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Abstract
Let H be a finite group, F a field and V a finite dimensional FH-module. We introduce

the Fitting submodule Fy(H), an FH submodule of V which has properties similar to the
generalized Fitting subgroup of a finite group.

1 Introduction

Throughout this paper F is a field of characteristic p, p a prime, H is a finite group, and V is a
finite dimensional FH-module.

We will use the concept of the generalized Fitting subgroup of a finite group as a model for
our definition of the Fitting submodule Fy (H) of V. In particular, Fy (H) will be defined by
means of components which in turn resemble components of finite groups.

Our first result can be stated without mentioning the Fitting submodule:

Theorem 1.1 Suppose that V is faithful and Op(H) = 1. Then there exists an FH-section of
V' that is faithful and semisimple.

In fact 1.1 is a corollary of 1.3 and 1.4 below, which show that Fv (H)/radg,, (z)(H) has the
desired properties.

To introduce the concept of a Fitting submodule we need a few basic definitions, some of
them inspired by corresponding definitions in finite group theory.

Definition 1.2 (a) H acts nilpotently on V if [W,H] < W for all non-zero FH -submodules
W of V.

(b) Ci (V) is the largest normal subgroup of H acting nilpotently on V. It is elementary
to show that Cx(V)/Cu(V) = Op(H/Cu(V)) and that C{ (V) is the largest subnormal
subgroup of H acting nilpotently on V.

(c) V is H-reduced if Ci (V) = Cu(V) (that is if any normal subgroup of H which acts
nilpotently on V already centralizes V).

(d) Ci,(H) is largest FH-submodule of V on which H acts nilpotently (so C3,(H) = Cy (OP(H));

(e) rady (H) is the intersection of the mazimal FH -submodules of V' (so radv (H) is the small-
est FH -submodule with semisimple quotient).
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(f) Let W be anFH submodule of V and N < H. Then W is N-quasisimple if W is H-reduced,
W/radw (H) is simple, W = [W, N] and N acts nilpotently on radw (H). If N = H we
often write quasisimple rather than H -quasisimple.

(g9) Sv(H) is the sum of all simple FH-submodules of V., and Eg (V') := Cp=(g)(Sv (H)).

(h) W is a component of V. (or an H-component if we want to emphasize the dependence on H)
if either W is a simple FH -submodule with [W,F*(H)] # 0 or W is an Eg(V')-quasisimple
FH-submodule. The Fitting submodule Fv (H) of V is the sum of all components of V.

(i) Rv(H) :=> radw (H), where the sum runs over all the components of V, and Fv(H) :=
Fv(H)/Rv(H).
Theorem 1.3 The Fitting submodule Fy (H) is H-reduced and Ry (H) is a semisimple FF*(H)-
module. Moreover, Ry (H) = radg,, () (H); in particular Fv (H) /Ry (H) is semisimple.

Theorem 1.4 Let V be faithful and H-reduced. Then also Fyv(H) and Fv(H)/Ry(H) are
faithful and H-reduced.

In section 3 we will discuss the relation between the Fitting submodule Fy (H) and the
Fitting submodule Fy (N), where N is a subnormal subgroup of H. Finally, in section 4 the
structure of the F*(H)-components of V is given in the case where F is a finite or algebraically
closed field.

2 The Fitting Submodule

We will frequently use the following well-known and elementary properties of the generalized
Fitting subgroup F*(H) of H, see for example [1]:

Lemma 2.1 Let £ < H.
(a) If E< H, then F*(E) = ENF*(H).
(b) If E=F*(E), then E = O,(E)OP(E) and [OP(E),Op(E)] = 1.
(c¢) If E is a product of components of H, then F*(H) = ECp«g)(E).
(d) If E is a component of H and N <Q H, then either E < N or [E,N] = 1.
]

Lemma 2.2 Let E and P be normal subgroups of H with [E,P] < Cu(V). Suppose that
V = [V, E] and V/Ci(E) is a simple FH-module. Then the following hold:

(a) rady (H) = Cy/(E).

