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1 Introduction

Let K a field and V a vector space over K. Let FGLK(V ) be the finitary linear group of
V over K, namely FGLK(V ) = {g ∈ GLK(V )| [V,g] has finite K-dimension }. Subgroups
of FGLK(V ) are called finitary groups. Recently a good amount of work has been done
towards a classification of the locally finite, finitary groups (see [1, 2, 7]). On the otherhand
very little is known without the assumption of locally finiteness. This paper is meant as a
contribution to the general theory of finitary groups.

Throughout this paper G is a subgroup of FGLK(V ). Suppose that G is irreducible and
H an ascending subgroup of G, that is there exist a well ordered set I and subgroups Hi, i ∈ I,
of G including H and G such that HiCHi+1 and if i is a limit ordinal in I, then Hi = ∪j<iHj.
Then our main theorem (7.6) asserts that H acts completely reducibly on V. The most
important step in the proof of this is (6.2), which provides a component type subgroup in
G in the case where G acts irreducibly on V and has a reducible ascending subgroup. As a
consequence (7.4) we can prove that ascending subgroups of primitive, infinite dimensional,
finitary groups are primitive. In (4.5) we prove a Jordan-Hölder Theorem for finitary modules
of finitary groups.

2 Preliminaries

Definition 2.1 Let H be a group and V a KH-module.

1. A series for H on V is a set Γ of submodules of H in V such that

(a) Γ is totally ordered by inclusion,

(b) Γ is complete, i.e. if Λ ⊂ Γ, then ∪Λ ∈ Γ and ∩Λ ∈ Γ

(c) 0 ∈ Γ and V ∈ Γ.

2. Let Γ be a series for H on V. For S in Γ let S− = ∪{T ∈ Γ|T < S}. If S 6= S− then
(S−, S) is called a jump of Γ and S = S/S− is called a factor of S

3. A series for H on V is called a composition series if all its factors are irreducible
KH-modules.

4. A class F of KH-modules is called closed if every non-zero section of H of an element
of F is in F .
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5. Let F be a closed class of KH-modules. Then series for H on a KH-module is called a
F-series provided that all its factors are in F .

6. A series for H on V is called finite dimensional if all its factors are finite dimensional:
i.e if it is a F-series, where F is the class of finite dimensional KH-modules.

Lemma 2.2 Let H ≤ GLK(V ) and F a closed class of KH-modules. Then H has a unique
minimal submodule mV,F(H) in V such that H has a F-series on V/mV (H).

Proof: LetW be the set of a H-submodules F in V such that H has a F -series on V/F.
We need to show that ∩W is inW and for this we may assume that ∩W = O.Thus the goal
is to show that V has an F -series for H.

For any series Γ of H on V,define

m(Γ) = {S ∈ Γ|0 6=S /∈ Γ}

and

M(Γ) = {S ∈ Γ|m(γ) ≤ S}

On the set C of H-composition series on V define a partial order ≤ by

Γ ≤ Λ if M(Γ) ⊆M(Γ)

We will show that

(*) C is linearly ordered.

Suppose for the moment that (*) is true. Then by Zorn’s lemma C has a maximal
element Γ. We claim that Γ is a F series. Otherwise m(‖Gamma) 6= 0. Since by assumption
∩W = 0, there exists F in W with m(Γ) 6≤ F . But then m(Γ)/(m(Γ ∩ F ∼= m(Γ) + F )/F
has a F -composition series. It is now easy to see that there exists a compostion series Γ∗ of
H on V with m(Γ∗) ≤ m(Γ) ∩ F and M(Γ) ⊂ M(Γ∗), a contradiction to the maximality of
Γ.

It remains to prove (*). We remark that Γ ≤ Λ implies that M(Γ) = {T ∈ Λ|m(Γ) ≤ T}.
Indeed, let T ∈ Λ with m(Γ) ≤ T . Since M(Γ) ⊆ M(Λ) ⊆ T,X ≤ T or T ≤ X for any
X ∈ M(Γ). Put T− = ∪{X ∈ M(Γ)|X ≤ T} and T+ = ∩{X ∈ M(Γ)|T ≤ X}. Then
T− ≤ T ≤ T+. Since Γis a composition series, T+/T− is irreducible as H-module. Hence T is
equal to T+ or T− and so T ∈M(Γ).

Let D be any chain in C and put

m = ∩{m(d)|d ∈ D}

and

M = ∪{M(d)|d ∈ D}.
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Let N be any composition series for H on m and Γ = M ∪ N . We wish to show that Γ
is a composition series for H on V. Clearly Γ is totally ordered. To show that Gamma is
complete, let Λ be any subset of Γ.

If N ∩ Λ 6= Ø, then∩Λ ∈ N . If Λ ⊆ M(d) for some d in D, then Λ ∈ M(d). If Λ ⊆ M ,
but Λ 6≤ M(d) for every d in D, then for every d in D there exists T in Λ with T 6≤ M(d).
Pick e in D with T ∈M(e). Then d ≤ e. By the above remark, m(d) 6≤ T and so T ≤ m(d).
Thus m ≤ ∩Λ ≤ ∩{m(d)|d ∈ D} = m. Hence in all cases ∩Λ ∈ Γ.

If Λ ⊆ N , then ∪Λ ∈ N . If Λ ∩M(d) 6= Øfor some d in D, then ∪Λ ∈ M(d). Hence
also ∪Λ ∈ Γ and Γ is complete. To finish the proof that S is a composition series we have
to show that S is irreducible for all S in Γ. If S ∈ N this is obvious. If S 6∈ N there exists
d in D with m(d) < S, since otherwise S ≤ m(d) for all d in D and so S ≤ m and S ∈ N ,a
contradiction. Thus S and S− are in M(d) and so S is a factor of d. In particular, S is
irreducible and S ∈ F ∪ {0}

We have proven that Γ is a composition series and that S ∈ F ∪ {0} for all S ∈ Γ with
S 6≤ m. It follows that m(Γ) ≤ m and M ⊆M(Γ). Thus
Gammais an upper bound for D and (*) is proved.

Lemma 2.3 Let Y be a group, R ≤ Y and s in R with [R,Rs] = 1.Then R′ ≤ [R, s].

Proof: Let r,t be in R. Then

[r, t] = r−1s−1rt = (r−1t−1(rt)s)(rt)−1rt = r−1t−1rsts[rt, s]−1

=

= r−1rst−1ts[rt, s]−1 = [r, s][t, s][tr, s]−1 ∈ [R, s]

Lemma 2.4 Let Y be a group and R and S subgroups of Y. Suppose that the following three
conditions hold:

(a) R ∩Rs = 1 and [R,Rs] = 1 for all s ∈ S \NS(R).
(b) S ∩ Sr = 1 and [S, Sr] = 1 for all r ∈ R \NR(S).
(c) R does not normalize S and S does not normalize R.
Then one of the following holds:
(i) R′ = S′ = 1, NR(S) = NS(R) = 1 and any two non-trivial elements in R∪S have the

same order.
(ii) If {T,U} = {R,S} and X = NT (U), then |T/X| = 2, X is abelian, CX(T ) = 1 and

T inverts X.

