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Abstract

Let H be a finite group, F a field and V a finite dimensional FH-module. We introduce
the Fitting submodule FV (H), an FH submodule of V which has properties similar to the
generalized Fitting subgroup of a finite group.

1 Introduction

Throughout this paper F is a field of characteristic p, p a prime, H is a finite group, and V is a
finite dimensional FH-module.

We will use the concept of the generalized Fitting subgroup of a finite group as a model for
our definition of the Fitting submodule FV (H) of V . In particular, FV (H) will be defined by
means of components which in turn resemble components of finite groups.

Our first result can be stated without mentioning the Fitting submodule:

Theorem 1.1 Suppose that V is faithful and Op(H) = 1. Then there exists an FH-section of
V that is faithful and semisimple.

In fact 1.1 is a corollary of 1.3 and 1.4 below, which show that FV (H)/radFV (H)(H) has the
desired properties.

To introduce the concept of a Fitting submodule we need a few basic definitions, some of
them inspired by corresponding definitions in finite group theory.

Definition 1.2 (a) H acts nilpotently on V if [W,H] < W for all non-zero FH-submodules
W of V .

(b) C∗H(V ) is the largest normal subgroup of H acting nilpotently on V . It is elementary
to show that C∗H(V )/CH(V ) = Op(H/CH(V )) and that C∗H(V ) is the largest subnormal
subgroup of H acting nilpotently on V .

(c) V is H-reduced if C∗H(V ) = CH(V ) (that is if any normal subgroup of H which acts
nilpotently on V already centralizes V ).

(d) C∗V (H) is largest FH-submodule of V on which H acts nilpotently (so C∗V (H) = CV (Op(H));

(e) radV (H) is the intersection of the maximal FH-submodules of V (so radV (H) is the small-
est FH-submodule with semisimple quotient).
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(f) Let W be an FH submodule of V and N E H. Then W is N-quasisimple if W is H-reduced,
W/radW (H) is simple, W = [W,N ] and N acts nilpotently on radW (H). If N = H we
often write quasisimple rather than H-quasisimple.

(g) SV (H) is the sum of all simple FH-submodules of V , and EH(V ) := CF∗(H)(SV (H)).

(h) W is a component of V (or an H-component if we want to emphasize the dependence on H)
if either W is a simple FH-submodule with [W,F∗(H)] 6= 0 or W is an EH(V )-quasisimple
FH-submodule. The Fitting submodule FV (H) of V is the sum of all components of V .

(i) RV (H) :=
P

radW (H), where the sum runs over all the components of V , and FV (H) :=
FV (H)/RV (H).

Theorem 1.3 The Fitting submodule FV (H) is H-reduced and RV (H) is a semisimple FF∗(H)-
module. Moreover, RV (H) = radFV (H)(H); in particular FV (H)/RV (H) is semisimple.

Theorem 1.4 Let V be faithful and H-reduced. Then also FV (H) and FV (H)/RV (H) are
faithful and H-reduced.

In section 3 we will discuss the relation between the Fitting submodule FV (H) and the
Fitting submodule FV (N), where N is a subnormal subgroup of H. Finally, in section 4 the
structure of the F∗(H)-components of V is given in the case where F is a finite or algebraically
closed field.

2 The Fitting Submodule

We will frequently use the following well-known and elementary properties of the generalized
Fitting subgroup F∗(H) of H, see for example [1]:

Lemma 2.1 Let E ≤ H.

(a) If E EH, then F∗(E) = E ∩ F∗(H).

(b) If E = F∗(E), then E = Op(E)Op(E) and [Op(E),Op(E)] = 1.

(c) If E is a product of components of H, then F∗(H) = ECF∗(H)(E).

(d) If E is a component of H and N EH, then either E ≤ N or [E,N ] = 1.

�

Lemma 2.2 Let E and P be normal subgroups of H with [E,P ] ≤ CH(V ). Suppose that
V = [V,E] and V/C∗V (E) is a simple FH-module. Then the following hold:

(a) radV (H) = C∗V (E).

