence Y, < Cy (O2(L)) < Cy(z) and g € Chso ().
Thus g leaves invariant the quadratic form ¢, a contradiction to t(u) = 0 (see [B.9lc)).

Suppose that M° = Q; (3). Then |A| =1 a contradiction to & # A & A.

Suppose that M, = Q5(3). Then U is natural SLz(3)-module for L°. Since [Y,L°] < U and
Cy, (L°) =1 this gives U = Y.

Suppose that M° =~ QF(2). Then Y is isomorphic to the 7-dimensional quotient of the 8-
dimensional permutation module for M° =~ Alt(8). Moreover, since L° £ Nj/(Z), there exists
R < M° with R ~ 23L3(2) and L n M° < R. Moreover, Oy(R) acts regularly on the eight objects,
SO Cy(Og(R)) < V. Then OQ(E) < OQ(L N MO) < OQ(L) and Y7, < Cy(OQ(L)) < Cy(OQ(R)) <V.
SOYL=YL0V=U.

We have shown that U = Y7, in all cases, and is proved.

Case 3. Suppose that V is a natural SL,(q), Span(q) or QS (q)-module for M° (with p odd if
n is odd in the QU (q)-module case).
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Then § is an end-node of A, with § being short in the Spa, (q)-case and long in the Q€ (g)-case.
Since E is a proper connected subdiagram of A containing §, = is a Dynkin diagram of type A,,_1.
Also Uy is a natural SLs(g)-module for Rs and so by Y7, is a natural SL,,(¢q)-module for L°.
Thus Theorem holds if m = 2, and Theorem holds if m > 3.

Case 4. Suppose that V is the exterior square of a natural SL,(q)-module for M°, where
n = 9.

In this case J is adjacent to an end-node of A and Us is the natural SLs(g)-module for Rj.
Hence by Yy is a natural SL,,(q)- or the exterior square of a natural SL,,(¢)-module (with
m = 4 in the second case). In the first case Theorem holds if m > 3, and Theorem
holds if m = 2. So suppose that Y7, is the exterior square of a natural SL,,(¢)-module with m > 4.
Note that O (C3=(Z)) ~ ¢*™ 2 (SLa(g) x SL,_2(q)) and so @ = O,(Ca+(Z)). In particular,
[V,Q,Q] = Z and @ does not act quadratically on Yz. Thus by . we see that Y7, € Q°. If
m = 4, then the exterior square of a natural SL,,(¢q)-module is the natural Q¢ (¢)-module and so

Theorem holds. If m > 5, then Theorem |A||7:1) holds.

Case 5. Suppose that V' is the symmetric or unitary square of a natural SL,(q)-module for
Mpo.

In this case § is an end-note, and Uy is the symmetric or unitary square of a natural SLs(q)-
module. Hence by Y7, is the symmetric or unitary square of a natural SL,,(¢q)-module for
L°. Also OF (C5(Z)) ~ ¢" *SL,_1(q), @ = 0,(C5=(2))), [V,Q,Q] < Z, and Q does not act
quadratically on Y7. Thus gives Y7, € @° and Theorem or holds.

Case 6. Suppose that M° = Spinj,(q) and V is the half-spin module.

In this case ¢ is one of the end notes of A corresponding to an SLs(g)-parabolic and so E is of
type Am—1, 2 < m < 5, or Dy. Moreover, Us is a natural SLs(g)-module for Rs. Thus by Yr
is a natural SL,,(¢)-module, 2 < m < 5, or a natural Qg (¢)-module for L°. In the SL,,(q)-case,
Theorem holds if m > 3, and Theorem holds if m = 2. So suppose that Y7, is a natural

QFf (9)-module. We have O (C55(Z)) ~ ¢'°SLs(q) and so Q = O,(C5=(Z)). Thus [V,Q, Q] = Z,
and @ does not act quadratically on Y. Hence by Y: € Q°, and Theorem holds.

Case 7. Suppose that M° = Eg(q) and |V | = ¢*7.

In this case § is one of the end nodes of A corresponding to an Qf,(g)-parabolic and so = is
of type A,,—1, 2 < m < 6, or D5. Moreover, Us is a natural SLs(g)-module for Rs. Hence by
Yy, is a natural SL,,(¢)-module (2 < m < 6), or the natural Qf,(¢)-module for L°. In the
S L., (q)-case, Theorem holds if m > 3, and Theorem holds if m = 2. So suppose that
Y7, is the natural Qj,(q)-module. We have O (Cy=(Z)) ~ ¢'Spin{y(g) and so Q@ = O,(C5=(2)).
Hence [V, Q, Q] = Z, and @ does not act quadratically on Y7,. Thus by Y: € Q°, and Theorem
holds.

This concludes the discussion of the cases where M?° is a genuine group of Lie-type.
Case 8. Suppose that M° =~ Sp,(2)" and |V | = 24.

Then L n M° =~ Sym(4), U is a natural SLy(2)-module for L°, Cy(O2(L n M)) < V, and so
Y, =Y, nV =U. Thus by Theorem holds.

Case 9. Suppose that M ~ 3:Sym(6) and |Y| = 25.

Then L =~ Cy x Sym(4), Sym(3) x Dihg or Sym(3) x Sym(4). In the first two cases Y7, is the
natural SLs(2)-module for L. Thus Theorem holds.

So suppose that L =~ Sym(3) x Sym(4). Then Yz has order 2* and is the tensor product of
two natural SLs(2)-modules. Since <YLCM’(Z)> =Y and Y € Q°, we have Y7 € Q°. If M° ~
3-Alt(6), then L° =~ Sym(4) and so Lo =~ SL,(2); and if M° ~ 3:Sym(6), then L = L° and
L° =~ SLy(2) x SLy(2). Thus Theorem holds.
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Case 10. Suppose that p = 2, M° = Matss, and Y 1is the simple Golay-code module of
F5-dimension 10.

Then Y =V and Cy(Z) ~ 24 Alt(6). For a description of the action of the maximal parabolic
subgroups of M° on (the dual of) V see [MSt] 3.3]. It follows that L n M° ~ 24I'SLy(4) and so
L° ~ 24SL5(4). Moreover, Y, = Cy(O2(L°)) is a natural 2} (2)-module for L°, and so also the
unitary square of natural SLs(4)-module. Also [V,Q,Q,Q] =1 an [Y7,Q,Q] # 1 and so
shows that Y7, € Q°. Thus Theorem holds.

Case 11. Suppose that p = 2, M° =~ Matoy, and Y is the 11-dimensional simple Golay code
module.

Then M = M° and Y = V. For a description of the action of the maximal parabolic subgroups
of M on (the dual of) V see [MSE, 3.5]. In particular, C57(Z) ~ 2*SL4(2).

Assume that L is a maximal subgroup of M. Then L ~ 2°.3.Sym(6) or 26.(SLs(2) x SL3(2)),
and U is a natural Sps(2)- or SLy(2)-module, respectively. Thus Yy, = U. In the first case, since
[CL(YL), Q] < Op(L) and 3-Sym(6) acts non-trivially on Z (3 Alt(6)), Y7, is a natural Sps(2)’-module
for L°. Moreover, as [V,Q,Q,Q] =1 and [Y.,Q,Q] # 1, gives Y7, € Q°, and so Theorem
holds. In the second case Theorem holds.

If L is not a maximal subgroup, then L is contained in a maximal subgroup P ~ 26(SLy(2) x

SLs(2)), L=~ SLy(2), and U is a natural SLy(2)-module for L. Hence Theorem [A|{3) holds.
Case 12. Suppose that p = 2, M° =~ Matoy, and V is the 11 dimensional simple Todd-module.

Then M = M° and |Y/V| < 2. For a description of the action of the maximal parabolic
subgroups of M on V see [MSt], 3.5]. In particular, C57(Z) ~ 26.3-Sym(6) and [V, Q,Q,Q] = 1.

Assume that L is a maximal subgroup of M. Then L ~ 2*.L4(2) or 26.(SL(2) x SL3(2)), and
U is a natural F (2)- or SL3(2)-module, respectively. Thus Y, NV = U.

Suppose that U is a natural f (2)-module. Then Q does not act quadratically on U. So by
U £ Q. If Y =V then Theorem holds. Suppose Y # V and let z € Y\V. Then
Cir(z) = Mataz or L3(4).Sym(3) and so Cy7(z) contains a conjugate of Oz(L). Thus |V /U| = 2
and Theorem holds,

Suppose that U is a natural SLz(2)-module. Since for x € Y\V, Cy;(x) does not contain an
elementary abelian subgroup of order 2, we get Cy(O2(L)) < V. Hence Yz, = U and Theorem
holds.

Assume that L is not a maximal subgroup of M, then L is contained in one of the above maximal
subgroups. Thus U = Y, and Y7, is a natural SL2(2) or SLs(2)-module for L°. Hence Theorem

IA([3) or Theorem [A{(1]) holds.

Case 13. Suppose that p = 3, M° =~ Maty; and Y is the 5-dimensional simple Golay-code
module.

Then Y = V and Cy(Z) ~ 32SDihyg. It follows that L° =~ Alt(6), Y, = V and [V, L°] is
the natural Q7 (3)-module. Since Y = ([Y, L°]¢%=(4)) and Y & Q°, we have [Yz,L°] € Q°, and
Theorem [A|(7:3:2) holds.

Case 14. Suppose that p = 2, M° =~ Aut(Matss), and Y is the 10-dimensional simple Todd-
module.

ThenY =V and M = M?®. For a description of the action of the maximal parabolic subgroups of
M° on V see [MSt], 3.3]. In particular, Cp;(Z) ~ 24+1.Sym(5), and Q = O2(Crx(2)), [V, Q,Q, Q] =
1.

Suppose first that L° is a maximal subgroup of M. Then L° ~ 2%.Sp,(2), [U, L°] is a natural
Spa(2)-module for L°, |U/[U, L°]| = 2 and [[U, L°], Q, Q] # 1. Tt follows that U = Y, and by
[YL, L°] < @, and Theorem holds.

Suppose next that L° is not maximal subgroup of M. Then L° is contained in the above maximal
subgroup of shape 24.Sp,(2) and we conclude that Y7, is a natural SLo(2)-module for L°. Hence

Theorem holds.
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Case 15. Suppose that p = 3, M° = 2'Maty3, and Y is the 6-dimensional simple Golay-code
module.

Then Y =V, C3(Z) ~ 32.GLy(3) and [V,Q,Q,Q] = 1. It follows that L° ~ 3%2SLy(3), U
is symmetric square of a natural SLy(3) for L°, and [U,Q,Q] # 1. Hence U = Y}, and by
Y;, € Q. Thus Theorem [A{(7:3:4)) holds.

10.3. Proof of the Corollary to the Local Structure Theorem

In this section we prove Corollary@ So as there let G be a finite IC,-group of local characteristic
p, let S € Syl,(G) and suppose that there exist M, C' € M¢(S) such that the following hold for
Q = 0,(C):

(i) No(@2(8) < C.
(ii) Cg(xr) < C for every 1 # z € Z(Q).

(iii) M # C, and M = L for every L € Mg(S) with M = (M n L)Cp(Yar).

It follows easily from (i) and that @Q is a weakly closed subgroup of G, see [MSS| 2.4.2(a)]
for a proof. Since C'€ M¢(S) and Q < C we have Ng(Q) = C. Hence, by a Frattini argument and
again (i),

Ne(A) = Ca(A)(Na(A) n Na(Q) < C
for every 1 # A < Z(Q). Since G is of local characteristic p, C is of characteristic p. So Ce(Q) <Q,
and we get that @ is a large subgroup of G. Note here that Q@ = O,(C) = O,(Ng(Q)), so Q = Q°
in the notation of Theorem [1 R

By M # C, and since M € Mg(S), we conclude that G # C = Ng(Q). So Q € M. By
11.56{(a), applied with the roles of M and L reversed, there exist L € Ma(S) and M* < L with

S < M*, Yar = Yaps, MCa(Yar) = M*Ce(Yar), M® = (M*)°. and Q < L.

Recall from the definition of Mg (S) that Mg(L) = {LT} and Y7, = Y;:. Also[2.2{(b) gives Cs(Yz) =
Op(L) Since M € MG(S) and Yy, = Yy, we have M* < Ng(YM*) = Ng(YM) = M. From
MCG(YM) = M*Cg(YM) we get

M = (M n L)Cq(Ya) = (M n LNCa(Yar).

As LT € Mg(S), (iii) shows that M = L' = LCg(Yy) and Yy = Y+ = Yz. In particular,
Me = (LT)° = L°.

Since G is of local characteristic p, Ca(x) is of characteristic p for all non-trivial p-elements z
of G, and in particular, for all 1 # z € Y7,. Thus Theorem [J] the Structure Theorem for Maximal
Local Parabolic Subgroups, applies to L. By Yy =Y, < @Q = Q°, and so only the first three
cases, namely the linear , symplectic and wreath product case, of Theorem [J|are relevant. Moreover,
as Yy, < Q° we have Yy, = [Y1,, L°] in the wreath product case. Hence one of the following holds,
where LT := L1/Cp1 (Y1).

(I) L° =~ SL,(q), n = 3, Span(q), n = 2, or Sps(2)’ (and p = 2) and [Y7,, L°] is a corresponding
natural module for L°. Moreover, Y, = [Yz, L°] or p = 2 and L° = Spa,(q), n > 2.

(IT) There exists a unique L-invariant set K of subgroups of L such that Y7, is a natural SLy(q)-
wreath product module for L with respect to K. Moreover, L° = OP((K))Q, and Q acts
transitively on K.

Put M; := (QM)Cs(Yy) and Py := M;S. Note that M; = M°Cgs(Yy) = L°O,(L) and so
OP (M) = OP(Py) = M,. In particular P,.S = L°S.

Assume Case . Let P be the inverse image of (K) in P;. We apply By
OP(P;) = OP(P{*) and Pff < L; in particular P < M. Since OP(P;) = OP(M;), we conclude that
Corollary - hold. Moreover, implies Corollary .

If || = 1 then Corollary [BJ[I) holds with n = 2 and Yy, = [Yas, M°]. If |[K| > 1 then Q £ P*,
and Corollary holds.
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Assume that Case holds. Note that SL,(q), n = 3, Span(q),n = 2 and Sps(2)" all are
quasisimple, except for Sps(2). As M; =~ L° we conclude that F*(M;) = M, and [Y,Mi] is a
natural SL,(q), Sp2n(q) or Sps(2)-module for M;. To show that Corollary holds, it remains
to determine Chpy, (Yar).

Since My = L°O,(L) = M°O,(M,), we have Cur,(Yar) = Crre(Yar)Op(My). Also
gives [M°,Cpr(Yar)] < Op(M°) < Op(My). Thus M;/O,(M;) is a central extension of M; =
L° by the p'-group Cpr, (Yar)/Op(My). Since M; is generated by p-elements we conclude that
Cum, (Yar)/Op(My) < ®(M1/Op(M,)) and therefore Chr, (Yar)/Op(M1) embeds into the Schur mul-
tiplier of M;. By [Grl] the p’-part of the Schur multiplier of SL, (q) and Spa,(q) is trivial, while
the 2'-part of the Schur multiplier of Sp4(2)" has order 3. (Note here that Spy(2) inverts the Schur
multiplier of Sp4(2)’). It follows that either Cas, (Yar) = Op(M) or My/O,(M;) = 3-Sps(2)’. Thus
Corollary holds.



APPENDIX A

Module theoretic Definitions and Results

In this chapter we present the module-theoretic definitions used throughout this paper. Results
based on these definitions can be found in [MS1], [MS2], [MS3], [MS4], [MS5], and [MS6]. Some
of these results are used so often in various different places that we state them either in this or in
one of the later appendices.

Throughout this appendix H is always a finite group and all modules considered are finite
dimensional.

A.1. Module-theoretic Definitions

DEFINITION A.1. Let V be an F, H-module and A < H. Then A acts

(1) quadratically on V if [V, A, A] =0,

(2) cubically on V if [V, A, A, A] = 0,

(3) nilpotently on V if [U, A] < U for every non-zero A-submodule U <V,

(4) nearly quadratically on V if A acts cubically on V' and

[v,A] + Cy(A) = [V, A] + Cv (A) for every v e V\[V, A] + Cy (4).
Moreover, V is a quadratic, cubic or nearly quadratic module for H, if there exists a subgroup
A < H with [V, A] # 0 that acts quadratically, cubically and nearly quadratically on V', respectively.

DEFINITION A.2. An [F, H-module V is

(1) simple if V 0, and 0 and V are the only H-submodules of V|

(2) central if [V,H] =0,

(3) p-reduced if O,(H/Cu(V)) =1,

(4) perfectif V # 0 and [V,H] =V,

(5) quasisimple if V' is perfect and p-reduced, and V/Cy (OP(H)) is a simple F, H-module.

DEFINITION A.3. Let V an be F, H-module and S € Syl,,(H).
(a) rady (H) is the intersection of all maximal H-submodules of V.
(b) Py (S,V) := OV (Cy(Cy(S))) is the point-stabilizer of H on V with respect to S.
DEFINITION A.4. Let V be an F, H-module and let A and B be p-subgroups of H with A < B.
Then V is a minimal asymmetric F, H-module with respect to A < B provided that

(i) A< Ng(B), and B is a weakly closed subgroup of H,
(i) [V.A,B] =[V,B,A] =0,
(iii) (A®) does not act nilpotently on V/,
(iv) (AT acts quadratically on V for every proper subgroup F of H with B < F.

DEFINITION A.5. Let V be an F,H-module and @ a p-subgroup of H. Then V is a Q!-module
for H with respect to @ if
(i) @ is not normal in H, and
(ii) Ng(A) < Ny(Q) for every 0 # A < Cy(Q).

DEFINITION A.6. Let K be a non-empty H-invariant set of subgroups of H. Then V is a wreath
product module for H (with respect to K) if

V=@@I[V.K] and Cy((K)) = 0.

KeK
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DEFINITION A.7. Let V be an F, H-module, and let A be a subgroup of H such that A/C4(V)
is an elementary abelian p-group. Then

(1) Ais an offender on V if |V/Cy (A4)| < |A/Ca(V)],
(2) A is an over-offenderif |V/Cy(A)| < |4/Ca(V)],
(3) Ais a best offender on V if

|B||Cv (B)| < |A||Cv(A)] for every B < A,
(4) Ais a strong offender on V if A is an offender on V' and

Cy(A) =Cy(a) forevery ae A\C4(V),
(5) Ais a root offender on V if A is an offender on V' and
Cy(A)=Cy(a) and [V,A] =[V,a] for every a € A\Ca(V),
(6) A is a strong dual offender on V if A acts nilpotently on V and
[V, A] = [v, A] for every v e V\Cy(A).

By Ju (V) we denote the normal subgroup of H generated by the best offenders of H on V. A
non-trivial subgroup K < Jy (V) with K € Cg (V) that is minimal with respect to K = [K, Jg (V)]
is a Jg(V')-component of H. By Ju (V') we denote the set of Jg (V')-components of H and by J}5 (V)
the normal subgroup generated by Ju (V).

A.2. Naming Modules

In this section we assign names to certain modules.

Let K be a finite field of characteristic p and let V' be a vector space of finite dimension m
over K. Let Ay(V), So(V) and Uz(V) be the set of symplectic, symmetric, and unitary forms on
V', where in the last case we assume that K is a quadratic extension of a subfield F and so has a
unique automorphism of order 2. Let V* := Homg(V,K) be the dual of V. Then A2(V) := Ay(V¥)
is the exterior (or symplectic) square of V, S?(V) 1= So(V*) is the symmetric square of V, and
U2(V) := Uy(V*) is the unitary square of V. Note that A%(V) and S?(V) are vector spaces of
dimension (gl) and (m; 1), respectively, over K, and U?(V) is a vector space of dimension m? over
F. Also A%(V), S%(V) and U?(V) are F,SLk(V)-modules.

Suppose now that V' is an F,H-module. Let K be a group and W an [, K-module. Suppose
that there exists a surjective homomorphism

7: H - K/Cxk(W), h — 1,
and an Fp-isomorphism ¢ : V- — W, v — ¢(v), such that
(%) p(v") = ¢p(v)™ forall veV and he H.

- If K < GLg, (W), then V is a natural K-module for HH In particular, if (W, f,h) is a
non-degenerate classical space over the field K and K = CZK(W)H then V is a natural
Clg(W)-module for V.

— If Wy is vector space over K, K = SLg (W), and W is A2(Wy), S%(Wp) or U?(Wy), then W
is the exterior, symmetric or unitary (respectively) square of a natural SLg(Wy)-module
for H.

— Let I be a finite set and K < Sym(I). View F] as an K-module via (w;)%; = (wiz-1)ier-

-If W = F] then V is an F), K -permutation module for H.

-Ifp=2and W = {(w)ier € F}| Y;c; wi = 0} then V is an even F), K -permutation
module for H.

- If K = Alt(I) or Sym(I) and W is the non-central simple section of K on F}, then
V is a natural Fp K-module for H.

— If K = Sz(2%) and W is the simple F2S2(2%)-module of Fyr-dimension 4, then V is a
natural Sz(2F)-module.

INote here that K is assumed to be subgroup of GLy_ (W), not only isomorphic to a subgroup.
2Classical spaces and CI(W) as defined in Appendix E



A.2. NAMING MODULES 187

— If K = G2(2%) and W is the simple FoG2(2¥)-module of Fyx-dimension 6, then V is a
natural Go(2F)-module.

— If K = 3D4(p"*) and W is the simple F,?D4(p")-module of F,sx-dimension 8, then V is a
natural *D4(p*)-module.

— If K = Eg(p*) and W is a simple F}, B (p*)-module of Fx-dimension 27, then V is a natural
Es(p*)-module.

— Suppose that (U, f,h) is a non-degenerate orthogonal space with Clifford algebra C' with
grading C' = C; @ C_1E| Suppose also that K = Spin(U) and note that C is a K-module
by right multiplication. If W is a minimal right ideal of C, then V is a spin K-module for
H. If W is a minimal right ideal of C, then V is a half-spin K-module for H.

— Let U < F3* be the binary Golay-code of length 24, dimension 12 and minimum distance
8. Note that M := Aut(U) = Matos and let K be one of M = Matay, Cpr(24) = Matss,
Crn({23,24}) = Matas or Np({23,24}) = Aut(Mataz). If W is the non-central simple
section of K on U, then V is a Golay code K-module for H. If W is the non-central simple
section of K on F3*/U, then V is a Todd K-module.

— Let U < F1? be the ternary Golay code of length 12, dimension 6 and minimal distance
6. Let M = Aut(U) ~ 2-Matq2 and let K be one of M or Cp(12) = Maty;. If W is the
non-central simple section of K in U, then V is a Golay code K-module for H. If W is the
non-central simple section of K on F12/U, then V is a Todd K -module.

Note that the Todd K-module and Golay-code K-module are simple and dual to each other.
The following table lists the order of some of the modules defined above.

4 V]
natural Clg (W) |[W|
exterior square of natural SL,(q) q(g)
symmetric square of natural SL,(q) q(ngl)
unitary square of natural SL,(¢3) qy
half-spin Spind. (q) e
half-spin Spins,, (¢) "

half-spin Sping,+1(q)
natural F,Sym(n), natural F,Alt(n) |p"tifpfn, p"2ifp|n

natural Sz(2%) 24k

natural G (2%) 20k

natural 3Dy (p*) p*F

natural Eg(p*) pTk

Todd Matas(.2), Golay-code Matas(.2) 210
Todd Matys, Golay-code Matas o1l
Todd Matgy, Golay-code Matoy 211
Todd Maty,, Golay-code Matqq 35
Todd 2-Mati4, Golay-code 2° Matqo 36

We remark that, for given H, K and W, the F, H-module V fulfilling (*) might not be unique
up to isomorphism. For example, if H has two different normal subgroups H; and Hs with H/H; =~
K/Cg (W) then there exist F,H-modules V; and V> fulfilling () with Cy(V;) = H;, and so V4
and V, are not isomorphic. Also if K/Ck (W) has outer automorphisms which are not induced
by elements of G Ly, (W) there will exist non-isomorphic V’s with the same Cp (V). We list some
examples which occur in this paper:

— SLx(V), dimg V = 3, has two natural SLg(V)-modules, namely V and its dual V*.

— SLg(V), dimg V > 5, has two exterior squares of natural SLg(V)-modules, namely A%(V)
and A2(V)*.

— SLg(V), dimg V = 3, charK odd, has two symmetric squares of natural SLg(V)-modules,
namely S?(V) and S?(V)*.

3For the Clifford algebra see also Appendix
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— SLg(V), dimg V' > 3, dimp, K even, has two unitary squares of natural SLg(V')-modules,
namely U2(V) and U?(V)*.
— Of (2) has two natural O (2)-modules.
— Sp4(q), q even, has two natural Sps(g)-modules. For ¢ = 2, these are also natural Sym(6)-
modules.
— Sp4(2)’ has two natural Spy(2)’-modules, which are also natural Alt(6)-modules.
— Sping (q) has three natural QJ (¢)-modules, all of which are also half-spin Sping (q) -
modules. For ¢ odd, these are distinguished by the kernel of the action.
— Spinfy(q) has two half-spin Spin(g)-modules dual to each other.
~ Fs(q) has two natural Fg(¢q)-modules, dual to each other.
We also remark that a group H can have the exterior, symmetric or unitary square of a natural
S Lk (V)-module without having a natural S Lk (V)-module. For example, if p is odd and dimg V' = 2,
then S2(V), viewed as a module for PSLg(V), is the symmetric square of a natural S Lk (V)-module,
but PSLg (V) does not have a natural SLg(V)-module.

A.3. p-Reduced Modules
In this section H is a finite group, p is a prime and V is an F, H-module.

DEFINITION A.8. (a) C¥ (V) is inverse image O, (H/Cy(V)) in H.
(b) Yy (H) is the H-submodule of V' generated by all the p-reduced H-submodules of V.

LEMMA A.9. Let L<<t H. Then
(a) L acts nilpotently on V if and only if L < C} (V).
(b) C3(V) = CH([V. L]) - CF(V,0"(L)]) < CH(V).
(¢) If V is p-reduced for H then [V, L] and [V,OP(L)] are p-reduced for L.
(d) IfV is p-reduced and faithful for H, then each of V, [V, L] and [V, OP(L)] is p-reduced and
faithful for L.

PROOF. @: Without loss V' is a faithful H-module. Then C} (V) = O,(H). Note that L acts
nilpotently on V' if and only if L is a p-group and so if and only if L < O,(H).

[B): Put X := C¥([V,0P(L)]). Observe that X, C}(V) and C¥([V,L]) are normal in L and
thus subnormal in H. By (a) C3(V) and CF([V,L]) act nilpotently on [V,L] and [V,0P(L)], so
again by (),

(%) Cr(V) < Ci([V.L]) < X.
Note that X acts as a p-group on V/[V,OP(L)]. Since V is an F,-module, X acts nilpotently on

V/[V,0P(L)] and thus also nilpotently on V. Hence X < C§(V) and X = C§(V), and equality
holds in (x). Since X << H, () shows that X < C} (V).

and @: These are direct consequences of @ O

LEMMA A.10. The following are equivalent:
(a) V is p-reduced for H.
(b) CE(V) = Cu(V).
(¢) Any normal subgroup of H which acts nilpotently on V' centralizes V.
(d) Any subnormal subgroup of H which acts nilpotently on V centralizes V.

PROOF. By definition V' is p-reduced for H if and only if O,(H/Cg(V)) = 1, that is, if and

only if C%(V)/Cu(V) = 1, that is, if and only if C}(V) = Cyx(V). Also by [A.9(a) a subnormal
subgroup of H acts nilpotently on V' if and only if it is contained in C}; (V). It follows that both

and @ are equivalent to @ |
LEMMA A.11. (a) Let W be a set of p-reduced H-submodule of V.. Then (W) is a p-reduced
H-module.

(b) Yy (H) is the unique mazimal p-reduced H-submodule of V.
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PRroOF. @: Let K be a normal subgroup of H acting nilpotently on (W). Then K acts
nilpotently on each W € W and so centralizes W and (W). Thus[A.10]shows that (W) is p-reduced.
(]E[): By definition, Yy (H) is the submodule of V' generated by all the p-reduced H-submodules
of V, and by @ Yy (H) is p-reduced. Hence (]ED holds. O

LEMMA A.12. Let L be a parabolic subgroup of H and U a p-reduced L-submodule of V. Then
(UMY is p-reduced for H. In particular, Yy (L) < Yy (H).

PROOF. Let M be a normal subgroup of H acting nilpotently on W := (U#). Then M n L
is a normal subgroup of L acting nilpotently on U. Thus M n L < Cy(U). Since M /Cp (W) is a
p-group and normal in H/Cyx(W) and L is a parabolic subgroup of H, M = (M n L)Cp(W). Thus
[M,U] = 1 and since M < H, also [M,{U#)] = 1. Hence by (UMY is p-reduced for H. O

LEMMA A.13. Let P,Q < H and suppose that P/Cp(V) is a p-group and [P,Q] < Cg(V).
Then
(a) If Q/Cq(V) is a p'-group, Co(Cv(P)) = Co(V).
(b) C&(Cv(P)) = CH(V).
(c) IfV is p-reduced for Q, then CH(Cv(P)) = Co(Cv(P)) = Co(V).
(d) Suppose that V is a faithful Q-module and O,(Q) = 1, then Cy (P) is a faithful Q-module.

PROOF. We may assume that V is a faithful H-module, so [P,Q] =1 and P is a p-group.
@: This follows from the P x @Q-Lemma.

: Let  be a p'- element in Cj(Cy(P)). Then z centralizes Cy (P), and so by @) applied
with @) = (z), = centralizes V. Thus x = 1 and C}(Cv(P)) is a p-group. Hence C§(Cv(P)) is a
normal p-subgroup of @ and so C%(Cy (P)) < Cj(V). The other inclusion is obvious.

(c): Since V' is p-reduced for @, Cqo(V) = C’g(V). Thus using @,

Cq(Cv(P)) < CG(Cv(P)) = C4(V) = Co(V) < Cq(Cv (P)),
and so holds.

@: Since Op(Q) = 1 and V is a faithful @Q-module, V is a p-reduced Q-module. Thus gives
Ca(Cv(P)) = Co(V) = 1. O

LEMMA A.14. Let U and W be H-submodules of V. with Cyg(W) = Cyx(U). Then CH(U) =
CH(W). In particular, U is p-reduced for H if and only if W is p-reduced for H.

PROOF. Just recall that, by definition, C};(U) and C}; (W) are the preimages of O,(H/Cg(U))
and of O,(H/Cy(W)), respectively, in H. O

LEMMA A.15. Let L<< H.
(a) If V is p-reduced for H, V is p-reduced for L.
(b) Yv(H) <Yy (L) and Cr(Yv(H)) = Cr(Yv(L)).

PRrOOF. (a): By V is p-reduced if and only if any subnormal subgroup of H which acts
nilpotently on V' centralizes V. As any subnormal subgroup of L is subnormal in H, this gives (ED

[): By (&) Yv(H) is p-reduced for L and so Yy (H) < Yy(L) and C(Yyv (L)) < Cr(Yy(H)).
It remains to show that CL(Yy(H)) < Cr(Yv(L)). By induction on H/L we may assume that
L < H. Hence Yy (L) is an H-submodule of V. To simplify notation we replace V by Yy (L) and so
V is p-reduced for L. Let W be an H-submodule of V' minimal with C(W) = Cr(V). Since V is
p-reduced for L, shows that W is also p-reduced for L. Let P := C}(W). Then P/Cp(W) is a
p-group and [P, L] < CF(W) = Cr(W). Thus shows that Cr(Cw (P)) = CL(W) = CL(V).
The minimal choice of W implies that W = Cy (P). Thus P = Cy(W) and W is p-reduced for H.
Hence W < Yy (H) and so

CL(Y\/(H)) < CL(W) = CL(V)
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A.4. Wreath Product Modules
In this section H is a finite group and V' a finite F, H-module.

LEMMA A.16. Let K be an H-invariant set of subgroups of H and suppose that V is a wreath
product module for H with respect to KC. Then for each A€ K:
(a) If [V, A] # 0. then Ng([V, A]) = Ng(A4).
(b) [V,B] < Cy(A) for all B € IC\{A}' in particular

V=[V.Al@Cv(4), Cv(4)=[V.(K\{A})], and [V.A] = Cy ((K\{A})).

(c) [V.A] = [V, A, A] and Ca([V, A]) =Ca(V).
(d) [A, B] < Cey (V) for all B e K\{A}.

PROOF. By the definition of a wreath product module
(%) V=@I[V.K] and Cy(K))=0.

KeK
(@): Clearly Ny(A) < Nu([V,A]). Let h € H and assume that [V, A] # 0. Since K is H-
invariant, A" € K. Hence (*) shows that either A = A" or [V, A] n [V, A"] = 0. In the second case
[V, A] # [V, A]" since [V, A] # 0. Thus also Ny ([V, A]) < Ng(A).

@: Put Ka := K\{A} and W := > [V, B]. Note that V = [V, A]@ W by (). Since K4
is A-invariant, also W is A-invariant, and so [W, A] < [V;A] n W = 0. Hence W < Cy(4) and
V =[V,A] + Cy(A).

Since this is true for all A € K, [V, A] is centralized by each B € K. Hence Cpy aj(A) <
Cy((K))=0and V = [V, A] ® Cy (A).

(): By ([B), V = [V, A] + Cv(A), and (d) follows.

@: Let B e K4. By (]ED [V,A,B] = [V,B, A] = 0, and the Three Subgroups Lemma gives
[A,B,V]=0. Thus [A, B] < C<;C>(V). ]

LEMMA A.17. Let K be an H-invariant set of subgroups of H. Suppose that V is a faithful
(K)-module and a wreath product module for H with respect to KC. Then for all A€ K:

(a) [V, A] is a faithful A-module.
(b) ) = Xgex K-

PROOF. (a): Since (K) acts faithfully on V, C4(V) = 1. By [A.16)d) Ca([V,A]) = Ca(V) and
SO (]: holds.
b): Put Ly := (K\{A}). By[A.16|[b) La centralizes [V, A] and so by () La n A = 1. By
A.16 @) [A, B] < C(cy(V). The faithful action of (K) implies that [A, B] = 1 and thus A < ().
We have proved that A< (IC) and An Ly =1 for all A€ K. Hence () = X joorc K. O

LEMMA A.18. Let K be an H-invariant set of subgroups of H. Suppose that V is a faithful
p-reduced {K)-module and [V,{K)] is a wreath product module for H with respect to K. Then
[V, K] = [V,{K), K] for each K € K.

PROOF. Put R :=({K) and W := [V, R]. Since V is a faithful and p-reduced R-module, [A.9|(d)
shows that W is a faithful R-module. Thus by R= Xy K

Let K € K and put L := (K\{K}). Note that [L, K| =1 and [V, L, K] < [W, K]. The Three
Subgroups Lemma gives [V, K, L] < [W, K]. On the other hand by W =[W,K|®Cy(K),
[W,K] = Cw(L) and Cw(K) = [W,L]. Hence Cpw,j(L) = 0 and [W,L] and W/[W, K] are
isomorphic L-modules. It follows that Cy /w,x)(L) = 0, and since [V, K, L] < [W, K] we get
[V, K] < [W, K]. Thus [V, K] = [W, K]. 0
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DEFINITION A.19. Let A be a set of non-zero subspaces of V. Then A is a system of imprimi-

tivity for H on V' if
A is H-invariant, Al>1, andV =P W.
WeA

LEMMA A.20. Let A be a system of imprimitivity for H on V. Suppose that E is a subgroup of
H that acts non-trivially on A and that |[V, E]| < |W| for some W € A\Ca(E). Then
(a) W] =I|[V,E]|, Wn[V,E] =0 and Ng(W) = Cg(V) = Cg(A) for all W € A\Ca(E),
(b) [E/Cu(V)| =2 =|A\CA(E)|, and
(¢) [X,E] =0 for all X € CA(E).