Proof: Put A = ∩{NR(Sr)|r ∈ R} and B = ∩{NS(Rs)|s ∈ S}. Pick r ∈ R \NR(S) and
s ∈ S\NS(R). Note that [(R∩S)s, R] ≤ [Rs, R] = 1 and so (R∩S)s = (R∩S)sr ≤ S∩Sr = 1.
Hence

(1) R ∩ S = 1.
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(2) [R,S] normalizes R and S, R′S′ ≤ [R,S], R′ ≤ A and S ′ ≤ B.

For the proof of (2), note that since S is normal in < SR >, [R,S] normalizes S. Further-
more, by (2.3), R′ ≤ [R,S] and so R′ normalizes S and R′ ≤ A.

(3) A′ = B′ = [A,B] = 1.
By (2.3), A′ ≤ [A, S]. But A normalizes S and so A′ ≤ R ∩ S = 1. Now also [A,B] ≤

R ∩ S = 1, and (3) is established.

(4) CA(R) = 1 and CB(S) = 1.

Let t ∈ S . If R = Rt then CA(R)t ≤ Z(R)t = Z(R). If R 6=Rt, then [R,Rt] = 1. Thus in
any case, [R,CA(R)t] = 1. Hence [CA(R), S] ≤ CS(R) ≤ S ∩ Sr = 1 and CA(R) ≤ CR(S) ≤
R ∩Rs = 1.

(5) If R′ 6= 1, then (ii) holds.

Suppose that R′ 6= 1. Assume also that RS 6={R,Rs} and pick t in S with Rt 6≤ {R,Rs}.
Let u, v ∈ R. Then [[t, u], [s, v]] = [u−tu, v−sv] = [u, v]. If u ∈ R′, then by (2) u normalizes
S and so [t, u] ∈ S. Now [s,v] normalizes S and so [u, v] ∈ R ∩ S = 1. Thus [R′, R] = 1
and (2) and (4) imply that R′ = 1. Hence RS = {R,Rs} and so |S/B| = 2. Note that
R ∼= (R×Rs)/Rs = [R, s]Rs/Rs. It follows that [R,S] is not abelian and so S is not abelian.
Therefore |R/A| = 2. By (4) R inverts A, and S inverts B. Thus (ii) holds.

We may assume from now on that R and S are abelian. By (4), A = B =1, and so
NR(S) = NS(R) = 1. Moreover, < RS > is abelian and so [S,R,R] = 1 and [R,S,S] =1. Let
k be a positive integer. Then [rk, s] = [r, s]k = [r, sk]. So rk 6= 1 implies [rk, s]6=1 and sk 6=
1. Hence |r| = |[r, s]| = |s| and (i) holds.

Lemma 2.5 (a) Let Ω be a set with at least 5 elements. Then Alt(Ω) has no proper ascending
subgroups.

(b) Let Ω be a finite set, H a primitive subgroup of Sym(Ω) and N a non-trivial subnormal
subgroup of H. Then N acts fixed-point freely on Ω.

Proof:(a) This is well known and easy to proof, see for example [8].
(b) We prove (b) by induction on |H|. Suppose 1 6= N is subnormal in H and has a

fixed-point ω in Ω.
Let N CCLCH with L 6= H. Then L acts transitively and, by induction, imprimitively

on Ω. Let R be the largest subgroup of L which acts trivally on all maximal systems of
imprimitivity for L on Ω. Then H normalizes R and R acts intransitively on Ω. So R = 1.
On the other hand let Π be any maximal system of imprimitivity for L on Ω. Pick P in Π
with ω ∈ P . Then N normalizes P. Since L acts primitively on Π we conclude by induction
that N acts trivially on Π. So N ≤ R and N = 1; this contradiction completes the proof.

Lemma 2.6 Let Ω be an infinite set, L a transitive subgroup of FSym(Ω)(= {g ∈ Sym(Ω)|
supp(g) is finite}) and H an ascending subgroup of L. Then either H is transitive on Ω or Ω
is the disjoint union of H invariant sets of imprimitivity for L on Ω.
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Proof: Let Li, i ∈ I, be an ascending normal series from H to L with L0 = H. Assume
first that H as an orbit of infinite length on Ω, then clearly L1 normalizes that orbit and in
easy induction proof shows that L normalizes that orbit. Hence H is transitive, a and the
Lemma follows in this case.

Assume next that every orbit of H on Ω is finite and that L has a maximal system Π of
imprimitivity on Ω. Put D = {d ∈ L|P d = PforallP ∈ Π}. Then by [9], Satz 9.4, L/D =
FSym(P) or L/D = Alt(P). Since clearly every orbit for H on P is finite, Alt(P ) ≤ HD/D.
Thus by 2.5(a), H ≤ D and the lemma holds also in this case.

Assume finally that every orbit of H on Ω is finite and L has no maximal system of
imprimitivity. By [5],(2.2), there exists a chain Ω1,Ω2, . . . of sets of imprimitivity for L on
Ω such that ∪iΩi = Ω and such that no set of imprimitivity of L on Ω lies between Ωi and
Ωi+1. Put

M0 = {Ωg
i |i ≤ 1, g ∈ L,Ωg

i is H invariant}

and let M be the set of mimimal elements in M0. We claim that Ω is the disjoint union
of the elements in M. Let X,Y ∈M with X ∩ Y 6= Ø. Without loss |X| ≤ |Y |. Hence there
exists g ∈ L with X ⊆ Y g. Thus Y ∩ Y g 6= Øand so Y = Y g. By minimality of Y, X = Y.

Suppose ∪M 6=Ω, Then there exists an orbit O for H on Ω with O 6⊆ ∩M . Since O is finite,
there exists i with O ⊆ Ωi. Then H normalizes Ωi and Ωi ∈M0. Let X ∈M0 be of mimimal
order with respect to X 6⊆ ∪M . Pick Y ∈ M with Y ⊆ X and let i ≤ 1 maximal with
respect to Y ⊆ Ωg

i ⊂ X for some g ∈ L. Then H normalizes Ωg
i . By choice of g, NL(X) acts

primitively on {Ωgk
i |k ∈ NL(X)} and so by 2.5(b) H acts trivially on {Ωgk

i |k ∈ NL(X)} ⊆M0.
The minimal choice of |X| implies X = ∪{Ωgk

i |k ∈ NL(X)} ≤ ∪M , a contradiction.
Hence Ω = ∪M and the Lemma holds also in this last case.

3 The submodules UV (G) and UV (G)

Definition 3.1 Let H be a group, h ∈ H and W a KH-module.

1. h acts unipotently on W if W (h− 1)n =0 for some non-negative integer n.

2. H acts unipotently on W if each of its elements act unipotently.

3. UW (H) =< {X| X a KH-submodule in W such that H acts unipotently on W/X}¿.

4. UW (H) =
∑
{X| X a KH-submodule in W such that H acts unipotently on X}.

5. W is a perfect KH-module if W = UW (H): i.e if no non-zero factor module of W is a
unipotent KH-module.

Lemma 3.2 (a) G acts unipotently on V if and only if V has a series with respect to G all
whose factors are central.

(b) The subgroup of G generated by all the ascending unipotent subgroups of G acts
unipotently on V.

(c) If G acts irreducibly on V, no non-trivial normal subgroup of G acts unipotently on
V.
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Proof: see Theorem B in [4].

