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Abstract
We show that there exists a non-linear, locally finite, simple group such that the
centralizer of every non-trivial element is (locally solvable)-by-finite.

In [1, Problem. 3.8] Brian Hartley asked the following question:

Does there exists a non-linear infinite simple locally finite group in which the cen-
tralizer of every non-trival element is almost soluble, that is, has a soluble subgroup
of finite index?

In this note we will give a partial answer to Brian’s question: We will show that
the answer is affirmative if solvable is replaced by “locally solvable”. More precisely
we prove:

Theorem A (a) There exists a non-linear, locally finite, simple group such that
the centralizer of every non-trivial element is (locally solvable)-by-finite.
(b) Let p be a prime. Then there exists a non-linear, locally finite, simple group
with an element whose centralizer is a p-group.

This theorem and its proof first appeared in my lecture notes on locally finite

simple groups [2].

If W and I are sets, then W' denotes the set of functions from I to W. If X is
group, Y a subgroup of X and W a Y-set we define

Wy ={f: X - W | f(zy) = f(z)! forall z € X,y € Y}.

Note that, if we view X as a Y-set by right multiplication, then W {5 just
consists of the Y-equivariant maps from X to W.

If W is a Y-module and X/Y is finite, then the following lemma shows that
WAy is the induced module for X. And if W is a group with Y acting trivially on
W, then WA is the base group of the wreath product W x/y X.



Lemma 1 Let X be a group, Y a subgroup of X and W a Y-set. PutV = W{s.
Then

(a) X acts on'V by f"(z) = f(hx) for all z,h € X.

(b) Let I be a left transversal to Y in X. Then the restriction map
priV—W'f—fl

is a bigection. In particular, V and WX gre isomorphic as sets.
(¢) Define
m: V= W,n(f) = f(1).
Then m is an onto Y -equivariant map.

(d) Suppose that t is a fized-point for Y on W. Let w € W and define

w®  ifr ey
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Then

(a) ke(w) €V and ke : W — V,w — ki(w) is a 1-1 Y -equivariant map.
(b) m(ke(w)) = w.

(c) m(ke(w)?)) =t forallz € X \Y.

(e) Suppose in addition that W is a Y -group, that is, W is a group and for each
y €Y the map W — W,w — w" is a homomorphism of groups. Then the
maps pr, ™ and k1 all are homomorphism of groups.

Proof. (a): We need to verify that f* € V and f* = (f*) for all f € V,h,l € X.
Let 7 € X and y € Y. Since f*(zy) = f(h(ay)) = F((ha)y) = f(ha)* = (F*(@))",
frev. Also f*(x) = f(M)z) = f(h(z)) = f(Iz) = (f")}(z) and so (a) holds.

(b): Let z € X. Then z = iy for some unique i € I, y € Y.

Let f € V. Then f(x) = f(iy) = f(1)Y and so f is uniquely determined by f7.
Thus py is 1-1.

Let g € W', Define f: X — W by f(z) = f(3). It is casy to verify that f € V
and fr = g. Hence p; is onto.

(c): Let f € V,y €Y. Thenn(f¥) = f*(1) = f(y-1) = f(1-y) = f(1)* = =(f)".
So 7 is Y-equivariant. Choose a left transversal containing 1. Then (b) implies that
7 is onto.

(d): Let we W,y € Y and z € X. Then z € Y if and only if zy € Y. Also by
assumption ¢ = ¢t¥ and so
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Thus r¢(w) € V.
Alsoyr € Y ifand only if z € Y. So

wiwn@ = { CETEY < R SY = mwn) = mw) @)

Thus k:(w?) = ke(w)? and (d:a) holds.

Since 1 € Y, 7(ks(w)) = rt(w)(1) = w' = w and so (d:b) holds.

Let x € X \ Y. Then m(k¢(w)®) = ke(w)* (1) = ke(w)(z - 1) = ke(w)(z) =t. So
also (d:c) holds.