(b) V is a semisimple FP-module, and every simple FP-submodule of V is isomorphic to a
stmple FP-submodule of V/radgV. In particular, if 1 and Iz are simple FP-submodules
of V, then there exists h € H such that I and I} are isomorphic as FP-modules.

(c) If E =F*(E), then Cy(V/radv (H)) = Cu(V), V is H-reduced and V is E-quasisimple
as an FH-module.

(d) If E =F*(E), then E centralizes radv (H) and radv (H) is semisimple as an FEP-module.
(e) Either [V,P] =0, or Cy(P)=0 and [V,P]=V.



Proof: (a): Let Y be a maximal FH-submodule of V. If C},(E) £ Y then V =Y + C},(E).
So E acts nilpotently on V/Y, contradicting V = [V, E]. Thus Cj,(E) <Y and so Cj,(E) <
rady (H). The other inclusion follows from the simplicity of V/C5 (E).

(b): Since V/rady (H) is a simple H-module, Clifford Theory shows that V/radv (H) is a
semisimple FP-module and that any two simple FP-submodules of V/rady H are isomorphic up
to conjugacy under H. Let U be the sum of all FP-submodules of V' that are isomorphic to
some simple FP-submodule of V/rady (H). It remains to show that V = U.

Let z € OP(E). Then

¢: V — [V,z] with v — [v, 2]
is an FP-module homomorphism since [E, P] < Cy(V), so [V, z] 2p V/Cv(x). Asrady(H) <
Cv(z) and V/rady (H) is a semisimple FP-module, [V, z] < U. Hence also

V=[V.E]=[V,O"(E)] <U

and thus V =U.
(¢): Put C := Cg(V/radv(H)). By (a) C N E acts nilpotently on V/radv(H) and on
radyv (H). Thus OP(C N E) centralizes V. By 2.1(a), CNE =F*(C N E), and by 2.1(b),

CNE=0,(CNE)O’(CNE)<O,(E)Ce(V) and [O,(E),O"(E)] = 1.
Thus [OP(E),C N E] < Cg(V). Since
[V.C,0%(E)] < [radv (H),0”(E)] = 0 and V = [V, O"(E)],

the Three Subgroups Lemma gives C N E < Cy(V) and then that C < Cg (V). Clearly
Cy(V) < C and so C = Cg (V). Since C; (V) acts trivially on every simple FH-section of V,
Cy(V) < C =Cpg(V) and so V is H-reduced. Together with (a) we see that V fulfills all the
conditions of an E-quasisimple FH-module.

(d): According to (c), [radv(H),OP(E)] = 0 and [V,0,(E)] = 0. Hence E centralizes
rady (H) since E = F*(E) = O,(E)OP(E).

By (b) V and so also rady (H) is a semisimple FP-module. Thus rady (H) is a semisimple
FE P-module.

(e): This is an immediate consequence of (b). O

Lemma 2.3 Let N < H with N <Eg(V) and N £ Ci (V). Let W be an FH-submodule of V
that is minimal with respect to N & Ci(W). Then

(a) W is a H-component of V.
(b) W =[W,N] and Cj(N) =radw (H) = Cw(En(V)) # 0.

(c) There exists a unique normal subgroup M of H minimal with respect to M < Egx (V) and
(W, M] # 0.

(d) M <N, W =[W,M] and M is a product of components of H transitively permuted by H.
(e) Cryv)(M) = Cryv)(W).

Proof: The minimality of W implies that Cjy (V) is the unique maximal H-submodule of W.
Thus

1° Ci (N) =radw (H) and W/radw (H) is a simple FH-module,

If [W, N] < Cjy(N), then N acts nilpotently on W, a contradiction. Thus [W, N] £ Cj (N)
and the minimality of W gives

2° W =[W,N].