(b) V is a semisimple FP -module, and every simple FP -submodule of V is isomorphic to a
simple FP -submodule of V/radHV . In particular, if I1 and I2 are simple FP -submodules
of V , then there exists h ∈ H such that I1 and Ih

2 are isomorphic as FP -modules.

(c) If E = F∗(E), then CH(V/radV (H)) = CH(V ), V is H-reduced and V is E-quasisimple
as an FH-module.

(d) If E = F∗(E), then E centralizes radV (H) and radV (H) is semisimple as an FEP -module.

(e) Either [V, P ] = 0, or CV (P ) = 0 and [V, P ] = V .
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Proof: (a): Let Y be a maximal FH-submodule of V . If C∗V (E) � Y then V = Y + C∗V (E).
So E acts nilpotently on V/Y , contradicting V = [V,E]. Thus C∗V (E) ≤ Y and so C∗V (E) ≤
radV (H). The other inclusion follows from the simplicity of V/C∗V (E).

(b): Since V/radV (H) is a simple H-module, Clifford Theory shows that V/radV (H) is a
semisimple FP -module and that any two simple FP -submodules of V/radV H are isomorphic up
to conjugacy under H. Let U be the sum of all FP -submodules of V that are isomorphic to
some simple FP -submodule of V/radV (H). It remains to show that V = U .

Let x ∈ Op(E). Then
φ : V → [V, x] with v 7→ [v, x]

is an FP -module homomorphism since [E,P ] ≤ CH(V ), so [V, x] ∼=FP V/CV (x). As radV (H) ≤
CV (x) and V/radV (H) is a semisimple FP -module, [V, x] ≤ U . Hence also

V = [V,E] = [V,Op(E)] ≤ U

and thus V = U .
(c): Put C := CH(V/radV (H)). By (a) C ∩ E acts nilpotently on V/radV (H) and on

radV (H). Thus Op(C ∩ E) centralizes V . By 2.1(a), C ∩ E = F∗(C ∩ E), and by 2.1(b),

C ∩ E = Op(C ∩ E)Op(C ∩ E) ≤ Op(E)CE(V ) and [Op(E),Op(E)] = 1.

Thus [Op(E), C ∩ E] ≤ CE(V ). Since

[V,C,Op(E)] ≤ [radV (H),Op(E)] = 0 and V = [V,Op(E)],

the Three Subgroups Lemma gives C ∩ E ≤ CH(V ) and then that C ≤ CH(V ). Clearly
CH(V ) ≤ C and so C = CH(V ). Since C∗H(V ) acts trivially on every simple FH-section of V ,
C∗H(V ) ≤ C = CH(V ) and so V is H-reduced. Together with (a) we see that V fulfills all the
conditions of an E-quasisimple FH-module.

(d): According to (c), [radV (H),Op(E)] = 0 and [V,Op(E)] = 0. Hence E centralizes
radV (H) since E = F∗(E) = Op(E)Op(E).

By (b) V and so also radV (H) is a semisimple FP -module. Thus radV (H) is a semisimple
FEP -module.

(e): This is an immediate consequence of (b). �

Lemma 2.3 Let N E H with N ≤ EH(V ) and N � C∗H(V ). Let W be an FH-submodule of V
that is minimal with respect to N � C∗H(W ). Then

(a) W is a H-component of V .

(b) W = [W,N ] and C∗W (N) = radW (H) = CW (EH(V )) 6= 0.

(c) There exists a unique normal subgroup M of H minimal with respect to M ≤ EH(V ) and
[W,M ] 6= 0.

(d) M ≤ N , W = [W,M ] and M is a product of components of H transitively permuted by H.

(e) CEH (V )(M) = CEH (V )(W ).

Proof: The minimality of W implies that C∗W (N) is the unique maximal H-submodule of W .
Thus

1◦ C∗W (N) = radW (H) and W/radW (H) is a simple FH-module,

If [W,N ] ≤ C∗W (N), then N acts nilpotently on W , a contradiction. Thus [W,N ] � C∗W (N)
and the minimality of W gives

2◦ W = [W,N ].
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Observe that by 2.1 N = F∗(N). Hence by 2.2(c) applied with N and W in place of E and
V , respectively:

3◦ W is a H-reduced.