It remains to prove (e). So suppose that W is a Y-group. Clearly WX is a group
via (fg)(z) = f(z)g(z). Moreover, for f,g € Wiy, z € X and y € Y we have

(f9)(zy) = fzy)g(zy) = f(2)"g9(x)" = (f(2)g(x))" = (fg)(x)".

So fg € Ws. Similarly f~! € W% and clearly 1 € W{s5. Hence W15 is a
subgroup of W*.
For any J C X, the restriction map WX — W7, f — f |7 is a homomorphism.

Thus pr and 7 are homomorphism. W — W,w — wY and W — W,w — 1 are
homomorphisms and so also k1 is a homomorphism. O

Statement (c:a) in the following lemma is crucial for this paper. It allows us to

enlarge a group Y to a group H while controlling some of the centralizers.
Lemma 2 Let X,Y,W,G be groups with Y < X, GY, WY, Y = WG and

W NG = 1. Then there exists a semidirect product H =V x X and an embedding
B:Y — H such that

(a) V2WY/X as groups.
(b) VB(y) =Vy forally €Y.
(c) Letye Y, weW and g € G with y = wg andy & g"V. Then

(a) VCu(B(y)) = VCy (y)-
(b) Bly) &y".



Proof. Let y € Y and y = wg with w € W, g € G. Let p be the projection of Y
onto G, that is p(wg) = g. Note that W is a Y-group via w — w”® . We denote
this Y-group by W,. Put V = WPTT{/(. Then by Lemma 1 X acts on V and we
can form the semidirect product, H =V x X = {(v,2)|v € V,z € X}. We view

V and X as subgroups of H. So H =VX and VNX =1. Let 7 : V — W and
k=K1 : W — V be as in Lemma 1. Let v € V.

1° () = 7(v)PY) = 7(v)? and ﬂ(vy_l) = 77(1))9_1

The first statement follows from 1(c) and the definition of action of Y on W,,.
Since p(y~*) = p(y) ™' = g7, the second statement follows from the first.
2° Define
B:Y — H,y— (k(w),y).
Then B is a monomorphism and V 3(y) = Vy.

Clearly 3 is 1-1 and VB(y) = Vy. Fori = 1,2 let y; € Y and y; = w;g; with
w; € W, g; € G. Then

—1
91
Y1Y2 = W1g1W2g2 = W1Wy  gi19g2,

and so

—1

Blyryz) = (k(wiws" ), y1y2).
On the other hand,

By1)B(y2) = (k(w1),y1)(k(w2),y2) = (k(w1)k(w2)"* L)

As k is a Y-equivariant homomorphism,

—1

By1)B(y2) = (k(wrwy' ), y1y2)
and so (3 is a homomorphism.

—1

3° Let (v,z) € Cu(B(y)). Then k(w)vY = vfﬁ(w)af1 and vy = yx.

We compute

B)(v,z) = (k(w), y) (v, 2) = (K(w)o”  yz)

and
—1

(v, 2)B(y) = (v, 2)(k(w),y) = (va(w)* ,zy)
Thus (3°) holds.



4° Suppose that VCu(8(y)) # VCy(y). Theny € g".

Since B(Cy (y)) < Cu(B(y)) we have VCy (y) =) VB(Cy (y)) < VCi(A(y)) and

so there exists (v,z) € Cu(B(y)) with x € Y.
By Lemma 1(d:b), 7(x(w)) = w. By (1°), ﬂ(vyil) = ﬂ(v)kil. Also since z ¢ Y
and k = k1, Lemma 1(d:c) implies w(r@(w)z_l) = 1. So applying 7 to both sides of

the first equation in (3°) we obtain

11)77(1))971 = m(v).

1 1 w

Put r = m(v). Then wgrg™" =r, wg=rgr ' andy=wg=g" €g

5° If B(y) € y¥, theny € g".
Suppose that 3(y) = (1,y) Y for some v € V. Then

1

(5(w),y) = (v, DLy (1) = (v Y1) = (v " Ly

1

and so k(w) = v~ v Applying 7 to both sides we conclude w = 7r(v_1)7r(v)971

1

Put r = 7(v) then w = r~'grg~* and y = wg = r~'gr = ¢g". Thus (5°) holds.