Observe that by 2.1 N = F*(N). Hence by 2.2(c) applied with N and W in place of E and
V', respectively:

3° W is a H-reduced.

Since [W,N] # 0 and N < Eg(V), W is not a simple H-module. Thus
4° radw (H) # 0.

Choose M < H minimal in N with [W, M] £ radw (H). Then
5° W = [W,M] = [W,0°(M)],

and so by the minimality of M and 2.1, M = OP(M) = F*(M). Hence M is a p’-group or a
product of components transitively permuted by H. As a subgroup of N, M acts nilpotently
on radw (H), so

6° [radw (H), M] = 0.

Assume that M is a p’-group. Then Maschke’s Theorem implies W = Cw (M) & [W, M] and
radw (M) = Cw (M) = 0, which contradicts (4°). Thus
7° M is a the product of components of H transitively permuted by H.

By 2.1(c)

We now apply 2.2(e) with £ := M, P := Cg, (v)(M) and W in place of V. Since P < En(V),
P centralizes all simple FH-submodules of W. Thus Cw (P) # 0 and 2.2(e) implies [W, P] = 0.
Hence by (6°)

8° [W,P] =0, and Eg(V) = MP centralizes radw (H).
Since N < Eg(V), (2°) implies
9° W= [W,Ex(V).

If M1 is any normal subgroup of H with M1 < Ex(V) and My £ P, then 1 # [M, M;] <
M N My, and (7°) shows that M = [M, M;] < M. In particular,
[W, M1] # 0 and so by (8°)

100 CEH(V)(W) = P = CEH(V)(M)

Hence M; is an arbitrary normal subgroup of Ex (V) not centralizing W. Thus M < M;
implies (c). By (1°),(4°) (8°) and (9°) W is Ex(V')-quasisimple and so (a) holds. Moreover, (b)
follows from (1°),(2°), (3°) and (8°), and (d) follows from (5°) and (7°). Finally (e) is (10°).0

Lemma 2.4 (a) Fyv(H) is a semisimple H-module and [Fv(H),F*(H)] = Fy (H).
(b) Fv(H) is H-reduced.
(c¢) Rv(H) is a semisimple FF*(H)-module.

Proof: Let W be a component of V. Note that either W < Ry (H) or WNRy (H) = radw (H).
(a): Using the above observation, (a) is an immediate consequence of the definition of Fy (H).
(b): By definition all components are either simple or Ex(V')-quasisimple, so they are re-

duced. Clearly sums of reduced modules are reduced and so (b) holds.

(c): Let W be a non-simple component of V. Then by 2.2(d) applied with E := Eg(V),

P := Cp«(g)(E) and W in place of V, radw H is a semisimple FEP-module. By 2.1 F*(H) = EP

and so (c) holds. O



Lemma 2.5 The following hold:
(@) Cryy(En(V)) = [Sv(H), F*(H)] + Ry (H) = Cr, () (Ba (V)
(b) Cre(ay(V) = Cre oy (Fv (H)) = Op(H)Crp= (1) (V) < Eu (V).
(c) F(H)NEu(V) = Cay (V) = Cra) (Fv (H)) = Op(H)Crap) (V).
(d) If V is faithful and H-reduced, then Ex (V) is the direct product of perfect simple groups.

Proof:

(a): Let W be a component of V. Then either radW = 0 and W < [Sy(H),F*(H)] o
radW # 0, W = [W,Eg (V)] and W/radw (H) is simple. Thus U := Fv(H)/[Sv(H),F (H)]
Rv (H) is a sum of simple FH-module that are not centralized by Ex (V). So Cy(Ex(V)) =
and Ci g (Eat (V) < [Sv (H), F* ()] + Ry ().

Let W be a component of V' with radw (H) # 0. Then by 2.3(b), applied with N := Eg(V),
[radv (H), Ex (V)] = 0. The definition of Ex (V') shows that [Sv(H),Ex (V)] = 0 and so

[Sv(H),F"(H)] + Rv (H) < Cpy (1) (Ea (V).