Lemma 3.3 (a) G acts unipotently on V/UV (G).
(b) G acts unipotently on UV (G).
(c) Let Y be a KG-submodule in V. Then UY (G) ≤ UV (G). Moreover, if UV (G) ≤ Y ,

then UY (G) = UV (G).
(d) Suppose that G =< Li|i ∈ I > with Li asc G and LGi ⊆ {Lj|j ∈ I}, for all i in I.

Then

UV (G) =
∑
i∈I

UV (Li) and UV (G) = ∩i∈IUV (Li)

(e) Let S be a set of KG-submodules in V. Then

UP
S
(G) =

∑
{U s(G)|s ∈ S} and U∩S(G) = U∩{Us(G)|s∈S}(G)

.

Proof: We first prove that

(*) Let x be a unipotent element in FGLK(W ). Then W (x− 1)deg(x)+1 = 0.

Indeed let d be minimal with W (x− 1)d = 0. Then

W (x− 1) > W (x− 1)2 > ... > W (x− 1)d−1 > 0.

So deg(x) = dimW (x− 1) ≤ d− 1, and (*) is proved.

Put Z = {X| X a G-submodule such that G acts unipotently on V/X}and let g ∈ G. By
(*), V (g− 1)deg(g)+1 ≤ X for all X in Z. Thus V (g− 1)deg(g)+1 ≤ UV (G) and so UV (G) ∈ Z.
This proves (a)

By (*) UV (G)(g − 1)deg(g)+1 = 0 for all g in G. So (b) holds.
Let Y be a KG-submodule in V. Then G acts unipotently on Y +UV (G)/UV (G) and so

also on Y/Y ∩ UV (G). Thus UY (G) ≤ Y ∩ UV (G) ≤ UV (G).
If UV (G) ≤ Y , then G acts unipotently on V/Y and Y/UY (G). Hence G acts unipotently

on V/UY (G) and therefore UV (G) ≤ UY (G). Thus (c) holds.
To prove (d), note that G normalizes

∑
{UV (Li)|i[I} and that Li acts unipotently on

V
∑
{UV (Li)|i ∈ I}. By part (b) of (3.2), G acts unipotently on V

∑
{UV (Li)|i ∈ I}. Thus

UV (G) =
∑
{UV (Li)|i ∈ I}. A similar argument shows that UV (G) = ∩{UV (Li)|i ∈ I}.

(e) This is readily verified and we omit the proof.

We remark that (2.2) provides an alternative proof for part (a) of 3.3. Indeed, let F
be the class of one dimensional central KG-modules and X a KG-submodule in V. Then by
part (a) of (3.2), G acts unipotently on V/X if and only if G has an F series on V/X.Thus
mV,F(G) = UV (G).
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Proposition 3.4 If G is locally nilpotent and V is a perfect KG-module, then every KG-
submodule of V is perfect.

Proof: Assume first that G is nilpotent and V is finite dimensional. If UX(G) 6= 0, then
by induction on the dimension of V, X/UX(G) is a perfect submodule of V/UX(G). So
X is perfect. If UX(G) = 0, G acts unipotently on X. Since X is finite dimensional, part
(a) of (3.2) implies that CX(G) 6= 0. Let 1 6= z ∈ Z(G)). Since CV (z) 6= 0,V 6= [V,z].
Moreover, [V, z] ∼= V/CV (z) and so [V,z] is perfect. It follows by induction that X ∩ [V, z]
and X+[V,z]/[V,z] are perfect. Hence X is perfect.

In the general case let F be the set of finitely generated subgroups of G. Note that G
acts unipotently on V/ ∪ {UV (F )|F ∈ F} and so V = ∪{UV (F )|F ∈ F}. This implies
U = ∪{X ∩ ŪV (F )|F ∈ F}. Moreover, UV (F ) ≤ [V, F ] and so UV (F ) is finite dimensional.
Since F is nilpotent, the preceeding paragraph implies that X ∩ UV (F ) is a perfect module
for every F ∈ F . Thus X is a perfect KG-module and the lemma is proved.

4 A Jordan-Hölder Theorem for Finitary Modules

In this section we will prove that the non-central factors in a composition-series for G on V
are independent from the choice of the composition series. This statement is not true for
the central factors. The concept introduced in the following definition is designed to isolate
the non-central factors of a series.

Definition 4.1 1. A u-series for G on V with respect to a normal subgroup H of G is a
set S of KG-submodules in V such that

(a) S is totally ordered by inclusion,

(b) if T ⊆ S, then ∪T ∈ S and U∩T (H) ∈ S,

(c) 0 ∈ S and UV (H) ∈ S,

(d) all elements in S are perfect KH-modules.

2. Let S be a u-series for G on V with respect to H. For X in S let

X− = ∪{T ∈ S|T < S}, X+/X− = UX/X−(H) and X = X/X+

If X 6=X−, then (X−, X) is called a jump of S and X is called a factor of X.

3. A u-composition series for G on V with respect to H is a u-series for G on V with
respect to H all of whose factors are irreducible as KG-modules.

4. A u-series (u-composition series) for G on V is a u-series (u-composition series)for G
on V with respect to G.
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Lemma 4.2 Let H be a normal subgroup of G and for any KH-module X put U(X) = UX(H)
(a) Let S be a series for G.
(a1) Put

T = {U(X)|X ∈ S}

Then T is a u-series for G on V with respect to H.
(a2) Let Y ∈ T and put

X = ∩{Z ∈ S|U(Z) = X}.

Then Y = U(X), Y− = U(X−) and

Y ∼= U(X)/(U
U(X)

(H)

as a KG-module. In particular, if S is a composition series for G on V, then (Y ) ∼= (̄X), T
is a u-composition series for G on V with respect to H and the factors of T are the factors
of S not centralized by H.

(b) Let Y be a KG-submodule in V and S a u-series for G on V with respect to H.
(b1) Let

T = {U(X ∩ Y )|X ∈ S}.

Then T is a u-series for G on X with respext to H.
(b2) Let Z ∈ T and put

X = U(∩{W ∈ S|U(X ∩W ) = Z}).

Then Z is isomorphic to a submodule of X. In particular, if S is a u-composition series
for G on V with respect to H, then Z ∼= X and T is a u-composition series for G on X with
respect to H.

Proof: (a) By part (c) of (3.3), T is totally ordered and U(W) = W for all W in T. Let
R be a subset of T and put Q = {W ∈ S|U(W ) ∈ R}. By part (e) of (3.3)

∪R = ∪{U(W )|W ∈ Q} = U(∪Q) ∈ T

and

U(∩R) = U(∩{U(W )|W ∈ Q}) = U(∩Q) ∈ T.

