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Abstract

A locally finite, simple group G is called of 1-type if every Kegel cover for G has
a factor which is an alternating group. In this paper we study the finite subgroups
of locally finite simple groups of 1-type. We also introduce the concept of ”block-
diagonal embeddings” for groups of alternating type. We show that the groups of 1-
type are exactly the groups which have an alternating Kegel cover with block diagonal
embeddings.

1 Introduction

Let G be a group. G is locally finite if every finite subset of G lies in a finite subgroup of G.
G is finitary if there exist a field K and a faithful KG-module V so that V/CV (g) is finite
dimensional for all g ∈ G.

If H is a group and Ω is an H-set, we denote by HΩ the image of H in Sym(Ω). So
HΩ ∼= H/CH(Ω).

Let G be an infinite, locally finite, simple group. Let A be the set of pairs (H,Ω) so
that H is a finite subgroup of G, Ω is an H-set, |Ω| ≥ 7 and HΩ = Alt(Ω).

We say that G is of alternating type if G is non-finitary and if for each finite subgroup
F of G there exists (H,Ω) ∈ A such that F ≤ H and F acts faithfully on Ω.

Let G be of alternating type and F ≤ G finite. We say that F is non-regular if there
exists a finite subgroup F ∗ ≤ G with F ≤ F ∗ and so that for all (H,Ω) ∈ A with F ∗ ≤ H,
F has no regular orbit on Ω.

G is called of non-regular alternating type if G is of alternating type and G has a
non-regular finite subgroup.

Our first theorem (proven in section ??) describes the normal closure of a non-regular
subgroup in (large enough) finite over-groups.

1
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Theorem 1.1 Let G be a locally finite simple group of alternating type and F a finite non-

regular subgroup of G. Then there exists a finite subgroup F ≤ F ∗ ≤ G such that for all

finite F ∗ ≤ L ≤ G

(a) There exist normal subgroups R1, . . . , Rn of 〈FL〉 such that

〈FL〉 = R1R2 . . . Rn

and

Ri
∼= (Ki oΩi

Alt(Ωi))
′

for some finite group Ki and some finite set Ωi.

(b) For i = 1, . . . , n let Bi be the base group of Ri and choose notation so that [Ri, F ] � Bi

if and only if i ≤ m. Then

R1 . . . Rm = R1 ×R2 × . . .×Rm.

2

Recall that a Kegel cover for G is a set K such that

(a) Each K ∈ K is a pair (H,M), where H is a finite subgroup of G and M is maximal
normal subgroup of H.

(b) For each finite subgroup F of G there exists (H,M) ∈ K with F ≤ H and F ∩M = 1.

The groups H/M , (H,M) ∈ K, are called the factors of K. K is alternating if all the
factors of K are alternating groups. If K is an alternating Kegel cover, we view K as a subset
of A. Indeed, if (H,M) ∈ K with H/M ∼= Alt(Ω), then H acts on Ω (with M = CH(Ω))
and (H,Ω) ∈ A. This also reveals that a non-finitary locally finite simple group G is of
alternating type if and only if G has an alternating Kegel cover.

Our next theorem (proven in section ??) shows that non-regular subgroups can be
detected from a given alternating Kegel cover.

Theorem 1.2 Let G be a locally finite, simple group of alternating type and F a finite

subgroup of G. Then F is non-regular if and only if there exists an alternating Kegel cover

K and a non-negative integer t such that for all (H,Ω) ∈ K with F ≤ H, F has at most t
regular orbits on Ω. 2

The preceding theorem, together with [?, Proposition 1.33], shows that the groups
Brian Hartley called Mf-groups of ’visual diagonal alternating type’ [?, Definition 1.31],
are in fact of non-regular alternating type. Hence (see section ?? for the details) some of
the non-absolutely simple, locally finite simple groups constructed in [?, Section 6] are of
non-regular alternating type :
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Theorem 1.3 There exist non-absolutely simple, locally finite, simple groups of non-regular

alternating type. 2

Let G be of alternating type
Let F ≤ G be finite. Let Areg(F ) be the set of all (H,Ω) ∈ A so that F ≤ H and F has

a regular orbit on Ω. We say that F is regular if Areg(F ) is a Kegel cover for G. Note that
the definition of a Kegel cover implies that F is non-regular if and only if F is not regular.
G is of regular alternating type if G is locally regular, that is if every finite subgroup of G
is regular.

We say that G is of ∞-type if G has the following property :

Let S be any class of finite simple groups such that every finite group can be
embedded into a member of S. Then there exists a Kegel cover for G all of
whose factors are isomorphic to a member of S.

We say that G is of 1-type if every Kegel cover for G has a factor which is an alternating
group.

The next theorem (proven in section ??) shows the relationship between groups of 1-,
∞-, regular- and non-regular type.

Theorem 1.4 Let G be a locally finite, simple group of alternating type.

(a) G is of non-regular alternating type if and only if G is of 1-type.

(b) G is of regular alternating type if and only if G is of ∞-type.