Clearly Cr,, (i) (En(V)) < Cg, gy (Ex(V)) and so (a) holds.

(b): Since Fv (H) is H-reduced by 2.4(b) , Cgx«(z)(V) < Crrmy(Fv(H)) =: N. Then
N < Eg(V) since

Sv(H) = (Sv(H)NFv(H))+ Cv(F*(H)).

If N does not act nilpotently on V, then 2.3 gives a component W of V' with [W, N] # 0, which
contradicts [Fv (H), N] = 0. Thus N acts nilpotently on V' and so O?(N) < Cn (V). By 2.1(b)
N = 0,(N)OP(N) = 0,(N)Cn (V) < Op(H)Cre (1) (V).

Clearly Op(H)Crx(my(V) < Cix gy (V) and so (b) holds.

(©: By () ChunV) = Crun(Py(D) = OW(H)Crun (V) < E(H) N Ex(V). Suppose
F(H)NEn(V) £ Ci gy (V). Then by 2.3(d), F(H) NEx(V) is not nilpotent, a contradiction.

(d) If V is faithful and H reduced, C; (V) =1. So by (c), F(Ex(V)) =F(H)NEg(V)=1.
Since Eg (V) is the central product of nilpotent and quasisimple groups, (d) holds. O

Lemma 2.6 Let W be an H-submodule of V' such that W/Cy (Eg (V) is a simple H-module.
Choose an FH-submodule Y in W minimal with Y £ Ciy (Ex(V)). Then

Y = [W,0°(Ex(V))] and W =Y + Cly (Eu(V)),
and Y is a component of V.
Proof: Since W/Ciy (Er(V)) is simple, W =Y + Cj(Eg(V)). Thus [W,07(Ex(V))] <Y.

Since [W, 0P (Ex (V)] £ Ciy(H), the minimality of Y implies Y = [W, O?(Eg (V))]. By 2.3(a),
Y is a component. O

Lemma 2.7 PutC:={W | W component of V,W # 0}. Then every FH-submodule of Fy (H)
is the direct sum of elements of C.

Proof: It suffices to show the assertion for simple submodules since Fy (H) is semisimple by
2.4(a).

Let U/Ry (H) be a simple FH-submodule of Fy-(H). We need to show that U = Y + Ry (H)
for some component Y of V. Since by 2.5(a) Rv(H) < Cy(Eu(V)) either Ci;(Ex(V)) = Ry (H)
or C;(Eg(V)) = U. In the first case the claim for U follows from 2.6.

In the second case 2.5(a) implies U < [Sy (H),F*(H)] + Rv(H) and so

U = (U [Sv(H),F*(H)]) + Ry (H).

Since [Sv (H),F*(H)] is the sum of simple H-components of V', so is UN[Syv(H),F*(H)]. Thus,
also in this case the claim holds for U. O



Lemma 2.8 Let N H. Then
Crrry(N) = Cry () (V).
Proof: Let C be as in 2.7. Then by 2.7
CW(N) = <W€C | [W,N} :O>.

Let W be a H-component of V such that W # 0 and [W, N] = 0. Since W is semisimple and
radw (H) is the unique maximal FH-submodule of W, radw (H) = WNRv (H). If radw (H) = 0,
this shows that [W, N] = 0. If radw (H) # 0, then W is E-quasisimple for F := Eg (V). In this
case 2.2(c) with W in place of V' implies that [WW, N] = 0, so the lemma holds. O

Lemma 2.9 Let W be a set of FH-submodules of V. Then

rady . ow(H) = Z radw (H).
wew

Proof: Clearly > oy W/ D e radw (H) is semisimple and so
rady> _ow(H) < Z radw (H).
wew