Hence T is a u-series. Pick Y in T and define X as above. Then clearly U(X) = Y. Let W be
in S. It follows from the definition of W that W < X if and only if and only if U(W ) < Y .
Therefore Y− = U(X−) and the remaining assertions in (a2) follow easily.
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(b) Clearly T is totally ordered and U(W) = W for all W in T. Let R be a subset of T
and put Q = {W ∈ S|U(Y ∩W ) ∈ T}. By part(e) of (3.3),

∪R = ∪{U(Y ∩W )|W ∈ Q} = U(Y ∩ ∪Q) ∈ T

and

U(∩R) = U(∩{U(Y ∩W )|W ∈ Q}) = U(Y ∩ ∩Q) = U(Y ∩ U(∩Q)) ∈ .T

Hence T is a u-series for G on Y with respect to H. Pick Z in T and define X as above. Then
clearly U(Y ∩ X) = Z. Let W be in S. It follows from the definition of X that W < X if
and only if U(Y ∩W ) < Z. Therefore Z− = U(Y ∩X−). Note that

U(Y ∩X−) ≤ U(Y ∩ U(X+)) ≤ U(Y ∩X−) = Z−.

So Y ∩X+ ≤ Z+. On the other hand U(Z+) ≤ Z− ≤ X− and Z+ ≤ X+. Thus

Z ∩X+ = Y ∩X+ = Z+ and (Z) = Z/Z+ = Z/(ZcapX+) ∼= Z +X+/X+

. Now Z +X+/X+ is a submodule of X and this finishes the proof of 4.1

Lemma 4.3 Let T and B be KG-submodules of V such that B ≤ T, T/B is irreducible and
[T/B, G] 6= 0. Then there exists a minimal G-supplement to B in T, i.e. a KG -submodule
C in T such that T = B + C and every proper KG-submodule in C is contained in B.

Proof: Pick h in G with [T/B, h] 6= 0 and put H =< hG >. Let U be any G-submodule in
V and let S be a composition series for G on U. Since deg(h) is finite, h and H centralize all
but finitely many of the factors of S. Let d(S) be the number of factors of S not centralized
by H, d(U) = min { d(S) | S a KG composition series on U} and d = min { d(U) | U a
KG-submodule of T with T = U+B}. Replacing T by an appropiate supplement,there is no
loss in assuming that d(T) = d and that T = UT (H). Let S be a composition series for G
on T with d(S) = d. Let C be a supplement to B in T.

Suppose that C 6= T. Put D = {UX(H)|X ∈ S}. Then |D| = d + 1. For Y ∈ D, let
Ỹ = UY ∩C(H). Put E = {Ỹ |Y ∈ D}. Then by (4.1), D and E are u-composition series for
G with respect to H on T and C, respectively. Thus

d+ 1 ≤ d(C) + 1 ≤ |E| ≤ |D| = d+ 1,

and so |E| = |D|. Pick Y in D with Y− ≤ K and Y 6≤ K. Since |E| = |D|, Ỹ− 6=Ỹ , and so
Ỹ 6≤ Y+. Since Y/Y+ is an irreducible KG-module, we conclude that Y = Y+ + Ỹ . Hence
H acts unipotently on Y/Y + Y−. Since Y is a perfect KH-module, Y = Y + Y− ≤ C, a
contradiction to the choice of Y. Thus C = T and every proper submodule of T is contained
in B.

Definition 4.4 Let R and S be sets of KG-modules.Then R and S are KG-isomorphic if
there exists a bijection α : R → S such that for all MinR, M and α(M) are isomorphic
KG-modules.
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Theorem 4.5 Let R and S be composition series for G on V. Then the sets of non-central
factors of R and S are KG-isomorphic.

Proof: Let T and B be G-submodules in V with B ≤ T , T/B irreducible and [T/B, G]
6= 0. We claim that T/B is isomorphic to a factor of S. By (4.3) we may assume that every
proper G-submodule in T is contained in B. Put Y = ∩{X ∈ S|T ≤ X}. Let R ∈ S with R
¡ Y. Then T 6≤ R, T ∩ R is a proper submodule of T and so T ∩ R ≤ B. Thus T ∩ Y− ≤ B.
Suppose that B 6≤ Y−. Then Y = B + Y− and so T = B + (T ∩ Y−) ≤ B, a contradiction.
Thus B ≤ Y− and T ∩ Y− = B. It follows that

T/B = T/T ∩ Y− ∼= T + Y−/Y− = Y/Y−.

Let X be a non-central factor of S. By the preceeding paragraph X isomorphic to a factor
of R. Pick g in G with [X, g] 6= 0. Since g has finite degree, g centralizes all but finitely
many factors of R and S. In particular only finitely many factors of R and S are isomorphic
to X. Let (Bi, Ti), 1 ≤ i ≤ n, and (Ci, Ui), 1 ≤ i ≤ m, be the jumps of R and S, respectively,
with factors isomorphic to X.

To complete the proof of the theorem it is enough to show that n = m. We assume
without loss that Ti ≤ Bi+1, 1 ≤ i < n, Uj ≤ Cj+1, 1 ≤ j < m, and n ≤ m.

Note that S∗ = {Tn ∩ D|D ∈ S} is a composition series for Tn whose set of factors is
isomorphic to a subset of the set of factors of S. Suppose that the number of factors of S∗

isomorphic to X is smaller than m. Then there exists 1 ≤ i ≤ m with Tn ∩ Ui = Tn ∩ Ci. It
follows that Ui + Tn/Tn ∼= Ui/Ui ∩ Tn ∼= Ui/Ci ∩ Tn and so Ui + Tn/Tn has a factor-module
isomorphic to X. On the other hand {Y/Tn|Y ∈ R, Tn ≤ R} is a composition series for G on
V/Tn none of whose factors is isomorphic to X, a contradiction to the first paragraph of the
proof.

Thus S∗ has m factors isomorphic to X. Replacing S by S∗ we therefore may assume
that V = Tn. Similarly we may assume that V = Um. Put Q = {Bn ∩ D|D ∈ S}; then
Q is a composition series for Bn. By induction on n, we conclude that Q has exactly n-
1 factors isomorphic to X. Suppose that m ≥ n; then there exists 1 ≤ i < j ≤ m with
Bn ∩ Ui = Bn ∩ Ci and Bn ∩ Uj = Bn ∩ Cj. Suppose that Ui ≤ Bn; then Ui ≤ Ci, a
contradiction. Thus V = Ui +Bn and so Uj = Ui + (Bn ∩ Uj) = Ui + (Bn ∩ Cj) ≤ Cj, again
a contradiction.. Thus n =m and the proof is completed.

Remark 4.6 (a) (4.5) can be rephrased as:
Let R and S be u-composition series for G on V. Then the sets of factors of R and S are

KG-isomorphic.
(b) By (4.5), if G has a finite dimensional series on V, then every composition series for

G on V is finite dimensional.

Example 4.7 The number of central factors in two distinct composition series for G can be
different as the following example shows:
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Suppose that K has a element k with k 6= 0,1. Let V be the vectorspace over K with
basis v0, v1, v2, . . . . Define xi, i ≥ 1, in FGLK(V ) by

vxij = vj, 0 6=j 6=i, vxii = kv − i, vxi0 = v0 + vi

Put Vi =< vj|j > i > and Ui = Vi+ < (1 − k)v0 +
∑

1≤j≤i vj >. Then it is readily verified
that

V > V0 > V1 > V2 > . . . > 0 mboxandV > U1 > U2 > . . . > 0

are composition series for < xi|i ≥ 1 > on V. Moreover, V/V0 is a central factor in the first
series, while the second one has no central factors.