PROOF. Pick ¢ € E with W€ # W and put A := {w® —w | w € W}. Since WnWe¢ =0
we get AnW =0 and |A| = |W|. Now |[V,E]| < |W] and A < [V, E] imply [V, E] = A, and so
[V,E] = A < W + W¢. It follows that (WE) = W + [W,E] < W + W¢. Since V. = @p. D
this gives WE = {W,We¢}. Put Y = (A\WP¥). Then Y is E-invariant and so [Y,E] < Y n
[V,E] <Y n (W + W¢) = 0. In particular, A\Ca(E) = {W,W¢} and |E/Cg(A)| = 2. Moreover,
W, Ce(A)] < WA [V,E] =W nA =0 and since Cg(A) <€ E also [W¢,Cg(A)] = 0. Thus
Cp(A) = Cg(V) and the lemma is proved. O

LEMMA A.21. Let K be a non-empty H-invariant set of subgroups of H. Suppose that
(i) [V, A, Al = [V, A] and [V, A] n Cy(A) =0 for all Ae K, and

(ii) [A,B] < A and [V, A] n [V, B] =0 for all distinct A, B € K.

Then [V,{K)] is a wreath product module for H with respect to K.

PrROOF. Observe that shows that any two subgroups in K normalize each other. Let A €
and put W = >, e[V, B]. Since A normalizes B, [V,B,A] < [V,B] n[V,A] = 0 and so
[W,A] =0 and [V,A] n W < [V, A] n Cy(A) = 0.

Also [V,{KC)] = > 4exc[ Vs Al and so [V, (K)] = @ 4.[ V- A] by the definition of an internal direct
sum. From W < Cy(A) and [V, A] n Cy(A) = 0 we conclude that Cyy,xcy1(A) = W. As this holds
for all A e IC we get Cpy iy ((K)) = 0.

Since [V, A] = [V, A, A] we have [[V,{K)], A] = [V, 4], and so [V,{K)] is a wreath product
module for H with respect to K. O

LEMMA A.22. Let K be a non-empty H-invariant set of subnormal subgroups of H. Suppose
that
(i) |K/Ck([V,K])| > 2 for all K € K,
(ii) [V,K]nCy(K)=0and [V,K,K] = [V,K] for all K € K,
(iii) [V, A] n [V, B] =0 for all distinct A, B in K with [A,B] < An B, and
(iv) [V, B] € [V, A] for all distinct A, B in K.
Then [V,{K)] is a wreath product module for H with respect to K.

PROOF. If h e Ny ([V, K]), then [V, K] = [V, K] and by (iv) K = K". We have shown:
(%) Nu([V,K]) < Ny(K) for every K € K.

Let A, B be distinct elements of . In view of and it suffices to show that A and
B normalizes each other. Put R := (A, B). If R = A, then [V, B] < [V, R] = [V, A] a contradiction
to . Thus A # R and so A is a proper subnormal subgroup of R. Hence (A®) # R and by
induction on |(K)|, [V,(A®)] is a wreath product module for R with respect to A®. By symmetry,
also B # R, and [V,{(B)] is a wreath product module for R with respect to B~.

We now assume without loss that |[V, B]| < |[V, A]|. Suppose for a contradiction that B does
not normalize A. Then by (%) B does not normalize [V, A]. Put A := [V, A]®. Since U := [V, (A%)]
is a wreath product module for R with respect to A, A is a system of imprimitivity for R on U.
Since |[V, B]| < |[V; A]|, we can apply [A.20]and conclude that |B/Cp(U)| = 2 and |[U, B]| = |[V, A]].
Since [[V, B]| < [[V, A]| this gives |[V,B]| = |[U, B]| = |[V, A]| and [V, B] = [U, B] < U. But then
Cp(U) < Cp([V,B]) and |B/Cp([V, B])| < |B/Cp(U)| < 2, contrary to ().
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Thus B normalize A; in particular AB is a subgroup of H. Suppose for a contradiction that A
does not normalizes B and pick a € A with B® # B. Since V is a wreath product module for R
with respect to BE, shows that [V, B, B*] = 0. Note that B < BA = B*A. Also by ,
[V,B] = [V, B, B] and so

[V, B] = [V, B, B] < [V, B, B"A] = [V, B, A] < [V, A],

a contradiction to
Hence A and B normalize each other, and the lemma is proved. |

LEMMA A.23. Let K be a non-empty H-invariant set of subnormal subgroups of H and suppose
that
(i) |A/Ck([V,A])| > 2 for all A€ K.
(ii) [V, A] is a simple K-module for all A€ K.
(iii) [V, B] £ [V, 4] for all distinct A and B in K.
Then [V,{K)] is a wreath product module for H with respect to K.

PROOF. We will verify that the hypothesis of[A.22]holds. Let K € K. Since |K/Ck ([V, K])| > 2,
K does not centralize [V, K], and since [V, K] is a simple K-module, we conclude that [V, K] =
[V,K,K] and [V, K] n Cy(K) = 0. So[A22]fi) and hold.

Now let A, B be distinct elements of K with [A,B] < A n B. Then B normalizes A and
[V, A] n [V, B] is an B-submodule of [V, B]. Since [V, B] <« [V, 4], it is a proper B-submodule, and
since [V, B] is simple, we conclude that [V, A] n [V, B] = 0. Hence also holds. Also, is
the same as [A.22f(iv]).

Thus, we can apply and [V,{K)] is a wreath product module for H with respect to K. []

DEFINITION A.24. Let H be a finite group, K a non-empty H-invariant set of subgroups of H
and Z a class of modules. Then V is a Z-wreath product module for H with respect to K provided
that V' is wreath product module for H with respect to K and for each K € K, [V, K] is a Z-module
for K.

Most important for our paper are faithful natural SLs(q)-wreath product modules, that is,
where E consists only of the natural F,SL2(¢)- modules and the action of H is faithful. The next
remark gives an explicit description of natural SL, (g)-wreath product modules.

REMARK A.25. Suppose that V' is a faithful H-module and K is non-empty H-invariant set of
subgroups of H. Then V is a natural SL,,(q)-wreath product module for H with respect to K if and
only if

V=@V.El  ad K= X K
KeK KeKk
and for each K € K, K = SL,(q) and [V, K] is a natural SL,(g)-module for K.

PROOF. Suppose that V' is a natural SL, (¢q)-wreath product-module for H with respect to V.
Then by definition, V = @ ;.[V, K] and for each K € K, [V, K] is a natural SL,(q)-module for K.
Since V is faithful, shows that [V, K] is a faithful K-module and {KC) = X j.c K. So [V, K] is
a faithful natural SL,,(q)-module for K and thus K =~ SL,(q).

The converse should be obvious. |

LEMMA A.26. Let K be a non-empty H-invariant set of subnormal subgroups of H.

(a) Suppose that for oll K € K, K is quasisimple and [V, K] is a simple K-module. Then
[V,{IC)] is a wreath product module for H with respect to K.

(b) Let q be a power of p and n = 2. Suppose that V is a faithful H-module and
(i) for all K e K, K = SL,(q) and [V, K] is a natural SL,(q)-module for K, or
(ii) for all K €e K, K =~ SLy(q)" and [V, K] is a natural SLy(q)'-module for K.
Then [V,{K)] is a natural SL,(q)- or natural SLs(q) -wreath product module for H with
respect to (IC).
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PrOOF. We will prove @ and (]ED simultaneously by verifying the hypothesis of Let K €
K. Observe that in both cases [V, K] is a non-central simple K-module. Also |K/Ck([V,K])| > 2
since in (a) K is quasisimple and in (b) |K/Ck([V,K])| = [SL2(q)'| = 3. Hence and
hold and it remains to verify that K = F for all E, K € K with [V, E] < [V, K].

Put W := [V, K], so [V, E] < W. Since W is a simple K-module, Endg, (W) is a finite division
ring by Schur’s Lemma, and so is commutative by Wedderburn’s theorem. We get

(%) (W,[E,K]] #0 or E/Cg(W) is abelian.

Suppose first that K and E are quasisimple. Then K and E are components of H, so K = F or
[K,E] = 1. By («) either [W,[E,K]] # 0 or E/Cg(W) is abelian. In the first case [E, K] # 1 and
so E = K. In the second case E = Cg(W) since E is quasisimple. But then [V, E] = [V, E, E] <
[W,E] =0, and [V, E] is central E-module, a contradiction.

Suppose next that one of K and FE is not quasisimple. Then we are in case @ and K @ F ~
SLy(p) or SLa(p) with p = 2 or 3. In particular, Oy (K) # 1 and W = [V, E] = [W, 0, (K)]. Put
F:=(E,K)and R := Oy (F). Since K is subnormal in F, 1 # O, (K) < R. Hence [V,R] =W =
[V, F], and coprime action shows that V' = W @ Cy (R). Since F normalizes R, we conclude that
[Cv(R),F] < Cy(R)nW =0. Thus V = W@ Cy(F). Since V is a faithful H-module, F acts
faithfully on W. Note that |W| = p? and Aut(W) = GLy(p) has a unique subgroup isomorphic to
K. So E and K have the same image in Aut(WW) and since Cp(W) =1, F = K. O

LEMMA A.27. Let P < H and let K be a non-empty P-invariant set of subgroups of P. Suppose
that
(i) OP(KK)) < H,
(ii) V is natural SLs(q)-wreath product module for P with respect to K, ¢ = p",
(iii) V' is a faithful H-module.
Then

(a) If E < H such that [V, E] is a faithful natural SLa(q)-module for E, then E € K.

(b) V is a natural SLo(q)-wreath product module for H with respect to K.

(¢) K is the unique H-invariant set of subgroups of H such that V is a natural SLo(q)-wreath
product module for H with respect to K.

PrOOF. (a): Put R := OP({(K)). Since V is a natural SLy(g)-wreath product module for P
with respect to K and by V' is a faithful P-module, the definition of a wreath product module
and (]ED give

V=@[V,K] and K)= X K,
KekK KeKk
and [V, K] is a natural SLs(q) modules for each K € K. By[A.T7(a) [V, K] is a faithful K-module and
so K = SLy(q). In particular, [V, K] is a natural SLs(¢)’ module for OP(K) and for R. It follows that
[V, K], K € K, are pairwise non-isomorphic simple R-submodules of V and so A := {[V, K] | K € K}
is the set of Wedderburn components for R on V. Since R < H we conclude that H acts on A.

Note that |[V,K]| = ¢*> = |[V,E]|. Suppose that E acts non-trivially on A. Then |A| > 2
and A is a system on imprimitivity for H on V. Hence implies that |E/Cg(V)| = 2, a
contradiction. Thus E acts trivially on A. In particular, [V, E] = @y, A [W, E], and since [V, E] is
a simple E module, there exists a unique W € A with [W, E] # 0. Let K be the unique element of
K with W = [V, K].

Put F':=(K,E) and U := Yy quy X. Then V.= W@ U and F centralizes U. So F acts
faithfully on W. Moreover, since R < H, F' normalizes Cr(U) = OP(K). Put F := Endg (W) and
observe that F = IF,.

We claim that F' acts F-linearly on W. If p = ¢, then F = [F; and this is obvious. If ¢ > p,
then K = OP(K) and F normalizes K. Since F' = EK is perfect and Aut(FF) is abelian, we again
conclude that F' acts F-linearly.

Note that GLg(W)/SLg(W) is a p’-group and SLy(q) is generated by p-elements, so SLp(W) =~
SLs(q) is the unique subgroup of GLy(W) isomorphic to SL2(g). Since F' acts faithfully on W and
both F and K are isomorphic to SLs(q), this gives E = F = K. So E € K.
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(]ED: From @ we conclude that K is H-invariant and so (]ED holds.
follows immediately from @ O

LeMMA A.28. Let K < H and S € Syl,(H), and suppose that V is a faithful H-module. Put
K := K" and R := (K). Suppose that OP(H) < R and V is a natural SLy(q)-wreath product module
for H with respect to IC, ¢ = p™. Then the following hold:

(a) H= RS, and S is transitive on K.

(b) H is p-minimal, and Ng(R n S) is the unique maximal subgroup of H containing S.
(c) V is a simple H-module. In particular, V is a p-reduced H-module and O,(H) = 1.
(d) Up to conjugation in H, K is the unique subgroup of H such that K =~ SLs(q) and [V, K]

is a natural SLa(q)-module for K.
(e) Let S:={v eV |[v,F]#0 for all F € K}. Then R is transitive on S, and Cy(T)* < S
for every T' < H that is transitive on K.

PROOF. @: Since OP(H) < R, H = RS, and since R normalizes K, K = K% = K5,

(b): Let L be a maximal subgroup of H containing S. Since K = SL(q), and Nx (K nS) is the
only maximal subgroup of K containing K n S, it follows that K < Lor K nL < Ng(KnS). In the
first case R < L since S is transitive on K, and so L = H, a contradiction. Hence KnL < Ng(KnS);
in particular K NS = Op(K n L). Since K n L < R n L, we conclude that R n L < Nr(K n S).
Now again the transitivity of S on K gives Rn S = (K n S)®) and R n L < Ng(R n S) and so
L < Nyg(Rn S). Since Nig(R n S) is a proper subgroup of H, L = Ny (R n S) follows.

: Let W be a non-zero H-submodule of V. By definition of a wreath product module,
Cy({K)) = 0 and so [W, A] # 0 for some A € K. Thus W n [V, A] # 0. Since [V, A] is a natural
SLs(q)-module for A, [V, A] is simple A-module and so [V, A] < W. As H acts transitively on K,
this gives [V, A] < W for all A € K. By definition of wreath product module, V' = @ , [V, A] and
soV =W.

@: By applied with (H, H,K) in place of (P, H,K), any F < H such that [V, E] is a
faithful natural SLs(g)-module for E is contained in K and so is conjugate to K.

(€): Let v € Cy(T)\S. Then [v, F] = 0 for some F € K. Since T acts transitively on K, this
gives v € Cy ((K)) = 0. Thus Cy(T)* < S. Since K is transitive on [V, K], R is transitive on S. []

A.5. Offenders

In this section p is a prime, H is a finite group, V is an F, H-module and V* := Homg, (V,F,)
is the dual of V.
LEMMA A.29 (Chermak-Delgado Measuring Argument). Let a be a positive real number and
X<H.
(a) Suppose that |V /Cy(B)| < |B/Cg(V)|* for some B < X with [V, B] # 1. Then there exists
a Ny (X)-invariant subgroup D of X such that [V,D] # 1, |V/Cy(D)| < |D/Cp(V)|* and
|A|*|Cy (A)| < |D|*|Cy (D) for all A< X.
(b) Suppose that X /Cx (V) is elementary abelian and X contains a non-trivial offender on V.

Then X contains an Ny (X)-invariant non-trivial best offender D on V with |A||Cy (A)| <
|D||Cy (D)] for all A< X.

PRrROOF. Replacing H be H/Cy (V) we may assume that V is a faithful H-module.
@: Since B # 1 also X # 1 and we can define

ma = max { [A|*|Cv(A)] [ 1# A< X }
and
aM={1#A<X ||A*ICv(A)| =mq }.
Observe that aM # &. Since |V /Cy(B)| < |B/Cp(V)|* = |B|*, we have
mq = |B|*|Cv(B)| = |V|.
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Thus [CD] 1.2] shows that M has a unique maximal element D. Since D is unique, D is Ny (X)-
invariant. Also

[D|*|Cv(D)| = ma = |V,
and so |V/Cy(D)| < |D|* = |D/Cp(V)|*.
By the definition of aM, D # 1 and so [V, D] # 1, and by the definition of m,,,
|A|*|Cv (A)| < ma = |D|*|Cp(V)]
for all 1 # A < X. Since m,, = |V, this also holds for A = 1.

[B): Let D be as in (a) for a = 1. Since X/Cx (V) is elementary abelian, also D/Cp(V) is
elementary abelian. Thus (a)) shows that (]ED holds. O

LEMMA A.30. Suppose that H does not contain any over-offenders on V. Then every offender
in H onV is a best offender.

PRrROOF. Let A < H be an offender on V and let B < A. Since A is an offender, |V/Cy (4)] <
|[A/C4(V)| and so |V]|Ca(V)| < |A||Cv(A)|. By hypothesis, B is not an over-offender and so
[V/Cy(B)| > |B/C5(V)|. Thus

|B|ICv(B)| < [V[|ICs(V)| < [VI[Ca(V)] < |A]|Cy (A)]
and A is a best offender on V. 0

LEMMA A.31 ([MSS5] 1.2]). Let A< H. Then A is a best offender on V if and only if A is an
offender on every A-submodule of V.

LEMMA A.32 ([MSS5l 1.5]). Let A be a strong dual offender on V.. Then the following hold:

(a) A is quadratic on'V.

(b) A is a strong dual offender on every A-submodule of V and V*.
(c) A is best offender on'V and on V*.

(d) If [V, A]| = |A/Ca(V)|, then A is a strong offender on V.

LEMMA A.33. Let A < H, F a finite field and V' an FA-module. Suppose that A is an offender
on'V and [V, A] is 1-dimensional over F. Then
(a) [V/Cy(A)| = [A/Ca(V)].
(b) The canonical commutator map A/Ca(V) — Homg(V /Cyv(A),[V, A]) is an isomorphism.
(¢) A is a strong dual offender and a best offender on every A-submodule of V.

PrOOF. For (@) and (b) see [MS6, 3.4]. Note that (b) implies [v, 4] = [V, A] for all v €
V\Cv(A). Thus A is a strong dual offender on V' and on every A-submodule of V. Hence by
1A.32(|c) A is also a best offender on every A-submodule of V. O

LEMMA A.34 ([MSS5| 1.6]). Let A be a strong offender on V. Then A is a quadratic best offender
on V.

LEMMA A.35. Let A < H be a strong offender on V. Then the following statements are equiv-
alent:

A is a root offender on V.

IV, Al = |V/Cy (A)].

[V, A] = [V, a] for some a € A.

[V, A] = [V, a] for some 1 # a€ A.

Cy#(A) = Cy«(a) for some a € A.
Cy#(A) = Cy«(a) foralll #a€ A
(g) A is a strong offender on V*.
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ProoF. Without loss V is a faithful A-module. If A = 1, the statements of the lemma are
obvious. So suppose that A # 1.

(@)= (B)<= (J<==(d): Let 1 # a € A. Since A is a strong offender, Cy (a) = Cy (A).

Thus

V/Cv(A)| =|V/Cv(a)| = [[V,a]| < [[V, A]|.
Hence
V/Cy(Al =[V.A]l < [[Vid]| =I[V.4]] <= [Via]=[V,A]

It follows that |V /Cy(A)| = |[V,A]| iff [V,a] = [V, A] for some a € A iff [V,a] = [V, 4] for all
1 # a € A. Since A is a strong offender, the latter condition holds if and only if A is a root offender

on V. Thus (ED, (@ , @ and are equivalent.
— @ and<:> : Since Cyx(A) = [V, A]* and Cy«(a) = [V,a]t, and (@ are
(d

equivalent, and also (df) and are equivalent

@ = (lg): Suppose that @ holds. Then also @ holds. Since A is an offender we get
[V, A]| = |[V/Cv(A)| < |A|l. As [V*/Cyx(A)| = |V*/[V, A]*| = |[V, A]| we conclude that A is an
offender on V*. Together with @ this shows that A is a strong offender on V*.

= @: If A is a strong offender on V*, then by definition Cy«x(A) = Cyx(a) for all
1#acA. So@holds. OJ

LEMMA A.36. Let A < H. Then the following are equivalent

(a) A is a root offender on V.
(b) A is a strong offender on V' and a strong offender on V*.
(¢) A is a root offender on V*.

PRrROOF. Note that any root offender is a strong offender. By a strong offender is a root
offender on V if and only if it is a strong offender on V*. So @ and @ are equivalent. This
equivalence applied to V* in place of V' shows that (b)) and (d) are equivalent. O

LEMMA A.37. Let A < H be a root offender on V. Then
(a) [V/Cy(A)| = [[V, A]l = [A/Ca(V)].
(b) A is strong dual offender on V.
(c) A is quadratic on V.

PROOF. (&) and (B): Let v € V\Cy(A). By definition of a root offender, Cy (a) = Cy (A) for
all 1 #a€ A. So [v,a] # 1 for all such a, and C4(v) = C4(V). Thus

[A/Ca(V)] = |A/Ca(v)] < |[v, All < [[V, A]l.
By definition any root offender is a strong offender. So we can apply and conclude that
[[V,A]| = |V/Cy(A)]|, and since A is an offender, |[V, A]| < |A4/C4(V)|. Hence equality holds in all

these inequalities. In particular, (a)) holds and [v, A] = [V, A]. So A is strong dual offender, and (b))
holds.

(): By[A.32)[a) all strong dual offenders are quadratic, and so (d) follows from (). O

LEMMA A.38. Let A be a subgroup of H. Suppose that V is selfdual as an F,A-module. Then
the following statements are equivalent:

(a) A is a root offender on V.
(b) A is a strong offender on V.
(c) [V/Cy(A)| =|A| and A is a strong dual offender.

PROOF. @ — (]ED : Since V is selfdual, A is a strong offender on V if and only if A is a
strong offender on V' and V*. By this is the case if and only if A is a root offender on V.

) = : This is [MS5] 1.7]. O
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LEMMA A.39 ([MSS5] 1.3]). Suppose that B is a minimal offender on' V- and W is a B-submodule
of V. Then B is a quadratic best offender on W. In particular, every non-trivial offender on V
contains a non-trivial quadratic best offender on V.

LEMMA A.40. Let Y be an elementary abelian normal subgroup of H and A an elementary
abelian p-subgroup of mazximal order in H. Suppose that [Y, A] # 1. Then A acts as a non-trivial
best offender on'Y. Moreover, Cx([Y, A]) is a non-trivial quadratic best offender on'Y .

PRrROOF. Pick B < A. By the maximality of | 4|,
|B||ICy (B)[|BnY|™! = |BCy(B)| < |A].
Hence
|B|[Cy (B)| < [A[B Y| < [A[[AnY] < [A]|Cy(A)].
This shows that A acts as a best offender on Y. The second statement now follows from Timmesfeld’s
replacement theorem [KS| 9.2.3]. O

LEMMA A4l ([MSS5| 2.2]). Suppose that V is a faithful p-reduced F,H-module and J :=
Jug(V) # 1. Put J := Ju(V). Let K be the set of non-solvable members of J and put
I:=J\K, E:={C), I:={T).
Then the following hold:
(a) Cu(J/Z(J)) = Cu(J).
(b) Let N be a J-invariant subgroup of H with [N,J] # 1. Then there exists K € J with
K <N.
() T+, T=ZuK, and K is the set of components of J.
(d) Let K € Z. Then eitherp =2, K =~ C3 =~ SLy(2)’, and [V,K] = F3, orp=3, K =~ Qg =
SL(3), and [V, K] ~ F3.
(e) [W, K] =[W, K, K] for every K € J and every K-submodule W of V.
(f) [K,F]=1 and [V,K,F] =0 for every K, F € J with K # F.
(g) C;IE) = Z(J), orp =2 and C;(IE) = Z(J)I. So in both cases Cj(IE) is an abelian
p’-group.
(h) Let U < H and K € J. Then either [K,U] = 1 or [W,K| < [W,[K,U]]| for every
K-submodule W < V.

LEMMA A.42. Suppose V is faithful and p-reduced for H, and let L <<t H. Then J.(V) ={E €
TJa(V) | [E, JL(V)] # 1}. In particular, T, (V) < Tu(V).

PROOF. Since V is faithful p-reduced H-module and L <<t H, V is also a faithful p-reduced
L-module, se. In particular, we can apply to H and to L.

Let E € Ju(V). Observe that both, J.(V) and E, are subnormal in H. Also observe that
JL(V) < Jg(V), so Jp(V) << Jy (V). By definition of a Jg(V)-component, E = [E, Jg(V)] and
so Jr (V) normalizes E.

1°. Either E€ Jp(V) or [E,JL(V)] = 1.

Assume that E is a component of Jy (V). Since J.(V) << Jy(V), [KS 6.5.2] 1mp11es that
[E,J.(V)] =1or E < Jr (V). In the latter case E is a component of Jr(V'), and [A.41||c) shows
that E € JL(V).

Assume that E is not a component of Jg (V). Then by E is solvable, and by @

(%) E>~Czandp=2 or FE ~ Qg and p = 3.

In particular, E is a p/-group. Since Ji(V) is generated by best offenders, J(V) = O (JL(V)),
and since E and J,(V) are both subnormal in H, we conclude that Ji(V) = OF (J.(V)E) and E
normalizes Jp(V), see Thus [E, J (V)] < En Jp(V).

By (%) E =~ C3 or Qs, and coprime action implies that either [E, J. (V)] =1or E = [E, JL (V)] <
JL (V). In the latter case E is minimal in Jp (V) with 1 # E = [E, JL(V)], and so E € J.(V).
Hence also holds in this case.
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2°. Suppose that [V, E, J, (V)] # 0, then [E, JL(V)] # 1.

Since [V, E, J(V)] # 0, there exists a best offender B on V in J (V) such that [V, E, B] # 0.
By [A.41fle), [V, E] = [V, E, E] and so [V, E] is a perfect E-submodule of V. Hence by [MS5] 2.7]
[E,B] # 1 and so [E, J, (V)] # 1.

We are now able to prove the assertion. From we get that
{EeTu(V)|[E,JL(V)] # 1} < TL(V).

Now let K € J.(V). Tt remains to show that K € Jg(V) and [K,J (V)] # 1. Put R :=
(Ju(V)y and J := Jg (V). Since R is normal in H and V is faithful p-reduced H-module, [V, R] is
a faithful R-module, see|A.9(|d). Hence Cr([V, R]) = 1.

Suppose for a contradiction that [V, R, K] = 0. Then [R,K] < Cgr([V,R]) = 1. Note that
K < J(V) < Jg(V) = J and by [A41|{g) C;(R) < Z(J)R. Hence K < Z(J)R. By the definition
of a Jr(V)-component we have [K, J, (V)] = K # 1 and so K < [K,J] < [Z(J)R,J] < R. But
then K < Cg([V, R]) = 1, a contradiction.

We have proved that [V, R, K] # 1 and so there exists E € Jgy (V') such that [V, E, K] # 0. Then
also [V, E, J(V)] # 0, and shows that [E, J.(V)] # 1. Thus implies F € J.(V). Hence E
and K are Ji,(V)-components with [V, E, K] # 0. Now [A.41|[f) gives K = E and so K € Jy (V). O

LEMMA A.43 ([MSS5] 2.4)). Let K € Ju(V) and let A be a subgroup of M such that [V, A, A] =0
and [K, A] # 1. Suppose that X is a perfect K-submodule of V and X is a non-zero K-factor module
of X. Then

Ca(X) = Ca(K) = Ca(X).

LEMMA A.44 (]MSS5)| 2.8]). Suppose that V' is a faithful p-reduced F,H-module. Let K € Ju(V)
and X be a perfect K-submodule of V. Then Jyg (V) normalizes X .

LemmA A.45 ([MS6, 2.12]). Let R := [O,(H),OP(H)] and T € Syl,(H), and let Y be a
T-submodule of V with V. = (Y1) % Y. Then one of the following holds:
(1) [V,R] =0 and Co,m)(Y)< H.
(2) R is a non-trivial strong dual offender on'Y .
(3) There exist O,(H)OP(H)-submodules Z1 < X1 < Zy < Xo such that for i =1,2, X;/Z; is
a non-central simple OP(H)-module and X; n'Y £ Z;.

A.6. Nearly Quadratic Modules

In this section A is a group, F is a field and V is an FA-module. Since quadratic action is a
special case of nearly quadratic action, the results in this section also apply to quadratically acting
groups. Recall the definition of a system of imprimitivity on V from Definition

DEFINITION A.46. Let K be a field extension of F such that V is also a K-vector space.
(a) Let a € A and o € Aut(K). Then a acts o-semilinearly on V if (kv)* = k%v® for all k e K
andveV.
(b) Let 0 : A — Aut(K), a — 04, be a homomorphism. Then V is a o-semilinear KA-module
provided that each a € A acts g,-semilinearly on V. Set Ag := ker o and K4 := Cx(Imo).

LEMMA A.47 ([MS3| 2.4]). Let V be a nearly quadratic FA-module and W be an FA-submodule
of V. Then W and V /W are nearly quadratic FA-modules.

LEMMA A.48 ([MS3] 2.13]). Let V be a nearly quadratic FA-module, and let A be a system of
imprimitivity of F-subspaces for A in V. Then one of the following holds:

(1) A acts trivially on A and there exists at most one W € A with [W, A] # 0.
(2) A acts trivially on A and quadratically on V.
(3) A acts quadratically on V, charF = 2, and |A/Ca(W)| < 2 for every W € A\Ca(A).
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(4) A does not act quadratically on V., A/Ca(V) is elementary abelian and there exists a
unique A-orbit WA < A with [W, A] # 0. Moreover, B := Nao(W) acts quadratically on
V, B = C4(A) and one of the following holds:
(1) charF =2, |[WA| =4, dimg W =1, B = C4(V), and A/C4(V) = Cq x Cs.
(2) charF =3, |[W4| =3, dimg W =1, B =Ca(V), and A/Ca(V) = Cs.
(3) charF = 2, |[WA| = 2, and Co(W) = Ca(V). Moreover, dimg W/Cy (B) = 1 and
Cw(B) = [W, B].

LEMMA A.49 ([MS3l 6.3]). Suppose that V is a semilinear but not linear KA-module for some
field extension K of F and that V is a nearly quadratic FA-module. Then A/Ca(V) is elementary
abelian and one of the following holds:

(1) [V, A, Al =0, [V, Ak] =0, and charK = 2 = |A/Ak].

(2) [V, A, A] # 0, [V,Ak] = Cy(Ax), dimg V/Cy(Ax) = 1, F = K4, and charK = 2 =
|A/A]K| = dim]p K.

(3) [V,A,A]l #0, [V,Ak] =0, F = Ky4, dimg V =1, and charF = 3 = |A/Ak| = dimyp K.

(4) [V,A Al #0, [V,Ak] =0, F = K4, dimg V =1, charF = 2, A/Ag = CyxCy, dimp K = 4,
and F is infinite.

A.7. Q!-Modules

In this section H is a finite group, @ is a p-subgroup of H, and V is a finite @!-module for

F,H with respect to Q. By |A.50|[b) below @ is a weakly closed subgroup of H. Hence, the results
in Section [L.5| apply to @ and H. In particular, we will use the °-notion introduced there, so for

L<H,
L°=(Pe? |P<L) and Lo = OP(L°).
LEMMA A.50. Let V be a non-zero Q!-module for H with respect to Q.
(a) Nu(T) < Ng(Q) for every p-subgroup T of H with Q < T.
(b) Q is a weakly closed subgroup of H.
(¢) Cv(Q) n Cv(Q9) =0 for all g€ H\Ng(Q); in particular Ng(Q) = Ng(Cy(Q)).
(d) Let K be a subgroup of H acting transitively on V. Then H® = {(Q*).

PROOF. @: Let Q < T, T a p-subgroup of H. Then 0 # Cy(T) < Cy(Q) and Q! implies
Nu(T) < Nu(Cv(T)) < Nu(Q).
(]ED: By the condition in @ is equivalent to ) being a weakly closed subgroup of H.

Let g € H with Cy (Q)nCy(Q)Y # 0. By Q!, Q and Q¥ are normal in Ny (Cy (Q) nCy (Q9)).
Since @ is a weakly closed subgroup of H, this gives @ = @Y and thus g € Ny (Q).

Let 0 # v € Cy(Q). By a Frattini argument, H = Cy(v)K and by Q!, Cy(v) < Ng(Q).
Thus Qf = Q¥ and so H° = (Qf) = (Q). O

LEMMA A.51. Let V be a non-zero Q!-module for H with respect to Q. Then V is a Q!-module
for H/Cy (V') with respect to QCr(V)/Cu (V).

PrOOF. Put H = H/Cg(V). Since Ny (A) < Ny (Q) for all 1 # A < Oy (Q), Ng(A) < N5(Q)

forall 1 # A < Cy(Q). Since V # 0 also Cy(Q)) # 0. Thus

Nu(Q) < Nu(Cv(Q)) < Nu(Q).
Since Q € H this implies Q < H, and the lemma is proved. O

LEMMA A.52 ([MS6l 4.2]). Let V be a faithful Q!-module for H with respect to Q.
(a) H® = (Q" | he H.
(b) Cu(H®/Z(H®)) = Cp(H).
(¢) Let H° < L < H and W be a non-zero L-submodule of V.. Then Cr, (W) < CrL(H®). In
particular Cgo (W) is a p’-group.
(d) Cy(H®) =0.
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(e) Let Q < L < H with Q< L. ThenV is Q!-module for F,L with respect to Q.
(f) Let L << H with [L,Q] # 1. Then Cy({(L?)) = 0.

LEMMA A.53. Let V be a Q!-module for H with respect to Q, and let N be a Q-invariant
subgroup of H with N £ Ny (Q). Then Cyg(W) < N (Q) for every non-trivial NQ-submodule W
of V.. In particular Cy(N) =0 and Cy([V,N]) < Nu(Q).

PROOF. Let W # 0 be an NQ@Q-submodule of V. Then Cy (Q) # 0, and the Q!-property of V'
implies
Ca(W) < Cu(Cw(Q)) < Nu(Q).
In particular, we get that Cy(N) = 0since N € Ny (Q). Then [V, N] is a non-trivial N@Q-submodule
of V, and the last claim also follows. |

LEMMA A.54. Let V be a faithful p-reduced Q'-module for H with respect to Q and let K <<t H.
(a) V #0.

(g) Let E< H,. Then Cyx([V,E]) n Cu(V/[V,E]) = 1.

PrROOF. Note first that O,(H) = 1 since V is faithful and p-reduced.
@: If V=0 then Q = 1 since V is faithful. But then Q < H, a contradiction to the definition
of a @Q!-module.

@: Suppose that K < Ng(Q) and put L := (K®9). Then L is subnormal in H and so
Op(L) < Op(H) = 1. Also L < Ny (Q) and so L n @ is a normal p-subgroup of L. Thus [L,Q] <
LnQ<0,(L)=1

(c): If Cv (K) n Cy(Q) # 0, then Q! implies K < Ny (Cv(K) nCy(Q)) < Ny (Q) and (b) gives
[K’ Q] =1

@): Suppose that K # 1 but [V, K,Q] = 1. Replacing K by (KN#(®?)) we may assume that
Nu(Q) < Ny (K). Since V is faithful, 1 # [V, K| < Cy(Q) and Q! implies Ny (K) < Ny ([V,K]) <
Ny (Q). Hence Ny(K) = Ny(Q). Let L be the largest subnormal subgroup of H contained in
Ny (Q). Then K < L and @ gives [L,Q] = 1. Let M be the largest subnormal subgroup of
H contained in Ny (L). Since @ centralizes L, @ normalizes M and (Q™) < Oy (L) < Cy(K).
Note that [M,Q] < M << H and so [M, Q] is a subnormal subgroup of H contained in Cy(K).
In particular, [M,Q] < Ng(K) = Ng(Q) and the maximal choice of L gives [M,Q] < L. Thus
[M,Q,Q] < [L,Q] = 1 and since Op(M) < Op(H) = 1,[L.9 gives [M,Q] = 1. Hence M < Ny (Q)
and so M = L by maximality of L. Since L <<t H this implies H = L < Ng(Q), a contradiction
since @ € H by definition of a Q!-module.

(e): By (), [K,Q] = 1. Put K¢ := Ck([V,Q]). Then [V,Q, Ko] = 1 and the Three Subgroups
Lemma gives [V, Ko, Q] = 1. Hence (d) implies Ko = 1 and so K acts faithfully on [V,Q]. Since
[K,Q] =1 the P x Q- Lemma shows

OP(Ck([V,Q]n Cv(Q))) < Ck([V,Q]) = Ko = 1,
and so Ck ([V,Q] n Cv(Q)) < O,(K) = 1.

{: By [A52d), Cv(H°) = 0 and so also Cy(H,) = 0 and [V, H,] # 0. Hence by [A.52](d)
E :=Cyg([V,H,]) < Cg(H?). Thus [E,H,] =1 and [V, H,, E] = 1. The Three Subgroups Lemma
implies [V, E, H,] = 1. Since Cy (H,) = 0 this gives [V, E] = 0, and as V is faithful, F = 1.