Since [W,N ] 6= 0 and N ≤ EH(V ), W is not a simple H-module. Thus

4◦ radW (H) 6= 0.

Choose M EH minimal in N with [W,M ] � radW (H). Then

5◦ W = [W,M ] = [W,Op(M)],

and so by the minimality of M and 2.1, M = Op(M) = F∗(M). Hence M is a p′-group or a
product of components transitively permuted by H. As a subgroup of N , M acts nilpotently
on radW (H), so

6◦ [radW (H),M ] = 0.

Assume that M is a p′-group. Then Maschke’s Theorem implies W = CW (M)⊕ [W,M ] and
radW (M) = CW (M) = 0, which contradicts (4◦). Thus

7◦ M is a the product of components of H transitively permuted by H.

By 2.1(c)

(∗) EH(V ) = MCEH (V )(M).

We now apply 2.2(e) with E := M , P := CEH (V )(M) and W in place of V . Since P ≤ EH(V ),
P centralizes all simple FH-submodules of W . Thus CW (P ) 6= 0 and 2.2(e) implies [W,P ] = 0.
Hence by (6◦)

8◦ [W,P ] = 0, and EH(V ) = MP centralizes radW (H).

Since N ≤ EH(V ), (2◦) implies

9◦ W = [W,EH(V )].

If M1 is any normal subgroup of H with M1 ≤ EH(V ) and M1 � P , then 1 6= [M,M1] ≤
M ∩M1, and (7◦) shows that M = [M,M1] ≤M1. In particular,

[W,M1] 6= 0 and so by (8◦)

10◦ CEH (V )(W ) = P = CEH (V )(M).

Hence M1 is an arbitrary normal subgroup of EH(V ) not centralizing W . Thus M ≤ M1

implies (c). By (1◦),(4◦) (8◦) and (9◦) W is EH(V )-quasisimple and so (a) holds. Moreover, (b)
follows from (1◦),(2◦), (3◦) and (8◦), and (d) follows from (5◦) and (7◦). Finally (e) is (10◦).�

Lemma 2.4 (a) FV (H) is a semisimple H-module and [FV (H),F∗(H)] = FV (H).

(b) FV (H) is H-reduced.

(c) RV (H) is a semisimple FF∗(H)-module.

Proof: Let W be a component of V . Note that either W ≤ RV (H) or W∩RV (H) = radW (H).
(a): Using the above observation, (a) is an immediate consequence of the definition of FV (H).
(b): By definition all components are either simple or EH(V )-quasisimple, so they are re-

duced. Clearly sums of reduced modules are reduced and so (b) holds.
(c): Let W be a non-simple component of V . Then by 2.2(d) applied with E := EH(V ),

P := CF∗(H)(E) and W in place of V , radWH is a semisimple FEP -module. By 2.1 F∗(H) = EP
and so (c) holds. �
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Lemma 2.5 The following hold:

(a) C∗FV (H)(EH(V )) = [SV (H),F∗(H)] + RV (H) = CFV (H)(EH(V ))

(b) C∗F∗(H)(V ) = CF∗(H)(FV (H)) = Op(H)CF∗(H)(V ) ≤ EH(V ).

(c) F(H) ∩ EH(V ) = C∗F(H)(V ) = CF(H)(FV (H)) = Op(H)CF(H)(V ).

(d) If V is faithful and H-reduced, then EH(V ) is the direct product of perfect simple groups.

Proof:
(a): Let W be a component of V . Then either radW = 0 and W ≤ [SV (H),F∗(H)] or

radW 6= 0, W = [W,EH(V )] and W/radW (H) is simple. Thus U := FV (H)/[SV (H),F∗(H)] +
RV (H) is a sum of simple FH-module that are not centralized by EH(V ). So CU (EH(V )) = 0
and C∗FV (H)(EH(V )) ≤ [SV (H),F∗(H)] + RV (H).

Let W be a component of V with radW (H) 6= 0. Then by 2.3(b), applied with N := EH(V ),
[radV (H),EH(V )] = 0. The definition of EH(V ) shows that [SV (H),EH(V )] = 0 and so

[SV (H),F∗(H)] + RV (H) ≤ CFV (H)(EH(V )).