Using (4.5) we are now able to prove a dual version of (2.2) for finitary modules. We
remark that the following lemma is false for non-finitary modules.

Lemma 4.8 Let F be a closed class of KG modules which includes all 1-dimensional central
KG-modules. Then there exists a unique KG-submodule MV,F(G) in V maximal with respect
to G having a F-series on MV,F(G).

Proof: Let S be the set of all KG-submodules U in V such that G has an F -series on
U. Let U be in S. Then by the properties of F , G has a F -composition series on U and by
4.5 every composition series for G on U is an F -series. Order S by inclusion and let R be a
chain in S. PutN = ∪R and extend R to a composition series C for G on N. Then, for all U
in R, {X ∈ C|X ≤ U} is a composition series for G on U and hence a F -series for G on U.
It follows that C is a F -series and so N is in S. By Zorn’s Lemma S has a maximal element
M. Let U be in S; then G has a F -series on U +M/M ∼= U/U ∩M and on M. Thus U + M
is in S and U ≤M .

5 Complete Reducibilty of Normal Subgroups of Irre-
ducible Finitary Groups

Theorem 5.1 If G acts irreducibly on V and H is a normal subgroup of G, then H acts
completely reducibly on V.

Proof: Suppose the Theorem is false. If H has an irreducible submodule I in V, then
V =

∑
g∈G I

g and V is completely reducible. So H has no irreducible submodule in V and
in particular, H has no non-zero finite dimensional submodule in V. Pick 16=r ∈ H and put
R =< rH >. We will first prove that

(1) [V,R]+Y/Y is finite dimensional for any non-zero H-submodule Y in V.

11



Since G is irreducible on V, V =
∑

g∈G Y
g . Also since [V,r] is finite dimensional there

exists g1, . . . , gs in G with [V,r] Z, where Z =
∑

1≤i≤s Y
gi . Now Z is a H submodule and

so [V, rh] = [V, r]h ≤ Z for all h in H. Thus [V,R] ≤ Z. Note that CY (gi) ≤ Y ∩ Y gi and
hence Y/CY (gi) is finite dimensional for all 1 ≤ i ≤ s. Therefore Y gi + Y/Y, Z + Y/Y and
[V,R] + Y/Y are finite dimensional, proving (1).

Since H has no non-zero irreducible submodule in V we can find a descending chain

[V,R] > Y1 > Y2 > ....Yn > ...

of H submodules Yi in [V,R]. Let Y = ∩i≥1Yi. Then [V,R]/Y is infinite dimensional and (1)
implies that Y = 0.(in fact all non-zero KH-submodules of [V,R] have finite codimension in
[V,R]). Hence there exists n with [V, r]∩Yn = 0. It follows that [Yn, r] = 0. Thus [Yn, R] = 0
and CV (R)6=0. (1) implies that [V,R] + CV (R)/CV (R) is finite dimensional. In particular,

(2) UV (R) + UV (R)/UV (R) is finite dimensional.

For N ≤ G let

U(N) = UV (N) ∩ UV (N) and d(N) = dimKUV (N)/U(N).

Put d = min{d(N)|16=N EH} and pick 16=L∗ EH with d(L∗) = d. Put

L =< N |1 6=N EH,UV (N) = UV (L∗), U(N)) = U(L∗) > .

By (3.3), UV (L) = UV (L∗) and U(L)) = U(L∗). We prove next that:

(3) For all g in G, L = Lg orL ∩ Lg = 1.

Indeed, let g be in G with L∩Lg 6=1. Then UV (L∩Lg) ≤ UV (L) and U(L)∩UV (L∩Lg) ≤
U(L ∩ Lg). By the minimal choice of d, d(L ∩ Lg) ≤ d(L). On the other hand

d(L ∩ Lg) = dimKUV (L ∩ Lg)/U(L ∩ Lg) ≤ dimKUV (L ∩ Lg)/U(L) ∩ UV (L ∩ Lg) ≤

≤ dimKUV (L ∩ Lg) + U(L)/U(L) ≤ dimKUV (L)/U(L) = d(L).

Hence equality holds at each place and we conclude that U(L)∩UV (L∩Lg) = U(L∩Lg)
and UV (L ∩ Lg) + U(L) = UV (L). In particular, L acts unipotently on UV (L)/UV (L ∩ Lg)
and so UV (L) = UV (L∩Lg). Thus U(L) = U(L∩Lg). By symmetry, UV (Lg) = UV (L∩Lg)
and U(Lg) = U(L ∩ Lg). Therefore UV (L) = UV (Lg) and U(L) = U(Lg). By definition of
L, Lg ≤ L and L ≤ Lg. Thus L = Lg and (3) is established.

If g is an element of G with L6=Lg, then by (3) L ∩ Lg = 1. Since L and Lg are normal
subgroups of H we get [L,Lg] = 1. Put L⊥ =< Lg|g ∈ G \NG(L) >. Then [L,L⊥] = 1. Put
Y = [V, L⊥] ∩ UV (L). Since UV (L)/U(L) is finite dimensional, there exist l1, . . . , lt in L⊥

with Y ≤ U(L) + Z, where Z =
∑

1≤i≤t[V, li]. In particular, L acts unipotently on Y+Z/Z
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and so UV (L) ≤ Z. Since Z is finite dimensional, UY (L) is a finite dimensional H submodule
in V and so Y V (L)) = 0. Thus

U [V,L⊥](L) ≤ U
[V,Lperp]∩UV (L)

(L) ≤ UY (L) = 0.

It follows that [V, L⊥] ≤ UV (L) and in particular, UV (L) ≤ UV (L). So UV (Lg) ≤ UV (L) for
all g ∈ G\NG(L) and UV (L) ≤ UV (Lg) for all g ∈ G\NG(L). Hence UV (L) ≤ UV (< LG >).
Note that G normalizes UV (< LG >). Since G acts irreducibly on V, part (c) of (3.2) implies
that < LG > does not act unipotently on V. Thus UV (< LG >) = 0, UV (L) = 0 and UV (L)
is a non-zero finite dimensional H -submodule in V; this contradiction completes the proof
of (5.1).

Lemma 5.2 Let h be any element of G. Then there exists a subnormal subgroup H in G
with h ∈ H such that H has a finite u-composition series on V.

Proof: Let S be any composition series for G on V and let T be the set of factors in S
which are not centralized by h. Since [V,h] is finite dimensional, T is finite. Let H1 =< hG >
and inductively Hi+1 =< hHi >. Pick t in T. If Hi acts irreducibly on V on t for all i, let
n(t) = 0. Otherwise let n(t) be minimal such that Hn(t) acts reducibly on t. Note that in
this case by (5.1) Hn(t) acts completely reducibly on t. Since Hn(t)−1 acts irreducibly and
finitary on t it is easy to see that all the irreducible Hn(t)-submodules are finite dimensional.

Let j ≤ n(t). We claim that Hj has a finite u-composition series on t. If n(t) = 0, Hj is
irreducible. So assume that n(t) > 0. Then Hj−1 is reducible on t and so t is the direct sum
of finite dimensional irreducible Hj−1-submodules. Note that h centralizes all but finitely
many of these submodules and so [t,Hj] is finite dimensional, proving our claim.