(g): Put C := Cu([V,E]) n Cuy(V/[V,E]). Then C acts nilpotently on V and H, normalizes
C'. Hence [C,H,] < Cn H, < H,, so C' n H, is subnormal in H. Since V is p-reduced and faithful,

C n H, =1, and thus [C, H,] = 1. Since E < H,, Cy(H,) normalizes E and C. Tt follows that
C < Cy(H,)< H, and again since V is p-reduced and faithful, C' = 1. O
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LEMMA A.55. Let V' be a faithful p-reduced Q!-module for H with respect to Q. Put N :=
ﬂgeH NH(QQ)
(a) [N,H®] =1 and Cy(Q) is a faithful p-reduced N-module.
(b) Let 1 #te H with |[V,t]| < |Cv(Q)|. Thente N and [Cv(Q),t] # 1.
() |Cv(Q)| < |[V,t]] for all 1 # t € H with [Cyv(Q),t] = 1.
(d) Cv(Q) =[V,t] for all1 #te H with [V,t] < Cv(Q).

PROOF. (a): Note that N < H and N < Ny(Q). Hence by [A.54|[0),(€) [V, Q] = 1 and Cv(Q)
is a faithful N-module. As H° = (Q¥), this gives [N, H°] = 1. Since N < H and V is faithful
and p-reduced for H, O,(N) < Op(H) = 1. Hence, since Cy(Q) is a faithful N-module, Cy(Q) is
p-reduced for N.

[B): Let t € H with |Cy(Q)| > [[V,t]], and let g € H. Note that

V/Cv(®)] = [V t]] < [Cv(Q)] = |Cv(Q)].
Thus A := Cy(Q9) n Cy(t) # 0 and t € Cy(A) < Ny(QY). Hence t € N. By (b)), Cv(Q) is a
faithful N-module and so [Cy(Q),t] # 1.
follows immediately from .

@: Suppose that [V,t] < Cy(Q) but [V,t] # Cv(Q). Let g € H. Then |[V,t]| < |Cv(Q)| =
|Cv(Q7)| and so by (b)), t € N and

1#[Cv(Q7),t] < Cv(Q7) n [Vit] < Cv(Q?) n Cv(Q).
Thus Q = QY and QQ < H, contrary to the definition of a @Q!-module. O

LEMMA A.56. Let V' be a faithful p-reduced Q!-module for H with respect to Q, and let IC be a
non-empty H-invariant set of non-trivial subgroups of H. Put R := {(K). Suppose that [V,R] is a
wreath product module for H with respect to KC such that one of the following holds:

(1) [V, K] is a simple K-module for all K € IC, or
(2) [R,H°] # 1
Then

(a) Q is transitive on K and Cy(R) = 0.
b) Suppose that |IC| > 1. Let K € KK and put T := Ng(K). Then Ck(z) is a p-group for all
Q
0+#z¢€ C[V,K](T)

ProOOF. Put W := [V, R]. Since V is p-reduced and faithful, shows that W = [V, R] is a
faithful p-reduced R-module. Since W is faithful wreath product module, shows that

(%) R=X K and W= @[WK]
KekK KeK

@ Let Ko be an orbit of Q on K and put Ry := {Ky). Since K is H-invariant, R < H, and
since K is a non-empty set of non-trivial subgroups, R # 1. As V is p-reduced, Op( ) = 1. If
K € K\Ko then () shows that [W, K] < Cpw,gj(Ro). Thus either Ko = K or Cpy, Ro

Assume that Cy(Rp) # 0. Then also Cy(Rg) n Cy(Q) # 0 and so by [A.54] h Ro,
Since either @ acts transitively on K or Oy ((K%)) # 0 for all K € K, we get [R, Q =1 and SO
[R, H°] = 1. Hence [V, K] is a simple K-module for all K € K. Since @ centralizes K, [V, K, Q] = 0,
and since K # 1, this contradicts @

Thus Cy (Ro) = 0. It follows that Q) acts transitively on K and Cy(R) = 0.

(]E[) Let 0 # z € Cpy,(T). By |A.18|[V, K] K]. Thus z € [W, K] and since [z, Ng(K)] =
[2,T] = 0, the conjugates z% are in dlstlnct submodules [W, F], F'e K. Hence 20 := 3., c.q 21 # 0,
[20, Q] = 1 and Ck(z) = Ck(29). By Q! Ck(z0) < Ny (Q) and so

[Ck(20),Q] < Q n Cr(20) < 0,(Cr(20)).

By (x) K < R and so Ck(20) < Cg(2). Hence OF(Ck(2)) = OP(Ck(20)Op(Cr(20))), so
OP(Ck(zp)) is Q-invariant. Thus () shows that either O?(Ck(z0)) = 1 or K is Q-invariant. In the
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first case C'k(29) = Ck () is a p-group. In the second case the transitivity of @ on K shows || = 1.
O

LEMMA A.57. Suppose that O,(H) = 1. Let V be a faithful Q!-module for H with respect to Q,
and let Y be a p-subgroup of H with Cy ([V,Y]) # 1 and [H°,Y] # 1. Then Cy(H®) = 1.

PROOF. See [MS6l, 4.4]. O

A.8. Genuine Groups of Lie Type

DEFINITION A.58. (a) A genuine group of Lie-type in characteristic p is a group isomorphic
to OPI(CF(U)), where K is a semisimple F,-algebraic group, F, is the algebraic closure of

F,, and o is a Steinberg endomorphism of K, see [GLS3], Definition 2.2.2] for details.
(b) Let K be a genuine group of Lie-type. Let X be the root system, d the order of the graph
automorphism and ¢ the order of the fixed field of the field automorphism used to define
K. Then we say that K is a version of ©(q), see [GLS3|, Definition 2.2.4] for the details.

Note that a given symbol ®(¢) can have many non-isomorphic versions. Nevertheless, we will
write K = %(¢) to indicated that K is a version of %(q). We will use X(q) for '2(q).

LeMMA A59 ([GLS3| 2.2.6]). (a) For each symbol %(q), there is up to isomorphism a
unique largest version K, (called the universal version) and a unique smallest version K,
(called the adjoint version).

(b) For any version K of a symbol as in @), there are surjective homomorphisms K, — K —
K,, whose kernels are central. In particular, if K is simple, then K = K,.

(¢c) Z(K,) =1, and K/Z(K) =~ K,,/JZ(K,) ~ K,.

(d) The versions of a given symbol, up to isomorphism, are the groups K,/Z as Z ranges over
all subgroups of Z(Ky).

LEMMA A.60. Let K = %(q) be an adjoint group or universal group of Lie-type with Dynkin
diagram A. Then there exist subgroups Diag and ® and a subset I’ of Out(K) such that
(a) ®T is a subgroup of Out(K), ® < ®T', Out(K) = Diag®T’, Diag < Out(K), and Diag n
o' =1.
(b) Diag has order dividing q — 1, ¢ + 1 or ged(q — 1,2)2. In particular, Diag is a p'-group.
(c) ® = Aut(F,a). In particular, ® is cyclic.
(d) Cpiager(A) = Diag®.
(e) One of the following holds:
(1) d = 1, A has only single bonds, T is a subgroup of ®T, ®T = & x ', and T is the
group of symmetries of A.
(2) d=1, A has double or triple bonds, and
(i) ifp =2 and A is of type By or Fy, orp = 3 and A is of type Go, then T’ = {1, ¢},
Y acts non-trivially on A and ® = (%),
(ii) otherwise T’ = 1.
In particular, ®T is cyclic.
(3) d# 1 and T = 1. In particular, T = & is cyclic.

PROOF. See [GLS3| section 2.5]; in particular Theorem 2.5.12. O

COROLLARY A.61. Let K = ®(q) be an adjoint group or universal group of Lie-type with Dynkin
diagram A, and let T' and Diag be as in . Suppose that Diagl is not abelian. Then K = Dy(q),
I' =~ Sym(3) and (I'Diag) =T" = Cj.

PrOOF. Since I'Diag is not abelian, I'Diag is not cyclic. This rules out the last two cases in
IA.60|le]). Hence holds and so d = 1, A has only single bonds, T" is the group of symmetries
on A, and I' = & x I'. By M@, ® is cyclic. So (®T") =T” and T is not abelian. Thus ¥ = Dy,
I~ Sym(3) and T =~ Cj. O
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LEMMA A.62 (Steinberg’s Lemma, [MS5] 4.1]). Let M be a genuine group of Lie-type defined
over a finite field of characteristic p. Let V be a simple F,M-module, S € Syl,(M), and B :=
Ny (S). Put K := Endpy (V). Then Cy(S) is 1-dimensional over K, K is isomorphic to the subring
of Endg,(Cv(S)) generated by the image of B, and Cy(S) is a simple F,B-module.

THEOREM A.63 (Smith’s Lemma, [MS5] 4.2]). Let M be a genuine group of Lie-type defined
over a finite field of characteristic p. Let V' be a simple F,M-module, K := Endpy(V), E a parabolic
subgroup of M, L := OP (E) and P = Nj(L). Then L = OV (P), O,(E) = O,(P) = O,(L) and
P is a Lie-parabolic subgroup of M. Moreover, Cy(O,(P)) is a simple F,P-module, an absolutely
simple KL-module, and an absolutely simple KE-module

Let F be a finite field of characteristic p, M a finite group, V a simple FM-module and W a
simple F, M-submodule. Recall that the field K := Endys (W) is called the field of definition of the
FM-module W.

THEOREM A.64 (Ronan-Smith’s Lemma, [MS5| 4.3]). Let M be a universal group of Lie-
type defined over a finite field of characteristic p, S a Sylow p-subgroup of M, Py, Py, ..., P, the
minimal Lie-parabolic subgroups of M containing S, and L; = Op,(PL-). Let V be the class of all
tuples (K, V1, Va, ..., V,,) such that

(i) K is a finite field of characteristic p.
(ii) Fach V; is an absolutely simple KL;-module.

(i) K =<K; | 1 < i< ny, where K; is the field of definition of the KL;-module V;.

Define two elements (K, Vi, Va,...,V,,) and (]K, Vi, Va, ..., f/n) of V to be isomorphic if there exists
a field isomorphism o : K — K such that V, = ‘N/i" as an KL;-module for all 1 < i < n. Then the
map

V = (Endy(V), Cv(0y(Ly)), ... Cv(0y(Ly))) (V' a simple F,M-module)
induces a bijection between the isomorphism classes of simple Fp,M-modules and the isomorphism
classes of V.

LEMMA A.65. Let K = %(q) be a universal group of Lie-type with Dynkin diagram A. Define
7 e If] as follows:
(1) If K = A,(q), n =2 2, K = Dypi1(q), n = 2E| or Eg(q), then T induces the unique
non-trivial graph automorphism on A;
(2) otherwise T = 1.

Then 12 =1 and V* =~ V™ for all simple FpK-modules V.
PROOF. See [St| Lemma 73]. O

LEMMA A.66. Let M be a genuine group of Lie-type defined over a finite field of characteristic p,
S a Sylow p-subgroup of M, Py, Ps, ..., P, the minimal Lie-parabolic subgroups of M containing S,
Li = OP(P;) and B = Ny (S). Suppose that V is a simple F,M-module such that [Cy(S), B] = 0
and [Cy(S),L;] # 0 for all 1 < i < mn. Then V is the Steinberg module for M over F, of F,-
dimension |S|. Moreover, as an F,S-module V' is isomorphic to the regular permutation module
Fp[S]-

Proor. We may assume without loss that M is universal. Let IF be the algebraic closure of IF,,
and St the Steinberg module for M over F. Then by [GLS3] 2.8.7] St is a simple FM module of
dimension |S]. It is well-known and also follows from the weight of St as given in [GLS3], 2.8.7(b)]
that [Cs:(S), B] = 0 and [Cy(S), L;] # 0 for all 1 <i < n.

Put K = Endp (V) and let F be the algebraic closure of K. By [Asl 25.8] V is an absolutely
simple KM-module and so V := F®g V is a simple FM-module. By K is isomorphic to the
subring of Endg,(Cy(S)) generated by the image of B. Since [Cy (S), B] = 0 this gives K = [F,,.
We will now show that V' is uniquely determined and so V = St.

4500 m for the definition of I
5Note here that As = D3
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Suppose first that n = 1. By [Stl Theorem 46] a simple FM-module W is uniquely determined by
the action of B on Cy (S) and a parameter u € {0, —1}. In particular, there are (up to isomorphism)
at most two simple FM-modules W with [Cw (S), B] = 0. Hence St is the unique non-central FM-
module with [Cs:(S), B] = 0.

In the general case, put U; = C+(O,(P;)). By Smith’s Lemma U; is a simple L;-module
and the n = 1 case applied to L;/O,(P;) shows that U; is the Steinberg-module for L;/O,(P;) over
F. This uniquely determines the parameters j;,1 < i < n in [St] Theorem 46] and so V is uniquely
determined.

Thus V is the Steinberg-module St. In particular, dimp, V = dimg V' = dimp V = |S|. By
[Stl Theorem 46] the conjugates of C;+(S) under the opposite Sylow p-subgroup S~ span V. Let
0 # v € Cy(S). Then (v¥ ) = V and since |S~| = |S| we conclude that v® is an F,-basis of V
regularly permuted by S~. Hence V = F,[S] as an F,S-module. O



APPENDIX B

Classical Spaces and Classical Groups

In this appendix K is a finite field, p := charK, V is a finite dimensional dimensional vector
space over K, a € Aut(K) with o = idg and F is the fixed field of a.

DEFINITION B.1. Let f: V xV —- K and h: V — F be functions.

(i) (V. f,h) is a linear space if o = idg, f =0 and h = 0.

(i) (V, f,h) is a symplectic space if o = idg, f is K-bilinear and for all v € V,

h(v) = f(v,v) = 0.
(iii) (V, f,h) is a unitary space if a # idg, f is K-linear in the first component and for all
v,weV,
f(v,w) = f(w,’U)a and h(’U) = f(’U,’U).
(iv) (V, f,h) is an orthogonal space, if o = idg, f is K-bilinear, and for all v,w € V and k € K
h(kv) = k*h(v) and h(v +w) = h(v) + f(v,w) + h(w).

(v) (V, f,h) is a classical space (of linear, symplectic, unitary or orthogonal type), if it is a
linear, symplectic, unitary or orthogonal space.

Let (V, f,h) be a classical space. Abusing notion we will often just say that V is a classical
space.
Assume that V is an orthogonal space. Then f(v,w) = h(v + w) — h(v) — h(w) and so f is
symmetric, that is f(v,w) = f(w,v). Also
1h(v) = h(@0) = h(v + v) = h(v) + F(v,0) + h(v),
and so f(v,v) = 2h(v). In particular, f is a symplectic form if p = 2.
DEFINITION B.2. Let V be a classical space, and v,w € V, and let U and W be K-subspaces of
V.
(a) v and w are isometric if h(v) = h(w)H
(b) v and w are perpendicular, and we write v L w, if f(v,w) =0. We write U L W if v 1L w
forallueU,weW. Wewrite V=USWIifV=U®PWand U L W.
v is isotropic if f(v,v) = 0; and U is isotropic if f |yxy= 0.
v 1s singular if h(v) = 0; and U is singular if U is isotropic and all its elements are singular.

(c)
(d)
(e) U {veV|f(vu)—0f0rallueU}
(f) rad(U) = {ue U nU* | h(u) = 0}.
(g) U is non-degenerate if rad(U) = 0.
(h) S(U) is the set of 1-dimensional singular subspaces of U.

(i) The Witt index of V is the maximum of the dimensions of the singular subspaces of V.

DEFINITION B.3. Let (V, f,h) and (V’, f',h’) be classical spaces over K and ¢ : V — V' a
bijection.
(a) ¢ is an isometry if ¢ is K-linear and for all v,w e V|
h(v?) = h(v) and fw® w?) = f(v,w).
We also will say that h and f are ¢-invariant if these equations hold.

INote that this implies f(v,v) = f(w,w).

205
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(b) ¢ is a similarity if ¢ is K-linear and there exists k € F* such that for all v,w e V,
h(v?) = kh(v) and f® w?) = kf(v,w).

(c) ¢ is a semisimilarity if there exist o € Aut(K) and k € F¥# such that ¢ is U—semilineaxﬂ and
for all v,w eV,

h(v?) = kh(v)® and f® w?) = kf(v,w)°.

We denote the group of isometries of V' by Clg(V, f, h), by Clx(V) or by CI(V). We will also
use the notation GL(V), Sp(V), GU(V) and O(V) for CI(V), if V is a linear, symplectic, unitary
and orthogonal space, respectively.

For the remainder of this appendix (V, f,h) is a non-degenerate or linear classical space and
H = Cl(V). If V is linear we define R(V) := 0, otherwise R(V) := V+. So R(V) = 0 unless V is an
orthogonal space, p = 2 and dimg V' is odd.

Note that (by below) V' is uniquely determined, up to similarity, by its type and dimension,
except in the case of an orthogonal space of even dimension. We sometimes use the notation Cl,, (F)
or Clp,(q), where m := dimg V' and ¢ := |F|.

For an orthogonal space V of dimension 2n we write O* (V) or OF (K) if V has Witt index n,
and O~ (V) or O3,,(K) if V' has Witt index n — 1.

NoTaTION B.4. For Z € S(V) define
Qz :=Cy(Z)nCy(Z+)2), CI°(V):= H® :={Qz | Ze S(V)) and Dy := Cx(Z*+) n Cu(V/Z).

We remark that @z is a weakly closed subgroup of H, so the notation H® is analogue to the
o-notation for weakly closed subgroup.
Note that we have one of the following cases:

cry) Typeof V [ VI [R(V) Remark
SL(V) linear % 0 —
Sp(V) symplectic 0 0 —
SU(V) unitary 0 0 —
1 orthogonal 0 0 dimV <2, dimV even or p odd
QV) orthogonal 0 0 dimV = 3, dimV even or p odd
O(V) = Q(V) | orthogonal | 1-dim | V+ dim V' odd and p=2

B.1. Elementary Properties

LEmMA B.5 ([MSS5l 3.1)). Let U be an isotropic but not singular K-subspace of V. Let Uy
be the set of singular vectors in U. Then V is orthogonal, p = 2, Uy is a K-subspace of U, and
dimg U/Uy = 1. In particular, dimg V* < 1.

LEMMA B.6 ([MS5] 3.2]). Let U be a K-subspace of V', and let A be a subgroup of H. Suppose
that V' is not a linear space.
(a) V/U* and (U/U A V1)* are isomorphic FNg (U)-modules. In particular, if V- = 0, then
V and V* are isomorphic FH-modules.
b) Cyvi(A) = Cy(A)/V*+.
) Cv(A) = [V, A]*.
) Cyg(V/U) < Cyx(UY); in particular Cy(V/U) < Cy(U) if U is isotropic.
) If A acts quadratically on V/V*, then A acts quadratically on'V and [V, A] is an isotropic
subspace of V.

(

(c
(d
(e

This is [MS5], 3.2], except we corrected a misprint in statement (ED

2 for the definition see
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LEmMA B.7 ([MSS5l 1.9]). Let L be a finite group and N < L, and let F be a finite field of
characteristic p and V' a finite dimensional FL-module. Put K := Endpn (V) and suppose that V is
a selfdual simple FN-module. Then the following hold:

(a) There exists an N-invariant non-degenerate symmetric, symplectic or unitary K-form s on
V.

(b) There exists a homomorphism p: L — Autp(K), h +— pp, such that L acts p-semilinearly
onV.

(c) There exists a map A : L — K h — Xy, such that the map L — K x Autp(K), h —
(An, pn), is a homomorphism and

S(Uha wh) = )\hs(vﬂ w)ph

forallv,weV, he H.

(d) Let U be a K-subspace of V and put U+ = {v e V | s(u,v) =0 for allue U}. Then Ut is
N (U)-invariant.

(e) Let U be a non-zero K-subspace of V' such that Cr,(U) acts simply on V/UL. Then U is

1-dimensional over K.
(f) Put Lo =kerp. Then s is OP (Lo) N -invariant.

LEMMA B.8. Let H = GL(V), V* the dual of V and D,E < H. Then [V, E, D] = 0 if and only
if [V*,D,E] = 0.

PROOF. For a € End(V) let a* € End(V*) be the dual homomorphism. Note that End(V) —
End(V*),a — a*, is an anti-isomorphism of rings. Hence [V, E, D] = 0 iff (e —1)(d —1) = 0 for all
de Djec E, iff (d* —1)(e*—1)=0forallde D,ec E, iff [V* D,E] =0. O

LEMMA B.9. (a) Suppose that V is an orthogonal space. Let v € V and a € H. Then
h([v,a]) = —f(v,[v,a]). In particular, [v,a] is singular if and only if v L [v,a].
(b) Suppose that V' is an orthogonal space. Let a € H such that [V,a] is 1-dimensional, and
let 0 # w e [V,a]. Then h(w) # 0, and a is the reflection associated to w, that is,

v = v — h(w) "t f (v, w)w for allveV.

In particular, Cy(V/[V,a]) = {1,a}, |a| = 2 and [V, a] is not singular.

(¢) Suppose that V is an orthogonal space. Let X < H such that [V, X, X] =0 and [V, X] is
1-dimensional. Thenp = 2, |X| =2, X is generated by a reflection, and [V, X| is isotropic
and not singular.

(d) Let A < H and suppose that U is an A-invariant subspace of V with [U, A] < U*. Then
[U, A] is singular.

(e) Let A < H and suppose that A acts cubically on V.. Then [V, A, A] is singular.

PROOF. (a): We have h(v®) = h(v + [v,a]) = h(v) + f(v, [v,a]) + h([v,a]). Since h(v?) = h(v),
this gives h([v,a]) = —f(v, [v, a]).

([B): Let r be any element of H with [V,r] = [V,a]. Define a : V — K by [v,7] = a(v)w for
veV. By , Cy(r) = [V,7]* = wt. Thus kera = w' and so there exists 0 # k € K with
a(v) = kf(v,w) for all ve V.

(%) [v,r] = kf(v,w)w and v =v+kf(v,w)w

for all v € V. Since wt = Cy(r) # V we can choose u € V with f(u,w) = 1. Then [u,r] =
kf(u,w)w = kw. Thus

h([u,r]) = h(kw) = k*h(w)  and  f(u, [u,r]) = fu, kw) = kf(u,w) = k.
By @ h([u,r]) = —f(u, [u,r]) and so k?h(w) = —k. Recall that k # 0. So h(w) = —k~* # Oe.
Together with the second equation in () this shows that
() v" = v — h(w) " f(v,w)w for all v e V.

Obviously, the action of r is uniquely determined by (##), and the right hand side of the equation
is independent of 7. Since also a satisfies (x#) in place of r, we get r = a, and the equation in (@
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holds. Moreover, Cy(V/[V,a]) = {1,a} and |a| = 2. As h(w) # 0, [V, a] is not singular. Hence (b))
holds.

Let 1 # a € X. Then X < Cy(V/[V,X]) = Cx(V/[V,a]). Thus by (B), X < {1,a} and
[V, X] = [V,a] is not singular. In particular, | X| = 2. Since X acts quadratically on V, [B.6|(e)
shows that [V, X] is isotropic. As [V, X] is not singular, implies that p = 2.

@: Since U is A-invariant, [U, A] < U and since [U, A] < Ut we conclude that [U, A] is
isotropic. Let u € U and a € A. Then [u,a] € [U, A] < U* < u' and so by @ [u,a] is singular.
Since [U, A] is isotropic, the singular vectors in [U, A] form a subspace of [U, A] (seqB.5|). Since
[U, A] is generated by the singular vectors [u,a], u € U,a € A, we conclude that [U, 4] is singular.

@: Since A acts cubically on V, [V, A4, A] < Cy(A) and so by [B.6|[c), [V, 4, A] < [V, A]*. Thus
(ED follows from @ applied with U = [V, A]. O

LEMMA B.10. Let Vi and Vs be K-subspaces of V with V- =V, + V. Let a € GLg(V) and define
a; : Vi > V& v — v Then a is an isometry on V if and only if a1 and az are isometries and
f8, v8) = f(v1,v2) for all vy € Vi and ve € V3.

PrOOF. The forward direction is obvious. So suppose that a; and ag are isometries and
fvf,v8) = f(vy,v9) for all v € Vi and vy € V5. Since f is F-bilinear we conclude that f is a-
invariant. Since h(vy + v2) = h(vy) + f(v1,v2) + h(ve), in the case of an orthogonal space, also h is
a-invariant. ]

LEMMA B.11. Suppose that V is not a linear space. Let Z € S(V) and v € V\Z*. Let i, be
the number of elements w € v + Z isometric to v, and for A\ € F let sy be the number of elements
w € v+ Z with h(w) = A.

(a) If V is a symplectic space then i, = so = [v+ Z| = |K|.
(b) If V is a unitary space then i, = sy = |F| for all A € F.
(¢) IfV is an orthogonal space then i, = sy =1 for all A € K.

PROOF. Choose z € Z with f(z,v) = —1 and let k € K.
@: In a symplectic space all elements are singular. Hence @ holds.

(]E[): Suppose that f is unitary, so h(z) = f(z,z) for z € V. Then
hv+kz) = f(v+kz,v+kz) = f(v,0) + kf(z,v) + k% f(2,v) + kk“ f(2, 2) = h(v) — (k + k%).

Thus h(v + kz) = X if and only if k + k* = h(v) — A. Since the function K — F, k — k + k°, is
F-linear and surjective, we conclude that for a given A € F there are exactly |F| elements k € K with
k+ k> = h(v) — A. So (b holds.

(c): Suppose H = O(V'). Then

h(v + kz) = h(v) + f(v, kz) + k*h(z) = h(v) — k.

Hence h(v + kz) = X if and only if k = h(v) — A. This gives (d]. O

COROLLARY B.12. Suppose that S(V) # & and that V is not a 2-dimensional orthogonal space.
(a) The number of singular 1-spaces in V is congruent to 1 modulo p.
(b) Then number of non-zero singular vectors in V is congruent to |K¥| modulo p.

(¢) Any p-group of semilinear similarities of V' fizes a singular vector and a singular 1-space
nV.
PRrOOF. @: Let Z € S(V). Put m := dimg V. If V' is a linear, symplectic or unitary space put
t = |F|. If V is an orthogonal space put ¢t = 1. Let E be a 2-dimensional subspace of V with Z < E
Suppose that E < Z1. Note that one of the following holds:

~ Eis singular, £/Z € S(Z+/Z), and all [K| 1-spaces of E distinct from Z are in S(V).
~ E is not singular, F/Z ¢ S(Z+/Z), and Z is the only singular 1-space of E.
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It follows that
1S(ZH)\{(Z}] = [K||S(Z2+/2)|.

Suppose next that £ € Z+. Then shows that F contains exactly t elements of S(V') distinct
from Z. Note also that there are |K|™~2 2-dimensional subspaces E of V with Z < E « Zt. Thus

[S(VI\S(ZH)] = [KI™ 2.

Hence
ISV =1+ [K||S(Z/2)| + K™t

Since p | |K|, we conclude that either |S(V)| =1 (mod p) or m = 2 and p t t. In the latter case,
since p | |F| we get t = 1 and V is an orthogonal space. Since 2-dimensional orthogonal spaces are
excluded by the hypothesis of the corollary, @ is proved.

(]Eb: Note that every singular 1-space contains exactly |K*| non-zero singular vectors. So (]E[)
follows from @

: By @ and (]ED, neither the number of singular 1-spaces nor the number of non-zero singular
vectors in V' is divisible by p. This gives . O

LEMMA B.13. Let U be a K-subspace of V and put W = (S(U)). Then W =U or W = rad(U).
In particular, V. =(S(V)) or S(V) = &.

PROOF. Let Y be a 1-dimensional subspace of U. If Y € W+, then there exists Z € S(V) with
Y €« 7+, ByZ + Y contains a singular 1-space X # Z. Thus Y < Z+Y =Z+X <W.

We have proved that U € W u W+, and so U < W+ or U < W. In the second case U = W and
we are done. So suppose U < W+. Then W < U n U+, W is singular and W < rad(U). Clearly
rad(U) < W and so W = rad(U).

Either V is linear or rad(V) = 0. In the first case (S(V)) = V is obvious, in the second case
either (S(V)) =V or (S(V)) = rad(V) =0 and S(V) = &. O

LEMMA B.14. Suppose that V is a symplectic space andp = 2. Let V' :=V xK as a set. Define
an addition and scalar multiplication on V' by

(v, k) + (w, 1) = (v+w,k+1+ flv,w)) and l(v,k) == (v, 1%k)
for allv,w eV, k,l € K. Define
B:V' - K, (v,k) =k, and f: V' xV' >K, ((v,k),(w,])) — f(v,w).

(a) (V', f', 1) is a non-degenerate orthogonal space with V'+ = {(0,k) | k € K}.
(b) The function V. — V'/V't v (v,0) + V' an isometry of symplectic spaces.
¢) Let a € Sp(V) and define

a: V>V, (vk) — (k).

—~

Then o' € O(V').
(d) The function
Sp(V) — O(V), aw— d,

s an isomorphism.
(e) Suppose in addition that V = Vi /Vi- where (V1, f1, h1) is a non-degenerate orthogonal space
with Vi~ # 0. Then the function

ViV, w— (w+ Vi ha(w))

18 an isometry.
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PROOF. @: Let w,v,w € V and j,k,l € K. The addition is clearly commutative, (0,0) is an
additive identity and (v, k) is its own inverse. Also

(u, ) + (v, k) + (w, 1)) = (utv+w, j+k+1+ f(u,v) + fu,w) + f(o,w) = ((v,5) + (v, k) + (w,1)
and so V' is an abelian group. Note that

j((va k) + (w7l)) = (]U +jw7j2k +jzl +j2f(vaw)) = ](ka) +j(w’l)a

(G + k) (w, 1) = (jw + kw, 1+ k1) = j(w, 1) + k(w, 1) and (jk)(w,1) = (jkw, j*k*) = j(k(w,1)).
Thus V' is a vector space over K. Since f is a symmetric form, so is f’. Moreover,
W (k(w,1)) = K (kw, k*l) = Kl = K*h/(w,1)
and
W((v.k)+ (w,0) =h'(v+wk+1+ fv,w) =k+1+ flv,w) =W (v,k) + f'(v,w) + B (w,1))

and so (V', f’,h') is an orthogonal space. Note that (v,k) € V'* if and only if v € V+ = 0. Also
K (v, k) =0 if and only if & = 0. Thus rad(V’) = 0 and V' is non-degenerate.

(]E[) and should be obvious.

@: Let be O(V). Then b induces an isometry on the symplectic space V’/V'+. Together with
@ we conclude that there exists a unique a € Sp(V) such that (v, k)’ + V'* = (v%,0) + V'* for all
v eV, keK. Since bis an isometry, h'((v, k)b) = 1/ (v,k) = k and we conclude that (v, k)" = (v, k).
Thus b = o’ and (d) holds.

@ is readily verified. O]

LEmMA B.15 (Witt’s Lemma). Let U and W be K-subspaces of V' suppose that 8 : U — W is
an isometry with (U n R(V))? = W n R(V). Then (3 extends to an isometry of V.

PROOF. If V is a linear space, this is obvious. So suppose V is a symplectic, orthogonal or
unitary space. If V4 = 0, this is Witt’s Lemma on page 81 of [As] 20].

It remains to treat the case where V' is an orthogonal space with V+ # 0. Then R(V) = V.
Since (U n R(V))? = W n R(V) we conclude that 8 induces an isometry of symplectic spaces

b:U+ Vvt s w vyt

According to the already treated symplectic case, b extends to an isometry a of the symplectic space
V/V+i. By 7 there exists an isometry a’ of V with v® + V+ = (v + V1) for all v € V. Let
we U. Then u? + V1 = % + V= and since both 3 and @’ are isometries, h(u?) = h(u®). It follows
that u? = v, and so the lemma also holds for an orthogonal space with V+ # 0. |

LEMMA B.16. Let v and w be isometric elements in V\R(V'). Then there exists a € H with
w® =wv. In particular, H acts transitively on the set of non-zero singular vectors.

PROOF. Since v and w are isometric, the function 5 : Kv — Kw, kv — kw is an isometry. Also

Kvn R(V) =0 =Kwn R(V), and so by Witt’s Lemma /3 extends to an isometry a of V. Then
a _ .03 _

v® =P = w. 0
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B.2. The Classification of Classical Spaces

DEFINITION B.17. Let (v;)!; be a family of vectors in V.
(a) (vi)i—q is orthogonal if f(v;,v;) =0 for all 1 <i,j < n with ¢ # j.
(b) (v;)P_, is orthonormal if it is orthogonal and h(v;) = 1 for all 1 < i < n.
(c) (vi)Iy is hyperbolic if n = 2l is even, h(v;) =0 for all 1 <4 < n, and f(v;,vp41-:) = 1 for
all 1 <i<U, and f(vi,v;) =0foralll <i,j <nwithi+j#n+1.
(d) V is hyperbolic if V has a hyperbolic basis.
(e) V is definite, if V' has no non-zero singular vectors.

LEMMA B.18. Let dimV =:m =:2n+¢, e€ {0,1}.

(a) Suppose V' is a symplectic space.
(a) V' has a hyperbolic basis. In particular, m is even.
(b) V' has Witt index n.
(c) Up to isometry, V is uniquely determined by m.
(b) Suppose V' is a unitary space.
(a) V has an orthonormal basis.
(b) V has a basis (v;)™, such that (v;)#", is hyperbolic, and if m is odd, f(vi,vm) = 0
for all1 < i< 2n and h(vy) = 1.
(¢) V has Witt index n.
(d) Up to isometry, V is uniquely determined by m.

(¢) Suppose V is an orthogonal space and p is odd. Then V has an orthogonal basis (v;),
such that h(v;) =1 for 1 <i<m—1.

(d) Suppose V is an orthogonal space and m is odd.

(a) V has a basis (u;)™, such that (u;)?, is hyperbolic, f(ui,um) =0 for all 1 < i <
—1, and h(u,,) # 0.
(b) V has Witt index n.

(c) Up to similarity, V is uniquely determined by m.

(d) If p =2 then V is uniquely determined up to isometry by m.

(e) Ifp is odd then V is uniquely determined up to isometry by m and the coset h(u,, K.

Suppose V' is an orthogonal space and m is even.

(a) Fither V has Witt index n and a hyperbolic basis, or V' has Witt index n — 1 and a
basis (v;)q such that (v;)"4 is hyperbolzc fvi,v5) =0 forl <i<2and3 <j<m,
h(vy) = h(va) = 1 and the polynomial x*> — f(vi,ve)x + 1 has no roots in K.

(b) Up to isometry, V is uniquely determined by m and its Witt index.

(e)

PROOF. Suppose that V' is a symplectic, unitary or orthogonal space. Let U be a singular
subspace of V, so U < Ut. Then U n V+ = 0 and so dimg V/U+ = dimg U. In particular,
2dimg U < dimg V' and thus V has Witt index at most n.

@ By [Hul I1.9.6(b)] V has a hyperbolic basis, dim V is even and, up to isometry, V is uniquely
determined by its dimension. Let (v;)?"; be a hyperbolic basis. Then K{v1,...,v,) is a singular
subspace of dimension n. Thus V has Wltt index at least n, and (ED holds.

(b): By [Hu, IL10.4a ] V has an orthonormal basis (v;)7; and up to isometry is uniquely
determined by its dimension. Put W = K{vy,...,v24). Then by [Hul 10.4b] W has a hyperbolic
basis (u;)?",. Then W+ is I-dimensional with orthonormal basis say u,,. Also Kui,...,u,) is a
singular subspace of dimension n, and so holds.

(c): [Ful 11.10.9b).

@ Suppose first that p is odd. Then by [As| 21.3] V has a hyperbolic hyperplane W. Note
that W has Witt index n and so also V' has Witt index n. As in [As| choose 0 # z € W+ and a
generator ¢ of Kf, and define sgn(V) = +1 if h(z) is a square in K and sgn(V) = —1 if not. By
[Asl 21.4], up to isometry, there are exactly two m-dimensional orthogonal spaces, namely (V, f, h)
and (V, cf,ch). Moreover, (V, f,h) and (V,cf,ch) are similar, and one has sgn equal to +1 and the
other equal to —1. So @ holds if p is odd.