Clearly CFV (H)(EH(V )) ≤ C∗FV (H)(EH(V )) and so (a) holds.
(b): Since FV (H) is H-reduced by 2.4(b) , C∗F∗(H)(V ) ≤ CF∗(H)(FV (H)) =: N . Then

N ≤ EH(V ) since
SV (H) = (SV (H) ∩ FV (H)) + CV (F∗(H)).

If N does not act nilpotently on V , then 2.3 gives a component W of V with [W,N ] 6= 0, which
contradicts [FV (H), N ] = 0. Thus N acts nilpotently on V and so Op(N) ≤ CN (V ). By 2.1(b)
N = Op(N)Op(N) = Op(N)CN (V ) ≤ Op(H)CF∗(H)(V ).

Clearly Op(H)CF∗(H)(V ) ≤ C∗F∗(H)(V ) and so (b) holds.
(c): By (b), C∗F(H)(V ) = CF(H)(FV (H)) = Op(H)CF(H)(V ) ≤ F(H) ∩ EH(V ). Suppose

F(H) ∩ EH(V ) � C∗F(H)(V ). Then by 2.3(d), F(H) ∩ EH(V ) is not nilpotent, a contradiction.
(d) If V is faithful and H-reduced, C∗H(V ) = 1. So by (c), F(EH(V )) = F(H) ∩ EH(V ) = 1.

Since EH(V ) is the central product of nilpotent and quasisimple groups, (d) holds. �

Lemma 2.6 Let W be an H-submodule of V such that W/C∗W (EH(V )) is a simple H-module.
Choose an FH-submodule Y in W minimal with Y � C∗W (EH(V )). Then

Y = [W,Op(EH(V ))] and W = Y + C∗W (EH(V )),

and Y is a component of V .

Proof: Since W/C∗W (EH(V )) is simple, W = Y + C∗W (EH(V )). Thus [W,Op(EH(V ))] ≤ Y .
Since [W,Op(EH(V ))] � C∗W (H), the minimality of Y implies Y = [W,Op(EH(V ))]. By 2.3(a),
Y is a component. �

Lemma 2.7 Put C := {W |W component of V,W 6= 0}. Then every FH-submodule of FV (H)
is the direct sum of elements of C.

Proof: It suffices to show the assertion for simple submodules since FV (H) is semisimple by
2.4(a).

Let U/RV (H) be a simple FH-submodule of FV (H). We need to show that U = Y +RV (H)
for some component Y of V . Since by 2.5(a) RV (H) ≤ CU (EH(V )) either C∗U (EH(V )) = RV (H)
or C∗U (EH(V )) = U . In the first case the claim for U follows from 2.6.

In the second case 2.5(a) implies U ≤ [SV (H),F∗(H)] + RV (H) and so

U = (U ∩ [SV (H),F∗(H)]) + RV (H).

Since [SV (H),F∗(H)] is the sum of simple H-components of V , so is U ∩ [SV (H),F∗(H)]. Thus,
also in this case the claim holds for U . �
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Lemma 2.8 Let N EH. Then

CFV (H)(N) = CFV (H)(N).

Proof: Let C be as in 2.7. Then by 2.7

CFV (H)(N) = 〈W ∈ C | [W,N ] = 0〉.

Let W be a H-component of V such that W 6= 0 and [W,N ] = 0. Since W is semisimple and
radW (H) is the unique maximal FH-submodule of W , radW (H) = W∩RV (H). If radW (H) = 0,
this shows that [W,N ] = 0. If radW (H) 6= 0, then W is E-quasisimple for E := EH(V ). In this
case 2.2(c) with W in place of V implies that [W,N ] = 0, so the lemma holds. �

Lemma 2.9 Let W be a set of FH-submodules of V . Then

radP
W∈W W (H) =

X
W∈W

radW (H).

Proof: Clearly
P

W∈WW/
P

W∈W radW (H) is semisimple and so

radP
W∈W W (H) ≤

X
W∈W

radW (H).

On the other hand, for W ∈ W, W + radP
W∈W W (H)/radP

W∈W W (H) semisimple, so

radW (H) ≤ radP
W∈W W (H),

and the reverse inequality holds . �

Lemma 2.10 RV (H) = radFV (H)(H).