Put n = max{n(t)|t ∈ T}+ 1 and H = Hn. Then H has a finite u-composition series on
all elements of T and hence also on V.

6 Component-Type Subgroups for Irreducible Fini-
tary Groups

Definition 6.1 1. d(G) is the sum of the dimensions of the factors of a u-composition
series of G in V.

2. dG = min{ d(L)— 1 6= L asc G}.

3. Λ = { L asc G — d(L) = dG}.

We remark that d(G) and dG may be infinite and that by 4.5, d(G) does not depend on
the choice of the composition series.
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Theorem 6.2 . Suppose G is irreducible on V and and dG is finite. Let L ∈ Λ. Then one
of the following holds:

(i) There exists L∗ ∈ Λ such that L∗ =< Lg|g ∈ G,Lg ≤ L∗ > and [L∗, L∗g] = 1 for all g
in G with L∗ 6=L∗g.

(ii) L is of order p for some prime p and < LG > is a solvable and locally finite p-group.
(iii) L has a normal subgroup B such that |L/B| = 2, B ∈ Λ, B is isomorphic to a subgroup

of the multiplicative group of a finite field extension of K, L inverts B and CB(L) = 1.

Proof: Let Gi, i ∈ I be an ascending normal series from L to G. For X,Y ≤ G write
X ∼ Y if d(< X, Y >) = d(X) = d(Y ). Note that

(1) If X ∼ Y and A,B ≤< X, Y > with d(A) = d(B) = d(X), then A ∼ B.

Next we prove that

(2) Let X and Y be in Λ such that X normalizes Y and Y normalizes X. Then X ∼ Y or
X ∩ Y = 1.

Suppose X ∩ Y 6=1 and let t be a composition factor for XY on V. If [t,X ∩ Y ] = 0, then
d = d(X ∩ Y ) = d(X) = d(Y ) implies that 0 = [t,X ∩ Y ] = [t,X] = [t, Y ] = [t,XY ]. If
[t,X ∩ Y ]6=0, then since X ∩ Y is normal in XY, t is the direct sum of irreducible X ∩ Y -
submodules. It follows that X ∩ Y has no central composition factor on t. Hence d(XY ) =
d(X ∩ Y ) = d and X ∼ Y .

(3) Let X ∈ Λ and Σ ⊆ Λ such that for every S in Σ , S normalizes X and S ∼ X, then
d(< X,< Σ >>) = d and S ∼ R for any S and R in Σ.

Put T =< X,< Σ > and let t be a composition-factor for T on V. If X centralizes t,
then since d(X) = d(XS) for all S in Σ, S acts unipotently on t. By part (b) of (3.2), T acts
unipotently on t. If X does not centralize t, then since X is normal in T, (5.1) implies that
X has no central composition factor on t. Hence d = d(X) = d(T ) = d(< S, T >) and (3) is
proved.

(4) Suppose L is a group of prime order. Then (ii) holds.

Since L is an ascending, locally finite and locally solvable p-subgroup of G, an easy
induction argument shows that < LG > is a locally finite and locally solvable p-subgroup of
G. Proposition 1 in [4] implies that < LG > is solvable and this completes the proof of (4).

Let 0 be the minimal element in I. Put L0 = L and inductively define Li, (i ∈ I) by
Li = ∪{Li|j < i}, if i is an limit ordinal and Li+1 =< Lgi |Li ∼ Lgi , g ∈ Gi+1 >.

(5) If k ∈ I and s ∈ Gk with d(Lk) = d and Lk ∼ Lsk, then Lk = Lsk.

Let r be minimal in I with s ∈ Gr. Put J = {j ∈ I|j < k and r ≤ j + 1}. Let j in J and
h in Gj+1 with Lj ∼ Lhj . Then Lhj ≤ Lj+1 ≤ Lk. By assumption d(< Lk, L

s
k >) = dand so by

(1) Lj ∼ Lhsj . Since hs ∈ Gj+1, L
hs
j ≤ Lj+1 ≤ Lk. This holds for all such h and so Lsj+1 ≤ Lk.
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If k is not a limit ordinal, k-1 is in J and hence Lsk ≤ Lk. If k is a limit ordinal then r < k
and Lk = ∪{Lj|j ∈ J} and again Lsk ≤ Lk. By symmetrie, Ls−1

k ≤ Lk and Lk = Lsk.

(6) Suppose that neither (ii) nor (iii) hold. Then each of the following holds for all i in I:
(a) For each g in Gi, Li = Lgi or [Li, L

g
i ] = 1.

(b) If i is not a limit ordinal, Li−1 is normal in Li.
(c) Li ∈ Λ.

Assume (6) is false and let i be minimal in I such that (6) fails. Put J = {j ∈ I|j < i}.
Suppose that (a) and (b) hold. Then by (a), Li is normal in < LGii > and so Li is an

ascending subgroup of G. If i is not limit ordinal, then by (b), (2) and the definition of Li,
d(Li) = d. Thus (c) hold in this case, a contradiction. Hence i is a limit ordinal. Let t be
a non-central composition factor for Li on V. Since d = d(Li) for all j in J and since Lj is
normal in Lj+1, we conclude that U t(Lj) = U t(Lj+1). An easy induction argument shows
that U t(Lj) = U t(Li) = 0. Since d is finite, t is finite dimensional and so every Lj normalizes
a non-central irreducible submodule in t. Let m = max { dim X | there exists j in J such
that X is a Lj- submodule with no central Lj -composition factor}. Note that 0 < m ≤ d.
Choose j and X as above with dim X = m. Then Lj as no central composition factor in
< XLj+1 > and so Lj+1 normalizes X and Lj+1 has no central composition factor in X. By
induction, Li normalizes X and so X = t, and Lj has no central composition factor in t. This
implies that d(Li) = d and Li ∈ Λ.

Hence (a) or (b) fails. Suppose first that i is a limit ordinal. Then (a) must fail. Pick
g ∈ Gi with Lgi 6≤ Li and [Li, L

g
i ]6=1.Then there exist j,k,l,m in J such that Lgj ≤ Li, [Lk, L

g
l ]6=1

and g ∈ Gm. Put q =max{j,k,l,m}. Then Lgq 6≤ Lq, [Lq, Lgq ]6=1 and g ∈ Gq, a contradiction
to the minimal choice of i. Hence i = k +1 for some k in I. Set R = Lk. We will first prove
that

(*) R is normal in < RGi >.

Suppose not and pick h in Gi so that S = Rh does not normalize R. Pick s in S with
Rs 6=R. Since s ∈ Gk, [R,Rs] = 1. By (4) d(RRs)6=d. Hence there exists a composition factor
t for < R,S > in V such that R has a central and a non-central composition factor on t.
Note that R is normal in < RGk > and so also S is normal in < SGk >. In particular, R∩S is
subnormal in < R,S >. Suppose that R∩S 6=1. Since R, S and R∩Sact completely reducibly
on t and d = d(R ∩ S) = d(R) = d(S) we conclude that [t, R] = [t, R ∩ S] = [t, S] = t and
so R has no central composition factor on t, a contradiction. We conclude that R ∩ S = 1.
Similarly, since R ∩Rs is centralized by RRs and d(RRs)6=d,R ∩Rs = 1.