212 B. CLASSICAL SPACES AND CLASSICAL GROUPS

If p = 2 then V1 # 0 and by (EI), the symplectic space V/V+ has a hyperbolic basis (v; +VJ‘)1221.
Since h(V+Y) = K, v; + V* contains a singular vector and we may choose v; to be singular. Then
K{(v;)™ ) is an n-dimensional singular subspace of V and so V has Witt index n. Since K? = K
we can choose vy, € V+ with h(v,,) = 1. In particular, up to isometry, V is uniquely determined by
its dimension, and so @ also holds if p = 2.

@: By [As| 21.6] V is isometric to D™ or D"~1(@Q, where D and @Q are 2-dimensional orthogonal
spaces with D hyperbolic and Q definite. Moreover, D™ has Witt index n, while D" 1@ has Witt
index n — 1. Let E be an extension field of K with dimg E = 2 and let idg # o € Autg(E). Define

T,: ExE—>K, (a,b) — a’b+%a, and Ny: E-K, a — a%a.

Then by [As, 21.9] (E,T,, N,) is a definite orthogonal space and isometric to Q. Let A be any
element of K such that 2 — Az + 1 has no root in K. Then z? — Az + 1 has a root £ € E. It follows
that £ + €% = X and £7¢ = 1. Since £ ¢ K, (1,£) is K-basis for E and

No(1) =171=1, T,(1,§) =17¢+ &1 =7, Ny =¢¢=1
Thus holds. O

LEMMA B.19. Suppose that f # 0 and let d be the Witt index of V.

(a) H acts transitively on the mazimal singular subspace of V. In particular, all mazimal
singular subspace of V' have dimension d.

(b) Let W be a mazximal hyperbolic subspace of V. Then V.= W @ W+ and W+ is definite.

(¢) If V is definite, then dimg V <1 or H = O~ (V) and dimg V' = 2.

PROOF. (a): See [As, 20.8].
([o): See [As, 19.5].
follows from O

B.3. The Clifford Algebra

In this section (V, f, h) is an orthogonal space. We will define a normal subgroup Q(V) of O(V)
via the Spinor norm and Dickson invariant. In our definition the Spinor norm S is defined for all
a € O(V) and not only for products of reflections. This allows to define Q(V') also in the case of a
four dimensional orthogonal space of Witt index two over Fs.

We remark that Q(V) is often defined to be O(V)’. With our definition Q(V) = O(V)" with two
exceptions: Q) (2) = SLa(2) x SL2(2), while Of (2) ~ 32.2 and Q5(2) = O5(2) =~ Sym(6), while
O5(2)" =~ Alt(6).

We will also prove that Cony(W*) =~ Q(W) if V& = 0 and W is a K-subspace of V with
W AW+ = 0. This of course is well-known, but the case, where W is a four dimensional orthogonal
space of Witt index two over Fs, is often ignored.

As a byproduct we obtain that the elements of @z, Z € S(V'), naturally correspond to elements
of the Clifford algebra of V', see the elements wq 4. below.

Let C := C(V, f, h) be the Clifford algebra of the orthogonal space (V, f, h). So C'is an associative
K-algebra with identity generated by the K-space V subject to the relations v? = h(v) for v e V.
Let v,w e V. Then
h(v) + f(v,w) + h(w) = h(v + w) = (v + w)? = v* + vw + wv + w? = h(v) + vw + wv + h(w),
and so
vw + wv = f(v,w) e K and vw = —wv + f(v,w).

Note that the opposite algebra fulfills the same relations and so there exists a unique anti-
automorphism of K-algebras

0 : C—>C with =v forveV.
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Then for 2,y € V, h(z) = 22 = 2% and f(z,y) = zy + yx = 2% + ya2®. We extend h and f as
follows:
h: C—C, z — 2 and f: CxC—C, (x,y) — 2%y +1z
Note that f is K-bilinear and for all z,y € C :
ha+y) = (@ +9)’@+y) = (@ +y") @ +y) = 2"z + 2" + ¢z + 'y = h(z) + f(z,y) + h(y).
Put E:={1,—-1} S Z (so |E| = 2 even if p = 2). For i € E define
Ci =Ci(V,f,h) =Kvy v, | ne€NJvy,...;0, €V, (=1)" = 1),

where vy ---v, =11 n=0.

Then (Cy,C_,) is an E-grading of C, that is C' = C1 @ C_; and C;C; < C;; for all 4,5 € E.
Define

Cliff(V):={xeCyuC_1|0#h(z) e K2V = Va}.

Let 2 € Clif f(V) and y € C. Then 0 # 2’2 = h(z) € K and so z is invertible with inverse h(z)'2?.
We compute

h(zy) = (zy)’wy = y’2wy = y’h(z)y = h(z)y’y = h(z)h(y).
For y = 2~ this shows that h(z™') = h(z)™"' € Kf: For y € Cliff(V) we get 0 # h(zy) € K. It
follows that Clif f(V') is a multiplicative subgroup of C' and the restriction of h to Clif f(V) is a

multiplicative homomorphism from Clif f(V') to K.
For z € Clif f(V) and y € C define y* := 2~ 'yz. Then, since h(z) e K < Z(C),

h(y®) = h(z"'yz) = h(z™")(h(y)h(x)) = h(x) " h(y)h(z) = h(y).

So h and thus also f is invariant under conjugation by x € Clif f(V).
Let d(x) be the unique element of E with x € Cy(,). Then

d: ClLff(V) > E, zw— d(z),

is a group homomorphism.
Since x is invertible the condition #V = Vx is equivalent to V* = V (where V® := 271V z).
Define

wy: VoV, v dx)v”.

Since d(z) = £1, h and f are invariant under multiplication by d(z), and, as seen above, also under
conjugation by z. Hence w, € O(V') and

w: Clff(V)—-0(V), z— w,,

is a homomorphism.
Let a € V with h(a) # 0, so a is invertible with inverse h(a)~!a. Let v € V. Observe that
d(a) = —1,va = —av + f(v,a) and a=! = h(a)"ta. Thus

d(a)a 'va = —(a" ' (—av + f(v,a))) =v— f(v,a)a™" =v—h(a)"' f(v,a)a.

In particular, a € Clif f(V'), and w, is the reflection associated to a.
Next let b,c € V such that b is singular and ¢ 1 b. Note that > = h(b) = 0 and bc =
—cb+ f(b,¢) = —cb. Hence

(%) beb = —bbe = h(b)c = 0, and  (be)? = bebe = 0
Put x := 1+ be. Then 2% =1+ ¢b = 1 — bc and
h(x) = h(1 4+ bc) = 0(1 + be)(1 + be) = (1 —be)(1+be) = 1 — be + be — (be)? = 1.

In particular, x = 1 4 bc is invertible with inverse 1 — bc. Recall that 1 € C and so also x € C; and
d(xz) = 1. Thus w, is conjugation by x.
We compute:

(xx) vbc = (—bv+ f(v,b))c = —bvc+ f(v,b)c = —b(—cv+ f(v,¢))+ f(v,b)c = bev— f (v, )b+ f (v, b)c
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and
7 oz = (1 —be)v(l + be) = (1 — be)(v + vbe) = (1 — be)v + (1 — be)vbe

"~ bew + (1 - be) (bev — f(0, )b + f(0,b)c)

= v —bev + bev — f(v, )b+ f(v,b)c — bebev + f(v, €)beb — f(v,b)bec

© o~ F(v, )b+ f(v,b)e — (v, b)bh(c)

=v— f(v,0)b+ f(v,b)(c— h(c)b).
In particular, = 1Vz = V. Hence x = 1 + bc e Clif f(V) and
Witbe * V_"/v v o= U—f(U,C)b+f(U,b)(C—h<C)b)

is an isometry of V.
We claim that

@ O(V) = (wa,witbe | a,b,c €V, h(a) # 0,h(b) = 0, f(b,c) = 0).

Indeed, by [Asl 22.7] O(V) is generated by the reflections w,, unless O(V) = Of (2). In the latter
case the group generated by reflections has index two and does not contain wy4 . for b, c € V*# with
h(b) = h(c) =0, f(b,c) =0 and b # c. So () holds.

In particular, w defined above is surjective. Put Z := kerw. So Clif f(V)/Z =~ O(V), and h
and d induce well-defined homomorphisms

S: OV) - K/hZ), wy — h(x)h(Z) and D: O(V)—- E/d(Z), w, — d(x)d(Z),

where 2 runs through the elements of Clif f(V). S(z) is called the Spinor norm of z, and D(x) is
called the Dickson invariant of x. We define

QV):=kerSnkerD ={zeO0(V)|S(z)=1and D(z) = 1}.
Since h(1 + bc) =1 and d(1 + be) = 1 we have S(wi4p.) = 1 and D(wy4pe) = 1. So
OO(V) = <wl+bc | b,C € Mh(b) = 07 f(b7 C) = 0> < Q(V)

We will determine now O(V)/Q(V). By (@), O(V) = O°(V){w, | a € V,h(a) # 0), and since
0°(V) < Q(V), we conclude that

O(V)/V) = {(S(wa), D(wa) ) | a € V,h(a) # 0).
Put m := dim K and note that

K if m is even,
Z(C) =<K+ K(vy - vy) if misodd, pisodd and (v;)™, is an orthogonal basis for V,
K+ V% if m is odd and p = 2.
In particular, Z(C) n C; = K. We claim that
(I1) Z =KoV,

Let z € Clif f(V). Then x € Z if and only v* = d(z)v for all v € V. If p = 2 this just means
reZ(C),andsoxeC1nZ(C)=Ktorze C_1 n Z(C) = V*¥ where m is odd in the latter case.
So holds for p = 2.

So suppose p is odd. Assume z € C_;. Then d(z) = —1 and so v® = —v for all v € V. It follows
that w® = —w for all w € C_; and so also ¥ = —z, a contradiction since z* = x, p is odd and
x#0. Hence z € C1, d(z) =1 and z € Z(C) n C; = K. So x € KF. Since p is odd, V+ = 0, and so
also holds for odd p.

If V1 # 0, then p = 2, K¥ = K, and so h(Z) = K* and d(Z) = E. Tt follows that O(V) =
ker D = ker S = Q(V) in this case.
So suppose V+ = 0. Then shows that h(Z) = K2 and d(Z) = 1. Hence S and D are given
by
S: OV)—->K/K2 w, — h(@)K?  and D: OV)—E, w, — d(z).

Hence S(w,) = 1 if and only if a is a square in K2. Moreover, D(w,) = —1.
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Suppose that p = 2. Then K* = K*, and so S(w,) = 1 for all a € V with h(a) # 0. Thus
ker S = O(V), Q(V) =ker D and O(V)/QUV) = Cs.

Suppose now that p is odd and dim V > 2. Then K#/K*2 =~ Cy, and for each k € K¥ there exists
a € V with h(a) = k. If k is a square S(w,) = 1 and D(w,) = —1, and if k is not a square, S(w,) # 1
and D(w,) = —1. Thus O(V)/Q(V) = Cy x Cb.

Suppose that p is odd and dimV = 1. Then (for example by ) O(V) = {l,w,}, where
aeVE Thus Q(V) =1 and O(V)/QV) = Cs.

Suppose p is odd. Then we can identify e € E with el in K. It follows that D(w,) = —1 =
det(wg) and D(wi4pe) = 1 = det(wi4pe). By the elements w, and wi1p. generate O(V). Thus
D(z) = det(z) for all ze O(V). In particular, Q(V) = {z € SO(V) | S(z) = 1}.

The following table summarize the preceding results:

dmV | p |OV)/QV) Q(V)
odd 2 1 o(V)
even | 2 Cy {ze O(V) | D(z) =1}
>2 |odd| CyxCy |{zeSO(V)|S(z)=1}
1 odd CQ 1

We define
Spin(V) :={Q +bc|b,ce V,h(b) =0, f(b,c) =0) < Clif f(V) n Cy.
Note that w(Spin(V)) = Q(V) if dimg V' > 3.
LEMMA B.20. Suppose that V is an orthogonal space with V+ =0 and let W be a K-space of V
with W n W+ = 0.
(a) The restriction function 7 : Conn(WE) — O(W), t — t|w, is an isomorphism.
(b) Let SY and DV be the Spinor norm and Dickson invariant for the orthogonal space W .
Then S(t) = SW (t|lw) and D(t) = DY (tlw) for all t € ConH(WH).
(c) 7 induces an isomorphism from Coyy(W) to Q(W).

PROOF. @: Since Vt =0and Wn W+ =0,V = W@ W+, Hence (EI) follows from
@: Let te CO(V)(WJ-). Then t|y is a product of elements of the form w!” wf‘ibc, a,b,ce W,
h(a) # 0, h(b) = 0, f(b,c) = 0. Since W+ < a* n b+ n et , w, and wy 4y, centralize W, we get

W W
walw = w, and  Witbelw = Wihpe-

Thus ¢ is the corresponding product of the elements of the form w,, wiyp.. Also
Swa) = h(@K?=5"(w},.), Dw.) =-1=D"(w),
S(witee) = 1 = SW(%V[ibc)a D(wisbe) = = DW(wac)'
So indeed S(t) = SV (t|w) and D(t) = DV (t|w).
(d): Let t € Cory(WH). Then t € (V) if and only if S(t) = D(t) = 1 and so by (b)) if and only
if SW(t|w) = DY (tlw) = 1 and thus if and only if ¢y € Q(W). Hence (c) follows from @ O

B.4. Normalizers of Singular Subspaces

LEMMA B.21. Let U be an k-dimensional isotropic subspace of V and E := Cy(U) nCy(V/U).
(a) Suppose V is not a linear space. Then E = Cy(V/U).
(b) Suppose V- =0. Then E = Cy(V/U) = Cx(UL).
(c) Suppose thatV is a linear space. Then E = Uk (V/U)*, |E| = [K|*"=%) and |V /Cy (E)|=

|K|n—k
(d) Suppose that V is a symplectic space. Then E =~ S*(U), |E| = |K| 5% and |[V/Cv(E)| =
K.

(e) Suppose that V is a unitary space. Then E =~ U(U), |E| = |F|¥* and |V/Cy (E)| = |F|?*.



216 B. CLASSICAL SPACES AND CLASSICAL GROUPS

k(k—1)

(f) Suppose that V is an orthogonal space and U is singular. Then E =~ A*(U), |E| = [K|~ =z ,
V/Cy(B)| - K[,

(g) Suppose that V' is an orthogonal space and U is not singular. Put Uy := {u € U | h(u) = 0},
EQ = CE(V/U()), and E1 = FEn Q(V) Then p = 2, EQ < E1 < E, El/E() = U(),
Eo = A2(Up), and |Ey| = [K|™ T . If V- AU # 0 then |V/Cy (E)| = |K|*~! and E = Ej.
FVEAU =0 then |V/Cy(E)| = [K|¥ and |E/E;| = 2.

Here all the isomorphisms are ZNg(U)-module isomorphisms.

Proor. @: By@ Cy(V/U)<Cx(U)and so Cy(V/U) =Cy(V/U)nCgx(U) = E.

(]EI): By @) V /Ut is dual to UL/UL A V4 as an FNg(U) module. Since V+ = 0 we have
ULt = U and so V/U is dual to U*. Hence Cy(V/U) = C(U). By (d) Cu(V/U) = E and so (b)
is proved.

The remaining statements are [MS5 3.4]. O

LEMMA B.22 ([MS5| 3.5]). Let U be a k-dimensional isotropic subspace of V. Let Uy be the
subspace of all singular elements of U and put k := dimg Uy. Suppose that k = 2. Put F :=
Cu(U) n Cy(V/U), and P := OP (Ny:(U)).

(a) If V is a linear or unitary space, then E is a simple F, P-module.

(b) If V is a symplectic space and p is odd, then E is a simple F, P module.

(¢) If V is an orthogonal space and U is singular, then one of the following holds:
(1) k=3 and E is a simple F, P-module.
(2) k=2, P centralizes E and E is a simple F, Ny (U)-module.

(d) Suppose that V is a symplectic space and p = 2 or an orthogonal space and U is not
singular. Then p = 2. Let Ey be the sum of the simple Fo P-submodules of E. Then one of
the following holds:

(1) k=3, Ey is a simple FoP-module, and Ey = )\, UF.

(2) k=2, |K|>2 or V1 €U, Ey = Cg(P). |Eo| = [K| and Ng:(U) acts simply on Ey.

(3) k =2, K| = 2, V is symplectic or V+ < U, and E is the direct sum of simple
Fy P-modules of order 2 and 4.

B.5. Point-Stabilizers

LEMMA B.23. Suppose that V is not a linear space. Let Z € S(V), 0 # 2z € Z and v € V with
f(z,v) = —1. Let T be the set of all a in Z* such that v and v + a are isometric. For a €T let v,
be the unique element of GLg(V') with

ve=v+a and — w =u+ f(u,a)z  for allue Z*.
() 74 € Qz for alla € T, [v,q] € T for all ¢ € Q., and the function T — Q.,a — Y, is a
bijection with inverse Q. — T,q — [v,q].
Let aeT. Then v4 € Dz if and only if a € Z.
For each w e V\Z*, Qz acts regularly on the set of elements in w + Z* isometric to w.

)
(¢)
(d) For each w e V\Z*, Dy acts regularly on the set of elements in w + Z isometric to w.
(e) Leta,be T. Then

YaVo = Yatb+f(ab)zs [Yas 1) = V(F(b.a)—flab))zs  and AL =_f@aa)s-
(f) The function Qz/Dy — Z*/Z, qDz — [v,q| + Z, is an F,Cy(Z)-isomorphism.
(8) IfQz # 1, then Cv(Qz) = V* + Z.
PROOF. @: Let a € Z+ and 7 € Homg(Z+,K) with Z7 = 0. Define 7, , € GLx(V) by
vier =v+4a and w7 =wu+ (ut)z for ue Z+.

Then 7, centralizes Z, Z+/Z and V/Z*.

Now let v € GLg(V) such that v centralizes Z, Z+, and V/Z+. Then there exists a unique
a€ Zt and 7 € Homg(Z+,K) with Z7 = 0 such that v = 7, ,, namely a = [v,7] and 7 is defined
by [u,v] = (ur)z for u e Z+.
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Observe that |41 is an isometry of Z+ and that |k, : Kv — K(v + a) is an isometry if and
only if v 4 a is isometric to v, that is, if and only if a € T.
For u € Z+ we have

fW,07) = flu+ (ur)z,v+a) = f(u,0)+ f(u,a) + (ur) f(2,0) + (uT) f (2, 0) = f(u,0)+ f(u,a) —ur.
Hence shows that + is an isometry if and only if @ € 7 and ur = f(u,a) for all u € Z+, and so
if and only if a € T and v = ~,.

@: If a e T nZ, then f(u,a) = 0 for all w € Z+. Thus 7, centralizes Z+ and V/Z and so
Yo € Dz. Conversely, if v, € Dz, then a = [v,7v,] € Z.

and @: Without loss w = v. Let v/ € v + Z* be isometric to v and put a := v — v. Then
a € T and by @ v, is the unique element of Q7 with [v,v,] = a and so also the unique element of
Qz with v7e = v'. Thus holds. Note that v’ € v + Z if and only if a € Z and so by (b)) if and
only if v, € Dy. Hence also @ holds.

@: Let a,b e T. Then 7,7 is an isometry on V, 8o v7*7" = v + [v,y,7s] is isometric to v and
[V, VY] € T. Since

01" =(v+a)® =v+b+a+ f(a,b)z

we conclude that [v,v,7] = b+ a + f(a,b)z € T and

YaVb = Ya+b+f(a,b)z-

It follows that
Ya Vb = VVaV(f(b,a)—f(a,b))z> [%7%] = Y(f(b,a)—f(a,b))z and ’7ap = Vpa+(p—1)f(a,a)z = V—f(a,a)z-

@): Define @ : Q7 — Z+/Z, q— [v,q] + Z. Since Qz centralizes Z+/Z, ® is a homomorphism.
Let ¢ € Qz. Note that ¢ € Dy if and only if [v,q] € Z and so ker® = Dy. Let u € Z+. By
B.11| there exists v/ € v + u + Z with h(v') = h(v). Hence by (b)), v? = v’ for some ¢ € Q7 and so
[v,q] =v —veu+ Z, So D is surjective, and @ is proved.

: By @ [V,Qz] + Z = Z+ and so [B.6(c) gives

Cv(Qz)nZt =[V.Qz) 02t = (V.Qz] + 2) =2+ = Z + V™.

By () all orbits of Q7 on V\Z are regular. So if Qz # 1, Cy(Qz) < Z+, and (g) holds. O

LEMMA B.24. Let Z € S(V).
(a) Let € Homg(Z+,Z) with Z + R(V) < ker . Then there exists q € Qz with u? = u + ur
for allue Z*+.
(b) Let z€ Z and we Z+ with w ¢ Z + R(V). Then there exists q € Qz with w? = w + z.

PRrROOF. @: Suppose that V is a linear space. Then Z+ = V. Define ¢ : V — V,u — u + ur.
Then ¢ € Qz and @ holds.

So suppose that V' is not a linear space. Pick 0 # 2z € Z and v € V such that f(z,v) = —1.
Since Z +V+ = Z + R(V) < ker 7, there exists a € 2+ with ur = f(u,a)z for all u e U*. By
v+ a + Z contains an element isometric to v and so we may assume that v + a is isometric to v. Let
~q be the element of Q7 defined in Then for all u e Z+

ue =u+ f(u,a)z = u+ur.

(b): Since w ¢ Z + R(V), there exists 7 € Hom(Z*,Z) with Z + R(V) < ker7 and w”™ = 2.
Now (|b) follows from (al). O

LEMMA B.25. Suppose that V is not a linear space. Let Y, Z € S(V) with Y « Z+. Put
K:=Cy(Z)nCy(Y), K*:=Ny(Z)n Ng(Y) and C:=Cg«(Z+nY?1).
(a) V =Z +{Y9z).
(b) Qz acts regularly on S(V)\S(Z1).
(c) Cg(2)=QzK,QznK =1, K =~ Cl(Z*)Z), and Qz/Dz is a natural Cl(Z*)Z)-module
for Cy(Z) and for K.
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(d) Nu(Z) =QzK*, QznK* =1, Ng(Z) acts transitively on Z and on V/Z+, K¥* = O x K
and Qz/Dyz =V /Z+ @ Z/Z+ as an F,(C x K)-module and as an F,Ny (Z)-module.

PROOF. Let 0 # y € Y and choose z € Z with f(z,y) = —1.
@: By [B.23|[f) the function Qz/Dz — Z+/Z, qDz > [y,q] + Z, is an isomorphism. Thus
V=Y+2Z" =Y +[y,Qz] +Z<{Y¥)+ Z

(]E[): Let X € S(V) with X € Z+. Then V = X + 7+ and we can choose z € X with f(z,z) = —1.
Hence z € y + Z*+. Note that = and y are both singular and so isometric. By [B.23(c), Qz acts

regularly on the elements in y + Z* isometric to y and so z € y?7. Hence also X € Y97,

and @: Since @z acts regularly on the elements in y + Z+ isometric to y, a Frattini
argument shows that Cy(Z) = Qz(Cu(Z) n K) and Qz n K = 1. Similarly, as @z acts regularly
on S(V)\S(Z1) we have Ng(Z) = QzK* and Qz n K* = 1. Put W := Z+ n Y. Then, as a
module for K*,

V=_ZaY)aW.

Let k,1 € K¥ and b € GLg(W). Define a € GLg(V) by 2% = kz, y* = ly and w® = w® for all
weW. Bya is an isometry if and only if a| z 1y and b are isometries. Since Y and Z are singular,
aly and a|z are isometries, and another application of shows that a|z,y is an isometry if and
only if f(2%,y*) = —1. This holds if and only if kI* = 1, that is if and only if k = [=*. Thus C = K*
is cyclic and acts transitively on Z and V/Z+. Also K = K* nCg(Z) = Cl(W) = Cl(Z+/Z). Since
the function

7:Qz/Dy — ZY/Z, qDy — [y,q| + Z
is a O (Z)-isomorphism, we conclude that Qz/Dy is a natural Cl(Z+/Z)-module for Cg(Z) and
for K. Let ¢ € Qz and ¢ € C with y° = ly. Then 7(¢°) = [y°,q] + Z = Ir(q). Hence Qz/Dy =
V/Zt @k Z)Z+ as an F,(C x K)-module and so also as an F, Ny (Z)-module. O

LEMMA B.26. Suppose that V' symplectic space with dimg V' = 2, a unitary space with dimg V' >
2, or an V is an orthogonal space with dimg V > 3. Let Y, Z e S(V) with Y « Z+.

(a) Qv,Qz)=H°®.
(b) H? acts transitively on S(V).

PROOF. Put L = (Qy,Qz). We claim that L acts transitively on S(V). Let X € S(V). By
Qz acts transitively on S(V)\S(Z1). If X £ Z+ this gives X e Y¥2 c YE.

Suppose next that X < Z*. Note that X < V* and, by [B.25{fa), V = Z + (Y ?9#). Thus there
exists a € Qz with X € Y%L, Note that also Z € Y** and so [B.25|(b) applied with Y in place of
Z shows that X € Z9v* < ZL. We proved that S(V)\S(Z+) € Y* and S(Z+) < Z*.

Suppose for a contradiction that L does not acts transitively on S(V). Then L has two orbits
on S(V), namely Z' = S(Z1) and YI = S(V)\S(Z1). By symmetry, Y = S(Y*). Hence
U:=(E)<Y! andsoalso U < Ut and U is singular. Note that

SUnzZHYcSYHnS(zh)=YEnzl = @.
Since U n Z* is singular, this gives UnZ+ = 0and U = Y +(UnZ+) =Y. Thus Y* = {Y} and by
symmetry ZL = {Z}. Tt follows that S(V) = {X,Y}. By V=(V)yandsoV=X+Y. On
the other hand, by B.I1] |S(X + Y)\{Y'}| = [K|, |F| or 2 if V is a symplectic, unitary or orthogonal
space, respectively. Thus V' is an orthogonal space. Since dimg V' = 2 this contradicts the hypothesis

of the Lemma.
Hence L acts transitively on S(V). In particular, H® acts transitively on S(V') and

H°={Qx | X eS(V))=(Q% < L.
]
LEMMA B.27. Suppose that V contains a 2-dimensional singular subspace. Let v and w be

isometric elements in V\R(V'). Then there exists a € H® with w® = v. In particular, H® acts
transitively on the set of non-zero singular vectors.
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PRrROOF. If V is a linear space H® = SLg(V) acts transitively on V and the lemma holds. So
suppose that V is not a linear space.

Let E be a 2-dimensional singular subspace of V and Z € S(E). By H? acts transitively
on §(V) and by V =(S(V)). Thus V = (Z"") and so Z € vt for some b € H°. Replacing
v by 0 we may assume that v ¢ Z'. Similarly we may assume that w ¢ Z*+. Choose z € Z
with f(z,v) = —1. Note that X := F nw' € S(wt). Also V = Z + w' and since Z < X+ # V,
we get V = Xt 4+ wt and wt € X*+. Thus X € w't and so X « rad(w'). In particular,
(S(wt)) # rad(wt), and shows that (S(wt)) =wt. As Z < Z+ #Vand V = Z +w', we
have wt € Z+ and so there exists U € S(w') with U £ Z+.

We claim that there exists Y € S(w*) with Y € Z+ and Y « Kw+V*. If U « Kw+ V+ we can
choose Y = U. So suppose U < Kw + V*. Since w L X this gives U 1 X. Thus U + X is singular.
Since X < Z* and U « Z*, we have U # X and (U + X) n Z+ = X. Let Y be any 1-dimensional
subspace U + X with Y # X and Y # U. Then Y € Z+ and Y € S(wt). If Y < Kw + V*, then
U+Y <Kw+V+tandso0#VE<U+Y, a contradiction, since V= contains no non-zero singular
vectors. Thus the claim is proved.

Choose Y as in the claim. From YV €« Kw + V' and w ¢ V' get w ¢ Y + V1. Note that
Y + Z+ =V, so we can choose y € Y with f(z,w +y) = —1. In particular f(z,v) = f(z,w +y) and
w+yev+ Zt. Recall that Y e S(wh), w¢ Y +V+ and VL = R(V). Thus w e YH\(Y + R(V)),
and shows that there exists ¢ € Qy with w® = w + y. In particular, w + y,w,v are all
isometric. As w+y € v+ Z+, we conclude from that there exists d € Q7 with (w +y)? = v.
So w°® = v, and the lemma is proved. O

LEMMA B.28. Let Z € S(V). Suppose that dimg V' = 3. Put P := Cyo(Z).

(a) Suppose that V is a linear space.
(a) Dz =1 and Qz is elementary abelian.
(b) P/Qz = SL(V/Z) and Qz is the corresponding natural module for P dual to V/Z.
(b) Suppose that V is a symplectic space.
(a) |Dz| = IK|, Dz = Q' = ®(Qz) = Z(Qz) if p is odd, and Qz is elementary abelian
if p=2.
(b) P/Qz = Sp(Z+/Z) and Qz/Dyz is the corresponding natural module for P.
(c) Suppose that V' is a unitary space.
(a) IDz| = [F| and Dz — Q) — 9(Qz) = Z(Q2).
(b) P/Qz = SU(Z*/Z) and Qz/Dy is the corresponding natural module for P.
(d) Suppose that V is an orthogonal space.
(a) Dz =1 and Qz is elementary abelian.
(b) P/Qz = Q(Z+/Z) and Qz is the corresponding natural module for P.

PROOF. Suppose first that f = 0, that is H = GL(V). Then V* = V and so Dz = 0. By
Qz = Z@k (V/Z)* as an F,P-module. Since P centralizes Z and is 1-dimensional over K
this shows Z ®x (V/Z)* = (V/Z)*. Note that P induces SL(V/Z) on V/Z and so also on (V/Z)*.
Hence (ED holds.

Suppose now that f # 0. We will use the description of @z given in So let v, z, T, and
Ya,@ € T, be as there. By @, D acts regularly on the set of elements in v + Z isometric to v.
By [B.11] the number of such elements is [K| if H = Sp(V), [F| if H = GU(V), and 1 if H = O(V).
So also |[Dz| = |K|, |F| and 1, respectively.

Let a,b e T. Then by B.23)(e):
['Ym'Vb] = Y(f(b,a)—f(a,b))z and lyg = V—f(a,a)z-
If either H = Sp(V) and p = 2 or H = O(V), we conclude that Q7 is elementary abelian. If
either H = Sp(V') and p is odd or H = GU(V'), we conclude that ®(Qz) = Dz = Q% = Z(Qz).

Put P* = Cy(Z), K* = Cpx(v) and K = Cp(v). Note that @z act regularly on v + 7. Since
v+ T is the set of singular vectors in v + Z+, v + T is P* invariant and a Frattini argument gives
P* = K*Qz and P = KQz. Put W = Z+ n o' and note that V = W & (Kv + Z). Since K*
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centralizes Kv + Z, we conclude from that K* is (isomorphic to) the group of isometries of W.
Note that K = K* n H®. If H = Sp(V') then H = H® and K = K* = Sp(W). It H = GU(V),
then H® = SU(V) and so K = SU(W). If H = O(V) and V*+ = 0, then H® = Q(V). Thus
K = Con,y(WH), and shows that K = Q(W). If H = O(V) and V* # 0, then H = H® and
K = K* = O(W) = Q(W).

Since P/Qz = KQz/Qz = K and Z+/Z ~ W this shows that P/Q, =~ Sp(Z+/Z), SU(Z*/Z)
and Q(Z1/Z), respectively. By @ Qz/Dz =~ Z1/Z as an F,P-module and so all parts of the
lemma are proved. |

B.6. Simplicity of the Natural Module

LEMMA B.29. Suppose that dimg V' = 3 if V is an orthogonal space, and dimg V' = 2 otherwise.
Suppose that there exists a proper F,H®-submodule W of V with W £ R(V). Then one of the
following holds:

(a) V is a unitary space, dimg V = 2, H® =~ SLy(F), W is an F-subspace of V., W is a natural
SLs(F)-module for H®, V is the direct sum of two natural SLo(F)-module for H®, and H
acts transitively on the |F| + 1 simple H®-submodules of V. In particular, V is a simple
H-module and a simple KH®-module.

(b) V is an orthogonal space, dimgV = 3, |K| = 2, H = H® =~ SLy(2), W = [V,H] is a
natural SLo(2)-module for H and V =V W.

ProoOF. If V is linear, then H® = SLg(V) and H® acts transitively on V. Thus V is a simple
H-module, and no proper H°-submodule of V' exists.

Hence V is not linear and so R(V) = V1. Note that the hypothesis on dimg V' ensure that there
exists Z € S(V) (see [B.19[c)). By V =(S(V)). Since W € V* we conclude that W & Z* for
some Z € S(V). Let we W\Z1. By[B.23(e) the function Qz/D; — Z+/Z,qDz — [w,q] + Z is an
isomorphism. Thus Z+ < [W,Qz] + Z and so [Z1,Qz] = [W,Qz,Q7] < W.

Suppose that Z+ # Z+ VL or H = Sp(V). In the first case[B.24{[b) shows that Z = [Z+, Q2] <
W, and in the second case shows that Dz # 1 and so [W,Dz] = Z < W. Thus Z+ =
W,Qz] +Z < W, (KW) =V, W+ =V+ and Z; € W for all Z; € S(V), a contradiction since
W #£Vand V = (S(V)).

It follows that Z+ = Z + V+ and H # Sp(V). Hence dim V/V1 = 2 and either H = GU(V),
Vt=0and dimV =2, 0orp=2, H=0(V),dimV* =1.

Suppose that H = GU(V). For i = 1,2 let U; € S(V) with Uy # Us. Then V = Uy + Us. We
can choose the following further notation:

O;ﬁtEKWitht+ta=O, O?é’UqEUl, UQEUQWithf(U17U2):t.
Let X be the F-subspace of V spanned by u; and us, and let A\; € F. Then
h()qul + )\2U2> = )\1)\375 + )\?)\gt = Al)\g(t + ta> =0.

Thus all elements in X are singular. Let 0 # x € X and choose y € X with f(z,y) # 0. By
Kz + y contains exactly |F| singular vectors. It follows that Fz + y is the set of singular vectors in
Kz + y and so Qg normalizes Fx + y. Hence Qx, normalizes X. As S(V) = |F| + 1 and X has
|F| + 1 1-dimensional subspaces each U € S(V) intersects X in 1-dimensional F-space and so Qu
normalizes X. Hence X is an FH® submodule of V. Observe that X is natural SLy(F)-module for
H*. Since u; was an arbitrary non-zero element on Uy, each of the |F|+ 1 1-dimensional F-subspaces
of U lies in a 2-dimensional FH®-submodule of V. It follows that V is a direct sum of two natural
SLy(F)-modules for H°. In particular, there exists exactly |F|+ 1 non-zero proper F, H® submodules
of V. As Nyo(Uy) acts transitively on Uy, we conclude that Ngo(Uy) also acts transitively on the
set of non-zero proper Fj,H°-submodules of V. Thus @) holds.

So suppose that H = O(V). Then H® induces Sp(V/V1) = Spa(K) = SLy(K) on V/V+ and
so V =W + V<, in particular [V, H°] < W. Thus [V, Qz] is 1-dimensional and so (for example by
) Zy + [V, Qz] contains exactly two singular 1-spaces. Since <Z822> < Zp + [V, Qz] this shows
that [K| = |Qz| = |Z9%| = 2, and (b) holds. O
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LEMMA B.30. Let Z € S(V), and put P := Cyo(Z). Suppose that there exists a proper P-
invariant subgroup T of Qz with T £ Dy.
(a) Suppose that V is a linear space and dimg V' = 2. Then dimg V' = 2.
(b) Suppose that V' is a symplectic space and dimgV = 2. Then |K| = 2, dimgV =
T=[Qz,Pl=H nQz, and T has order 4.
(¢c) Suppose that V is a unitary space and dimg V > 4. Then dimgV =4, Dz < T, T/Dy
is a natural SLy(F)-module for P, and T is not invariant under Cgo(Dz). In particular,
Nyo(Z) acts simply on Qz/Dy.
(d) Suppose that V is an orthogonal space and V+ = OE| Then dimg V' <

ProOF. (a): By B2§fa) Q7 is a natural SL(V/Z)-module for P and so, if dimV/Z > 2, a
simple P-module. This gives

(]ED: Note first that T' € Dy gives Qz # Dy, and so dimg V' > 4. By [B.28{|b:b) Qz/Dy is
a natural Sp(Z1/Z)-module for P and so simple. Thus 7Dz = Qz. If p is odd, then |B.28((b:al)
implies Dz = ®(Qz) andso T = Q.