Proof: This follows immediately from 2.9 and the definition of RV (H). �

Lemma 2.11 CH(FV (H)) = CH(FV (H))

Proof: Let N = CH(FV (H)). Then by 2.8, FV (H) = CFV (H)(N) + RV (H), and by 2.10,
FV (H) = CFV (H)(N). �

Theorem 2.12 Suppose that V is faithful and H-reduced. Then FV (H) and FV (H)/RH(V )
are faithful and H-reduced FH-modules.

Proof: By 2.4(b) FV (H) is reduced. Moreover FV (H) is semisimple and thus also H-reduced.
From 2.5(b) we get CF∗(H)(FV (H)) ≤ C∗H(V ) = 1. Hence F∗(CH(FV (H))) = 1 and so

CH(FV (H)) = 1. Thus FV (H) is faithful. Now 2.11 implies that also FV (H) is faithful.
�

The proof of the Theorems 1.1, 1.3, and 1.4: Theorem 1.3 is 2.4(a), (c) and 2.10, while
Theorem 1.4 is 2.12. Moreover, Theorem 1.1 is a direct consequence of these two theorems.
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3 The Fitting Submodule for Normal Subgroups

In this section we investigate the relationship between the Fitting submodules for H and for
normal subgroups.

Lemma 3.1 Let N EE H. Then SV (H) ≤ SV (N) and EH(V ) ∩N = EN (V ).

Proof: Using induction on the subnormal defect of N in H, it suffices to treat the case NEH.
Let W be a simple H-submodule. Then by Clifford Theory W is a semisimple N -module

and so SV (H) ≤ SV (N). Thus together with 2.1 EN (V ) ≤ EH(V ) ∩N .
Conversely, let Y be a simple N -submodule of V and let U be the sum of all N -submodule of

V isomorphic to some H-conjugate of Y . Then U is an FH-submodule of V and we can choose
a simple H-submodule W of U . As an FN -module, W is a direct sum of modules isomorphic
to H-conjugates of Y , with each H-conjugate appearing at least once. Hence EH(V ) ∩ N ≤
CF∗(N)(W ) ≤ CF∗(N)(Y ). Intersecting over all the possible Y gives EH(V ) ∩N ≤ EN (V ). �

Lemma 3.2 Let W be a H-component of V and N EE H. Then there exists a FN-submodule
Y ≤ W with W = 〈Y H〉 such that either Y is an N-component of V or Y is simple and
[W,F∗(N)] = 1. In particular, FV (H) ≤ SV (N) + FV (N).

Proof: Again we use induction on the defect dH(N) of N in H. Assume that dH(N) > 1.
Then there exists N ≤ N1 E H so that dN1(N) < dH(N). By induction there exists an FN1-
submodule Y1 of W with W = 〈Y H

1 〉 such that either Y1 is simple and [W,F∗(N1)] = 0 or Y1 is
a N1-component of V . In the first case by 2.1 also [W,F∗(N)] = 0 and we can choose a simple
FN -submodule Y of Y1. In the second case induction applies to every H-conjugate of Y1 in W ,
so either [W,F∗(N)] = 0 and Y1 = 〈Y N1〉 for a simple FN -submodule Y of Y1 or there exists
h ∈ H and an N -component Y of V with Wh = 〈Y N1〉. In any case W = 〈Y H〉 and the lemma
holds.

Thus it remains to treat the case N E H. Let Y ≤ W be a N -submodule minimal with
Y � radW (H). Then Y/Y ∩ radW (H) is a simple N -module and W = 〈Y H〉.

Suppose that Y is a semisimple FN -module, then the minimality of Y shows that Y is simple.
If [Y,F∗(N)] = 0, then also [W,F∗(N)] = 0; and if [Y,F∗(N)] 6= 0, then Y is a N -component of
V .

Suppose that Y is not a semisimple FN -module. Then Y ∩ radW (H) 6= 0 and also W is not
a semisimple FN -module. By the definition of a component, W is EH(V )-quasisimple. Now
2.2(b), with (N,EH(V ),W ) in place of (P,E, V ), shows that R := [EH(V ), N ] � CH(W ).