On the other hand, for W € W, W +rady., _,, w(H)/rady . w(H) semisimple, so
radw (H) <rady  _,, w(H),

and the reverse inequality holds . O

Lemma 2.10 Ry (H) =radp,, (a)(H).
Proof: This follows immediately from 2.9 and the definition of Ry (H). O

Lemma 2.11 CH(F\/(H)) = CH(F\/(H))

Proof: Let N = Cy(Fv(H)). Then by 2.8, Fv(H) = Cr,(m)(N) + Ry (H), and by 2.10,

Theorem 2.12 Suppose that V is faithful and H-reduced. Then Fv(H) and Fv(H)/Ru (V)
are faithful and H-reduced FH-modules.

Proof: By 2.4(b) Fv (H) is reduced. Moreover Fy (H) is semisimple and thus also H-reduced.
From 2.5(b) we get Cp«m)(Fv(H)) < Ci(V) = 1. Hence F*(Cu(Fv(H))) = 1 and so
Cu(Fv(H)) = 1. Thus Fy(H) is faithful. Now 2.11 implies that also Fv(H) is faithful.
|

The proof of the Theorems 1.1, 1.3, and 1.4: Theorem 1.3 is 2.4(a), (¢) and 2.10, while
Theorem 1.4 is 2.12. Moreover, Theorem 1.1 is a direct consequence of these two theorems.



3 The Fitting Submodule for Normal Subgroups

In this section we investigate the relationship between the Fitting submodules for H and for
normal subgroups.

Lemma 3.1 Let N << H. Then Sy (H) <Sv(N) and Eg(V)NN =En(V).

Proof: Using induction on the subnormal defect of N in H, it suffices to treat the case N I H.

Let W be a simple H-submodule. Then by Clifford Theory W is a semisimple N-module
and so Sy (H) < Sy (N). Thus together with 2.1 Ex(V) < Eg(V) N N.

Conversely, let Y be a simple N-submodule of V" and let U be the sum of all N-submodule of
V isomorphic to some H-conjugate of Y. Then U is an FH-submodule of V' and we can choose
a simple H-submodule W of U. As an FN-module, W is a direct sum of modules isomorphic
to H-conjugates of Y, with each H-conjugate appearing at least once. Hence Ex(V) NN <
Crx(n)(W) < Cpe(n)(Y). Intersecting over all the possible Y gives Eg(V)NN < En(V). O

Lemma 3.2 Let W be a H-component of V and N << H. Then there exists a FN -submodule
Y < W with W = (YH> such that either Y is an N-component of V or Y is simple and
[W,F*(N)] = 1. In particular, Fv(H) < Sy (N) + Fv(N).

Proof: Again we use induction on the defect dg(N) of N in H. Assume that dg(N) > 1.
Then there exists N < N; < H so that dn, (V) < dg(N). By induction there exists an FNi-
submodule Y; of W with W = (Y{) such that either Y; is simple and [W,F*(N1)] =0 or Y; is
a Ni-component of V. In the first case by 2.1 also [W,F*(N)] = 0 and we can choose a simple
FN-submodule Y of Yi. In the second case induction applies to every H-conjugate of Y; in W,
so either [W,F*(N)] = 0 and Y1 = (Y1) for a simple FN-submodule Y of Y7 or there exists
h € H and an N-component Y of V with W" = (Y1), In any case W = (Y) and the lemma
holds.

Thus it remains to treat the case N < H. Let Y < W be a N-submodule minimal with
Y ¢ radw (H). Then Y/Y Nradw (H) is a simple N-module and W = (Y'*).

Suppose that Y is a semisimple FN-module, then the minimality of Y shows that Y is simple.
If [Y,F*(N)] = 0, then also [W,F*(N)] = 0; and if [Y,F*(N)] # 0, then Y is a N-component of
14

Suppose that Y is not a semisimple FN-module. Then Y Nradw (H) # 0 and also W is not
a semisimple FN-module. By the definition of a component, W is Ex(V)-quasisimple. Now
2.2(b), with (N,Ex(V), W) in place of (P, E, V), shows that R := [Ex(V),N] £ Ca(W).