Hence p = 2. By V = W/W+t and H = O(W) for some non-degenerate orthogonal space

W. Without loss V = W/W+. Then the inverse image of Z in W contains a unique 1-dimensional

singular subspace Zy, Qz = Qz, and P = Cy(Zp). Now 8(ld:b) shows that @z is a natural

O(Zg/Z)-module for P. Thus by [B.29} K| = 2, dim Zg /Z0 — 3 and T = [Qz, P] has order 4.
Hence (]ED holds.

: By Qz/Dyz is a natural SU(Z+/Z)-module for P and Dz = ®(Qz). It follows that
Qz # TDz. We now apply to Z+/Z and GU(Z*/Z). Then dim Z+/Z = 2, and TD /Dy
is a natural SLs(FF)-module for P.

Let A € K be of multiplicative order |F| + 1. Then AA* = 1. By V has a hyperbolic
basis (v1,v2,v3,v4). Then f(vi,v4) = f(ve,v3) = 1 and f(v;,v;) = 0 for all other 1 < ¢ < j < 4.
Since H acts transitive on S(V), we may assume that v; € Z. Define ¢ € GLg(V) by vi¢p = Av;
for i = 1,4 and v;¢p = A\~ 1o; for i = 2,3. Observe that ¢ € SU(V) = H° and that ¢ normalizes Z.
Since ¢ acts as scalar multiplication by A on V/Z+ and Z, ¢ centralizes Dz. As ¢ acts as scalar
multiplication by A™! on Z+/Z, ¢ centralizes P/Qz. It follows that ¢ does not normalizes TDz/D
and so Qz = TT®Dy. Since T is P invariant, [T,Qz] < T n Dy, and since ¢ centralizes Dy this
gives [T¢,Qz] < T¢ N DZ =Tn DZ Thus DZ = Z = [TT¢D27Q2] < Tn DZ < T and
holds.

@ By [B.28{(d:b) Qz is a natural Q(Z+/Z)-module for P. If V+ = 0 and dimg(Z+/Z) = 3, we
conclude from 29((b) that @ is a simple P-module. Thus (d) holds. O

B.7. Normalizers of Classical Groups
In this section we view K as a subring of Endg, i (V).

LEmMA B.31. Suppose that dimg V' = 3 if V' is an orthogonal space, and dimg V' = 2 otherwise.
Then Endy,po(V) = K, unless H = O(V) = 03(2) or H =GU(V) = GUQ(IF),

PROOF. Suppose first that V4 = 0 and H # GUy(K ) The V is a simple F,H°®-

module and so Endg, (V) is a division ring. Let Z € S(V). By -1E| CV Qz)=Vi+2=2
and so Cy (Qz) is 1- dlmenswnal over K. This gives End]p Ho(V)

Suppose next that V- # 0 and H # O3(2). Then shows that V' = [V,H®]. Let 8 €
Endg, g (V) with V3 < V+. Then [V, H°] = 0 and so also [V.H®]p =0. AsV = [V,H®] we
get that 8 = 0, and Endg, (V) acts faithfully on V/V+. Since H® induces Sp(V/V1) on V we
conclude from the previous case that Endg,ue(V) = K. O

LEMMA B.32. Suppose that V is a linear space and put H* = NGLWP(V) (H®). Suppose that
dimK 14 =2

3If VL £ 0, then p = 2, V/VL is a non-degenerate symplectic space, H = Sp(V/V1L), and @ applies
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(a) H* =T'GLx(V), that is, g € GLy, (V) normalizes H® if and only if there exists o € Aut(K)
such that g acts o-semilinearly on VE|

(b) There exists a homomorphism p : H* — Aut(K),g — p,, such that each g € H* acts
pg-semilinearly on K.

(c) kerp = H and p is surjective. In particular, H*/H ~ Aut(K).

(d) Let T be p-subgroup of H* acting K-linearly on V.. Then T < H°.

PROOF. () and (b): Let b,c € GLy, (V) acting 5- and ~-semilinearly on K, respectively. Then
be acts B3y semilinearly on V and b~ ! acts 8~ '-semilinearly on V. In particular, if ¢ acts K-linearly,
so does ¢?. Hence b normalizes H and thus also H®.

By K = Endg, (V). Hence H* acts on K by conjugation and we obtain a homomorphism
p: H* — Aut(K), g — py, such that g~ kg = kPs. It follows that g € H* acts p,-semilinearly on V.

(c): Clearly ker p = H. To show that p is surjective let (v;)"_, be a K-basis and o € Aut(K).
Define g € GLr, (V) by (kv;)9 = k?v;. Then g acts o-linearly on V, and by (E[) g € H*. Hence
p(g) =o.

(d): Since T acts K-linearly on V, T < H and since H/H® = GLg(V)/SLk(V) is a p’ group,
T<H°. O

LEMMA B.33. Let k € F* and o € Aut(K). Define

~

fi= oo : VxV ->K, (v,w) = kf(v,w), h:=hg,:V —Fv— kh(v)°.
Let V,; be the K-space with V, =V as abelian group and scalar multiplication

1

o KxV =V, (l,v) =17 v
Then

(a) (V, f, 7L) is a classical space of the same type as (V, f,h).

(b) The K-subspaces of V' are the same as the K-subspaces of V.

(¢) A K-subspace of V' is singular with respect to (f,h) if and only if it is singular with respect
to (f,h).

(d) H is the isometry group of (V, £ E)

(e) (V",f, 7L) is not isometric to (V, f,h) if and only if H = O(V), p is odd, dimg V' is odd,
and k is not a square in K.

PROOF. @) is readily verified, and should be obvious.
(c): Just observe that kf(v,w)” and kh(v)® are 0 if and only if f(v,w) and h(v) are 0.
@: Let g € GLg(V). Then (f,h) is g-invariant if and only if (f, %) is.

@: By any two linear spaces, any two symplectic spaces, and any two unitary spaces of
the same dimension are isometric.

Note that U is a singular subspace of V if and only if U, is a singular subspace of V. Hence
V and V, have the same Witt index. Any two orthogonal spaces of the same even dimension are
isometric if and only if they have the same Witt index. Also if p = 2 then any two orthogonal spaces
of the same odd dimension are isometric.

So it remains to consider the case H = O(V), dimg V odd and p odd. Let Y be a maximal
hyperbolic subspace of V and put X = Y+. Then by V=X6Y and dimg X = 1. Let
0 # z € X and observe that, by the even dimensional orthogonal case, Y, is hyperbolic. Also
V,=X,®Y, and X, L Y,. Hence by (V, f,h) and (V,, f, h) are isometric if and only
if h(z)h(z)~! is a square in K. Note that h(z)h(z)™! = kh(x)"h(z)~* and that h(z)"h(z)~! is a
square in K. Thus (V, f,h) and (V°, f, k) are isometric if and only if k is a square. O

4For the definition of o-semilinear see



B.7. NORMALIZERS OF CLASSICAL GROUPS 223
LEMMA B.34. Let g€ GLy, (V). Define

fo: VxV->K, (v,w) — f(@d,w9), and hy:V —F,v— h(v9).

Let Vy; be the K-space with Vy =V as abelian group and scalar multiplication

KXV >V, (kv) > (ko?)?
Then
(a) g is an isometry from (Vy, fg,hg) to (V, f,h).
(b) (Vg, fg, hg) is a classical space of the same type as (V, f, h).
(c) H9" is the isometry group of (Vg, fg:hg)-

PROOF. (a): Let k€ K and v € V. Then

(k-gv)9 = ((kzvg)gil)g = koY,

so g : V4 — V is an isomorphism of K spaces.
By the definition of f, and h,

fg(U, ’LU) = f(vgawg) and hg(v) = h(vg)
for all v, w € Vy, and so @ holds.
(]E[) and both follow from @ O

LEMMA B.35. Suppose that V is not a linear space and dimg V > 3. Put H* := NGLFP(V) (H°).

(a) Let ge GLx(V) Then g € H* if and only there exist k € F* and o € Aut(K) such that g is
a (k,o)-semisimilarity of V.

(b) Let g € H*. Then the elements k € F* and 0 € Aut(K) in (@ are uniquely determined.
Moreover, if we denote k by Ay and o by py, then the function

(A\p): H* > F x Aut(K), g — (Ag.pg),

18 a homomorphism.

(c) Put S := {k? | k € K¥) if V is an orthogonal space with dimg V' odd and p odd; put
S := F* otherwise. Then ker(\, p) = H and Im(\,p) = S x Aut(K). In particular,
H*/H ~ S x Aut(K).

(d) Let T be a p-subgroup of H* acting K-linearly on V. Then T < H. Moreover, T < H®,
unless p = 2, V is an orthogonal space and V+ = 0.

PROOF. Suppose first that H = O(V) = O3(2). Then H = H°, V = V+&[V, H] and H induces
GLy(2) on [V, H]. Tt follows that H* = H. Also K* = {1} and Aut(K) = 1, and so the lemma holds
in this case. So we may assume from now on that H # O3(2).

@ and : Suppose first that there exists k € F¥ and o € Aut(K) such that g is a (k,o)-
semisimilarity of V. Then

F9,w9) = kf(v,w)? and h(v9) = kh(v)?

for all v,w € V. In the notation of [B.33] and this just says that f; = fr, and hy = hyg,.
Since g is o-semilinear, (Iv9)9 ' =1° v and so V, = V.. The isometry group of (Vy, fg, hg) is H9
and the isometry group of (Vs fok, hok) is H. So HY = H and thus also (H®)? = H®. Therefore,
ge H*.

Since dimg V' > 3 and we exclude the O3(2)-case, shows that K = Endr, g (V). Hence
H* acts on K by conjugation and we obtain a homomorphism p : H* — Aut(K),g — pg, such
g 'kg = kPs. Tt follows that g € H* acts gp-semilinearly on V. By V/VL is a simple H°-
module and by Endg, - (V/V+) = K. Since f induces a non-degenerate K-sesquilinear form
fon V/VL V/V1is selfdual as an F,H°-module. So we can apply and conclude that there
exists a function \ : H* — Kf g — Ag, such that the function

H* - K¥ % Aut(K), g — (A\g, py)
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is a homomorphism and

@, w9) = Ay f(v,w)"
for all v,w € V/V+. Hence also
(%) f9w?) = Ag f (v, )P
for all v,we V.

We claim that A\, € F. If F = K there is nothing to prove. So suppose H = GU(V') and choose
v,w eV with f(v,w) = 1. Then also f(w,v) = 1% =1 and

>\g = )‘gf(v7w)og = f(vg,,wg) = f(wg7vg)o¢ = (Agf(wav)og)a = )\37

and so indeed A\; € IF.

It remains to show that h(v?) = Agh(v)?s for all v € V. If H = Sp(V) or GU(V), then
h(v) = f(v,v) and this follows from (*). So assume H = O(V).

Fix ge H*. Put

~

k= >‘g7 0 = Pg, f = fk,a’a 71 = hk,a‘-

Then () says that f, = fand we need to show that hy = h. Since g is o-semilinear, V, = V. Note

that both (Vg, fy, hy) and (V, f, g) are orthogonal spaces. Also H® is contained in their isometry
group since g normalizes H®. In particular,

hg(v +w) = hg(v) + fy(v,w) + hg(w) and h(v +w) = h(v) + f(v,w) + h(w)

for all v,w € V. Since f;, = f we conclude that the function r : V — K, v — hg(v) — h(v), is
[Fp-linear.

Since both hy and h are H®-invariant, so is . Thus ker 7 is an Fp-submodule of V. As |Imr| <
K| and |V| = |K|® we have |kerr| > |K|?> > [K| > |V1] and so kerr € V+. Recall that we excluded
the O3(2)-case and so shows that kerr = V. Thusr =0, h = h, and @ and (]EI) are proved.

: Let g € H*. Then g € H if and only if f and h are g-invariant and if and only if A, = 1 and
pg = 1. So ker(X, p) = H*.

To compute the image of (), p), let k € F* and o € Aut(K) and put f: fr,o and h= hi,o. Note
that (k,o) is in the image of (A, p) if and only if f = [y and h = hy for some g € GLy, (V). This
in turn holds if and only if (V, £, E) is isometric to (V, f, h). By Vs, f. lNz) is not isometric
to (V, f,h) if and only if K = O(V), dimg V is odd, p is odd, and k is not a square in K. Hence
(k,0) € Im(X, p) if and only if k € S. This gives (d).

@: Since T acts K-linearly on V, p(T) = 1. Since S < K¥ is a p/-group we conclude that
T < ker(\, p) and so T < H. Since GLg(V)/SLg(V) is a p’-group, T' < SLg(V) n H. Note that
either SLg(V)nH = H®, or H = O(V) and dimg V is even if p = 2. In the later case H® has index
two in SLg(V) n H. So either T < H® or H = O(V), p = 2, and dimg V is even. O

B.8. Q-Uniqueness in Classical Groups

LEMMA B.36. Let H® < L < GLg, (V) and let Q be a p-subgroup of L. Suppose that V is a
Q!-module for L with respect to @ and that V contains a 2-dimensional singular subspace. Then
(@YY =(Q"°Y. In particular, H°Q < L and OP({Q")) < H°.

Proor. By B.35|fa) L is contained in the group of semisimilarities of V' and so acts on the set
of non-zero singular vectors.

By H*® acts transitively on this set. By there exists a non-zero singular vector
centralized by Q. By a Frattini argument L = Cr(v)H® and by Q!, Cr(v) < N(Q). Thus

@Fy =<Q""). O
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LEMMA B.37. Suppose that dimg V' = 3 if V' is a linear space, and dimg V' > 4 otherwise. Let
Q be a p-subgroup of GLg,(V) normalizing H® and suppose that V is a Q!-module for H°Q with
respect to Q). Put X := Cy(Q). Then Cy(H®) = 0; in particular, the case V' orthogonal, p = 2 and
dimg V' odd does not occur. Moreover, one of the following holds:

(1) XeS(V), Q= Qx and (Q"") = H°.

(2) H = H° = Sp(V) = Spa(2), X € S(V), Q = Qx n H' and {Q"") = H' = Spa(2)'.

(3) H = GU(V) = GUi(F), p =2, |X| = |F|, X := (KX) € S(V), H°Q = (Q"") = O (F),
|Q/Q N Qx| =2 and either Qg < Q or D¢ < Q and Q N Q5/Dx is a natural SLo(F)-
module for Cpo(X).

(4) H = O(V) = Of (K), X is a 2-dimensional singular subspace of V, Q = Cpgo(X) and
QM"Y = SLy(K).

(5) H=H°Q = O(V) = 0f(2), X € S(V) and either Q = Dg and (Q™"") = H or Q = C,
and (QT") ~ 32C. R

(6) H = O(V) = OF (4), H'Q = Q") = 0F (4), |X| = 2, X := (KX) e S(V), |Q/Qn Qx| -
2, QQ+ € Syly,(H°Q) and either Q5 < Q or Q is the unique maximal elementary abelian
subgroup of order 8 in QQ.

PROOF. Since V is a Q!-module, Oy (H°Q) =0 (see and so also Cy (H®) = 0. So the first
statement holds. Moreover, by there exists a @-invariant Z € S(V). Put P* := Ny.(Z)
and P := Cpo(2).

Note that Co(K) is a p-group acting K-linearly on V' and normalizing H®. Thus|B.32{|d) (if V'
is linear) and (if V is not linear) show that C(K) < H. Put Q* := Co(Z+/Z). Then Q*
acts K-linearly on V and so Q* < Cq(K) < H. Since Z is 1-dimensional, Q* centralizes V/Z,
Z4)Z and Z. Thus Q* < Q.

Suppose first that @ centralizes Z+/Z. Then Q = Q* < Qz. Since Q centralizes Z, Q! implies
that Q € P*.

Assume for a contradiction that Q < Dz. Then Dz # 1 and so by [B.28 H = Sp(V) or SU(V).
Since Z+/Z is at least 2-dimensional, it has a I-dimensional singular subspace (see B.19|.). Hence
there exists Y € S(Z+) with Y # Z. Since Q < Dz we get [Y,Q] = 0, and Q!-shows that Ng(Y)
normalizes @ and so also [V, Q] = Z. Thus [Z, Qy] = 0, a contradiction as Cy (Qy) =Y +V+ =
by EZ30.

Thus Q £ Dz. If Q = Qyz, then Cy(Q) = Cy(Qz) = Z. Hence holds in this case.

So suppose that Q # Qz. Since Q is P*-invariant, implies that either H = Sp(V), |K| = 2
dimgV =4and Q=Qz n H or H=0O(V) and dimV = 4. In the first case (2)) holds.

So suppose H = O(V). If the quadratic form h is of —type, then H® =~ Ly(|K|?) and so P* acts
simply on Qz. Thus h is of +-type and H® = H; Hy with H; = SLy(K) and [Hy, H2] = 1. Note
that P* n H; acts simply on Qz n H;. If |K| > 3, then [Qz, P* n H;] = Qz n H; and we conclude
that @ = H; n Qz for some i € {1,2}. Thus holds in this case. If |K| < 3, then |Qz| = p?,
|Q| = p and and since [Z1, Q] < Z, X is 2-dimensional over K. If Q = Qz n H; for some 1 <i < 2,
then again holds. Otherwise X is non-singular and contains a non-singular 1-space Y. By @Q!,
Q < Cyo(Y), a contradiction since Cyo(Y) =~ Q3(K) = Lo(K) and so does not have any non-trivial
normal p-subgroups. This completes the case where Q centralizes Z+/Z.

Suppose now that @ does not centralizes Z+/Z. Since Cz(Q) # 0, Q! implies that P normalizes
Q. In particular, [Q,P] < Q n P < Qz and P does not act simply on Z+/Z. By P induces
SL(V/Z), Sp(Z+/)Z), SU(Z*/Z) and Q(Z+/Z), respectively, on Z+/Z. Moreover, shows that
dimg V =4 and H = GU(V) or H = O(V). In either case since Z+/Z =~ Qz/Dz as an P-module,
[Q,Qz] € Dz. Note also that [Q,Qz] # Qz.

Suppose H = GU(V). Then [B.30] (with T := [Q, Q]) shows that Dz < [Q, QZ] [Q,Qz]/Dy
is a natural SLy(F)-module for P and either Q n Qz = [Q,Qz] or @ N Qz = Qz. By [B.29(d)
all P-submodules of Z+/Z are F-subspaces. It follows that [Z1/Z, Q] is a non-trivial F-subspace
centralized by @, and so @ acts F-linearly on K. Hence |Q/Co(K)| < 2. By ZY)7Z is a
simple KP-module. Thus Cg(K) centralizes Z+/Z. As seen above Q* < Qz, and we conclude
that Co(K) = Q@ n Qz. Together with @ € @z this gives |Q/Q N Qz| = 2 and so p = 2 and
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H°Q =~ Ogf (F). Since Oy (Q n Qz) is an K-subspace normalized by P and Z1/Z is a simple
KP-module, Cy(Q nQz) = Z. Thus Z = (KCv(Q)) and holds.

Suppose H = O(V). If h is of —type then Q(Z*/Z) has order |K| + 1 or (|K| +1)/2 depending
on p =2 or p odd. It follows that Z+/Z is a simple P-module unless |K| = 3. In the latter case Q
acts K-linearly on V. Hence Q@ < H. As Qz € Syl,(H) this gives Q < @z, a contradiction.

Thus h is of +-type and H® = Hy Hy with H; = SLy(K) and [Hy, H2] = 1.

For i € {1,2} define Z; := Cv(Qz n H;). Let z;, 0 < k < 3, be non-zero singular vectors in
V such that zg € Z, z1 € Z1\Z, 22 € Zo\Z, f(z0,23) = f(z1,22) = 1 and f(zg,z) = 0 for all other
0 <k <1<3. For A e K¥ define ay € GLg(V) by

ax

ax _ ax _ ax _ \—1 —
200 =20, 2 =Xz, 250 = Az, 250 = 23.

Observe that ay is an isometry, and since H/H® is elementary abelian, a3 € H® and a3 € P. It
follows that Z;/Z is a simple F, P-module. Since P normalizes Ng(H;), we conclude that Ng(H;)
centralizes Z;/Z. Together with Ng(H;) = Ng(Hs) this shows that Ng(Hi) centralizes Z+/Z and
SO NQ(HL)SQ* Qz. Thus NQ( ) QnNQ,, |Q/Qsz| =2and p=2.

Suppose that |K| = 2. Then H°Q = H. Since 1 # [Qz,Q] < @z n Q we have |Q| = 4. Let y
be a non-singular vector of V. Then Cg(y) = Cs x SL2(2). Thus O2(Cr(y)| = 2 and Q € Cu(y).
Hence Q! implies y ¢ Cy(Q), and so Cy(Q) is singular. It follows Cy(Q) = Z and Q =~ Cy4 or Dg,
and holds.

Suppose that |K| > 4. Then ay has odd order and so ay € P for all A € K#. Note that ay
acts as a scalar multiplication by A\ and A™! on Z;/Z and Z/Z, respectively. Since |K| > 4 there
exists A € K with A # A\™!. Thus Z;/Z and Z5/Z are non-isomorphic as KP/Qz-module. Since
Q # QnQz = No(Hy) we have Z& = {Z,, Zy}. We conclude that Z+/Z is a simple KPQ-module.
It follows that Cp(K) < Q* < Qz and so @ does not act K-linearly on V. Moreover, as Z1/Z is
not a simple Fo PQ-module, we infer that Z;/Z and Z5/Z are isomorphic as Fy P-modules, and so
there exists an Fy P-isomorphism ¢ from Z;/Z to Z3/Z. The action of a) on Z,/Z and Zs/Z shows
that K = Endg,p(Z;/Z), and ¢ induces a field automorphism o on K with A7 = A\~! for all X in K.
It follows that 02 = 1, Cx(0) = Fy and K = Fy.

Let A € K\Fy and put d := ay. Then d is an element of order three in P, and d acts fixed-point
freely on Qz and so also on Qz N Q. Since |Qz/Qz N Q| = 2 we conclude that there exists t €
with @ = (Qz n Q){t), [t,d] = 1 and |t| = 2. Now Q n Qz = Ng(H,) implies Hf = H,. Hence
H°@Q = H°{t)y =~ SLy(4)1Cy =~ H. As @ does not act K-linearly H°Q # H. Note that [Qz,t] < Q
and so by the action of d either Q = Qz{t) or Q = [Qz,t|{t) = Cq,(t){t). In either case, Q! or
equally well the action of Cg+(t) on V show that Cy(Q) = Cz(Q) has order 2, and so () holds. [

LEMMA B.38. Let Q be a p-subgroup of GLy, (V) normalizing H® and U a K-subspace of V.
Put

Ey:={Q9]ge H®, Cy(Q9) #0), Fy:={QnH®)|ge H®Cy(Q?) #0) and W :={(S(U)).
Suppose that
(i) dimg V' = 3 if V is a linear space, dimgV = 4 if V is a symplectic or unitary space, and
dimg V' =5 if V is an orthogonal space.
(ii) V is a Q!-module for H°Q with respect to Q.
If W is not singular, then Eyy = (QM°Y and V = (UPVY. If W is singular, then each of the following
hold:
(a) W < Wt and Fy normalizes U and W.
(b) Fy centmhzes wt/w.
(¢) W is a natural SLg(W)-module for Fy.
(d) Let T be a proper, non-zero K-subspace of V. Then Fy normalizes T if and only if W <
T<Wwt
( ) If Ey # Fy, then H° = SU(
QW = CEU( ) and EU/FU =

), Eu normalizes W, and either dlmKW =1, Fy =
05 (F), or dimgW = 2, U = W, |Ey/Fy| = 2 and
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Proor. Put X := (KCy(Q)). Note that we can apply [B.37; in particular, V+ = 0 if V
is an orthogonal space. In the last three cases of V is a 4-dimensional orthogonal space, a
contradiction to Hypothesis . In the other cases X € S(V), and one of the following holds:

(A) Q@ =Qx.

(B) H=H®=5Sp4(2) and Q = Qx n H'.

(C) H° = SU4(F), H°Q = Oqg (F), |Q/Q n Qx| =2and Dx < Q n Qx.
If V is a linear space then X = Cy(Qx), and if V' is not a linear space then by Cyv(Qx) =
X + V+ and again Cy(Qx) = X since V+ = 0.

Note that Q < Fx, Q@ n Qx < Fx and Nyo(X) normalizes Fx. Let g € H°. If Cx(Q7) # 0,
then X = (KCy (Q7)) and so Q9 normalizes X. If Q9 normalizes X, the Cx(Q9) # 0. This shows
that

Ex ={Q%|ge H°,Q < Nu(X)) and Fx ={Q'nH®|ge H® Q% < Ny-(X)).

In case 7 Q =Qx < H® and so Ex = Fx = Qx. In particular, Cy(Fx) = Cv(Qx) = X
and (QH") = H°.

In case , Q=QxnH < H®°andso Ex = Fx = Qx n H'. Observe that Dx £ H’, so
Qx = FxDx. Since Qx acts regularly on V\Z*, Cy(Fx) < Z*+ = Cy(Dx). Thus Cy(Fx) =
Cv(FxDx) = Cy(Qx) = X. Since Sps(2) is simple, (Q7") = H' and so Dx(Q""Y = DxH' =
H=H°.

In case Q £ H° and |Q/Q n Qx| =2. Thus Q@ n H® = Q n Qx. By[B30|[d) Qx/Dx is a
simple Ny (X)-module. As Dx < Qn H® < Qx and Npo(X) normalizes Fyx, this gives Fx = Qx.
Thus Cy (Fx) = Cy(Qx) = X, H> = (FE*) and H°Q = (Q™").

In each case we have proved:

(%) H°Q=Dx(@Q"),  Qx=DxFx and Cy(Fx)=X.
Let Z € S(V). By [B.26{b) H® acts transitively on S(V). Thus (*) holds for Z in place of X.

Let ¢ € H°. Since U is an K-subspace and (KCy(Q9)) = X9 is a l-dimensional singular
subspace of V, we see that Cy(Q9) # 0 if and only if X9 < U and if and only if Cz(Q9) # 0 for
some Z € S(U). It follows that

EU=<Ez‘Z€S(U)> and FU=<Fz‘Z€S(U)>.
Observe that S(U) = S(W). Thus
(**) EU:<EZ |Z€S(W)>=EW and FU=<FZ |Z€S(W)>=FW
If W =0 then Ey = Ew =1 and Fy = Fyy = 1, and the lemma holds in this case. So suppose that
W # 0 and without loss that X < W.

Suppose first that W is not singular and choose Y, Z € S(U) with Z £« Y*. Then by

{Qy,Qzy = H°. Since [V,Dy] <Y, Dy normalizes Y + Z and so also Fy;z. Since Fy < Fy 7

and QQy = Dy Fy, we conclude that Qy normalizes Fy . By symmetry Q7 normalizes Ey .
Pick g € H® with X9 = Z. Then Q¢ < Fy .z, and we get

Ey,z <{Qy,Qz)Q% = H°Q = H°Q.
Thus (Q°) = Ex+y = Ey. By (x) H°Q = Dx{(Q™") = DxEy, so
V = (S(V)) = (XH*) < (XPXEW)y  (xEvy < (UEv),
Hence V = (UFv), and the lemma holds in this case.

Suppose now that W is singular.

@ and (]EI): By W =U or W = rad(U). In either case W < U < W+. Let Z € S(W).
Then Z < W < W < Zt+. Since Fz < Qz and Qyz centralizes ZL/Z we conclude that Fy
normalizes W and centralizes W+/W. By (##), Fyy = (Fz | Z € S(W)). Hence also Fyy normalize
W and centralizes W+ /W. Thus and (]é) hold.

: Let Z € S(W). Then W < Z+ < Cy(Dyz). As by (*) Qz = DzFy, this gives Q7 =
Cq,(W)Fz. Let B € Homg(W,Z) with Z < ker 8. Since W < Z+ and W n R(V) = 0 we can
choose 7 € Homy(Z*+,Z) with Z + R(V) < kert and 7 |y= 8. By there exists ¢ € Q7 with
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ud = u 4 ur for all uw € Z* and so w? = w + wp for all w € W. Hence Q induces all possible
transvections with center Z on W. Note that this also holds for Fz in place of @z, since, as seen
above, Qz = FzCq,(W).

Since Z € S(W') was arbitrary and SLg (W) is generated by its transvections, we conclude that
Fy induces SLg(W) on W. Thus (d) is proved.

@: Let T be any proper non-zero K-subspace of V and Z € S(W). If W < T < W+ then
Fy normalizes T since by @ Fy centralizes W+ /W. Conversely, suppose Fyy normalizes T. Then
Cr(Fz) #0. By (*) Cy(Fz) = Z. Since Z is 1-dimensional we conclude that Z < T. As Z € S(W)
was arbitrary, we conclude that W < T. It remains to show that 7 < W+'. This is obvious if
W+ = V. Thus, we may assume that V is not a linear space. Then also T is a proper, non-zero
Fy-invariant K-subspace of V and thus W < T+, Hence T < W+.

@: Since Fy # Fy we have Q € H°®. Thus holds. In particular, dimg V = 4 and
so dimg W < 2. Let L be the largest subgroup of H°@ normalizing X and acting trivially on
S(X1/X). We claim that Q < L. Since X = (KCy(Q)), @ normalizes X. By applied to
X1/X, Q fixes at least one element of S(X*/X). Also Cye(X) induces SU(X*/X) on X*/X and
so acts transitively on S(X+/X). By Q!, Cy+(X) normalizes Q. Thus Q acts trivially on S(X*/X)
and so @ < L. It follows that Fx < L.

Suppose that dimg W = 1. Then W = X (but not necessarily W = U). Let l € L n H°. Then
I acts K-linearly on X+/X and fixes the |F| + 1 elements of S(X*/X). It follows that there exists
X € K¥ such that [ acts as scalar multiplication by A on X*/X. Let u € K* such that [ acts as scalar
multiplication by p on X. Since f is l-invariant, A*\ = 1 and [ acts as scalar multiplication by u=¢
on V/X*. Since I € H® = SUg(V), detl = 1 and so A\* = u~'u®. Conversely, since p = 2, for any
p € K there exists a unique A € K* with A2 = ;= 'u®, and then, since a® = 1,

AN = () () =1 and A\ =1.
In particular, if g = 1 then A\ = 1. Hence Cp(X) = C(X) n C(X+/X) = Qx and
(LA H®)/Qx 2K = Cpy = Cyy x Cyyy.
Note that the elements in L\H® act a-semilinear on V' and so centralize the first factor and invert
the second one of the above decomposition of (L n H®)/Qx. Recall that Fx = Qx in case (C)). So
Fy=Fy =Fx =Qx and Ey = Ew = Ex < L. From Q < L < H°Q we get L = (L n H®)Q.
Since Q/Q N @Qx has order 2 we conclude that L/Qx = Cy—1 x Dihgy1. Moreover, Ey/Qx is a

normal subgroup of L/Qx generated by involutions. Thus Ey/Qx = Dihygq1y = O (F), and @
holds in this case.

Suppose next that dimg W = 2. Then W = W+. By @ W <U < W+ and so W = U. Note
that W/X e S(X+/X). Since Q < L, we conclude that @) normalizes W. Thus Ey normalizes
W. By , W is a natural SLs(K)-module for F;. So Fy acts transitively on W, and Q! implies
Ey ={Qf) = QFy, see@. Thus |Ey /Fy| = |Q/Q nFy| =Q/Q N Qx| = 2. As the elements
of Q\Qx act a-semilinearly on W, we conclude that Ey/Cg, (W) = O, (F) and so @ also holds in
this case. |



APPENDIX C

FF-Module Theorems and Related Results

C.1. FF-Module Theorems

DEerINITION C.1. A finite group M is CK-group if each composition factor of M is one of the
known finite simple groups.

THEOREM C.2 (General FF-Module Theorem, [MS5]). Let M be a finite CK-group with
Op,(M) =1 and V be a faithful finite dimensional Fp,M-module. Suppose that J := Jpy (V) # 1.
Then for J := Iu(V), W := [V, T+ Cv(J)/Cv(T), K € J and J := J/C;([W, K]) the following
hold:

(a) K is either quasisimple, orp =2 or 3 and K =~ SLs(p)’.
(b) [V, K, L]—OforallK;éLej and W = @ g7 [W, K]
(c) JPJ = OP(J) = F*(J) = X gec K.

(

(e) If A< M is a best offender on V, then A is a best offender on W.
(f) K = F*(J) = OP(J) and C,;([W, K]) = C;([V, K]).
E

)
|
d) W is a faithful semisimple Fp,J-module.
)
)
()

ither [W, K| is a simple F,K-module, or one of the following holds, where q is a power
of p:
(1) J = SLu(q), n =3, and [W,K] =~ N"® N**, where N is a natural SL,(q)-module,
H its dual, and r,s are integers with 0 < 1,8 <n and /T + /s < 4/n.
(2) J = Spy,,(q), m =3, and [W, K] =~ N", where N is a natural Sp,,,(q)-module and r
is a positive integer with 2r < m + 1.
(3) J=SU,(q), n =8, and [W,K] =~ N", where N is a natural SU,,(q)-module and r is
a positive integer with 4r < n.
(4) J = Q¢ (q) with p odd if n is odd, or J =~ O (q) with p =2 and n even Moreover,
n = 10 and [W, K| = N", where N is a natural Q5 (q)-module and r is a positive
integer with 4r < n — 2.
(h) If [W, K] is not a homogeneous F, K module, then holds with r # 0 # s and n = 4

THEOREM C.3 (FF-Module Theorem, [MS5]). Let M # 1 be a finite CK-group and V be a
faithful F, M -module. Put

= {A < M | there exists 1 # B < A such that [V, B, A] =0 and A and B are offenders on V}E|

Suppose that V' is a simple FpJJar (V)-module and M = (D). Then one of the following holds, where
q is a power of p:
) M =S5L,(q), n>2, and V is a natural SLy(q)-module.

2) M = Sp,,(q), n =1, and V is a natural Spy, (q)-module.

3) M = SU,(q), n >4, and V is a natural SU,(q)-module.

4) M =~ QF (q) for2n =6, M =~ Qy (q) forp =2 and 2n > 6, M = Q5, (q) for p odd and
2n =8, M = Qopyi1(q) forp odd and 2n+1 27, M = Oy (2), or M = 05,,(q) for p =2
and 2n = 6, and V' is a corresponding natural module.

(5) M = Ga(q), p=2, and V is a natural Go(q)-module (of order ¢%).

(6) M = SL,(q)/{— d” N, n=5, and V is the emtemor square of a natural SL,(q)-module.

(7) M = Spinz(q), and V is a spin module of order ¢8.

(1
(
(
(

LThe odd-dimensional orthogonal groups in characteristic 2 are covered in case 1i
2 Note here that D contains all quadratic offenders and by the Timmesfeld Replacement Theorem [KS| 9.2.3],
also all best offenders in M on V.

229
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) M = Alt(n) or Sym(n), p =2, n is even, n = 6, and V is a corresponding natural module.

THEOREM C.4 (Best Offender Theorem, [MS5]). Let M # 1 be a finite group, T € Syl,,(M),
and V' be a faithful F,M-module, and let A < T be a non-trivial offender on V.

(a) Suppose that M =~ Gs(q), p = 2, and V is a natural Go(q)-module. Then Np(A) is a
mazimal Lie-parabolic subgroup, |A| = |V /Cy(A)| = ¢3, [V, A] = Cy(A), and Cr(A) = A.