Since W is reduced, R does not act nilpotently on W , so C∗W (EN (V )) ≤ C∗W (R) ≤ radW (H).
On the other hand EH(V ) ≤ C∗H(radW (H)) and so by 3.1 radW (H) ≤ C∗W (EN (V )). This shows
that C∗W (EN (V )) = radW (H). Hence by 2.6, applied to (N,Y ) in place of (H,W ), and the
minimality of Y show that Y is a N -component of V . �

Corollary 3.3 EF∗(H)(V ) = EH(V ) and FV (H) ≤ FV (F∗(H)).

Proof: Since EH(V ) ≤ F∗(H) the first statement follows from 3.1 applied with N := F∗(H).
Note that W = [W,F∗(H)] for all components of V . The second statement then follows from

3.2 again with N := F∗(H). �

Proposition 3.4 Let E and F be two distinct components of EH(V ). Then

[FV (H)), E, F ] = 0
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Proof: By 3.3 we may assume that H = F∗(H). Let W be an H-component of V with
[W,E] 6= 0. We can apply 2.3 with N := EH(V ). By part (c) and (d) of that lemma E is
the unique normal subgroup of H minimal with [W,E] 6= 0. Since [E,F ] = 1, part (e) gives
[W,F ] = 0. Since FV (H) is the sum of all the components of V the lemma holds. �

Recall that a Wedderburn-component for H on V is a maximal sum of isomorphic simple
FH-submodules.

Proposition 3.5 Let W be an H-component of V , N EH and radW (H) ≤ Y1 ≤ W such that
Y1/radW (H) is a Wedderburn-component for N on W/radW (H). Put Y := Y1 if radW (H) = 0,
and Y := [Y1,EH(V )] if radW (H) 6= 0. Then EH(V ) ≤ NH(Y1), Y = Y1 + radW (H) and Y is
a NH(Y1)-component of V .

Proof: Set L := NH(Y1) and fW := W/radW (H). Let D ≤ H with [D,N ] ≤ CN (Y1) and U

be any simple N -submodule of fY1. Then [D,N ] ≤ CN (U), and for all d ∈ D the map

U → Ud with u 7→ ud (u ∈ U)

is an FN -isomorphism. Thus Ud is in the Wedderburn-component fY1, and

(∗) D ≤ L

By 2.5(c) and 2.1(d), EH(V ) = CEH (V )(FV (H))(EH(V ) ∩ N)CEH (V )(N) and so by (∗),
EH(V ) ≤ L. This is the first part of the claim.

Since fW is a simple FH-module, Clifford Theory implies that eY1 is a simple FL-module.
Suppose first that radW (H) 6= 0. With EH(V ) in place of N 3.1 gives EH(V ) = EEH (V )(V ).
Then with (L,EH(V )) in place of (H,N) 3.1 gives EH(V ) ≤ EL(V ). Observe that W =
[W,EH(V )] since W is EH(V )-quasisimple, so Y = [Y,EH(V )] 6= 0. Hence 2.3(a) applied with
(L,EH(V ), Y, V ) in place of (H,N,W, V ) shows that Y is a component for L.

Suppose now that radW (H) = 0. To show that Y is an L-component of V it suffices to
show that [Y,F∗(L)] 6= 0. Observe that [F∗(H), N ] ≤ F∗(N) ≤ F∗(L). So if [F∗(H), N ] does
not centralizes Y , we are done. If [F ∗(H), N ] ≤ CN (Y ), then (∗) implies F∗(H) ≤ L and so
F∗(H) ≤ F∗(L). By the definition of a component, [W,F∗(H)] 6= 1, and since W is a simple
FH-module also [Y,F∗(H)] 6= 1. Thus [Y,F∗(L)] 6= 1. �

Lemma 3.6 Let N EH. Then the following are equivalent:

(a) FV (H) is a semisimple FN-module.

(b) If K is a component of EH(V ) with K ≤ N , then [V,K] = 0.

(c) EN (V ) = EH(V ) ∩N ≤ C∗H(V ).

(d) [N,EH(V )] ≤ CH(FV (H)).