Suppose that R is abelian and let C be the set of factors of some u-composition series of
< R<s> > on V. Let 16=r ∈ R. Then < r > is normal in R and so ascending in G. Thus
d(< r >) = d and it follows that UV (R) ≤ [V, r] . Hence UV (< R, s >) is finite dimensional
and so C is finite. Let E be a subset of C and let R1 and R2 be in R<s> with [e,Ri]6=0 and
[f,Ri] = 0 for all e in E, f ∈ C \ E and i ∈ {1, 2}. Then since Ri is normal in R<s> we
conclude that [e,Ri] = e for all e in E and so d(R1R2) = d. Thus by (5) R1 = R2. Since
C has only finitely many subsets we conclude that |R<s>| is finite. So sk normalizes R for
some positive integer k. Since < RS > and < SR > are abelian, [R,S] ≤ Z(< R,S >) and
so [rk, s] = [r, sk] ∈ R. Hence (rk)s ∈ R ∩ Rs = 1 and R and S are of exponent k. Choosing
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s such that sp ∈ NS(R) for some prime p we see that R and S are of exponent p. It follows
that |R/CR(u)| = p for every non-central composition factor u of R on V. Then CR(u) is an
ascending subgroup of G with d(CR(u)) < d,CR(u) = 1 and |R| = p, a contradiction to (4).

Thus R′ 6=1. Suppose that R normalizes S. By (2.3), R′ ≤ [R,S] and so R′ ≤ R ∩ S = 1,
a contradiction. So R does not normalize S and we can apply (2.4). Let A = NR(S), then
A is a abelian, R inverts A and CA(R) = 1. Moreover, since d(A) = d and A asc G, A acts
faithful on each of its u-composition factors on V. Thus by Schur’s Lemma, A is isomorphic
to a subgroup of the multiplicative group of a finite field extension of K. Suppose L ≤ A and
pick n in I minimal with Ln 6≤ A. Then clearly n = j+1 for some j ∈ I. Pick g ∈ Gr with
Lj ∼ Lgj and Lgj 6≤ A. Since Lj ≤ A,Lgj is abelian and so A∩Lgj ≤ CA(R) = 1. Thus |Lgj | = 2
and since R inverts T, Lj ≤ CT (R) = 1, a contradiction. Thus L 6≤ T . Put B = L ∩ A.
Then (iii) holds.This contradiction to the assumptions establishes (*).

By (*), Lk is normal in Li and so (a) must fail. Let g ∈ Gi. If Li ∼ Lgi , then by (5)
Li = Lgi . If Li 6∼ Lgi then (2) implies [Li, L

g
i ] = 1. This completes the proof of (6).

By (6) either (ii) or (iii) holds or (i) holds with L∗ = La, where a is in I with G = Ga.

Remark 6.3 Retain the assumption of (6.2). Replacing L by B in case (iii) it follows that
there always exists L in Λ which fulfills (i) or (ii).

7 Ascending Subgroups of Finitary Groups

Throughout this section H is a ascending subgroup of G, Gi, i ∈ I be an ascending normal
series from L to G,0 is the minimal element in I and a is the maximal element. Let F be the
class of finite dimensional KH-modules and put mV (H) = mV,F(H) and MV (H) = MV,F(H),
where mV,F(H) and MV,F(H) are defined in (2.2) and (4.8), respectively.

Lemma 7.1 (a) Let U be a KH-submodule in V and MV
U (H) the inverse image of MV/U(H)

in V. Then G normalizes mU(H) and MV
U (H).

(b) If G is irreducible and H reducible on V, then every composition series of H in V is
finite dimensional. In particular, d(< hH >) is finite for all h in H.

Proof: Suppose (a) is not true and choose i mimimal in I so that Gi does not normalize
both of mU(H) and MV

U (H). Then clearly i is not a limit ordinal and so Gi−1 is normal in
Gi and normalizes mU(H) and MV

U (H). Let g ∈ Gi. Then mU(H) ∩ mU(H)g is of finite
codimension in mU(H). Moreover, Gi−1 and therefore also H normalizes mU(H) ∩mU(H)g.
It follows immediately from the definition of mU(H) that mU(H) has no proper H-submodule
of finite codimension. Hence mU(H) ∩mU(H)g = mU(H) = mU(H)g. Thus Gi normalizes
mU(H). Similarly, MV

U (H)g + MV
U (H)/MV

U (H) is a finite dimensional KH-submodule of
V/MV

U (H) and Gi normalizes MV
U (H), a contradiction which establishes (a).
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(b) Let U be a proper H-submodulein V. Since G acts irreducibly on V, (a) implies that
MV

U (H) = V and mU(H) = 0. Thus H has finite dimensional composition series on U
and on V/U and therefore also on V. By (4.5) every composition series for H on V is finite
dimensional. Note that < hH > centralizes all but finitely many of those composition factors
and (b) is verified.

Note that part (b) of (7.1) implies:

Corollary 7.2 Suppose G is irreducible on V and has a reducible ascending subgroup. Then
dG is finite.

Definition 7.3 1. A set Π of proper K-subspaces in V such that V = ⊕Π and P g ∈ Π,
for all P ∈ Π, g ∈ G , is called a system of imprimitivity for G on V. A K-subspace P of
V is called an subspace of imprimitivity for G on V if PG is a system of imprimitivity.

2. H ≤ GLK(V ) is called imprimitive, if there exists a system of imprimitivity for G on
V. Otherwise G is called primitive.

Proposition 7.4 If G is primitive and V infinite dimensional, then every non-trivial as-
cendent subgroup of G acts irreducibly and primitively on V.

Proof: Suppose that H is reducible. Using (5.1) the Wedderburn components of a non-
trivial reducible normal subgroup of G form a system of imprimitivity. So G has no non-
trivial reducible normal subgroup. In particular, G has no non-trivial abelian or solvable
normal subgroup. By (7.2) dG is finite and this permits us to apply (6.2). Note that case
(ii) cannot occur. In case (iii) we replace L by B. Thus (i) holds for some L ∈ Λ. Without
loss L∗ = L . Then L is subnormal in G and so by (5.1) V is completely reducible for L.
Since d(L) = dG is finite we conclude that [V,L] is finite dimensional. Therefore < LG > is
reducible, a contradiction.

So H is irreducible. Suppose that Π is a system of imprimitivity for H on V. By the
previous paragraph, H has no reducible normal subgroup and so H acts faithfully on Π as
a transitive group of finitary transformations. Suppose that H has no maximal system of
imprimitivity on Π. Then any element in H acts trivally on some system of imprimitivity,
a contradiction. Thus we may assume that H acts primitively on Π. By Satz 9.4 in [9],
H = Alt(Π) or FSym(Π). Let P ∈ Π. Suppose that [P, h] 6= 0. for some h ∈ NH(P ). Then
|PCH(h)| is infinite and so [V,h] is infinite dimensional, a contradiction. Hence [P,NH(P )] = 0
and V is the natural permutation module for H, but then the even permutation module is a
proper H-submodule in V, a contradiction.

Proposition 7.5 (a) If Π is a infinite system of imprimitvity for G on V, and H is an
ascending subgroup of G acting transitively on Π, then G′ ≤ H.