(b) Suppose that M = SL,(q)/{—id" ), n = 5, and V is the exterior square of a natural
SLy(q)-module W. Let U be the (unique) T-invariant Fq-hyperplane of W. Then A =
Cy(U). In particular, A is uniquely determined in T, Cp(A) = A, [V, A] = Cy(A) and
V/Cy ()] = 4] = ",

(c) Suppose that M = Spiny(q), and V is a spin module of order ¢8. Then Cy(A) =
[V, A], [V/Cy(A)] = ¢* < |A| < ¢°, and if A is mazimal, then |A| = ¢°, Cr(A) = A,
OP (Nar(A))/A = Sp,(q), and A is uniquely determined in T.

(d) Suppose that M =~ Spinf,(q), and V is a half-spin module of order ¢*°. Then [V, A] =
Cv(A), ¢ = |A| = [V/Cy(A)|, O (Nar(A)/A) = Sping (q), and A is uniquely determined
mT.

(e) Suppose that M =~ 3-Alt(6), p = 2 and |V| = 25. Then [V,A] = Cy(A), |[V,4]] =
|Cv(A)| =16, |[V/Cy(A)| = |A| =4, and A is uniquely determined in T.

(f) Suppose that M =~ Alt(7), p =2 and |V| = 2%. Then [V, A] = Cv(A), |[V, A]| = |Cv(A)| =
4, |[V/Cy(A)| = |A| =4, and A is uniquely determined in T.

(g) Suppose that M =~ Sym(n), p =2, n odd, and V is a natural Sym(n)-module. Then every
offender on 'V is a quadratic best offender, A is generated by commuting transpositions and
[V/Cv(A)] = [V, A]| = |A].

(h) Suppose that M = Alt(n) or Sym(n), p = 2, n is even, n = 6, and V is a corresponding
natural module. Then every offender on V is a best offender, and there exists a set of
pairwise commuting transpositions ty,...,tx such that one of the following holds:

(1) A={t1,...,txy, and either n # 2k, [V, A] < Cv(A) and |[V, A]| = |V /Cyv(A4)| = |A]
orn =2k, [V,A] = Cyv(A) and 2|V /Cy (A)| = |A].

(2) n =2k and A = {tita,tats ..., ti—1t;, ti4 1, tigo, ..., tgy for some 2 <1 < k, [V, A] =
Cv(A) and [V/Cy(A)] = |A].

(3) n =2k and A = {t1to,s182,t3,t4 ..., tky, where s1, 82 are transpositions distinct from
t1 and ty and s1s5 moves the same four symbols as tita, A is not quadratic and
V. All = |[V/Cy(A4)] = |A].

(4) n =8 =|A|, A acts regularly on {1,2,...,8}, [V, A] = Cv(A) and |[V/Cyv(A)| = |A].

In particular, if A < Alt(n) and n # 8, then n = 2k and A = (t1ta,tats, ..., th_1tk)-
The next result essentially is [MS6, 3.1]. We just use a slightly different hypothesis.

THEOREM C.5 (Strong Dual FF-Module Theorem, [MS6| 3.1]). Let M be a finite CK-
group, and let V be a faithful F,M-module. Let A be the set of strong dual offenders in M on V.
Suppose that M = {A) and that

(i) V is a simple M -module, or

(ii) Cv(M) =0,V = [V, M], and there exists B € A with M = (BM).

Then V is a simple M -module, and one of the following holds, where q is a power of p.

(1) M =SL,(q), n =2, or Spy,(q), n =2, and V is a corresponding natural module.

(2) p=2, M = Alt(6) or Alt(7), V is a spin-module of order 2*, and A = {(12)(34), (13)(24))
for all A e .AE|

B)p=2 M=05,2),n=3, or Sym(n), n =5 orn =7,V is a corresponding natural
module, and |A| =2 for all A e A.

3Note that in the Alt(6)-case, V might also be viewed as a natural Alt(6)-module with A 2 ((12)(34), (34)(56)}).
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Proor. By strong dual offenders are best offender. Thus
1°. A is a best offender for every A € A.

It follows that (A) < Jp(V), and M = (A) gives

2°. M = Jy (V).

Now let W be a non-zero M-submodule of V. If holds, V is a simple M-module and so
W = V. Assume that holds. Then there exists B € A such that M = (B™). Hence Cy (M) =0
implies [W, B] # 0. Since B is a strong dual offender, this gives [V, B] = [W,B] < W, and so
[V,(BM)] = [V,M] < W. Now [V, M] =V yields V = W. We have shown that always W = V and
SO

3°. V is a simple M -module.

Observe that now shows that V is a simple Jj;(V)-module. Hence we can apply and
get

4°. Either F*(M) is quasisimple and |M/F*(M)| <2, or M = SL2(q), =2 or 3, and V
is a natural SL2(q)-module for M.

In the second case of (), holds. Thus we may assume the first case in ([@%). Since M = (A4)
there exists B € A such that M = F*(M)B. Then, for any such B, M = (B™) and the hypothesis
of [MS6, 3.1] is fulfilled for M and B. Thus one of the following holds:

(A) M = SL,(q), n =2, or Sp,,(q), n =2, and V is a corresponding natural module.

(B) p =2, M =~ Alt(6) or Alt(7), V is a spin-module of order 2, and B =~ ((12)(34), (13)(24)).

(C)p=2, M= 05,(2),n>=3,or Sym(n), n =5o0rn > 7, V is a corresponding natural

module, and |B| = 2.

In case , holds. In case , M is simple and so M = F*(M)A for all A€ A and so
holds.

So suppose holds and let A€ A. If A < F*(M), then F*(M) = <AF*(M)> and we can apply
[MS6, 3.1] to F*(M) and V and so one of (A)—(C) holds for F*(M) in place of M. But since (C))
holds for M, F*(M) = Q5,,(2), n = 3, or Alt(n), n=5o0rn > 7, and V is a corresponding natural
module, a contradiction. Thus A € F*(M), F*(M)A = M, and holds. O

THEOREM C.6 (Strong FF-Module Theorem, [MS6|, 3.2]). Let M be a finite CKC-group such
that K := F*(M) is quasisimple, and let V be a faithful simple F, K-module. Suppose that A < M
is a strong offender on'V and M = (AM). Then one of the following holds, where q is a power of p:

(1) M = SL,(q) or Sps,(q) and V is a corresponding natural module.
(2) p=2, M = Alt(6), 3- Alt(6) or Alt(7), |V| =24, 25 or 2%, respectively, and |A| = 4.
(3) p=2, M = 05,,(2) or Sym(n), V is a corresponding natural module, and |A| = 2.

DEFINITION C.7. Let M be a finite group and V' a faithful M-module. Recall the definition of
a point-stabilizer of M on V from By AP (V) we denote the set of non-trivial best offenders
A of M on V such that A < O,(P) for some point-stabilizer P of M on V.

THEOREM C.8 (Point-Stabilizer Theorem, [MS6, 3.5]). Let M be a finite CK-group with
O,(M) =1 and let V be a faithful FyM-module. Suppose that M = (AP (V)) and that there
exists a Jyr(V)-component K with V- = [V, K] and Cy(K) = 0. Let A€ APy (V) and let P be a
point-stabilizer for M on V with A < O,(P). Then the following hold:

(a) M = SL,(q), Spy,(q), G2(q) or Sym(n), q a power of p, where p = 2 in the last two cases,
and n = 2,3 (mod 4) in the last case.

(b) V is a corresponding natural module.

(¢) Put F:= Endpy(V), q:=|F| and Z := Cy(P). Then Z is 1-dimensional over F, and one
of the following holds:
(1) M = SL(q), [V, A] = Z, and A = Cry(Cy(A)) n Cas(V/2).
(2) M = Spy,(q), Z<[V,A] < Zt, and A = Crpi(Cy (A)) n Cni(Z4)2).
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(3) M = Galq), [V, A] = Cy(A), [V/Cr(A) = |A| = ¢*, and A< P,
(4) M = Sym(n), n=2,3 (mod 4), n>6, |A| =2, and A< P.
(d) |V/Cy(A)| =|A], and V is a simple F,K-module.

THEOREM C.9 (General Point-Stabilizer Theorem, [MS6, 3.6]). Let M be a finite CK-
group with Op,(M) = 1 and let V' be a faithful F,M-module. Put AP := APy (V) and suppose
that AP # . Then there exists an M-invariant set N of subnormal subgroups of M such that the
following hold:

(a) (AP) = X yey N, and N =(Ae AP| A< N) for all N e N.
(b) For all Ny # Ny € N, [V, N1, N2] = 0.
(¢) Put V. =V/Cy(N)). Then [V,N] =@ ycpnlV,N].
(d) Let N e N. Then (N,[V,N]) satisfies the hypothesis of in place of (M,V).
(e) For all N e N, Cy(N) = Cy(OP(N)) and [V,0P(N)] = [V, N].
(f) Let Ae AP. Then

(a) V/Cy(A)] = |4],

(b) A= XNENAﬁN’

(¢c) AnN € AP for all N € N with An N # 1.

LEMMA C.10. Let L be a finite CK-group of characteristic p. Suppose that
(i) CL(Zy) is p-closed,
(ii) P is a point-stabilizer of L on ZLE'
(ili) Op(L) < R < Op(P),
(iv) A and Y are elementary abelian subgroup of R, and
(v) A normalizes Y, Z, <Y, and A n O,(L) centralizes Y .
Then the following hold:
(a) Ca(Y)=AnO,(L) =Ca(Zy). In particular, if A £ Op(L) then [Y, A] # 1.
(b) Suppose that A is a best offender on' Y. Then
(a) |[A/ANOp(L)| = |Z1/Cz, (A)] = |Y/Cy(A)],
(b) Y =Cy(A)Zy.
(c) Suppose that A€ Ar. Then
(a) A is a best offender on'Y and on Z,,
(b) ZL(A N Op(L)) € .AR N -AO,,(L)7
) Y=(AnY)ZL.
(d) Ao, ) € Ar. In particular, J(Op(L)) < J(R).
() MZ(J(R)) < Z(J(Op(L)))-
() [UZ(J(R), (J(R)F)] < [Z(J(0p(L))),J(R)")] < Zr.

PROOF. @: Note that O, (L) centralizes Z,. As C1,(Z1) is p-closed we get that OF' (CL(Z1)) =
Op(L). Thus C4(Zy) = AnOp(L). Now Zp, <Y and [Y,AnO,(L)] = 1 give AnO,(L) < Ca(Y) <
Ca(Zy) = An Oy(L), and so @ holds.

([O): Since A is a best offender on Y, shows that A is a best offender on Z;. By [1.24{(i),

Zy, is p-reduced for L and thus O,(L/CL(Z;)) = 1. Also A < R < O,(P), and so shows that
|Z1,/Cz, (A)| = |A/Ca(ZL)|. Thus using (b)) and that A is an offender on Z:

e
f

|A/A N Op(L)| = [A/Ca(ZL)| =121 /Cz, (A)| = |Z1/Z1L 0 Cy (A)| = [Z.Cy (A)/Cy (A)]
<|Y/Cy(A)] <|A/Ca(Y)] =[|A/AnOy(L)],
and so (]E[) holds.

follows from

(c:b): Note that Zr(A n Op(L)) is an elementary abelian subgroup of R. Since A is a maximal
elementary abelian subgroup of R, Cz, (A) = Z;, n A. Using (]ED

1ZL(A N Op(L))| = |ZL/A N ZL||A N Op(L)] = [A/A 1 Op(L)[[A 0 Op(L)] = |A].
4See for the definition of Zj,
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Thus Z1(A n Op(L)) € Ag and so also Z,(A n Oy(L)) € Ao, (1)

: Since A is a maximal elementary abelian subgroup of R, Cy (A) =Y n A. By (c:a)) A is
a best offender on Y. Hence we can apply (b:b)), and so Y = Cy(A)ZL, = (Y n A)Zr. Thus (c:d) is
proved.

Let D e AOP(L) and A € Ag.

(d): By (c:b) |D] = |ZL(A ~ Op(L))| = |A] and so D € Ag.

@: By @ J(Op(L)) < J(R) and so both D and J(Op(L)) centralize 1Z(J(R)). Also by @
D € Ag and so the maximality of D gives 1Z(J(R)) < D < J(O,(L)). Hence

MZ(J(R)) < Cr(J(Op(L))) N J(Op(L)) = Z(J(Op(L))),
and @ follows.

[: Put Y := 21Z(J(O,(L))). By Z1(An Oy(L)) € Ao, (1) and so [Y, A n Op(L)] = 1.
Thus by (c:c), Y = (Y n A)Zy, and so [Y, A] < Zp. Hence [1:Z(J(0,(L))), J(R)] < Zr. Since
MZ(J(0p(L))) and Zy, are normal in L, the second inclusion in @) holds. The first inclusion follows
from . O

THEOREM C.11 (|GI1, Theorem 2]). Let L be a finite group, A a non-trivial abelian p-subgroup
of L and V' a faithful p-reduced F,L-module. Suppose that A is a quadratic offender on V', L is A-
minimal and Cy (L) = 0. Then L = SLy(q), V is a natural SLa(q)-module for L and A € Syl,(L);
in particular ¢ = |A|.

PRrROOF. This is [GI1 Theorem 2] just that the hypothesis and conclusion are stated differently:

Since V is a vector space over I, V' is an abelian p-group, and since V is a faithful L-module,
we may view L as a subgroup of Aut(V'). Since L is A-minimal, A is contained in a unique maximal
subgroup M of L. Let S € Syl,(M) with A < S. Since V is faithful and p-reduced, Op(L) = 1. As
A is quadratic on V', [V, A, A] = 0. The uniqueness of M shows that (A, g) = L for all g € L\M. So
Hypothesis I in |[GI1] holds.

By assumption Cy (L) = 0, and since A is an offender on V, |V/Cy(A)| < |A|. Hence the
Hypothesis of Theorem 2 in [GI1] holds. Thus, there exists a field K of endomorphisms of V' such
that |K| = |A], dimg V = 2 and L = SLg(V). In particular, the Sylow p-subgroups of L have order
K| = |A], and A € Syl,(L). O

LEMMA C.12. Let p be prime, M be a finite group, V' a faithful F, M module and D a non-empty
M -invariant set of subgroups of M. Suppose that

(i) Each A € D is a non-trivial root offender on V.
(ii) Cy(A) n[V,B] =0 for all A, B € D with [V, A] # [V, B].
(iii) M ={D) and V = [V, M].
Then M =~ SLs(q) and V is a natural SLo(q)-module for M, where ¢ = |A|. In particular, A €
Syl,,(M).
Proor. For X <V put
Tx == {[V,D] | De D, [V, D] < X}.

1°. Let D,E € D. Then [V,D] < Cy (D), and either [V,D] = [V,E] or [V,D] n [V,E] =
Cv(D)n[V,E] =0.

By |A.37(lc) D acts quadratically on V, so [V, D] < Cy (D). By [V,D] = [V, E] or Cy(D) n
[V, E] = 0. In the latter case also [V, D] n [V, E] = 0 since [V, D] < Cy (D).

2°. Let D e D. Then |D| = |V/Cy(D)| = |[V,D]|, [v, D] = [V, D], and v® = v + [V, D] for
every v € V\Cy (D).
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As D is a root offender on V, |A.37(a) gives |[D/Cp(V)| = |V/Cy(A)| = |[V,A]| = ¢, and
Cp(V) =1 since V is faithful. Moreover, |A.37||b) shows that D is a strong dual offender on V' and
so [v, D] = [V, D] for v e V\Cy (D). Thus also v” = v + [V, D], and (2°) holds.

Since D # & and M = (D), M # 1, and since V = [V, M], M does not act nilpotently on V.
Hence, there exist A, B € D with [V, A] # [V, B]. Let

Y = [V, A], Z =V, B], X=Y+2Z L:={(A,B).

3°. X=Y®Z Cx(A) =Y, Tx is a partition of X, Tx = {Y} U Z4, and L acts doubly
transitively on Tx.

Note that (A, B) normalizes X . Since [V, A] # [V, B], shows that Cy (A)n[V,B] =Y nZ =
0. Hence X =Y @ Z, and since by Y <Cy(A), Cx(A) =Y.

Pick 0 # 2€ Z. Then 2 ¢ Y = Cx(A) and by 2°) 2+ Y = 24 < (JZ4. Since X =Y + Z
this shows that X = Y + (JZ4. Now implies that {Y} U Z4 forms a partition of X and
Tx = {Y} u Z4. By symmetry also Tx = {Z} U YZ, and L = (A, B) acts doubly transitively on
Tx.

4°. M is transitive on Ty and V = X.

Let D € D. If [V,D] # [V, A] then (with D in place of B) shows [V, A] and [V, D] are
conjugate under (A, D). Hence M is transitive on Ty . In particular, there exists ¢ such that
[[V,D]| = g for every D € D.

By |V/Cv(D)| = |[V,D]| = q while by |X| = ¢*>. Hence Cy(D) n X # 0. Let
0 # we Cx(D). By Tx is a partition of X and so there exists £ € D with w € [V, E] < X.
Then [V, E] n Cy (D) # 0. Now (ii) yields [V,D] = [V, E] < X.

We have shown that 7y = Tx. Hence by V=[V.M]=[V(D)]<X and X =V.

5°. M acts transitively on V. In particular, V is a simple M -module.

Let 0 # y € Yand 0 # z € Z. Since by (2°) 24 = 24+ Y, 2 +y € 2. By symmetry,
z+y)P=y+Zandsoy+Z <M. AsV =X =Y +Z by , this gives V\Z < zM. In
particular, y € Y# < 2™, By symmetry also Z% < yM < 2 and so zM = V.

6°. A=CyY)nCyu(V/)Y), Ny(A) = Ny (Y), and D = {A} u BA. In particular M = L.

Let E := Cy(Y)nCp(V/Y). Clearly Np(A) < Ny (Y) < Ny (E). Moreover, by the quadratic
action of A on V, (ANM(Y), < E. Thus, if A = E, then also Nps(A) = Ny (Y) = Ny(E).

Note that by V = X and so by V=Y®Zand Ty = {Y} U Z4. Hence E acts on Z4.
A Frattini argument gives E = ANg(Z). Thus [Z,Ng(Z)] <Y n Z = 0. By the definition of E,
Ng(Z) also centralizes Y. Since V =Y + Z, Ng(Z) centralizes V, and since V is faithful, we get
Ng(Z)=1and EF = ANg(Z) = A. Thus A = F and Ny (A) = Ny (Y).

We have shown that Cps([V, D]) n Cpr(V/[V, D]) — [V, D] induces a bijection from D to Py =
{Y} U ZA. Tt follows that D = {A} n B4. In particular (D) = M < L.

7. M = <A, A9) for all g € M with A # AY. In particular, Np(A) is the unique maximal
subgroup of M containing A, and M is A-minimal.

Pick g € M\Ny;(A). By there exists a € A such that A9 = B®. Hence (4, A9) = (A, B*) =
L, and again by (A, A%) = M. Hence Njs(A) is the unique maximal subgroup of M containing
A, and M is A-minimal.

We are now able to prove the lemma. By , V is a simple M-module. In particular, V is
p-reduced and Cy (M) = 0. By assumption A is a non-trivial root offender and so a non-trivial
quadratic offender. By , M is A-minimal. Hence shows that M =~ SLs(q), V is a natural
SLy(q)-module, and A € Syl,(M). O



C.1. FF-MODULE THEOREMS 235

THEOREM C.13 ([MS5L 8.1]). Let p be a prime, M be a finite p-minimal group, V' a faithful
p-reduced ¥y, M-module and T' € Syl,(M). Set J := Jy (V) and J := Ju (V). Then there exist
subgroups En, ..., E, such that the following hold:

(@) J=Eyx---xE.and J ={F,...,EL}.

() V= Cyly) + S [V.E: nd [V.Ex ] =0 for 5

(¢) [Cv(T), 0P (M)] % 0.

(d) T is transitive on Ey,..., E,.

(e) There are no over-offenders on'V in M.

(f ) = SLs(q), ¢ =p", and [V, E;]/Cv,g,1(E;) is a natural S L (q)-module for E;, orp =2,
; = Sym(2" + 1), and [V, E;] is a natural Sym(2™ + 1)-module for E;.

(2) IfA < M is an offender on V, then A = (An Ey) x ... x (An E,), and each A n E; is

an offender on V.

The following lemma is an easy consequence of the Quadratic L-lemma [MS6, Lemma 2.9], in
fact its proof is hidden in the proof of the Quadratic L-Lemma [MS6l, Lemma 2.9]. But since the
Quadratic L-Lemma was proved under a C/C-group assumption we prefer to reproduced the proof.

LEMMA C.14. Let L be a p-minimal finite group, and for i = 1,2 let V; be a natural SLs(q;)-
module for L, where q; be a power of p. Then q1 = g2, L/C, (V1 ® V) =~ SLs(q;) and Vi and Vs are
isomorphic L-modules.

PROOF. Put V := V; @ Va. Replacing L by L/Cp(V) we may assume that V is faithful L-
module. In particular, O,(L) = 1. Let A € Syl (L) and let Lo be the unique maximal subgroup
of L containing A. For i = 1,2 put C; := Cr(V;). Then C; nCy = Cp(V) = 1. If C; = (s,
then C; = Cy = 1, L =~ SLy(q1) = SLs(ge) and ¢1 = ¢o. Since SLs(q1) has a unique natural
SLy(g;)-module, the lemma holds in this case.

So we may assume for a contradiction that C; € C5. Note that AC; # L and so AC7 < Ly and
Cy < L&. Since O,(L) = 1, [1.42) -@ shows that (| Ly = ®(L). Thus C; < ®(L) and so

1 £ Oy = 0105/Cy < B(L/Ch).

Note that ®(SLa(g2)) = Z(SLa(gz2)). It follows that p is odd and |Cy| = 2. In particular, C; < Z(L).
Since L is p-minimal, L = (A*) = L’A. So L/L’ is a p-group and C; < L’. Thus the 2-part of the
Schur—multiplier of L is non-trivial.

Suppose that ¢; > 3. Then L/C; =~ SLy(qy) is quasisimple. By [Hul V.25.7] the 2-part of Schur
multiplier of SLy(q1) is trivial, a contradiction. Thus ¢; = 3 and L'/C} =~ Qg By [Hul V.25.3] the
Schur multiplier of Qg is trivial, so C; € L”. Note that L'/L” is a 2-group and coprime action shows
that Cy € [L’, A]. But then also

Cy € [L/,A]A = (AT = (AF'Ay = (ALY = L,

a contradiction. |

TueoreM C.15 ([MS6] 2.10]). Let L =~ SLy(q) or Sz(q), ¢ = p*, where p = 2 in the latter
case, and let V' be a non-central simple FpL-module. Suppose that L is A-minimal for some A < L
with [V, A, A] = 0. Then V is a corresponding natural module.

LEMMA C.16. Let M be a finite group, K < H, A < K and V a faithful Fo H-module. Suppose
that K =~ 3-Alt(6), A is a non-trivial offender on V and |V| = 25. Put Ky := Cp;(V/Cy(A)) and
let V be the set of 3-dimensional FoKo-submodules of V. Then

(a) Either H =K =~ 3" Alt(6) or |H/K| =2 and H =~ 3-Sym(6).
(b) [Al =4 =[V/Cv(A)| and [V, A] = Cy (A).
(¢) Np(A) = Ny (Cy(A)) is a maximal 2-parabolic subgroup of M, and Ng(A) = Cs x
Sym(4).
(d) Ky = 0% (Nk(A)) = Sym(4).
) V= {V1,Va,V3} has size three, and both, Ny(A) and Z(K), act transitively on V.
YV =V,®V; foralll <i<j<3.
)
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PRrROOF. Let K := Endg (V). Since K contains the image of Z(K) in Endy,(V), K is a field of
order 4. Put M, := Nj(Cy (4)).

@: Note that K has orbits of length 15 and 6 on the 1-dimensional K-subspaces of V. Since
K < M, M acts on the orbit of length 6. The kernel of this action centralizes K and, since
|K¥| = 3, is equal to Z(K). Thus M/Z(K) is isomorphic to a subgroup of Sym(6) containing
Alt(6)(= K/Z(K)). So () holds.

(]E[) follows from Part @ of the Offender Theorem [C.4

(c): Observe that Nps(A) = Np(AZ(K)). Since A is an elementary abelian subgroup of order
4 with A < K we conclude that Ny (A)/Z(K) = Sym(4) if M/Z(K) = Alt(6) and Ny (A)/Z(K) =
Cy x Sym(4) if M/Z(K) = Sym(6). Thus Np/(A) a maximal 2-parabolic subgroup of M and
Ng(A) = C5 x Sym(4). As Np(A) is a maximal subgroup of M and Nps(A) < Ny (Cy(4)) we
have NM(A) = NM(C\/(A)) = Mz.

@: Since K centralizes the K-space V/Cy (A4), Ky acts K-linearly on V and so Ky < K. By
(), My n K = Np(A) n K = Nk (A) and Nk (A) = C3 x Sym(4). As Z(K) acts transitively on
V/Cy (A), we get My n K = Z(K) x Ky. Thus Ky = 0% (My n K) = Sym(4).

(¢)-(g): Let Dy € Syls(K2) and D} := Nk, (Da), so Dy = Cs, K5 =~ Sym(3) and Ky = AK}.
Then Dy acts fixed-point freely on Cy (A) and centralizes V/Cy (A). It follows that V = Cy(D2) @
Cv(A) and Cv(Dg) = Cv(D;)

Let v1,v2,v3 be the three nontrivial elements of Cy (DJ) and define V; := <viK2>. Since Ky =
AD3, we get V; = (v*) = (v;)[vy, A]. Note that Cy(A) = Cy(a) for all 1 # a € A. Thus Ca(v;) = 1
and |[v| = 4. Since A act quadratically on V, this gives |[v;, A]| = 4, and so V; is an Ky-submodule
of order 8.

Let 1 <4 < j < 3. Then {(v;,v;)Cy(A4) =V and so [v;, A] + [v;, 4] = [V, A] = Cy(A). Hence
V=Vi+V, =V;®V; and Cy,(A) = [v;, A] as order 4. As D, acts fixed-point freely on Cy (A), this
shows that Cy,(A) is a natural SLy(2)-module for Ks.

Let U be any Ks-submodule of V of order 8. Then Cyy(D3) # 0. Thus v; € U for some 1 <i <3
and so V; = (vf?) < U and U = V;. Tt follows that V = {Vi,Va, V3}. Observe that Ny (A)
normalizes K> and so acts on V. In particular, Z(K) acts on V since Z(K) < Ny (A). As Z(K)
does not normalize any of the V; and |V| = 3, we conclude that that Z(K) acts transitively on V. [

C.2. H'- and H2?-Results

LemMMA C.17 (Gaschiitz). Let T € Syl (H), let V be an F,H module, and let W an F,H-
submodule of V with [V,OP(H)] < W. Then Cy(T)+W = Cy(H)+W. In particular, if Cy (H) = 0,
then Cy (T) < W.

PRrROOF. Note that H = OP(H)T. Since [V,0P(H)] < W, we conclude that [Cy(T),H] < W.
Thus, Y := Cy(T) + W is an H-submodule of V and [Y, H] < W.

Let X :=Y x H be the semidirect product of Y with H and let Yy be a complement to Cyy (T')
in Cy(T). Then YT is a complement to W in YT. Note that YT is a Sylow p-subgroup of
X and so Gaschiitz’ Theorem [KS| 3.3.2] gives a complement Xy to W in X. Then X = X W
and since W < Y, Y = (Y n Xo)W. Hence Y n X, is an H-invariant complement to W in Y.
Since [Y,H] < W we get [Y n Xo,H]| < (Y nXo) nW =0and so Y n Xg < Cy(H). Hence
Y=YnX)+W<Cy(H)+W. AsCy(H) < Cy(T) <Y this gives Y = Cy(H) + W. O

THEOREM C.18 ([MS5, 6.1]). Let H be a finite group, V' an F,H-module, and K := Endg (V).
Table 1) lists the dimension d := dimg(H'(H,V)) for various pairs (H,V).

LEMMA C.19. Let V be an F,H-module, and let K; and Ky be subgroups of H. Suppose that
(i) [KviQ] =1,

(ii) Ky has no central composition factor on [V, K],

(i) Cy(Ky) =0.
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TABLE 1. H1 for common modules
H P Vv Conditions d
Qfl(pk)7n23 p Vtr:kat n:3’pk =2 1
» ” »” n = 3’pk =5 1
7 7 7 n=4,e=—p"=3 2
7 7 7 n=>5pk=3 1
7 ” 7 n=6e=+,pF=2 1
7 7 7 all others 0
Sp2n(pk) p V;Lat b= 2a (2napk) # (27 2) 1
7 7 7 all others 0
SLn(pk) p Viat n=2p= 27k >1 1
7 7 7 n=3,p=2k=1 1
7 7 7 all others 0
SUn(pk)7n>3 p Viat n:47pk =2 1
7 7 7 all others 0
Go(2F) 2 K6 - 1
Ga(p*) p# 2 K" — 0
3D, (p") p K® - 0
Spiné (p*) P (Half)-Spin n>=7 0
3- Alt(6) 2 K3 — 0
Alt(n),n =5 2 Vioat n even 1
7 7 7 n odd 0
SLn(pk)an = 5 p Az(Vnat) - 0
SL,(p*),n=3  odd Sym?(Viat) - 0
SL,(p**),n >3 D Viat ® V,f:t n=23pk=4 2
7 ” 7 all others 0
Eg(p*) P K27 — 0
Mat,,22 <n <24 2 Todd n =24 1
” " " n = 22,23 0
Mat,,22 <n<24 2 Golay n =22 1
Mat,,22 <n <24 2 Golay n = 23,24 0
3.Mat22 2 Fg - 0
Mat11 3 Todd - 0
Mat11 3 Golay — 1
2.M6Lt12 3 Todd - 0
2.Matqo 3 Golay — 0
Then Ko has no central composition factor on V. In particular, V = [V, Ka] and Cy (K3) = 1.
PROOF. Let g € K;. Since K5 centralizes g, V/Cy (g) = [V, g] as an Ky-module. Since [V, g] <
[V, K1], implies that K> has no central composition factor on V/Cy(g). As 0 = Cy(K;) =
N gex; COv (g9), we conclude that K5 has no central composition factor on V. O

LEMMA C.20. Let V' be an Fp,H-module. Suppose that I := [V,0P(H)] is a natural Spam(q)- or
Spam(q) -module for H with m = 1 and q a power of p. If Cv(OP(H)) =1 and Cy(V) = Cy(I),
then [V, D] = [I, D] for all D < H.

PROOF. We may assume that V' is a faithful H-module and V' # I. Then[C.18shows that p = 2
and V is as an O%(H )-module isomorphic to a submodule of the dual of a natural Qg,,1(g)’-module
for O%(H). In particular, H'(O?(H),I) is 1-dimensional over F, and since H acts F-linearly on
I, [V,H] < I. So we can choose a natural Qs,,11(q) or Qa,11(q)-module U for H with V' < U*,
where U* is the F-dual of U. Since [U*,H| = [U*,H,H], I = [V,H]| = [U*, H].
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By [B.6{jb) Cvyu: (D) = Cu(D)/U* for all D < H. In particular, U = Cy(H). So if 0 < Uy <
Us < U such that H centralizes U; and D centralizes Us/U;, then D centralizes Us. For U* this
means if U* = Wy = Wy > 0 such that H centralizes U*/W; and D centralizes W3 /W5, then D
centralizes U* /W5. Hence [U*, H, D] = [U*, D]. Thus

[I,D] < [V,D] < [U*, D] = [U*, H,D] = [, D],
and [V, D] = [I, D]. O

LEMMA C.21. Let H be a finite group and V a natural SL,(q)-module for H, q a power of p
and n = 2, and let Vi be an Fy-hyperplane of V.. Suppose that Cy (V) < Z(H) and that there exists
a Ng (Vi) n Cp(V/V1)-invariant complement to C (V') in Cg(Vh). Then there exists a complement
K to Cy(V) in H. In particular, if Cy(V) < H', then Cg(V) = 1.

PRrROOF. Put Z := Cy(V), Zy := Op(Z) and Hy := Ng(V1) n Cu(V/V1), and let B be an
Hj-invariant complement to Cy (V) in Cy(Vy) . Then H/Z = SL,(q) and Z < Z(H). By [Grl]
the Schur Multiplier of SL,(q) is a p-group, so H' n Z is a p-group and H' n Zy = 1.

Suppose that n = 2. Then BZ/Z e Syl,,(H/Z), and by Gaschiitz’ Theorem [KS| 3.3.2] there
exists a complement L/Zy to Z/Zy in H/Zy. It follows that H = LZ, H' = L’ and H' n Z < Z,
so HnZ =1. If ¢ >4, then H/Z is perfect and we can choose K = H'. If ¢ < 3, then H' is a
p’-group, |B| = p and we can choose K = H'B.

Suppose now that n > 3. Then H = H'Z and H' is perfect. Note that V; is a natural
SL,_1(q)-module for Hy, Cg, (V1) = Cy(V1) = Z x B, and B =~ Cy(V1)/Z is isomorphic to V; as
an F,Hy-module. In particular, B = [B, H1] < H' and replacing H be H' we may assume that H
is perfect. Thus Z is a p-group.

Let X be a 1-subspace of V; and Va hyperplane of V with V = X @ V. Define

H:=Cu(X)nNu(V), Vi:=VinV, H :=Nz(Vi)nCz(V/Vi), B:=BnCgzW).

Then V is a natural SL,_1(g)-module for ﬁ, 171 is a hyperplane of V and Vi=X® 171 Thus
Hy < Np(Vi) 0 Cr(V/Vi) = Hy. _ R R

Since Cy(V) < H and C5(V) < Cg(X @ V) = Cg(V) we have Cy(V) = Cz(V). Also
Cz(V1) < Ca(X@® Vi) = Cy (V1) and so

Cu(V) = Cx(V) < C5(V1) < Cu(Vi) = Cu (V) x B.

Thus B = B n Cﬁ(f/l) is a complement to Cy (V) = Cﬁ(f/) in Cﬁ(f/l). Since Hy < Hy n H,
Hy normalizes B. Recall that 2 < n — 1, so by induction there exists a complement K to Cﬁ(f/) in
H. Then K =~ SL,_1(q) acts faithfully on V.

Pick g € H with V9 = Vi. Then V = X9 @® Vi, K9 normalizes V;, and K9 centralizes X9 and
V/Vi. So K9 < H,, H = CH(Vl)I?g and K9 N Cy (V1) = 1. Since B is a complement to Cy (V) in
Cu (1), and K normalizes B we conclude that BKY is a complement to Cy(V)in H;.

Since Cgr (V) is an abelian p-group and H; contains a Sylow p-subgroup of H, Gaschiitz’ Theorem
shows that there exists a complement K to Cy (V) in H.

If K is any complement to Z in H, then H = KZ and K' = H’, so H n Z = 1. In particular
Z=1{Z<H. O

THEOREM C.22 ([MS5, 8.4]). Let M be a finite CIC-group with Op(M) =1 and V' a faithful
F,M-module. Suppose that
(i) M = Jyp(V) and there exists a unique Jpr(V)-component K,
(i) Ov(K) < [V, K] and either Cy(K) # 0 or V # [V, K].
Let A < M be a best offender on'V and put W := [V, K] and V := V/Cy(K). Then p =2, and one
of the following holds:
(a) M = K =~ SL3(2), V. = W, |Cy(K)| = 2, V is a natural SL3(2)-module, |A| = 4,

[V, A]| =2 and Cy(A) = [V, A] has order 4.
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(b) M = K =~ SL3(2), [V/W| =2, Cy(K) =0, W is a natural SL3(2)-module, |A| = 4 =
|Cw (A)] and Cv(A) = [V, A] = Cw(A). _

() M = K =8U42), V=W,2<|Cy(K)| <4,V is a natural SU4(2)-module, A is the
centralizer of a singular 2-subspace of V., and Cy (A) = [V, A].

(d) M = Ga(q), q=2%, V=W, 2<|COv(K)| <q,V is a natural Go(q)-module, |A| = ¢°,
and Cy (A) = [V, A].

(e) K = Alt(2m) and M = Sym(2m) or Alt(2m). For Q = {1,2,...,2m} let N = {nx | ¥ C
Q} be the 2m-dimensional natural permutation module and N be the Fo M -module defined
by N =N as an Fy-space and

nd = nxo if || is even or g € Alt(Q), and n$, = nse + ng if |X] is odd and g ¢ Alt(Q).