We are now in the position to prove the lemma: (a) follows from Lemma 1(b),(e);
(b) from (2°); (c:a) from (4°); and (c:b) from (5°). O

The preceding Lemma, allows to control centralizers under the condition y ¢ g".
The next lemma provides us with a tool to achieve this condition:

Lemma 3 Let G be a finite group and 11 a set of primes. Then there exist a finite
abelian Z.G-module W and a monomorphism o : G — W x G such that

(a) W is a II-group.
(b) Wa(g) =Wy for all g € G.
(c) alg) & g™ for all non-trivial I1-elements g in G.
(d) If G is perfect, then W = [W,G] and W x G is perfect.
Proof. Let m be the II-part of |G|. Put B = (Z/mZ) and H = Z/mZ1 G, where

the wreathed product is formed with respect to regular action of G on G. Then
B is the base group of H and H = BG. For f € B put [|f[| = > .. f(g). Put
W = [B,G] and note that W = {f € B | ||f|| = 0}. Then W is a II-group and (a)
holds. Also if G = G’, the Three Subgroups Lemma implies [B, G, G| = [B, G] and
so W = [W,G] and WG is perfect. Thus (d) holds.



Let b € B be defined by b(1) = 1 and b(g) = 0 for all g € G¥. Define
a: G — WG,g — ¢° = [b,g"']g. Then « is monomorphism and (b) holds. It
remains to prove (c). So let g be a non-trivial II-element in G and suppose that
g" = g° for some a € W. Put n = |g| and ¢ = ba~'. Then ¢ € Cg(g). Let I be a
left transversal to (g). Then each element of G' can be uniquely written as ig® for
some i € I and some 0 < k < n. Since ¢? = ¢, c(i) = c(ig®). Let s = Y ier cli). We

conclude that ||c|| = ns. Thus

1= [[pl| = llac|| = [|al[ + |lc|| = 0 + ns = ns

in Z/mZ, a contradiction, as n divides m. O

We now combine the embeddings from the two preceding lemmas into one:

Lemma 4 Let G and F be finite groups and Il a set of primes. Then there exist a
finite group G* with G < G* and normal subgroup V' of G* such that:

(a) V is an abelian II-group and G*/V is simple.

(b) GNV =1.

(c) Let x be a nontrivial II-element in G. Then Cg+(x) has a normal solvable
II-subgroup M, with Cox(x) = M,Cq(x).

(d) G has a subgroup isomorphic to F.

(e) If G is perfect, G* is perfect.

Proof. Let « and Y = W x G be as in Lemma 3. Let X be any finite simple
group containing Y as a subgroup and such that X has a subgroup isomorphic to

F. Let 8 and V be as in Lemma 2. Put G* =V x X. Let z be a II-element in G
and put v = Boa. Let y € Cy(a(z)). Then Wy = Wy for some g € G. By Lemma
3(b), Wa(z) = Wz. From [a(z),y] = 1 we conclude that [z,g] € WNG = 1. Hence
g € Cg(z) and so Cy (a(x)) < WCq(x) = Wa(Cg(x)). By Lemma 3(c) a(z) € 2"V
and so by Lemma 2(c:a), Cg+(B(a(z))) < VCy(a(z)). Thus

Co+(7(z)) < VCOy(a(z)) < VWa(Cg(x)).
By Lemma 2(b), VB(y) = Vy for all y € Y and so Va(Cq(z)) = Vy(Ca(z)).
Thus
Co+(v(z)) < VWr(Ca(z)) = VIWCy(6) (v()).
Put M, = Cvw(v(z)). Then Ca=(y(x)) = MoC,(g)(v(x)). Identifying G with

its image in G* under v we see that all parts of the lemma hold. O



Let G be a locally finite group. Recall that a Kegel-cover for G is a set I of
pairs subgroups of G such that

(i) If (H,M) € K, then H is a finite subgroup of G, M < H and H/M is simple.
(ii) For each finite subgroup F' of G there exists (H, M) € K with F < H and
FNnM.