Since W is reduced, R does not act nilpotently on W, so Ciy, (En(V)) < Ciy (R) < radw (H).
On the other hand Ex (V') < Cj(radw (H)) and so by 3.1 radw (H) < Cjy (Ex(V)). This shows
that Ciy(En(V)) = radw (H). Hence by 2.6, applied to (N,Y) in place of (H, W), and the
minimality of Y show that Y is a N-component of V. O

Corollary 3.3 Ep«x)(V) =Eu(V) and Fv(H) < Fy(F*(H)).

Proof: Since Ex (V) < F*(H) the first statement follows from 3.1 applied with N := F*(H).
Note that W = [W, F*(H)] for all components of V. The second statement then follows from

3.2 again with N := F*(H). O

Proposition 3.4 Let E and F be two distinct components of Eg (V). Then

[Fv(H)),E,F] =0



Proof: By 3.3 we may assume that H = F*(H). Let W be an H-component of V with
[W,E] # 0. We can apply 2.3 with N := Ex(V). By part (c) and (d) of that lemma FE is
the unique normal subgroup of H minimal with [W, E] # 0. Since [E, F] = 1, part (e) gives
[W, F] = 0. Since Fy (H) is the sum of all the components of V' the lemma holds. O

Recall that a Wedderburn-component for H on V is a maximal sum of isomorphic simple
FH-submodules.

Proposition 3.5 Let W be an H-component of V, N < H and radw (H) <Y1 < W such that
Y1 /radw (H) is a Wedderburn-component for N on W/radw (H). PutY =Y if radw (H) =0,
and Y := [Y1,Eg (V)] if radw (H) # 0. Then Eg(V) < Ny(Y1), Y = Y1 +radw(H) and Y is
a Ng(Y1)-component of V.

Proof: Set L := Ng(Y1) and W= W/radw (H). Let D < H with [D,N] < Cn(Y1) and U
be any simple N-submodule of Y;. Then [D, N] < Cn(U), and for all d € D the map

U — U* with u — u®  (ueU)

is an FN-isomorphism. Thus U? is in the Wedderburn-component ,);I, and

(%) D<L

By 2.5(c) and 2.1(d), Ex(V) = Cg,)(Fv(H))(Ea(V) N N)Cg,(v)(N) and so by (x),
Ex (V) < L. This is the first part of the claim.

Since W is a simple FH-module, Clifford Theory implies that Y is a simple FL-module.
Suppose first that radw (H) # 0. With Eg (V) in place of N 3.1 gives Ex (V) = Eg, (V).
Then with (L,Eg(V)) in place of (H,N) 3.1 gives Eg(V) < Er(V). Observe that W =
[W,Eu (V)] since W is Eg(V)-quasisimple, so Y = [Y,Ex (V)] # 0. Hence 2.3(a) applied with
(L,Ex(V),Y,V) in place of (H, N, W, V) shows that Y is a component for L.

Suppose now that radw (H) = 0. To show that Y is an L-component of V it suffices to
show that [Y,F*(L)] # 0. Observe that [F*(H), N] < F*(N) < F*(L). So if [F*(H), N] does
not centralizes Y, we are done. If [F*(H), N] < Cn(Y), then () implies F*(H) < L and so
F*(H) < F*(L). By the definition of a component, [W,F*(H)] # 1, and since W is a simple
FH-module also [Y,F*(H)] # 1. Thus [Y,F*(L)] # 1. O