Then one of the following holds, where t1,ta, ..., t, is a mazimal set of commuting trans-

positions:

(1) M = Sym(n), V is isomorphic to N or N/Cn(K), and A = {t1,1a,...,tx) for some
1<k<m. R

(2) M =Sym(n), V=N and A =t1,ta,...,tm).

(

2
3) V>[N, K] and A fulfills one of the cases - of Theorem[C.4}
(f) M = K = Spy,,(q), m =1, ¢ =2% (m,q) # (1,2), (2,and W is the direct sum of r
natural Sps,, (q) —modulesﬁ Moreover, the following hold:
(a) 2r<m+1, and if V# W then m > 1 and 2r < m + 1.
(b) Let X be the 2m+2-dimensional FgM-module obtained from the embedding Sps,, (q) =
Qom11(q) < Q3,,40(q). Then V is isomorphic to an F,M -section of X"

C.3. Q!-Module Theorems

In this section H is a finite group, @ is a p-subgroup of H, and V' is a finite Q!-module for F, H
with respect to Q. We again use the °-notion, so for L < H,

L°=(Pe@Q"|P<L) and Lo = OP(L°).

THEOREM C.23 ([MS6, 4.5]). Let Op(H) =1 and V be a faithful Q!-module for H with respect
to QQ. Suppose that one the following holds.
(i) F*(H) = Alt(n), n =5, and [V, H]| is a natural F, Alt(n)-module for F*(H), or
(ii) H =~ Alt(7) and |[V, H]| = 2%.
Then (i) holds, and either n = p or (n,p) is one of (5,2),(6,2),(8,2), (6,3).

THEOREM C.24 (Q!FF-Module Theorem, [MS6), 4.6]). Let H be a finite group with O,(H) =
1 and Q be a p-subgroup of H, and let V be a faithful Q!-module for H. Put H° := {(Q*) and
J = Ju(V). Suppose that there exists an offender Y in H such that [H°,Y| # 1 and that one of
the following holds:

(i) Y is quadratic on V.

(ii) Y s a best offender on V.

(i) Cy([V,Y]) # 1.

(iv) Cy(H®) =1.

Then one of the following holds:

(1) There exists an H-invariant set K of subgroups of H such that:
(a) For all K e K, K = SLy(q) and [V, K] is a natural module for K,
(b) J = Xpgex K and V = @ peec [V, K],
(¢) Q acts transitively on K,
(d) H° =0?(J)Q.
(2) Put R:= F*(J). Then
(a) R is quasisimple, R < H°, and either J = R orp =2 and J = O%n(q), Sp,(2) or
G2(2).

5The case K =~ Sp,(2) = Alt(6) is covered in (EI), while the case M = Sp2(2) does not occur
60bserve that for m = 1, Spy(q) = SLa(q) and a natural Sp,(g)-module is also a natural SLz(g)-module.
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(b) Cy(R) =0, [V, R] is a semisimple J-module, and H acts faithfully on [V, R].
(c) Put J°:=.Jn H°. Then one of the following holds:
(1) (&) B = J% = SLu(q), n = 3, Spy,(q), n = 3, SUn(q), n = 8, or Q(q),

n = 10.
(b) [V, R] is the direct sum of at least two isomorphic natural modules for R.
(¢) H° = RCye(R).

[V, R] is a simple R-module.
Either H° = R = JY or H° =~ Sp,(2), 3-:Sym(6), SU4(q).2 (= Og (q) and
[V, R] the natural SU 4(q)-module), or G2(2).
(c) One of the cases[C.3 (1) - (9), (12) applies to (J,[V, R]), with n > 3 in
case (1), n = 2 in case (2), and n =6 in case (12).
(3) p=2,J =R >~ SL4(q), H°/R has order two and induces a graph automorphism
on R, and V is the direct sum of two non-isomorphic natural modules.

PROOF. This is [MS6, 4.6, except that in we added the assumption n > 3 to case (1)
and the assumption n > 2 to case (2) of[C.3] Note here if n = 2 in case (1) or n = 1 in case (2) then
[V, R] is a natural SLs(q)-module for J, and so by V = [V, R]. Hence, these cases are already
covered by ﬂ O

)
c)

(d) If V # [V, R] then R =~ Sp,,,(¢), p =2, and n > 4.
o

THEOREM C.25. Let H be a finite group with Op(H) =1, and let V' be a faithful Q!-module for
H with respect to Q. Suppose that there exists 1 # W < H such that

(i) W is a strong offender on V'; and
(i) [X,W] = [V, W] for all X <V with |X/Cx(W)| > 2.

Put H° := (QF), K* := (WH), K := (WX™) and K := K#. Then

K*= X R, [V,K*]= @I[V,R], and K ={WX) is the subnormal closure of W in H.
ReK ReK

Moreover, one of the following holds:
(1) (a) K< H, K' is quasisimple, H® = K'Q and Cy(K) = 0.
(b) One of the following holds:
(1) K = K' = H° ~ SLy(q), n > 3.
(2) K =K'= H° = Sp,,(q), n =2, (n,q) #(2,2).
(3) p=2, K < H° or H® < K, K =~ Spy(2) or Sps(2), and H° = Spy(2) or
Sp4(2).
(4) p=2, K =K' < H°, K =3 Alt(6) and H® = 3 Alt(6) or 3:Sym(6).
5)p =2 K = 05,2), H> = K' = Q5,(2), n = 2 and (n,¢) # (2,+), and
| W|=|V/Cv(W)| =2.
) @ acts transitively on K, H® = OP(K*)Q, and V = [V, K*].
) K =~ SLs(q), and [V, K] is the corresponding natural module.
)
modules for K, and |V /Cy(W)| = 4.
(b) K< H, K< H°, and H° =~ SL,(2) or SL,(2) x SLa(2).
(4) (a) p=2, K= SL,(2),n>3,V =Cy(K*)®[V,K*], [V, K] is the direct sum of two
isomorphic natural modules for K, and |V /Cy(W)| = 4.
(b) K*< H, [K* H°] =1 and H° =~ SLy(2).

Proor. This is [MS6| 4.7] with a couple of additions.

e In case ([L:b:5) with K = 05,(2): We may assume n > 2 and (n,e) # (2,+). Indeed
|05 (2)| = 2, so since O,(H) = 1, this case does not occur; and Oy (2) =~ SLy(2), so this

"We made these changes for easier reference and to point out more clearly that H° does not have to be contained
in J in the SLy(q)-case.
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case is already covered by case (2)) (with ¢ = 2 and |K| = 1). The OF (2)-case does not
occur since K = (WE™), but Of (2) is not generated by transvections.

e From the structure of K as given in 7 , K = (WE) and so since K = <I/V<WH>>7 K
is the subnormal closure of W in H.

O

COROLLARY C.26. Let H be a finite group with O,(H) = 1, and let V be a faithful Q!-module
for H with respect to Q. Suppose that there exists 1 # W < Q such that

(i) W is a strong offender on V; and

(i) [X, W] =[V,W] for all X <V with | X/Cx(W)| > 2.
Put H° :={(Q") and K := <W<WH>>. Then

(a) K =(WHy=(WHE) is the subnormal closure of W in H and Cy(K) = 0.

(b) K = SL,(q) or Spy,(q), n = 2, q¢ a power of p, and [V, K] is a corresponding natural

module.
(c) Either H° = K or K =~ SLs(q), q # p, H, = K and [V,W,Q] # 1.
(d) FEither V =[V,K] or K = Sp2,(2), n>2 and |V/[V,K]| = 2.

PROOF. Note first that we can apply [C.25]

Let S € Syl,(H) with @ < S. Then by Q!, Nu(Cv(S)) < Nu(Q). It follows that W < Q@ <
Op(Nu(Cv(S))) and so we can apply the Point-Stabilizer Theorems and In particular,
[V,K]|Cy(K)/Cy(K) is a simple K-module, and so cases and (4)) do not occur.

Suppose that holds. Then K =~ SLs(q), Q acts transitively on K := FM, [V,K] is a
natural SL,(g)-module and V = [V,{WH}]. Since Q normalizes W, Q normalizes K = (WW™,
Hence K = {K} and V = [V, K|. Suppose Q acts F,-linearly on V. Then Q < K, K = (Q¥) = H°
and the corollary holds.

So suppose that ¢ does not act Fg-linearly on V. Then g # p, so K is quasisimple and
K = [K,Q] < H°. Also [V,W] is a non-trivial F, subspace of V' and hence [V,IW,Q] # 1. As K
acts transitively on V, Q! gives H° = (Q¥) = KQ (see Jand so H, = OP(KQ) = K. So
again the corollary holds.

Suppose that holds. Since none of Spy(2)’, 05,,(2) and 3- Alt(6) appear as a possibility
for K in the Point-Stabilizer Theorem we conclude that K =~ SL,(q), n = 3, or Spa,(q), n = 2,
and [V, K] is a corresponding natural module. Moreover, H° < K and so K = H°. It remains to
verify @

Put U := [V, K]. By Q!, Q < Cu(Cy(S)). Thus W < O,(Ng(Cy(S)), and we can apply the
Point-Stabilizer Theorem [C.8|(d) also to W and U. Hence |U/Cy(W)| = |[W|andso V = Cy (W)+U.

Suppose that V # U. Then by either K =~ SL3(2) and Oy (W) < U or K = Spa,(q),
n > 2, p=2 and V is isomorphic to a submodule of the dual of a natural Q9,,+1(¢)-module. The
first case contradicts V' = Cy (W) +U. In the second case, let v € Cy (W)\U. Then Ck (v) = 05,,(q).
Since W < Ck(v) and W is a strong offender on U, the Strong Offender Theorem shows that
[W| =2 =q. So (d) holds. O

THEOREM C.27. Let H be a finite group and let V' be a faithful p-reduced Q!-module for H with
respect to Q. Let 1 # A < H be a strong dual offender on V. Then one of the following holds:
(1) (a) H° = SL,(q), n =3, and [V, H®] is a corresponding natural module for H°.
(b) If V # [V, H°] then H° = SL3(2) and |V/[V, H°]| = 2.
(c) (AT =H".
)

@
module for H°.
(b) If V. # [V,H®], then p =2 and |H/[Y, H°]| < q.
(c) One of the following holds:
(1) H° =(AH),
(2) (AT < H®, (AP ~ Sp,(2) and H® = Sps(2).

H°® = Span(q), n =2, or Sps(q)’ (and q = 2), and [Y, H°] is the corresponding natural
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(3) H° < (AH), (AT ~ Sp,(2) and H° =~ Spy(2)'.
(3) (a) There exists a unique H-invariant set K of subgroups of M such that V is a natural
S Lo (q)-wreath product module for H with respect to K.
(b) H° = OP({K))Q and Q acts transitively on K.
(¢) A< K for some K € K.
(4) (a) H = 05,,(2), H° = Q5,,(2), 2n =4 and (2n,€) # (4,+) and [V, H] is a corresponding
natural module.
(b) If V # [V, H], then H =~ Of (2) and |V /[V, H]| = 2.
(c) |A| =2 and H = (AT).

PROOF. Put K* := (AH) K := (AK*) and K := K¥. Since H is faithful and p-reduced,
Op(H) = 1. Thus we can apply [MS6 4.8] and conclude that one of the following holds:
(A) (a) K< H, H° ={(Q¥) and Cy(K) = 0.
(b) K = SL,(q), n =3, Span(q), Alt(6), or O5,,(2), ¢ a power of p , p = 2 in the last two
cases; and [V, K] is a corresponding natural module.
) Either H° < K or K = Sp,(2)’ and H® =~ Sp,(2).
) If K =~ 05,,(2), then |W| = 2.
(B) (a) @ acts transitively on K and H® < {K)Q
(b) V = @pexclV, R], K = SLy(q), and [V, K] is a natural SLj(¢)-module for K.
Suppose first that holds. Then V is a natural SLs(g)-wreath product module for H with
respect K. By KC is uniquely determined by this property.
Since @ acts transitively on K and K =~ SLs(q), we get OP((K)) < Q). As H° < (K)Q, this
gives OP(H®) = OP({K)). By we have H° = (Q"") and we conclude that H® = OP(H°Q) =
OP((K))Q. Thus (3) holds.

Suppose next that holds.

Assume that K =~ SL,(¢), n = 3, and [V, K] is a corresponding natural module. Then H° < K
and since SLy,(q) is quasisimple (or by [B.37), H = K. By either V = [V, K] or K = SL3(2)
and |V/[V, K]| = 2. Thus (1)) holds.

Assume that K =~ Sps,(¢) and [V, K] is a corresponding natural module. Suppose that n = 1.
Then by V = [V, K] and the already treated case shows that holds. So suppose that
n = 2. Then by [C.22]either V = [V, K] or p = 2 and |V/[V,K]| < ¢. Also shows that either
H° = K or K = Sps(2) and H° = Sp4(2). Thus holds.

Assume that K =~ Alt(6) and [V, K] is a corresponding natural module, that is K =~ Sp,(2)’
and [V, K] is a corresponding natural module. By H° < K or H° =~ Sp4(2), and since K is
simple, we get H® = Sp,(2)' or Sp4(2). By[C.22] |V/[V, K]| < 2 and again (2) holds.

Assume that K =~ O;,,(2). Since O2(H) =1, K 2 O (2). If K =~ 05 (2) = Sp2(2), then [V, K]
is a natural Sps(2)-module, a case we already have treated. So suppose that n > 2. Then
shows that either V = [V, K] or K ~ Of (2) and |V/[V, K]| = 2.

If K >~ Of(2) = SLy(2) 1 Cy, the already treated case shows that (3) holds. So we may
assume that (2n,¢€) # (4, +). Then implies that H° =~ Q5 (2) and thus (4 holds. O

(c
(d
(a

C.4. The Asymmetric Module Theorems
For the definition of a minimal asymmetric module see [A74]

THEOREM C.28 ([MS6|, 5.4]). Let H be a finite group and V be a faithful simple minimal
asymmetric F, H-module with respect to A < B. Put L := (A") and K := F*(H). Then H = KB,
K =[K,Al< L, L =KA, and one of the following holds:

(1) |B| =2 and H = L =~ Dy, r an odd prime.

(2) |A| =2, L = SU3(2), Bx~Cy orQs, and V is a natural SU3(2)'-module for L.

(3) |B| =3, H=L = SLy3), and V is a natural SLy(3)-module for L.

(4) K is quasisimple and not a p'-group, H = KB, V is a simple F,K-module, and H acts
K-linearly on V, where K = Endg (V).
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THEOREM C.29 (Minimal Asymmetric Module Theorem, [MS6| 5.5]). Let H be a CK-
group, A < B < H andV be a faithful simple F, H-module. Suppose thatV is a minimal asymmetric
F, M -module with respect to A and B and that F*(H) is quasisimple with p||F*(H)|. Then one of
the following holds for L := (AH):

(1) L = SLn(9), Span(9), SU(q),?Da(q), Spinz(q), Sping (q), G2(q)" or Sz(q), where q is a
power of p, V' is a corresponding natural or spin module for L, and A is a long root subgroup
of L.

(2) L = Sym(2* +2), k > 3, |A| = 2, A is generated by a transposition, and V is the
corresponding natural module.

(3) L = 3 Alt(6), |A| =2 and |V| = 2°.






APPENDIX D

The Fitting Submodule

Let H be a finite group and V' be a finite F, H-module. In [MS2] an H-submodule of V' was
introduced which in some respect is the analogue of the generalized Fitting subgroup of a finite
group. In this appendix we will give its definition and derive some properties that have been used
in this paper.

LEMMA D.1. The following hold:

(a) Suppose that H/Cy (V') is a p-group. Then V is not perfect.
(b) Suppose that V is a perfect H-module. Then V = [V,0P(H)].
(c) Suppose that V is a quasisimple H-module. Then Cy(OP(H)) = rady (H).

PrOOF. @: This is an elementary fact about the action of p-groups on p-groups.

(b): Put V:= v/[V,0P(H)] and H := H/OP(H). Then (a) shows that V is not perfect. Since
[V,H]| =V, we conclude that V = 0.

(c): Let U be a maximal H-submodule of V. Then either V = U+ Cy (OP(H)) or Cy (OP(H)) <

U. The first case is impossible, since by V = [V,0P(H)]. Hence Cy (OP(H)) < rady (H). Since
V/Cy(OP(H)) is simple, also rady (H) < Cy(OP(H)). O

D.1. The Definition of the Fitting Submodule and Results from [MS2]

DEFINITION D.2. Let Sy (H) be the sum of all simple H-submodules of V' and
Ex(V) := Cpsxmy(Sv (H)).
Let L < H. Then V is L-quasisimple for H if V is p-reduced for H, V /rady (H) is a simple
H-module, V is a perfect L-module, and L acts nilpotenly on rady (H).

An H-submodule U of V' is a component of V' (or H-component of V), if either U is simple
and [U, F*(H)] # 0, or U is Ey(V)-quasisimple. The sum of all components of V' is the Fitting
submodule Fy (H) of V. Put

Ry (H) := )" radw (H),

where the sum runs over all components W of V.

LEMMA D.3. The following hold:
(a) Suppose that 'V is faithful and p-reduced. Then Ep (V') is the (possibly empty) direct product
of perfect simple groups. In particular, F(Eg(V)) =1 and Exg(V) < E(H).
(b) If Eg(V) =1, then Fy(H) is a semisimple H-module.
(¢) Eg(V) centralizes Ry (H).
PROOF. (a): This is [MS2, 2.5d].
(]E[): Suppose that Ex(V) = 1. Then there does not exist any non-trivial H-module U with
U =[U,Eyg(V)]. It follows that all H-components of V are simple H-modules and so Fy (H) is a

semisimple H-module.
(c): By [MS2, 2.5a] Cr,, gy (Ea(V)) = [Sv(H), F*(H)] + Ry (H), and so (c) holds. O

LEMMA D.4. Let N <<< H. Then the following hold:

(a) Sv(H) < Sy(N).
(b) Eg(V)n N = En(V).

245
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(c) Fy(H) < Sv(N)+ Fv(N).
PROOF. See [MS2] 3.1] and [MS2] 3.2]. O

The following theorems are the main results of [MS2]:

THEOREM D.5. Fy(H) is a p-reduced H-module, and Ry (H) is a semisimple F*(H)-module.
Moreover Ry (H) = radp, (gy(H), in particular Fy(H)/Ry (H) is a semisimple H-module.

THEOREM D.6. Suppose that V is a faithful and p-reduced H-module. Then also Fy(H) and
Fv(H)/Ry(H) are faithful and p-reduced.

LEMMA D.7. Suppose that V is a faithful and p-reduced H-module. Let N <<t H. Then the
following statements are equivalent:

(a) FV(H) is a semisimple N-module.
(b) En(V) = 1.
(¢) NnEg(V)=1.
(d) [N, Eg(V)] = 1.
(e) [F*(N), Eu(V)] = 1.
(f) [N, En(V)] =1

PROOF. Suppose that Fy(H) is a semisimple N-module. Then Fy(H) < Sy(N), and so
En(V) < Cn(Sy(N)) < Cu(Fy(H)). Since V is faithful and p-reduced, shows that Fy (H) is
a faithful H-module, that is, C(Fy(H)) = 1. Hence En(V) = 1.

Suppose that Ex (V) = 1. Then by applied to N in place of H, Fy (N) is a semisimple
N-module. By D4, Fyv(H) < Sy(N) + Fy(N). Since submodules of semisimple modules are
semisimple we conclude that Fy (H) is a semisimple N-module.

We have proved that (a) and (b)) are equivalent. By [D.4(b), Ex(V) = N n Eg(V) and so
and are equivalent. By [D.3([a)) £y (V) is a direct product of perfect simple groups. Thus
shows that ,@, are equivalent.

In particular, Ex (V) = 1 if and only if [N, Ex(V)] = 1. This applied with H = N shows that
En(V) =1if and only if [N, Ex(V)] = 1. So () is equivalent to (c]). |

D.2. The Fitting Submodule and Large Subgroups

LEMMA D.8. Suppose that V is a faithful p-reduced Q'-module for H. Then [H°, Exg(V)] =1 =
H° n Ex(V), and Fy(H) is a semisimple H°-module.

PrOOF. Put S := Sy(H) and E := Ey(V). Then E = Cpxg)(S). Since S is a non-zero
H-submodule of V/, gives Cgo(S) < Cgo(H®) = Z(H®). Thus [E, H°] < En H° < Z(H°).
By[A52[b), Cu(H®/Z(H®)) = Cy(H®) and so [H°, E] = 1. Hence[D.7shows that H° nEx (V) =1
and that Fy (H) is a semisimple H°-module. O

LEMMA D.9. Suppose that 'V is a faithful p-reduced Q'-module for H. Let N << H and suppose
that F*(N) < F(N)F*(H®). Then Fy(H) is a semisimple N-module.

PROOF. Put E := Eg(V). By[D.§[H°, E] = 1 and by[D.3|fa), E < E(H). Since F(N) < F(H)
and [F(H),E(H)] = 1, we conclude that [F'(N),E] = 1. Slnce F*(N) < F(N)H® this gives
[F*(N),E] = 1. Thus shows that Fy (H) is a semisimple N-module. O

LEMMA D.10. Suppose that V is a faithful p-reduced Q!-module for H with respect to Q. Then
also Fy(H) and Fy(H)/Ry (H) are faithful p-reduced Q!-modules for H with respect to Q.
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Proor. By[D.6|Fy (H) and Fy (H)/Ry (H) are faithful p-reduced H-modules. Put I := Fy (H)
and R := Ry (H). The definition of a Q!-modules implies that any submodule of a Q!-module is a
Q!-module, so I is a Q!-module for H with respect to Q.

Let 1 # B < Cp)r(Q). ByI is a semisimple H°-module and so there exists an H°-submodule
Iy of I such that I = Iy @ R. Hence, there exists a unique By < Iy with B = (By + R)/R. This
shows that Nge(B) = Nyo(Bp) and [By, Q] < Ip n R = 0. Now Q! gives

Q < Npo(By) = Nyo(B) < Ng(B).
Thus @ < O,(Ng(B)). Hence 1 # Cy (O,(Ng(B))) < Cyv(Q), and Q! implies
Nu(B) < Nu(Cv(0p(H))) < Nu(Q).
This shows that also I/R is a Q!-module for H with respect to Q. |

D.3. The Nearly Quadratic Q! -Module Theorem

THEOREM D.11 (Nearly Quadratic Q!-Module Theorem). Suppose that'Y is a faithful p-reduced
F,Q!-module for M with respect to Q. Put I := Fy (M) and suppose that there exists an elementary
abelian p-subgroup A of M such that

(i) A acts nearly quadratically but not quadratically on I,

(ii) A normalizes @, and Q normalizes A,

(i) [V, A] < 1.

Then one of the following holds:

(1) K := [F*(M), A] is the unique component of M, K < M°®, I is a simple K-module,
I=1[Y,KA], and A acts K-linearly on I, where K := Endg (I).

(2) M° =Q3(3), and Y is the corresponding natural module for M°.

(3) Y = I, and there exists an M -invariant set { K1, K2} of subnormal subgroups of M such that
K; = SLy,(q), m; =2, q a power of p, [K1, K2] = 1, and as a K1 Ky-module Y = Y1®F, Ya
where Y; is a natural SLy,,(q) -module for K;. Moreover, K := Endg, k,(I) = F, and one
of the following holds:

(1) M° is one of K1, Ky or K1 Ko,
(2) mi=mo=q=2, M =SLy(2)1Cy, M° =03(M)Q and Q = C4 or Ds.
(3) m=me=p=2,q=4, M° = K1 K3Q =~ SLy(4) 1 Co, A acts K-linearly on I but

M° does not.
(4) p=2, M =2TSLy(4), M° =~ SLy(4) or I'SLy(4), I is the corresponding natural module,
and |Y/I| < 2,

(5) p=2, M =T'GL2(4), M° = SLy(4), I is the corresponding natural module, andY = 1I,
(6) p=2, M ~ 3 Sym(6), M° =~ 3-Alt(6) or 3:Sym(6), and Y = I is simple of order 25.
(7) p=3, M = Frob(39) or Cy x Frob(39), M° = Frob(39), and Y = I is simple of order 33.

PrROOF. Put L := GLg,(I). By I is a faithful M-module, so we may and do view M as a
subgroup of L. Let H be the subnormal closure of A in M.

1°. Op(M)=0,(H) =1.
Since M is a faithful p-reduced M-module, O, (M) = 1 and since H << M also O,(H) = 1.
2°. H={(A") and [Y,H] < I.

Since H is the subnormal closure of A, gives H = (A", and by Hypothesis [Y,A] < 1.
Hence also [V, H] < I.

3°. I is a semisimple M°-module. In particular, I is a semisimple module for any subnormal
subgroup of M°.

Since Y is a faithful p-reduced @Q!-module for M with respect to Q, shows that I is a
semisimple M °-module.

4°. Let R be a subnormal subgroup of M with R < Np(Q). Then [R,Q] = 1.
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This holds by |A.54{[b]).
5°. Let R be a subnormal subgroup of M and let U be a non-trivial Q- and R-invariant

subspace of Y. Then [Cr(U),Q] = 1.

Note that Cr(U) is normal in R and so subnormal in M. Also since U # 0, Cy(Q) # 0, and so
Q!-gives Cr(U) < Ny (Cu(Q)) < Npy(Q). Thus implies [Cr(U), Q] = 1.

6°.  [F*(M),Q,A] #1.

If AnQ # 1, then [L.I5|H) shows that [F*(M), A n Q] # 1 and so by [L.§|(b),
L#[F*(M),An QAN Q] < [F*(M),Q,A]

So we may assume that A n @Q = 1. Put R := [F*(M), Q] and suppose for a contradiction
that [R, A] = 1. By [L.I5({D), R # 1, and by [L.§|[b), R = [R,Q]. Since An Q@ =1 and A and Q
normalizes each other we have [A, Q] = 1 and so [RQ, A] = 1. Observe that R <<t M°. Thus,
shows that I is a semisimple R-module. Hence I is the direct sum of the Wedderburn components
of R on I. Since A centralizes R, each of the Wedderburn components of R is invariant under A.
By Hypothesis , A is nearly quadratic but not quadratic on I, so shows that there exists a
unique Wedderburn component W of R on I with [W, A] # 0. Let W, be the sum of the remaining
Wedderburn components of R. Then I = W @ W,. Since @ normalizes R and A, @ also normalizes
W and W,.

Let W1 be a simple F, R-submodule of W and put L =: Endr(W1). Since W is R-homogeneous
and [R, A] = 1, [MS3], 5.2] shows that there exists an LA-module W5 such that W =~ W; ®p W,
as an F,RA-module. Let m; = dimy W;. Then as an F,A-module, W is the direct sum of m;
copies of Wy. Applying [A748] a second times, A centralizes all but one of these m; summands.
Since the summands are isomorphic this gives m; = 1. In particular, L is generated by the image
of R in Endg,(W1). As an R-module, W is a direct sum of copies of W;, and we conclude that
the subring D of Endp, (W) generated by the image of R is a field isomorphic to L. Then Q
acts D-semilinearly on W and Qo := Cq(R/Cr(W)) = Cqo(D). By (57, [Cr(W),Q] = 1 and so
[R,Q0,Q] < [Cr(W),Q] = 1. Thus [F*(M), Qo, Qo, Qo] < [F*(M),Q,Q0,Q] = 1, and by [L3)
[F*(M), Qo] = 1, so [L.I5[b) gives Qo = 1. Hence @ acts faithfully on R/Cr(W) and thus also on
D. Put Dy = Cp(Q). By Galois Theory dimp, D = |Q| and there exists a Dp-basis of D regularly
permuted by Q). Also there exists a Q-invariant chain 0 = Uy < Uy < ... < Upy—1 < Up, = W of
D-subspaces of W with each factor isomorphic to D as a @-module. Thus Cy,(Q) € U;—; and so
(Cw (@) = (DCw(Q)) = W. By Q\\ Ciw(Q) A Cu(Q)" = 0 for all r € R\Nz(Q), see [A50().
Since Cy (Q) and Cw (Q)" are isomorphic A-modules, shows that A acts quadratically on
Cw(Q) and so also on W = (Cy (Q)F) and I = W @ Wy, = W + C1(A), a contradiction.

7°. There ezists a QA-invariant non-trivial subnormal subgroup X of F*(M) such that
X =[X,4], X=[X,Q] andifAnQ+#1 X=[X,AnQ]
HTANQ#1, shows that [F*(M), A n Q] # 1 and [L.§|(b) gives
[F*(M),AnQ]=[F*(M),AnQ,AnQ].

So we can choose X = [F*(M), A n Q] in this case.

Suppose next that A n @ = 1. By [F*(M),Q, A] # 1 and so we can choose a @ A-invariant
subnormal subgroup X of F*(M) minimal with [X,Q, A] # 1. Then shows X = [X, A] and
X =[X,Q]

8°. X < F¥(M°)n F*(H) and X € Ny (Q). In particular, H € N (Q).

Since X = [X,A] and A < H << M°, shows that X < H. Also X = [X,Q] implies
X < M°. Hence X < F*(M) n M° = F*(M°) and similarly X < F*(H). If X < Ny (Q),
implies [X, Q] = 1, a contradiction to 1 # X = [X, Q].

9°. I is a semisimple X-module and Cy (X) = 1. In particular, I = [I,X] and X has no
central chief factor on I.
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By , X < M° and so X is a subnormal subgroup of M°. Hence shows that [ is a
semisimple X-module. By X € Ny (Q). Since X is Q-invariant and Y is a Q!-module for M
with respect to @, this gives Cy (X) = 1 (see [A.53)).

10°. Put F := F*(H). Then Cy(F) =1, [Y,H] = [Y,F] = I, and if H is solvable, then
Y =1

By X < Fandby (99, Cy(X) =1l and I = [[,X]. So Cy(F) =1and I = [I,F]. By
@9, [Y,H] <Iandso[Y,H|=[Y,F]=1.

Suppose now that H is solvable. Then F' = F*(H) = F(H) is nilpotent. Since O,(H) = 1, this
implies that F is a p/-group. Coprime action now shows that Y = Cy (F) @ [Y, F] = I.

11°. Let W be a system of imprimitivity for H on I with |W| = 2 such that X acts trivially
on W. Then Case (@ or Case (@ of the Theorem holds.

Let W e W. Then X normalizes W, and by X has no central chief factor on I, so
W = [W, X] and Cw (X) = 0. In particular, |IW| > 2, and since X = [X, A] we get [W, A] # 0.

We now apply Since [W, A] # 0 for all W e W, does not occur, and since A does
not act quadratically on I, also and do not occur. So holds. Hence A has a
unique orbit W4 on W with [W, A] # 0. It follows that W = AW and one of the following holds.

e p=2 |W4 =4and dimp, W = 1.

e p=3, |[W4| =3 and dimp, W = 1.

o p=2 |[WA =2and Ca(W) = Ca(V). Moreover, dimp, W/Cw (B) = 1 and Cy (B) =
[W, B], where B := N4(W).

Since |W| > 2 the first of these cases does not occur. Consider the second case. Recall that we
view M as a subgroup of L = GLg,(I). Note that N,(W) =~ C5 ¢ Sym(3) and so O?(N(W)) =
Alt(4) = Q3(3). Since H = (A% = O*(H) and 1 # X < H n Cp(W) we get H = O*(NL(W)). It
follows that W is the set of Wedderburn components of O(H) on I and hence

NL(O*(H)) = NL(H) < NL(O2(H)) < NL(W) and O*(NL(W)) = H = O*(H).

Thus applied with G = O? shows that H = O?(H) = O?(M). In particular, M° < H and
so H = M°. Hence H is solvable, and (10°) shows that Y = I. So Case of the Theorem holds.

Consider the third case. Put Hy := Ny (W). Then |H/Hy| =2, H = AHy and Hy < H. Let
w € W\Cw(B). Then [w,B] = [W,B] = Cw(B) and so B acts transitively on W\Cy (B). In
particular, B induces the full centralizer of Cy (B) in GLy,(W) on W.

Let U be a proper Hg-submodule of W. Since B < Hy, U is B-invariant, and the transitive
action of B on W\Cw (B) shows that U < Cw (B). Put D := Cg(W/U). The transitive action of
B shows that [W, D] = U. Note that D centralizes W /U and U. Let a € A\B. Since A is abelian,
D < A and so D centralizes W*/U® and U®. Since I = W + W, it follows that D < O,(Hy).
Hence U = [W, D] =1 and so W is a simple Hp-module.

Now [MS3, 7.3] shows that (B0} induces SLp,(W) = Aut(W) on W. Suppose that Hy acts
faithfully on W. Then Hy =~ SLp,(W). Thus Hy has no outer automorphism, so H = Cy(Hop)Ho.
But then |Cy(Hp)| = 2, a contradiction to Oz (H) = 1.

Put {Wy,Wa} :=W, {i,j} := {1,2} and K, := Cy,(W;). Then K; acts faithfully on W,. As
Hy does not act faithfully on W;, K; # 1. Thus W; = [W;, K;], and since I = W; @ W}, we get
W, =[I,K;] and I = [I,K1]®[I, K2]. Put m := dimp,(W). Then W; is natural SL,,(2)-module
for Ho, H()/Kj = HO/CHO(Wz) = SLm(2) and

Suppose that m > 3. Then SL,,(2) is simple, and (x) implies that that Hy = K;K;. Hence
Hy = Ky x Ky and W; is natural SL,,(2)-module for K;. As seen above I = [I, K1|®[I, K3]. Thus
I is a wreath product module for H with respect to {K;, K>}, and shows that Cf, (w;)
is a 2-group for 0 # w; € Cw,(Ng(K;)). But this contradicts the action of K; on the natural
SLy,(2)-module W;.

Thus m = 2. Now (*) implies that K; =~ SL5(2) or SL2(2) =~ C3. Put F; := O3(K;). Then
F\Fy = O3(H) = F*(H) = F = O?(H). In particular, H is solvable and I = Y by (10°). Since



250 D. THE FITTING SUBMODULE

Cp(W;) =Cp(I) =1, |B| =2and so A = Cy x Cs. Since H is the subnormal closure of A, [1.13|gives
H = 0%H)A=FA. So H=FA= H;, x Hy with H; = SL(2), and as an H-module [ = V; ® V>
where V; is a natural SLy(2)-module for H;.

Note that N(W) =~ SLy(2)1Cy so F = O?(H) = O?*(Np(W)). Also W is the of set of
Wedderburn components of O?(H) on I, and so N(O?(H)) < Ni(W). Hence applied with
G = O? shows that O?(M) = O*(H) = F < M. Thus either H = M =~ SLy(2) x SLy(2) or
H < M = Np(F) = SLy(2) 1 Cy. So to show that Case of the Theorem holds it remains to
determine M°.

Observe that H = Hy x Hy = Qf (2), I is a natural Q} (2)-module for H and H < M. Since Q
is weakly closed and O2(M) < H, we have M° = (QO° (M)} = (QH), see . Now shows
that either M° is one H;, Hy and H, or @ is isomorphic to Cy or Dg. Thus indeed Case (3| of the
Theorem holds.

In view of (11°)) we may assume from now on that:

12°. Let W be a system of imprimitivity for H on I with X acting trivially on W. Then
(W] = 1.

Next we show:
13°. Suppose that I is not a simple M°-module. Then Case of the Theorem holds.

By I is a semisimple M°-module and so the Wedderburn components of M° form a system
of imprimitivity for H. Hence shows that I is a homogeneous M°-module. Let I; be a simple
Me°-submodule of I and L = Endpse(I1). Since M° is generated by p-elements, dimy, I; > 2. By
IMS3] 5.5] there exists an L-vector space Iy and a regular tensor decomposition Iy ®g, I of I for
M, which is strict for QA and such that M° centralizes Iy. Since I is not simple for M°, I # I; and
so dimy, I = 2. Hence Iy ®, I; is a proper tensor decomposition and we can apply [MS3| 6.5]. We
discuss the cases given there.