Otto Kegel proved that every locally finite, simple group has a Kegel cover. The
following well-known Lemma is a partial converse:

Lemma 5 Let G be a locally finite group with a Kegel cover K. Suppose that for
all (H,M) € K, H is perfect and M is solvable. Then G is simple.

Proof. Let L be a non-trivial normal subgroup of G. Let g € G. It suffices to
show that g € L. For this let 1 # [ € L and put F = (l,g). Then F is finite and
so there exists (H,M) € K with ¥ < H and FNM = 1. Sincel € H\ M we
have LN H ¢« M. Since LN H is normal in H and H/M is simple this implies
H=(LNH)M. Thus H/LNH = M/M N L and since M is solvable, H/L N H is
solvable. As H is perfect we conclude that H =LNH. Thusge F<H<L. 0O

Proposition 6 Let Gy be a finite, perfect group, Il a non-empty set of primes and
for each positive integer n let F,, be a finite group. Then there exists a locally, finite
simple group G with Go < G and such that:

(a) If x is a nontrivial I1-element of G, then Ca(x) has a locally solvable, normal

II-subgroup M, of finite index.
(b) If x is a nontrivial II-element in Go, then Cq(x) = M.Cg,(x).
(c) F, is isomorphic to a subgroup of G.

Proof. We will produce finite groups Gn,n € Z", and normal subgroups M, of
G, such that for all n € Z+

1°
(a) Gy is perfect.

(b) M, is abelian and G, /M, is simple.
(¢) Gn-1 < Gy and Gp—1 N M, = 1.

(d) If x is a nontrivial II-element in Gn_1, then there exists a solvable normal
II-subgroup Mp. of Ca, (z) with Ca, () = Mp.Ca, _, ().

(e) Gr has a subgroup isomorphic to F,.



Let ¢ > 0 and suppose we already found Gfi,...,G; such that (a) -(e) hold for
1 < n < i Then G; is perfect and so we can apply Lemma 4 to G = G; and
F=Fi11. Put Giy1 = G*, M; =V and M;, = M,. Then by Lemma 4 we conclude
that (a) to (e) hold for n =4+ 1.

Put G = J_, Gn. Then {(Gn,M,) | n > 1} is a Kegel cover for G and by
Lemma 5, G is simple. Let x € G be a nontrivial [I-element. Then x € G,, for some
n. Put M} = 1 and inductively, M;**" = M* M (4 1).. 1t follows from (1°)(d) and
induction that:

2° Let m > n. Then M* is a solvable, normal II-subgroup of Cg,,(z) and
Ca,,(x) = M;"Ca, (x).

Put M, =UJ;._,, M;". Then by (2°), M, is alocally solvable, normal II-subgroup

of Cg(z) and Cg(z) = M.Cg, (z). Thus the proposition is proved. O

Corollary 7 Let II be a non-empty set of primes. Then there exists a non-linear,
locally finite, simple group G such that

(a) The centralizer of every non-trivial Il-element has a locally solvable I1-subgroup

of finite index.

(b) There exists an element whose centralizer is a locally solvable II-group.
Proof. Fix p € II and put Go = Alt(2p + 1). Let = the product of two disjoint
p-cycle in Sym(2p+1). Then = € Go, Gy is perfect and Cg, (z) = Cp x Cp. In partic-
ular, Cg, () is solvable II-group. Apply Lemma 6 to this Go and with F,, = Sym(n).

The resulting G is not linear and fulfills (a). Moreover, (b) holds for the element
T € Go < G. O

Proof of Theorem A:

Apply Corollary 7(a) with II the set of all primes and Corollary 7(b) with
I = {p}.
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