Lemma 3.6 Let N < H. Then the following are equivalent:
(a) Fv(H) is a semisimple FN -module.
(b) If K is a component of Eg(V) with K < N, then [V, K] = 0.
(c) Ex(V)=Eu(V)NN < Cjx(V).
(d) [N,Ex(V)] < Cu(Fv(H)).
Proof: (a)= (b): Let K be a component of Ex (V) with K < N. By 3.1, K = Ex(V) and

so K centralizes all simple FK-submodules. Since Fy (H) is semisimple as an FN-module and
so also as an FK-module, [Fy (H), K] = 1. Thus by 2.5(b), K centralizes V.
(b)= (¢): By 2.5(c), F(Eg(V)NN) < Cx(V) and by (b) any component of Eg(V) NN is

contained in Cy (V). Hence Eg(V) NN < Cf(V), and 3.1 shows that Ex(V) = Eg(V)NN.
(¢)= (d): By (¢) [N,Eu(V)] < Cr+(my (V) and by 2.5(c), C;*(H)(V) < Cu(Fv(H)).

(d)= (a): Let W be a component of V. If radw (H) = 0, W is a simple H-module and

so a semisimple N-module. Suppose that radw (H) # 0. Then W = [W,Ex (V)] and by 2.2(b)
with (W, N, Eg(V)) in place of (V, P, E), W is a semisimple N-module. O



Lemma 3.7 Let W be component of V and N JH such that W is semisimple as an FN -module.
Let Y be a Wedderburn-component for N on W. Then'Y is an Nu(Y)-component of V.

Proof: Define W := W/radw (H). Then since W is a semisimple N-module, Y is a Wedder-
burn component for N on W. If radw (H) = 0 we are done by 3.5.

Suppose that radw (H) # 0. Then W = [W,Eg (V)] and clearly W = Fy (H). Since 3.6(a)
holds for W in place of V, 3.6(d) implies [N,Ex(W)] < Cy(W). Thus also [N,Ex(V)] <
Cu (W) since Eg (V) < Eg(W). This shows that Ex (V) normalizes every Wedderburn compo-
nent for N on W.

Let Y1,...,Y; be the Wedderburn components of N on W. Then

W=Y1&---8&Y, and [W,Exg (V)] = [Y,Ez(V)]|&--- & [Yr,Ex(V)].

From W = [W,Eg (V)] we conclude that Y; = [Y;,Eg (V)] for ¢ = 1,...,r. On the other hand
by 2.2(d) and 3.5

[Yi + radw (H), En (V)] = [Vi, En (V)] = Y
is a Ny (Y; + radw (H))-component of W. Then Ny (Y; + radw (H)) = Ny (Yi), and Y; is a
Ny (Y;)-component. O

4 The Structure of an F*(H)-component of V

In this section we determine the structure the F*(H)-components of V for the case that F is
finite or algebraically closed.

Lemma 4.1 Suppose F is finite or algebraically closed. Let E, P < H with [E, P] = 1. Suppose
there erists a simple FP-module Y and n € N such that V =2 Y" has an FP-module. Put
K = Endpp(Y). Then K is a finite field extension of F and there exists an KE-module X with
dimg X = n such that

V &rExp) X @Y

Moreover, the following hold:
(a) If Endrep(V) =T, then K=TF.
(b) If V is a simple FEP-module, then X is a simple KE-module.
(c) If V is an E-quasisimple FEP-module, then X is a quasisimple KE-module.

Proof: By Schur’s Lemma K is a division ring. Since V is finite dimensional, dimp K is finite.
More precisely, if F is algebraically closed then F = K; and if F is finite then K is finite. In any
case K is a field.

Let X = Hompp(Y, V). Then X is a vector space over K via

(kz)(y) == z(ky) forall k e K,y € Y and z € X.

Moreover, E acts on X by (z°)(y) := z(y)° and this action is K-linear. Thus X is a KE-
module. We now regard X ®x Y as an F(E x P)-module via (z ® y)*® = 2° ® y* for e € E,
a € P. Let

¢: XY — V with z ® y — z(y).