The first two cases do not occur since A does not act quadratically. Case (3.2) does not occur
for regular tensor decompositions. Thus Case (3.1) holds. Hence A acts L-linearly on I; for j = 0,1,
Uj := [I;, A] = C;(A) is an L-hyperplane of I}, and [F,v;, A] = U; for all v; € I;\U;. In particular,
A acts quadratically on I; and so {[v;,a] | a € A} = [v;,A] = [Fpv;, A] = U;. Thus A acts
transitively on v; + U;. Put L; := GLy(I;), Hj := Cp,;(U;) n Cr,(I;/U;) and for P < Cp (L) let P;
be the image of P in L;. Note that A; < H; and a Frattini argument gives H; = A;Cg, (v;). Since
CH, (v;) centralizes Lvy, + U; = I; we conclude that A; = H;.

Since I is a simple M°-module, I is also a simple M° A-module and so p-reduced for M°A. Now
[MS3, 7.2] shows (AM") = SLy(I;). Since M° is generated by p-elements and GLy,(I1)/SLy(I))
is a p/-group, we get (M°); < SLy,(I1). As M7 acts faithfully on Iy,

1# M° = (M), <(AM"Y, = SLi(Iy).
Note that SLy, (1) is either quasisimple or |L| = p < 3, dimy, I; = 2 and SLy (1) is a p’-group. We
conclude that (M°); = Ly and M° = SLy(I;).

Let K := OPI(CCM(L)(MO)). As CGLWP(II)(MO) is a p/-group, K centralizes I; and so also
L. In particular, K acts faithfully on I and K ~ K. As (AM"), = SLy(I;), A induces inner
automorphisms on M° and so A < M°K. Suppose that U is a proper LK-submodule of Iy. Since
A acts transitively on vg + Uy, it also acts transitively on the 1-dimensional L-subspaces not in Uy.
Thus U < Uy. Put B := C4(lo/U). Since Ay = Hy, [y, B] = U. Note that B centralizes Iy/U and
U and so the same holds for K n BM°. But K acts faithfully on Iy and since K << M, O,(K) = 1.
Thus K n BM° =1. As B A< M°K we get

B<M°BnM°K =M°(KnBM°)=M°.

Thus U = [Iy, B] < [Ip, M,] = 0, and Ij is a simple LK-module. It follows that (A%, = Lo, and
arguing as above, Lo =~ SLy, (1), Ky = Lo and K =~ SLy,(Ip). Thus Case (3:1) of the Theorem holds.

In view of we may assume from now on that
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14°. I is a simple M°-module.
Next we prove:
15°. I is a simple H-module.

Since [ is a simple M°-module, I is a simple M-module. Since H << M this implies that [ is
a semisimple H-module. So I is the direct sum of a set W of simple H-submodules. Note that W is
a system of imprimitivity for H on I with H and so also X acting trivially on W. Thus shows
that [W| = 1. Hence I is a simple H-module.

Recall that F' = F*(H).

16°. Let W be a Wedderburn component for F on I and put K := Z(Endrp(W)). Then
W =1 and K = Z(Endp(I)).

By X < F*(H) = F. Hence the Wedderburn components for F' on I form a system of
imprimitivity for H on I on which X acts trivially. Thus (12°) shows that I = W.

We now apply [MS3| Theorem 2] and discuss the different cases given there. Define E :=

Case 1. Suppose that F = KZ(H), where K is a component of H, I = W is a simple
F,K-module, and K = E. Then Case of the Theorem holds.

Put D = Endg(I). Since I is a finite simple K-module, D is a finite division ring and so a field.
In particular, the multiplicative group D* of D is a cyclic p’-group. Note that Cj;(K) < D* and so
also Cys(K) is cyclic p’-group. Thus K is the unique component of M and K < M. Moreover, if P
is a non-trivial p-subgroup of M, then [K, P] # 1 and so K = [K, P]. Thus K = [K,Q] < M° and
K =[K,A].
Since D is commutative and Z(H) < Cy(K) < D* we have D € Endy ) (I). Thus
Dc EndZ(H)K(I) = E’I’LdF(I) = EndK(I) =D

and so D = Endp(I) = Endg(I). Since I = W, K = Z(Endr(I)) = Z(Endg(I)) = Z(D), and
since D is commutative, this gives K = D.

As KA < H, shows [Y, KA] = I. Note that F(M) < Cy(K) <€ D = K. Since by Hy-
pothesis of K =E = Endg(I), this gives [F(M),A] =1 and [F*(M), A] = [F(M)K, A] =
[K, A] = K. Thus all the statements in Case (1)) of the Theorem hold.

We now discuss the remaining cases given in Theorem 2 of [MS3]. For the convenience of the
reader we reproduce the table given there. We also have omitted case (13) of the table since in that
case H would not be generated by abelian nearly quadratic subgroups.

H 1 w K H/Cy(K) | conditions

1. (Cy 2 Sym(m)) (Fs)™ | Fs Fs3 — m=3,m#4

2. | SL,(F2) Sym(m) (Fp)™ o Fy - m=2,nz=3

3. W?“(SLQ(FQ), m) (F%)m F% Fy — m =2

4. F’I"Obgg ]F27 I F27 Cg

7. SLQ(]FQ) X SL:,L(FQ) F% ®F§L 1 F4 02 n =3

8. 3-Sym(6) F3 I W Oy

9. | SLu(K)oSLn(K) |[K'@K™ | I | any 1 n,m=3
10. | SLa(K)o SLm(K) | K2QK™ | I | K #Fs 1 m>2
11| SL,(F2)1Cs Fr@F: | I | T, 1 n>
12. (CQ i Sym(4))’ (]F3)4 I s 1
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Case 2. Cases 1., 2., and 3. of the table do not occur.
In these cases W # I contrary to (16°)).

Case 3. In cases 5., 6. and 8. of the table, case , @ and (@, respectively, of the Theorem
holds.

Note that in each of these cases H has a unique component K; and [ is a simple K;-module.
In particular, Cp (K1), and so also Cjp(K7), is a cyclic p’-group. Thus [K;,Q] # 1 and K; =
[K1, Q] < M°. Moreover, since Cj; (K1) is cyclic and distinct components centralize each other, K
is the unique component of M and so K; << M. Note also that in each case K = F4 and H does not
act K-linearly on I. As H = (A™) also A does not act K-linearly on I.

Assume case 5. or 6. of the table. Then K; = SL,(4) and I is a natural SL,(4)-module for
K.

Suppose that n > 2. Then by [B:37 K; = M° and Q = C(I/U) nC(U) for some 1-dimensional
K-subspace U of I. Let Ak be the largest subgroup of A acting K-linearly on I. Since A does not
act K-linearly on I, [MS3] 6.3] shows that [I, Ax] = Cr(Ak) is a K-hyperplane of I. Recall from
Hypothesis of the Theorem that @ and A normalizes each other. Thus [Q,A] < Q n A and
U < Cr([Q, A]). We claim that Cr([@, A]) = U. Otherwise choose U < U; < Cr([Q, A]) with
[U1, A] < U. Then [Q,A,U;] =0 and [Uy, A, Q] < [U, Q] = 0. Hence the Three Subgroups Lemma
shows that [U1,Q,A] = 0. As Q = C(I/U) n Cr(U) and Uy € U, this implies that [U;,Q] = U.
So A centralizes the non-trivial K-subspace U of I, a contradiction, since A does not act K-linearly
on U. Thus Cr([Q,A]) = U. As Q acts K-linearly on I, we have [Q, 4] < @ n A < Ak and
Cr(4x) < C1([Q, A]) < U. Since Cr(Ak) is a K-hyperplane of I and dimg U = 1, this shows that
n=2.

Note that M < Np(K1). By[B:32|[b), N.(K:1) = I'GLs(4) and so Ni,(K1)/K; = Sym(3). Since
A « K, this implies either M = Np(K;) = T'GLy(4) or M = K1 A = I'SLy(4). In both cases
M = H. Since K; acts transitively on I, Q! shows that M° = (Q®1) = K;Q < M. Thus either
M° = K or M°® = M ~TSLy(4).

By (29, [Y,H] < I and so [Y,K;] = I. Observe that [K;,Q] # 1 and by Q!, Cy(K;) = 1.
Thus Y /I embeds into H*(K1,I). By H'(Ky,I) has order four. As C(K;) acts fixed-point
freely on I, it also acts fixed-point freely on H'(K71, I). Thus Ny, (K;) induces Sym(3) on H*(K1, 1)
with kernel K. Since M = H, [Y, M] < I. Hence either Y =T or M ~T'SLy(4) and |Y/I| <2, or
M =TGLy(4) and Y = I. In the first case of the Theorem holds, in the second case of the
Theorem holds.

Assume case 8. of the table. Since Endg, (I) = F4 and |Z(K;)| =3 = |Fi| = |K¥|, Cp(K;) <
K. Note that K; has a unique conjugacy class of subgroups A; with A; >~ Alt(5) and Cr(A;) # 1.
It follows that M acts on this conjugacy class. Thus M /Cy(K7) = Sym(6) and so M = 3-Sym(6).
Since K1 < M° we get M° = Ky = 3-Alt(6) or M° = M = 3:Sym(6). Thus case (6)) of the Theorem
holds.

Case 4. Suppose that either Case 12. or Case 10. with m = 2 and K = F3 of the table holds.
Then Case of the Theorem holds.

Since H is solvable in these cases shows that ¥ = I. Note that in both cases F' =
O>(H) =~ Qg oQg, and [ is the unique simple F-module of order 3*. Moreover, F' = O3(0O%(H)) and
NL(F)/F = Of(2). Tt follows that F' = O3(O%(NL(F))) and applied with G = 0302 shows
that F' = O3(0*(M)) < M. Note that Q < O?(M) since p = 3, and so M, = O3(M°) < F. By
MO = {(QM>) and thus M° = (QF).

Suppose for a contradiction that () normalizes an elementary abelian subgroup B of order eight
in F. Since B/Z(F) and F/B are dual to each other as Q-modules, we conclude that @ acts
fixed-point freely on F/Z(F). In particular, [B, Q] is a complement to Z(F') in B. Let

D:={D < B||B/D| =2,C{(B) # 0}.
Since [ is a simple faithful F-module, C;(Z(F)) = 0. Thus Z(F) n D =1 for all D € D. By

coprime action
I = @ Cr(D).
DeD
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Note that F' acts transitively on the four complements to Z(F) in B. We conclude that D consists
of the complements to Z(F) in B and |C(D)| = 3 for all D € D. In particular, |C;([B,Q])| = 3
and [Cr([B,Q]),Q] = 0. Thus Q! gives [B,Q] < Ny (Q) and so [B,Q] =[B,Q,Q] < BnQ =1,
which contradicts the fixed-point free action of Q) on F'.

Thus @ does not normalize any elementary abelian subgroup of order 8 in F. It follows that
either |Q| =9 and M° = FQ =~ SLy(3) 0 SLy(3) or |Q| = 3, [F,Q] = Qs and M° ~ SLy(3). If the
former holds, Case (3:1) of the Theorem holds. If the latter holds, M° does not act simply on I, a
contradiction to

Case 5. Suppose that Case 7., 9., 10. or 11. of the table holds. Then Case @ of the Theorem
holds.

In view of we assume that K # Fs if mm = 2 in Case 10. Note that E = Fy and K = [y
in case 7., E = K = F4 in in the cases 9., 10., and E = K = F5 in case 11. In each of the four cases
H has subgroups K7, K3 such that K; = SL,,(E), n; = 2, [K1,K3] =1, K1 Ko < H, H = K1 KA,
and there exist natural SL,, (E)-modules I; for K; such that as an Kj Ko-module, I = [} ®g I>. In
particular, X = OP(X) < K1 K5 and so Oy (K1 K3) < Cy(X) = 1. Since [Y, K1 Ko < [V,H] < I
and K; has no central chief factor on I, we conclude from that Y = 1.

Choose notation such that nq; = ns. In case 7. 9. and 11., ny > 3, and in case 10. either n; > 3
or n; = m = 2 and (according to our additional assumption) |E| > 3. Thus K is quasisimple and
so a component of M.

Let R be a component of M with R # K;. Then [R, K;1] = 1. Note that CL(K;) =~ GL,,(E).
As Ky = SL,,(E), this gives Ky = OF' (Cps(K1)) and Cp(K1)® < Ky, Tt follows that either K is
the only component of M, or K is a component of M and {K;, K»} is the set of components of M.
In either case K1 Ko < M.

It follows that H acts on the set S = {v1 ®v2 | 0 % v; € V;} and this set is of size not divisible by
p. So we can choose 0 # v; € V; such that @ centralizes v1 ® vg; i.e., Cpr(v; ® v2) < Nps(Q). Note
that K7 K5 acts transitively on S and so M = HC)py(v1 @ v2) = HNp(Q). Thus M° = (K1 K2Q)°.
Put Ry := Ck, (v1). Then R = Ck, (v1 ® v2), so Ry < Ny (Q) and [Ry, Q] is a p-group. Note that
R1/Op(Ry) = SLy,,—1(E).

Suppose that ny = 3. Then Ry/Z(K3) is not a p-group. It follows that @ normalizes K; and
centralizes R1/0,(R1). Hence @ induces inner automorphisms on K;. Therefore @) acts E-linearly
on I. Since @ normalizes Ko, this implies that @ induces inner automorphisms on K (see [B.32((d))).
Thus @ < K;1K3 and M7 < K;Ks. The only normal subgroups of K; Ko generated by p-elements
are Ky, Ko and K1 K5, so M° is one of K1, Ky and K1 K5 and so Case of the Theorem holds.

Suppose next that n; = 2. Since no < n; this gives no = 2, and case 10. of the table holds
with m = 2 with |[E| = |[K| > 3. Note that K1 Ky =~ Q] (¢) and I is a natural Q (¢)-module
for K1K5. Now shows that either M° = (Q¥1K2) is one of Ky, Ko and K Ks, or q = 4,
M° =~ Of (2) = SLy(4) 1 Cy and Q does not act K-linearly. Thus Case (3) of the Theorem holds.

Case 6. Suppose that Case 4. of the table holds. Then Case @ of the Theorem holds.

Since H =~ Frob(39), H is solvable and so by (10°) Y = I. From |I| = 33 we get N1,(H) = H.
Since H << M ~ L' this gives M n L' = H. So either M = H =~ Frob(39) or M = Z(L) x H =
Cy x Frob(39). In either case H is the only non-trivial subgroup generated by p-elements and so
M?° = H, and Case (7)) of the Theorem holds. O






APPENDIX E

The Amalgam Method

The amalgam method is a convenient way to keep track of conjugation in (finite) groups and to
combine conjugation of abelian subgroups with quadratic action.

The starting point is a prime p and a group G together with a collection of two or more finite
subgroups H;, i € I, whose p-local structures should be investigated. Usually one requires that these
subgroups are of characteristic p and have a Sylow p-subgroup in common, together with other
properties that restrict the number (and often also the structure) of the non-abelian chief factors,
like being p-irreducible.

It is rather astonishing that in such an apparently general situation most of the normal p-
subgroups of these subgroups H; are already contained in normal p-subgroups of G. Or from a
different point of view, modulo the largest normal p-subgroup of G contained in B := (),.; H;, the
number and module structure of the p-chief factors of the subgroups H; are very limited.

The name amalgam method comes from the fact that this method does not really depend on
G, but only on the embedding of B into the subgroups H;, so it can as well be performed in the
amalgamated product of these (sub)groups over B.

E.1. The Coset Graph

Let H be any group and let (H;);e; be a family of distinct subgroups of H. We define the coset
graph of H with respect to H;, i € I, as follows:
The cosets H;g, i € I and g € H, are the vertices of I, and the unordered pairs

{H,g,H;g} withi+#jandge H

are the edges of I". A vertex H;g we will call of color i. Note that a given vertex has a unique color.
Indeed if H;g = H;h, then H; = H;gh™! is a coset of H; containing 1 and so H; = H; and i = j.

Apart from the elementary graph theoretic terminology, like neighbor, adjacent, path, and
distance, we use the following notation for vertices v and § of I, i € I, K < I, A a set of vertices of
I''and L < H.

— I'; := H/H; is the set of vertices of color i; ' := |J,cx I'x is the set vertices of color
contained in K. A(y) is the set of vertices in A adjacent or equal to ~.

L is the stabilizer of § in L, La = ﬂéeA Ls is the element-wise stabilizer of A.

— d(7y,0) is the distance between 7 and J.

— A chamber of T is a set of vertices of the form {H;g | i € I} for some g € H.

E.2. Elementary Properties

We begin with some elementary facts about I' (see also [KS]).

LEMMA E.1. The following hold:

(a) T is an |I|-partite graph whose partition classes are the sets H/H;, i € I.

(b) {Hig,Hjh} is an edge of T if and only if i # j and H;g n H;h # .

(¢c) For any distinct i,j in I, H acts transitively on the set of edges whose vertices have colors
t and j. In particular, every edge is contained in a chamber.

(d) H acts transitively on the set of chambers.

255
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PRrooF. @: As remarked above each vertex has a unique color, so I';, i € I, is a partition of T".
By the definition of an edge, a vertex is only adjacent to vertices of distinct color.

(]ED: Note that
Hig N H]h # @ < dac€ ng N Hjh — dae H: {ng,Hjh} = {Hia,Hja}.

and @: This follows immediately from the definition of an edge and a chamber, respectively.
U

LEMMA E.2. Let o := H;g be a vertex and e := {H,;g, H;g} be an edge of T'. Then the following
hold:

(a) Hy, = HY.
(b) He = (Hz M Hj)g.
PROOF. Observe that for h € H
H;gh = H;g < ghe Hig — heg 'Hig «— he H/.

This gives () and (b). O

LEMMA E.3. H acts on I' by right multiplication as a group of automorphisms, and
Hr= () Hf
i€l ,geH

is the kernel of this action. Moreover, for every vertex o of I', H, is transitive on the chambers
containing o and on the neighbors of color j of a, for every j € I.

Proor. Right multiplication 7, by an element g € H sends vertices to vertices and edges to
edges. It is now easy to see that

r: H — Aut(I') with g — 7y
is a homomorphism. By
Hr= () H!=()Hs=kerr
i€l,geG oel

Let a € T" be a vertex of color 7 and let j € I. By H acts transitively on the set of chambers.
As each chamber contains a unique vertex of color i we conclude that H, acts transitively on the
chambers containing «. If j = i, the set of neighbors of color j of « is empty. So suppose i # j.
Then by H acts transitively of the edges with vertices of color ¢ and j. It follows that H,
acts transitively on the set of vertices of color j adjacent to a. O

In the following we will write this action of H exponentially: a +— a9 rather than ag.

LEMMA E.4. Suppose that T is connected, and let C be a chamber of T'.

(a) Let K < H. Suppose that for each v € C and i € I, K acts transitive on T';(7y). Then for
each i € I, K acts transitively on T';.

(b) Let R < Hc and suppose that for each v € C and i€ I, Ny (R) acts transitively on T';(y).
Then R < Hp.

PROOF. (a): Let 6 € I'. We will show by induction on d := d(C, §) that § is K-conjugate to an
element of C. If d(C,d) =0, 6 € C. So suppose that d(C,d) > 0 and let (ag,...,aq) be a path in T’
with d = d(C,d), ap € C and ag = 6. Put v := o and let a € C be of the same color i as a;. Since

K., acts transitively on I';(y), we have o} = «a for some k € K.,. Then

d(C, ") < d(a,0%) = d(af, 8") = d(ar,7) = d — 1,

and by induction 6% is K-conjugate to an element of C. Hence the same holds for 4.
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(b): Put K := Ng(R). Let i€ I and v € C. Then K5 = Ny, (R) acts transitively on I';(y). So
by (a) K acts transitively on H/H;. Since R < H¢, R fixes a vertex of color i. As R< K and K
acts transitively on H/H;, R fixes all vertices of color ¢. Thus (]ED holds. ]

LEMMA E.5. T is connected if and only if H = (H; | i€ I).

PrROOF. Put Hy := (H;, i € Iy and let 'y be the connected component of T that contains the
chamber C := {H; | i € I}. Since each H; leaves invariant I'g, also Hy does. Thus if H = Hy, Iy
contains all vertices of ', so I'g =T

Assume that I" is connected. Let i € I and § € C. Then Hyps = Hs and so by Hys acts
transitively on I';(0). Thus by Hy acts transitively on H/H;, and a Frattini argument gives
H = HyH,; = Hy. 0O

E.3. Critical Pairs
In this section we assume the following hypothesis.

HypoTHESIS E.6. Let H be a group, (H;)es a family of distinct subgroups of H, J = I, p a
prime, and I' the coset graph of H with respect to (H;);er. Put B :=[),.; H;, and suppose that the
following hold:

(i) For each i€ I, H; is finite and O,(H;) < B.
(ii) J # &, and for j € J, Z; is a p-reduced elementary abelian normal p-subgroup of H; with
Z; € Hr.
(iil) H =<{(H; | i€ I).

Recall from [E.5] that T is connected. For j € J, he H, A:= Hjh € T'; and ¢ € T we define:
Zy =20, Qs = O,(Hs), and Vj:={Z\|XeT(0)).

LEMMA E.7. The following holds.

(a) Zs < 1Z(Qs) for alloeTy.
(b) Qs < Hy for all edges {0, \}.

PROOF. @: Let j € J. By [E.6({il) Z; is a p-reduced elementary abelian normal subgroup of
H;, and so Z; < 1Z(0p(H;)). This gives Zs < Z(Qs) for 6 e T';, and (ED holds.

(]ED: By Hypothesis [E.6{f) O,(H;) < B < Hy, for all 4,k € I. By [E.1f|c) any edge with vertices
of colors i and k is conjugate to {H;, Hy}, and so (b)) holds. O

el

LEMMA E.8. There exists a pair of vertices (6,\) such § € Ty and Zs € Q.

PrOOF. By Hypothesis [E.6|fii) J # &, and for j € J, Z; € Hr. Hence there exists vertex A
such that Z; € Hy; in particular Z; € Qx. Put 6 := H;. Then Zs5 = Z;, and the claim holds for
(0, 7). O

Since T is connected we can choose a pair («, a’) of vertices of minimal distance among all pairs
(6,A) with § € T’y and Zs € Q. Any such pair of minimal distance is called a critical pair (with
respect to J). Moreover, we put b := d(«, a’). Note that b does not depend on the choice of the
critical pair.

In the following («, ') is always a critical pair, and 7 is a path of length b from « to /. We
often denote v by

’

y=(a,...,a+i,...,a+b)=(a=b,...,a —i,...,d),

S0
a=ad —b o =a+b, and a+i=a" —(b—1).

LEMMA E.9. The following hold:
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(a) b= 1.

(b) Let \eT'j and 6 € T'. If d(\,6) < b then Z) < Hy, and if d(\,0) < b then Z) < Qs.

(c) Let 0<i<b. Then Zy € Quyi and if & €Ty, Zo < Qor—i-

(d) Za < Ho/ and ZfO/ € FJ, Za’ < Ha-

(e) If b> 1, then Vo < Qaxi and Voy < Qur—ir1 for 0 < i <b—1. In particular Vo, < Hyor—q

and Vo < Hayyq.
(f) There exists h € Hy with Zo < HY_|. In particular, Z, < Hr(ary-
(g) If & €Ty and [Zy, Zor] # 1, then also (!, @) is a critical pair.
(h) If b= 3 and 6 € T, then Vj is an elementary abelian normal p-subgroup of Hs in Q5.

PROOF. @: By definition of a critical pair, Z, € Q. , and by @, Zo < Qn. Thus a # o/
and so b # 0.

([B): If d(X,8) < b then the definition of b gives Z < Q5. Suppose that d(A,§) = b. Then there
exists p € I'(0) such that d(\,u) =b—1, so Zy < Q,, and by (]ED, Zy <Q, < Hs.

: Since o € T'; and d(a, an4i) < b, (]ED applies. Similarly, if « € T';, again (]E[) applies since
also d(a,a — i) < b.

@: This is again an application of (]ED since d(a, ') = b.

(e): Let A e I'j(a) and 6 € T such that d(a,8) < b—1. Then d(), ) < b and so by (b)), Zx < Qs.
Thus, also V,, = {Zx | A € T'j(a)) < Qs. In particular for § = o/ — 2, V, < Qq—2, and by [E.7|(b))
Va < Qa’72 < Ha’71~

Similarly for p € T';(a/), d(p,« + 2) < b and by @ Zy, < Qat2. Hence Vo < Qaq2 < Hory1.

<
@): Put X :=(\cp ,(Hor 0" Hy—1)". Then X normalizes Qq/—1 and 80 Qu—1 N X < 0,(X) <
Op(Hy) = Q. Since Zy < Q-1 and Zy € Qo this shows Z,» € X and thus @) holds.

: Assume that o’ e T'y and [Z,, Zo/] # 1. Then clearly Z,, € Q,, since Z, < Z(Q.). Hence,
@ follows.

(b): Assume that b > 3 and let § € T and ji, A € T';(6). Then d(u, ) <2 < b and so Z, < Q.
Since Z) < Z(Q») this gives [Z),Z,] = 1. Also Z) < Q5 and Z) is elementary abelian. It follows
that V; is elementary abelian and contained in @s. This is (). O

E.4. The Case |I| =2
In this section we assume

HypoTHESIS E.10. Let H be a group, p a prime, H; and Hs distinct subgroups of H and I' the
coset graph of H with respect to (Hy, Hs).
(i) Hy and Hs are finite of characteristic p.
(ii) For i€ {1,2}, Z; is a p-reduced elementary abelian normal p-subgroup H; with Zp, < Zﬂ
(ili) H = (Hy, Ha).
(iv) Hy n Hs is a parabolic subgroup of H; and Ho.
(v) No nontrivial p-subgroup of Hy; n Hs is normal in H; and Ho.

Note here that since H; is finite of characteristic p for i = 1,2, then Zy, < Yy, by |1.24lg) and
both Zi = ZHi and Zz = YHi fulfill .

LEmMmA E.11. (a) Hr = 1.
(b) Hypothesis [E-6 holds with I = J = {1,2}.

PROOF. @: Then Hr < Hy n Hs and so O,(Hr) is p-subgroup of H; n Hy normal in H; and
H,. Thus Hypothesis gives Op(Hr) = 1. Since Hr < Hy and H; is of characteristic p, also
Hy is of characteristic p (see [[.2|fa]).) Thus Hr = 1.

(]E[): Let ¢ € I. By Hypothesis H; is finite of characteristic p. By Hypothesis
B := Hy n Hj is a parabolic subgroup group of H; and so O,(H;) < B. By Hypothesis

1See li for the definition of Zp, .
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is an elementary abelian p-reduced normal subgroup of H; with Zg, < Z;. The latter fact implies
Z; # 1 and since Hr = 1 we get Z; < Hr. By Hypothesis|[E.10(jiv) H = (H;, H2) and so Hypothesis
holds. O

LEMMA E.12. The following hold:
(a) H acts edge-transitively on T
) Two vertices 6 and X are of the same color if and only if d(,\) is even.
(c) Let {\, pu} be an edge. Then Hy n H,, is a parabolic subgroup of Hy and H,,.
) For every vertex §, Hs is finite of characteristic p, Zs is a p-reduced elementary abelian
normal subgroup of Hs and Zy, < Zs < Yu, < WZ(Qs).
(e) Let {\, p} be an edge. Then Cgz, (Hx) < Zy,~n, < Zx 0 Z,.
(f) Let {\, pn} be an edge. Then no non-trivial p-subgroup of Hx n H, is normal in Hy and
H

-

PROOF. @: Since |I] = 2, @ follows from [E.1{(c).

(]E[): By [E.1j[a) T is a bipartite graph with partition classes H/H; and H/Hs. This gives (@

: By Hypothesis H; n Hjy is a parabolic subgroup of H; and Hs. Since H acts edge
transitively, this gives ().

(d): Let ¢ € {1,2}. By [EI0|f) H; is finite. By [EI0|{ii), Zu, < Z; and Z; is a p-reduced
elementary abelian normal subgroup of H;. Hence Z; < Yy, < 1Z(0,(H;)). By [E.2fa) Hs is
conjugate to Hy or Hy and so @ holds.

@: Let T'e Syl,(Hxn H,,). Since Hy n H,, is a parabolic subgroup of Hy and H,,, T' is a Sylow
p-subgroup of Hy and H,,. Thus

Cz,(Hx) < 0Z(T) < Zu,~H, < ZH\ 0 ZH, < Zx 0 2,
and @ is proved.

({): By [E.10[[v) no non-trivial p-subgroup of Hy n Hy is normal in Hy and Hs. Since H is
edge-transitive, (|ff) holds. O

LEMMA E.13. Suppose that H;j is p-irreducible for some j € I. Let {\,u} be an edge of T' such
that X is of color j. Then the following hold:

(a) Cu,(Zy) is p-closed or Zy = Cz, (H)) < Z,,.
(b) Cu, (Vy) is p-closed.

Proor. By H) is an H-conjugate of H; and so p-irreducible. Hence either Cq, (Z))
is p-closed or OP(H,) < Cq, (Z)). In the second case, Hy/Cp,(Z)) is a p-group and since Z) is
p-reduced we get Cpy, (Zx) = Hx. Thus Zy < Cz, (Hy). By[E12(d) Cz, (Hx) < Zx n Z,, and so (@)
is proved.

Similarly, either Cg, (Vi) is p-closed or OP(Hy) < Cp, (V). In the second case, since Hy n H,,
is a parabolic subgroup of Hj,

Hy = Cu,(VA)(Hx 0 Hy) = Chy (Z)(Hx 0 Hy).
Hence Z, is normal in Hy and H,,. Since Z, # 1 this contradicts to [E.12[(f). O

LEMMA E.14. Let (a, /) be a critical pair (for some & # J < 1) such that H, is p-irreducible.
Then Cr., (Zy) is p-closed. If in addition b is even, then [Zy, Zo] # 1, and (!, @) is also a critical
pair.

PROOF. By definition of b, Z,11 < Q. Since Z, € Qq, this gives Z, € Z,+1, and so [E.13|(a))
shows that Cy_ (Z,) is p-closed.

Assume now that b is even. Then shows that a and o' are of the same color. Thus,
also Cp,,(Za) is p-closed, and so Qo € Syl,(Cr,,(Za)). Since Z, £ Qo we conclude that
[Zas Zor] # 1, and by also (o, «) is a critical pair. O
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E.5. An Application of the Amalgam Method

LEMMA E.15. Let H be a group, and let Hy and Hs be subgroups of H and A; < Hy. Put
A2 = <A{{2> a’nd7 fOT {Za.]} = {132}7

Di = ﬂ (Hz N Hj)k and l;‘z = <A? | he H, A? < CHlmHg(Ai)>~
keH;
Suppose that
(l) H = <H1,H2> and A2 < Hl N HQ,
(ii) E; < D; for each i€ {1,2}.
Then one of the following holds:

(1) (A is abelian and contained in Hy n Hy.
(2) There exists h € H with 1 # [A;, A} < Ay n AP and AJAM < Hy ~ H.
(3) Ey1 < Do and there exists g € H with 1 # [Ag, AS] < As n AS and A A < Hy n HY.

PROOF. Let I' be the coset graph of H with respect to H; and Hs. For a« = H;h € T" define
A, = AP and D, = D! Note that this is well defined since H; normalizes A; and D;. Also
Dy = Hyq)-

Suppose first that A; acts trivially on T'. Then (Af) < Hy n Hy < H} for all k € H. If (Af) is
abelian, (1) holds. If (A} is not abelian then [A;, A?] # 1 for some h € H and A1 Ah < Hy n H} <
Ny (Ay) n Ny (A%). Thus [A;, AP] < Ay n AF and holds.

Suppose next that A; does not act trivially on I'. Then we can choose vertices a,e € T of
minimal distance d such that « is of color 1 and A, does not fix e. Since Ay < Ay < H; n Hy and
H acts edge transitively, d > 2. Since As << Hy and Ay < Hy; we have As < Dsy. Thus A; < Dy and
so d > 3.

Let (o, 3,...,8',d/,¢€) be a path of minimal length from a to e. Then A, € Hp(qy = Dy Since
Ay = (A2) and Hp is an H-conjugate of Hy, Ag = <A£I’3> = (A5 |0 €'1(B)). The minimality of d
implies that Ag fixes 5" and /. So A, < Ag < Hg n Hy and neither A, nor Ag are contained in
D,

Since H acts edge transitively we may assume that o' = H; and 8’ = H; for some {7, j} = {1,2}.
In particular, A, < Ag < H; n H; = Hy n Hy. Note that A, = A’f for some h € H and Ag = AJ
for some g € H.

Assume that [AF, A;] # 1. Since A; = A, or Ag the minimality of d gives A} < Ay Ag <
H, = H} and A" = A, < Hy. Thus (2)) holds in this case.

Assume next that [A?, A;] = 1. Then A, = A} < E; < D;. Since A, £ D, this gives
o = Hy, Ay = Ay and Ey € Ds. If [Ag, Aw] = 1 we get Ag < By < Dy = Dy, a contradiction.
Thus [A%, Ay] = [Ag, Ao] # 1. By minimality of d, Ay = Ay = (A*) < Hy = HY. Also
AS = Ap < Hy = Hs. Thus (3) holds in this final case. O

COROLLARY E.16. Let H be a group, let Ay, Hy and Hs be finite subgroups of H, and let p be
a prime. Suppose that
(i) Ay is a nontrivial normal p-subgroup of Hy and Cy, (A1) is p-closed.
(ii) No non-trivial p-subgroup of Hy n Hy is normal in Hy and Hs.
Then the following hold:
(a) Suppose that Op(H1) < B < Hy for some B < Hy n Hy. Then there exists h € H such that
1# [Al,A}f] < A1 M A}f and AlA}f < H1 M H{l
(b) Suppose that Hy is p-irreducible, that Ay < Op(Hsz) and that Hy n Hy is a parabolic
subgroup of Hy and Hy. Put Ay := (AY2). Then there exists i € {1,2} and h € H such
that 1 # [A;, AM] < Ai 0 Al and A;A? < H; n H.

PROOF. Replacing H by (Hy, Hy) we may assume that H = (Hy, Hy). Put Ay := (AF2) and
for {i,j} = {1,2},

Di:= () (Hin Hy)* and E; = (A" | he H AY < Oy, (A)).
k}GHi
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Note that O,(H1) < Hs (in case (ED by hypothesis and in case (]ED since H1; n Hy is a parabolic
subgroup of Hi). Since O,(H;) < H; this gives O,(H1) < D;. Since Cg, (A1) is p-closed, we
conclude that
(+) By < 07 (O, (A1) < Op(Hy) < Dy,

As no non-trivial p-subgroup of H; n Hy is normal in H; and in Ha,

(A is not an abelian subgroup of Hy n Hy.

@: From B < Hy n Hy and B < Hy we get B < Dy. Since A; < O,(H;) < B we have
As < B < D < Hy n Hy. By definition of A, A; < Ay and As is generated by H-conjugates of
Aj. The first property shows that Ey < Cp,~m,(A2) < CH, ~1,(A1) and the second that Ey < Fj.
This give
By < By < 07 (Cpy, (A1) < Op(Hy) < B < Ds.
Since Ey < Dy by (*), the assumptions of are fulfilled. As (AfT) is not an abelian subgroup of

Hy n Hy, |E.15(|1) does not hold. Since Ey < D, also [E.15([3) does not. Thus holds. We
conclude that there exists h € H with 1 # [A;, A?] < A; n A} and A, A} < Hy n H}.

(]ED: Suppose that Hy = (Hy n Hy)Cp,(As). Since A1 < A we conclude that Ay < Hy, which
contradicts . As Hy n Hy contains a Sylow p-subgroup of Hy we get OP(Hj) € Ch,(A2), and as
H, is p-irreducible, Cp, (As) is p-closed. Since Hy n Hy contains a Sylow p-subgroup of Hs, we also
know that O,(H2) < Hy; n Ha. Together with O,(Hz) < Hs we infer O,(Hz2) < Ds. As above this
gives )

E; < 0" (Cn,(A2)) < Op(Hz) < Ds.

As A1 < Op(HQ) and A2 = <A{I2>, also A2 < Op(HQ) < D2 < H1 N H2. By (*) we have E1 < Dl,
and so the assumptions of are fulfilled. Since (A is not an abelian subgroup of Hy n Ha, we
conclude that there exist i € {1,2} and h € H with 1 # [4;, A?] < A; n Al and A; A" < H; n HP. O
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