Proof: (a)=⇒ (b): Let K be a component of EH(V ) with K ≤ N . By 3.1, K = EK(V ) and

so K centralizes all simple FK-submodules. Since FV (H) is semisimple as an FN -module and
so also as an FK-module, [FV (H),K] = 1. Thus by 2.5(b), K centralizes V .

(b)=⇒ (c): By 2.5(c), F(EH(V )∩N) ≤ C∗H(V ) and by (b) any component of EH(V )∩N is

contained in CH(V ). Hence EH(V ) ∩N ≤ C∗H(V ), and 3.1 shows that EN (V ) = EH(V ) ∩N .
(c)=⇒ (d): By (c) [N,EH(V )] ≤ C∗F∗(H)(V ) and by 2.5(c), C∗F∗(H)(V ) ≤ CH(FV (H)).

(d)=⇒ (a): Let W be a component of V . If radW (H) = 0, W is a simple H-module and

so a semisimple N -module. Suppose that radW (H) 6= 0. Then W = [W,EH(V )] and by 2.2(b)
with (W,N,EH(V )) in place of (V, P,E), W is a semisimple N -module. �
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Lemma 3.7 Let W be component of V and NEH such that W is semisimple as an FN-module.
Let Y be a Wedderburn-component for N on W . Then Y is an NH(Y )-component of V .

Proof: Define fW := W/radW (H). Then since W is a semisimple N -module, eY is a Wedder-

burn component for N on fW . If radW (H) = 0 we are done by 3.5.
Suppose that radW (H) 6= 0. Then W = [W,EH(V )] and clearly W = FW (H). Since 3.6(a)

holds for W in place of V , 3.6(d) implies [N,EH(W )] ≤ CH(W ). Thus also [N,EH(V )] ≤
CH(W ) since EH(V ) ≤ EH(W ). This shows that EH(V ) normalizes every Wedderburn compo-
nent for N on W .

Let Y1, . . . , Yr be the Wedderburn components of N on W . Then

W = Y1 ⊕ · · · ⊕ Yr and [W,EH(V )] = [Y1,EH(V )]⊕ · · · ⊕ [Yr,EH(V )].

From W = [W,EH(V )] we conclude that Yi = [Yi,EH(V )] for i = 1, . . . , r. On the other hand
by 2.2(d) and 3.5

[Yi + radW (H),EH(V )] = [Yi,EH(V )] = Yi

is a NH(Yi + radW (H))-component of W . Then NH(Yi + radW (H)) = NH(Yi), and Yi is a
NH(Yi)-component. �

4 The Structure of an F∗(H)-component of V

In this section we determine the structure the F∗(H)-components of V for the case that F is
finite or algebraically closed.

Lemma 4.1 Suppose F is finite or algebraically closed. Let E,P ≤ H with [E,P ] = 1. Suppose
there exists a simple FP -module Y and n ∈ N such that V ∼= Y n has an FP -module. Put
K = EndFP (Y ). Then K is a finite field extension of F and there exists an KE-module X with
dimK X = n such that

V ∼=F(E×P ) X ⊗K Y

Moreover, the following hold:

(a) If EndFEP (V ) = F, then K = F.

(b) If V is a simple FEP -module, then X is a simple KE-module.

(c) If V is an E-quasisimple FEP -module, then X is a quasisimple KE-module.

Proof: By Schur’s Lemma K is a division ring. Since V is finite dimensional, dimFK is finite.
More precisely, if F is algebraically closed then F = K; and if F is finite then K is finite. In any
case K is a field.

Let X = HomFP (Y, V ). Then X is a vector space over K via

(kx)(y) := x(ky) for all k ∈ K, y ∈ Y and x ∈ X.
Moreover, E acts on X by (xe)(y) := x(y)e and this action is K-linear. Thus X is a KE-

module. We now regard X ⊗K Y as an F(E × P )-module via (x ⊗ y)ea = xe ⊗ ya for e ∈ E,
a ∈ P . Let

φ : X ⊗K Y → V with x⊗ y → x(y).