(b) Suppose that G is irreducible and imprimitive on V and V that is infinite dimensional;
then G′ is the unique mimimal irreducible ascending subgroup of G.
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Proof: (a) Suppose G′ 6≤ H and pick j in I minimal with G′j 6≤ H. Then clearly j is not
a limit ordinal and so j = t+1 for some t in I. Let L = G′t. Then L is a normal subgroup
of Gj and L ≤ H. Moreover, since Gk is transitive on Π, and Π is infinite, L is transitive
on Π. Let x, y ∈ Gj and A =< x, y >. Since [V,A] is finite dimensional, there exists a finite
subset Σ of Π with [P, A] = 0 for all P ∈ Π \ Σ. By (2.3) in [6], there exists l in L with
Σ∩Σl = Ø. Hence [A,Al] = 1. Thus by (2.3) A′ ≤ [A, l] ≤ [Gj, L] ≤ L and so G′j ≤ L ≤ H,
a contradiction.

(b) By (a) it remains show that G′ acts irreducibly on V. Otherwise the abelian group
G/G′ acts transitively and finitary on the infinite set of Wedderburn components of G′ in V.
This is impossible.

Theorem 7.6 If G is irreducible on V, then every ascending subgroup of G acts completely
reducibly on V.

Proof: Suppose H is not completely reducible on V. Let i in I be minimal such that Gi

is completely reducible. If i = k+1 for some k in I, then Gk is normal in G and by (5.1), Gk

is completely reducible, a contradiction. So G = ∪{Gk|k < i}. Suppose first that V is finite
dimensional. For k in I let Ak be the K-subalgebra of EndK(V ) generated by the elements of
Gk. Under the elements less than i, choose k such that dimKAk is maximal. Then Ak = Aj
for all k ≤ j < i. Thus Ai = ∪{Aj|j < i} = Ak. It follows that Gk and Gi have the same
submodules in V, a contradiction to the fact that Gi is completely reducible on V and Gk is
not.

Suppose next that V is infinite dimensional. Since H is reducible, (7.4) implies that G is
imprimitive. Let Π be a system of imprimitivity for G om V.

Assume first that H does not act transitively on Π. Then by (2.6), V is the direct sum
of H-invariant subspaces of imprimitivity for G on V. Let U be any H-invariant subspaces of
imprimitivity for G on V. Then U is finite dimensional, NG(U) acts irreducibly on U and H is
an ascending subgroup of NG(U). By the finite dimensional case, H is completely reducible
on U. Since this holds for all such U, H is completely reducible on V.

Assume next that H is transitive on Π. Then by 7.5, G′ ≤ H, and H acts irreducibly on
V, a contradiction, which completes the proof of (7.6).

We are now able to prove an improved version of (5.2)

Lemma 7.7 Let h be in G, then < h<h
G>> has a finite u-composition series on V.

Proof: Retain the notation established in the proof of (5.2). By that proof it is enough
to show that n(t) ≤ 1 for all t in T. Suppose first that G acts primitively on t. Then by
(7.4), n(t) = 0. Suppose next that G has a system of imprimitivity Π on t and let D be
the subgroup of G which is maximal with respect to acting trivial on Π. Now assume that
h is in D. Then H1 ≤ D and n(t) = 1. So we may assume that h is not in D and that
G acts primitively on Π. But then by Satz 9.2 im [9], G/D = Alt(Π) or FSym(Π) and so
G′D ≤ H1D. It follows by induction that G′D ≤ HiD for all i . Thus by (7.5), G′ ≤ HiCG(t)
and Hi acts irreducibly on t. Thus n(t) =0, and (7.7) is proved.
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8 Free Groups as Infinite Dimensional Finitary Groups

Example 8.1 Let I be a set with at least two elements, F a free group with generators fi, i
in I, and M a free abelian group with generators vi, i in I. For i in I let zi be an integer with
|zi| ≤ 6 . Then the representation of F on M defined by

vfii = vi and vfij = vj + zivi

for all i,j in I with i 6= j, is faithful. Moreover, if K is a field with zi 6=0 (in K) for all i in I,
then K⊗M is an irreducible KF-module. If char K = 0, then K⊗ M is a faithful F -module.

Proof: For i in I let M(i) = {
∑
akzk ∈M ||ai| > 2(

∑
k 6=i
|ak|)}. We will first prove

(*) Let i,j in I with i 6= j and t a nonzero integer. Then M(j)(f ti ) ⊆M(i).

Let m =
∑
akvk ∈M(j) and m(f ti ) =

∑
bkvk. Since

v
(f ti )
i = vi and v

(f ti )
j = vj + tzivi

we conclude that bk = ak for k 6= i and bi = tzi(
∑

k 6=i
ak) + ai. Thus∑

k 6=i

|bk| =
∑
k 6=i

|ak| =
∑
k 6=i,j

|ak|+ |aj| < |aj|/2 + |aj| = 3/2(|aj|).

On the other hand,

|bi| = |tzi(
∑
ki

ak) + ai| ≤ |tzi||aj| − |tzi|(
∑
k 6=i,j

|ak|)− |ak| ≤ |tzi||aj| − |tzi|(
∑
k 6=i

|ak|) =

= |tzi|(|aj| −
∑
k 6=i

|ak|) ≤ 6(|aj|/2) = 3|aj|.

Hence |bi| > 2(
∑

k 6=i
|bk|),m(f ti ) ∈M(i) and (*) is established.

Let f = f
t(1)
i(1) · . . . · f

t(s)
i(s) ∈ F with i(r) 6= i(r+1) and t(r) 6= 0. Let j ∈ I with j 6=i(1). We

claim that M(j)f ⊆ M(i(s)). Indeed, put x = f
t(s)
i(s) and h = fx−1. Then by induction on s,

M(j)h ⊆M(i(s− 1)) and so by (*),

M(j)f = (M(j)h)x ⊆M(i(s− 1))x ⊆M(t(s))

.
We are now able to prove that f acts non-trivially on M. If i(1) = i(s) pick j ∈ I \ i(1)

and if i(1) 6= i(s) let j = i(1). Put y = f
t(1)
i(1) . Note that vj ∈ M(j) and so in any case

vyj ∈M(i(1)). Since i(1) 6= i(2) we conclude that vfj ∈M(t(s)). Since j 6= t(s), vj 6∈M(t(s)).
Thus vj 6=vfj and F acts faithfully on M.

Let K be a field with zi 6=0 for all i in I. Let V = K ⊗M and U a nonzero KF-submodule
in V. Clearly CV (F ) = 0. Hence [U, fi]6=0 for some i in I and so vi ∈ [U, fi] ≤ U . It follows
that for j 6= i, vj ∈ [Kvi, fj] ≤ U . Thus U = V and V is irreducible as a KF-module.
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Remark 8.2 (a) The first assertion of (8.1) is also an easy consequence of the main theorem
in [3]. Indeed Humphrey proves a much stronger version of (8.1) for finite I’s. (8.1), F has
an irreducible, infinite dimensional, and finitary representation over K. It is easy to see
that any such representation must be primitive. It follows from (7.4) that every non-trivial
ascending subgroup of F acts primitively. In particular, the intersection of the normal and
irreducible subgroups of F is trivial and (7.5) does not hold in general for a finitary primitive
groups.
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