Then ¢ is well-defined since ¢(kz ®y) = (kz)(y) = z(ky) = ¢(z @ ky). Alsoife € E and a € P,
then

P((r®@y)™) =z @y") = (°)(¥*) = 2((y¥")" = (x(y)*)" = z(y)**

z(y)™ =z @y)*.



So ¢ is an F(E x P)-module homomorphism. Note that for each submodule Z of V' isomorphic
to Y, there exists x € X with z(Y) = Z and so ¢(z ® Y) = Z. Since V is the sum of such
submodules, ¢ is surjective. As V2 Y™,

X = HOH]]FP(Y, V) =~ HOH]]FP(Y, Yn) = End]Fp(Y)" = Kn.

Hence the F-spaces X ®x Y and Y" and thus also V' have the same finite dimension. So ¢ is
also injective and ¢ is an F(E x P)-isomorphism.
Observe that E x P acts K-linearly on X ®k Y. So if we view V as a K-space via

kp(u) = ¢p(ku) for all k e K,u € X ®x Y,

then EP acts K-linearly on V. Hence if Endregp(V) = F we conclude that K = F. This
proves (a).

Let Xo be a proper KE-submodule of X, then ¢(Xo ®k Y) is a proper KE P-submodule of
V. This gives (b). In a similar way [V, E] = V implies [X, E] = X.

Now assume that V is E-quasisimple, so rady (EP) is the unique maximal EP-submodule
and rady (EP) = C},(E). Then

Xo®Y <radxgyy (EP) = Cxgyy(E) = Cx(E) @k Y.
This yields Xo < C%(F). Since Xo was an arbitrary proper submodule, it also shows that
C% (E) is the unique maximal KE-submodule of X and C% (E) = radx(E) and (c) follows. O

Proposition 4.2 Suppose F is finite or algebraically closed. Let W be an F*(H)-component of
V' with radw (F*(H)) # 0, and let E be the unique component of Ex (V) with [W,E] # 0 (see
2.3). Put P := Cp«()(E). Then F*(H) = EP and there exists a finite field extension K of F,
a quasisimple KE-module X and an absolutely simple KP-module Y such that

V Sppvay) X QY
Proof: By 2.1(c), F*(H) = EP. Let Y be a simple FP-submodule of W. Since [E, P] = 1,
any F*(H) conjugate of Y is isomorphic to Y. Thus by 2.2(b) applied to F*(H) in place of H,
W =pp Y™ for some n. Now 4.1 shows that V 2pp- () X @k Y. Moreover, since K = Endrp(Y')
and K is commutative, K = Endgp(Y’), and Y is an absolutely simple KP-module. Also since
W is an E-quasisimple FE P-module, X is E-quasisimple. O

Corollary 4.3 Suppose F is finite or algebraically closed. Let W be a F*(H)-component of V,
and let K be the set consisting of all the components of H and all the O,(H), r a prime divisor
of |H|. Then there exists a finite field extension K of F and for each K € K a KK-module Wk
such that
W ppe ® Wk.
Kek

Moreover, either

1. radw (F*(H)) = 0 and Wg 1is absolutely simple for every K € K, or

2. radw (F*(H)) # 0, Wg is E-quasisimple and Wg is absolutely simple for every K €

K\ {E}, where E is the unique component of Eg (V) with [W, E] # 0.

Proof: We may assume that |[C| > 1. If radw (H) = 0 put Y := W, K := Endgp+ gy (W) and
Ko := K. Otherwise let X,Y and K be as in 4.2 and put Wg := X and Ko := K\ {E}. Observe
that then Wg is E-quasisimple.

In any case Y is an absolutely simple KP-module, where P := (Ko). If |[Ko| = 1, we are done.
In the other case pick K € Ko and set K1 := Ko \ {K}. Then 4.1 applies with (K, K, (K1),Y)
in place of (F, E, P,V)). Note that in addition K = Endgg ,(Y’), so 4.1(a) also applies. Now
an easy induction finishes the proof. O
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