Then φ is well-defined since φ(kx⊗ y) = (kx)(y) = x(ky) = φ(x⊗ ky). Also if e ∈ E and a ∈ P ,
then

φ((x⊗ y)ea) = φ(xe ⊗ ya) = (xe)(ya) = x((ya))e = (x(y)a)e = x(y)ae = x(y)ea = φ(x⊗ y)ea.
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So φ is an F(E × P )-module homomorphism. Note that for each submodule Z of V isomorphic
to Y , there exists x ∈ X with x(Y ) = Z and so φ(x ⊗ Y ) = Z. Since V is the sum of such
submodules, φ is surjective. As V ∼= Y n,

X = HomFP (Y, V ) ∼= HomFP (Y, Y n) ∼= EndFP (Y )n = Kn.

Hence the F-spaces X ⊗K Y and Y n and thus also V have the same finite dimension. So φ is
also injective and φ is an F(E × P )-isomorphism.

Observe that E × P acts K-linearly on X ⊗K Y . So if we view V as a K-space via

kφ(u) = φ(ku) for all k ∈ K, u ∈ X ⊗K Y ,

then EP acts K-linearly on V . Hence if EndFEP (V ) = F we conclude that K = F. This
proves (a).

Let X0 be a proper KE-submodule of X, then φ(X0 ⊗K Y ) is a proper KEP -submodule of
V . This gives (b). In a similar way [V,E] = V implies [X,E] = X.

Now assume that V is E-quasisimple, so radV (EP ) is the unique maximal EP -submodule
and radV (EP ) = C∗V (E). Then

X0 ⊗ Y ≤ radX⊗KY (EP ) = C∗X⊗KY (E) = C∗X(E)⊗K Y.

This yields X0 ≤ C∗X(E). Since X0 was an arbitrary proper submodule, it also shows that
C∗X(E) is the unique maximal KE-submodule of X and C∗X(E) = radX(E) and (c) follows. �

Proposition 4.2 Suppose F is finite or algebraically closed. Let W be an F∗(H)-component of
V with radW (F∗(H)) 6= 0, and let E be the unique component of EH(V ) with [W,E] 6= 0 (see
2.3). Put P := CF∗(H)(E). Then F∗(H) = EP and there exists a finite field extension K of F,
a quasisimple KE-module X and an absolutely simple KP -module Y such that

V ∼=FF∗(H) X ⊗K Y

Proof: By 2.1(c), F∗(H) = EP . Let Y be a simple FP -submodule of W . Since [E,P ] = 1,
any F∗(H) conjugate of Y is isomorphic to Y . Thus by 2.2(b) applied to F∗(H) in place of H,
W ∼=FP Y n for some n. Now 4.1 shows that V ∼=FF∗(H) X⊗KY . Moreover, since K = EndFP (Y )
and K is commutative, K = EndKP (Y ), and Y is an absolutely simple KP -module. Also since
W is an E-quasisimple FEP -module, X is E-quasisimple. �

Corollary 4.3 Suppose F is finite or algebraically closed. Let W be a F∗(H)-component of V ,
and let K be the set consisting of all the components of H and all the Or(H), r a prime divisor
of |H|. Then there exists a finite field extension K of F and for each K ∈ K a KK-module WK

such that
W ∼=FF∗(H)

O
K∈K

WK .

Moreover, either

1. radW (F∗(H)) = 0 and WK is absolutely simple for every K ∈ K, or

2. radW (F∗(H)) 6= 0, WE is E-quasisimple and WK is absolutely simple for every K ∈
K \ {E}, where E is the unique component of EH(V ) with [W,E] 6= 0.

Proof: We may assume that |K| > 1. If radW (H) = 0 put Y := W , K := EndFF∗(H)(W ) and
K0 := K. Otherwise let X,Y and K be as in 4.2 and put WE := X and K0 := K\{E}. Observe
that then WE is E-quasisimple.

In any case Y is an absolutely simple KP -module, where P := 〈K0〉. If |K0| = 1, we are done.
In the other case pick K ∈ K0 and set K1 := K0 \ {K}. Then 4.1 applies with (K,K, 〈K1〉, Y )
in place of (F, E, P, V ). Note that in addition K = EndKK〈K1〉(Y ), so 4.1(a) also applies. Now
an easy induction finishes the proof. �
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