2

Let p be a prime and G a non-finitary, locally finite, simple group. G is of p-type if
every Kegel cover for G has a factor which is a classical group in characteristic p. From
Theorem ?? and [?, Theorem A] we have

Theorem 1.5 Let G be a locally finite, simple group. Then exactly one of the following

holds:

1. G is finitary.

2. G is of 1-type.

3. G is of p-type for a unique prime p.

4. G is of ∞-type. 2
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In [?] ”pseudo natural orbits” have been introduced. They are used in [?, Theorem 3.4]
to devide alternating Kegel covers into two classes which Brian Hartley [?, Defintion 2.8]
called RA- and DA- type. Unfortunately these two types are not disjoint. For example
suppose {(Gi,Ωi) | i = 1, 2 . . .} is a Kegel cover so that Gi = Alt(Ωi), Gi ≤ Gi+1 and Gi

acts semiregulary on Ωi, then this Kegel cover is both of RA and DA type. This comes
from the fact that a regular orbit also is a pseudo natural orbit. In this paper we define
”block natural orbits” which avoid this problem:

Let (H,Ω) ∈ A. By [?, Lemma 2.8], there exists a unique minimal (sub)normal supple-
ment R to CH(Ω) in H. Let Λ be an H-set. An orbit Σ for H on Λ is called Ω-essential if
CH(Σ) ≤ CH(Ω). That is if and only if R acts non-trivially on Σ. Σ is called Ω-natural if
Σ is isomorphic to Ω as an H-set. Σ is called Ω-block-natural if there exists an H-invariant
partition ∆ of Σ so that ∆ is Ω-natural and such that NH(D) = CH(D)CH(Ω) for all
D ∈ ∆. In this case, ∆ is just the set of orbits of CH(Ω) on Σ. Indeed, since H is tran-
sitive on Σ, NH(D) is transitive on D. Hence CH(Ω) is transitive on D. We remark that,
since NH(D)/CH(Ω) ∼= Alt(|Ω| − 1) is simple, the condition NH(D) = CH(D)CH(Ω) is
equivalent to CH(D) � CH(Ω). Λ is called Ω-block-diagonal if all the Ω-essential orbits are
Ω-block-natural.

Theorems ?? and ?? reveal that groups of 1-type are loosely speaking the groups of
alternating type with ”block-diagonal” embeddings.

Some of the results in this paper first appeared in [?] and some of the arguments have
been developed in [?].

2 The Set-up

Proposition 2.1 (Hall’s Finitary Lemma) A locally finite simple group G which has a

sectional cover composed of alternating groups and classical groups of unbounded dimension

in which the natural degrees of the element g 6= 1 are bounded, has a faithful representation

as a finitary linear group.

Proof: This is [?, Corollary 3.13]. 2

The reader might consult [?] for the definition of a sectional cover. For our purposes
it is enough to know that every Kegel cover is a sectional cover. If H/M is a classical
group or an alternating group, pdegH/M (g) denotes the natural degree of g in H/M . So if
H/M = Alt(Ω), then pdegH/M (g) = degΩ(g) is the number of elements in Ω not fixed by g;
if H/M is a classical group defined over a K-space V , then pdegH(g) is the minimum of all
dimK V/W , where W is a K-subspace of V on which g acts projectively trivially. If g 6∈ H,
we put pdegH/M (g) = 0.

Corollary 2.2 Let G be a non-finitary, locally finite, simple group and F a finite subgroup

of G. Let K be a Kegel cover for G all of whose factors are alternating or classical groups.
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Let s be a positive integer. Then

K(F, s) := {(H,M) ∈ K | F ≤ H and pdegH/M (f) ≥ s, ∀1 6= f ∈ F}

is a Kegel cover for G.

Proof: For 1 6= f ∈ F , let Kf = {(H,M) ∈ K | pdegH/M (f) ≤ s}. Suppose that Kf is
Kegel cover for G. Then by Hall’s Finitary Lemma applied to the sectional cover Kf , G is
finitary, a contradiction. So Kf is not a Kegel cover for G. Since

K = K(F, s) ∪
⋃

16=f∈F

Kf ,

the Coloring Argument [?, Lemma 3.3] implies that K(F, s) is a Kegel cover for G. 2

Let D be a subset of A, F a finite subgroup of G and s a positive integer. Define

D(F, s) = {(H,Ω) ∈ D | F ≤ H and degΩ(f) ≥ s,∀1 6= f ∈ F}

and
D(F ) = D(F, 1).

Lemma 2.3 Let G be a locally finite, simple group of alternating type, F ≤ G finite and s
a positive integer. Then there exists a finite F ≤ F ∗ ≤ G so that A(F ∗) ⊆ A(F, s).

Proof: Let l be the function from [?, Lemma 2.5]. By ??, we can choose (F ∗,Λ) ∈
A(F, l(s)). Let (H,Ω) ∈ A(F ∗). Then by [?, Lemma 2.5], degΩ(f) ≥ s for all elements f of
prime order in F . Since every non-trivial cyclic group contains an element of prime order,
degΩ(f) ≥ s for all 1 6= f ∈ F . 2

For the remainder of the paper, let G be locally finite, simple group of
alternating type.

The following result forms the technical basis for the investigations in this paper.

Lemma 2.4 There exists an increasing function freg : Z+ → Z+ with freg(n) ≥ 9n2 and

so that the following statement holds :

Let F be a finite subgroup of G and (H,Ω) ∈ A(F, freg(|F |)). Suppose that H is transi-

tive and Ω-essential on a set Λ. Then one of the following holds :

1. F has a regular orbit on Λ.

2. There exist 1 ≤ t ≤ |F | − 2 and an H-invariant partition ∆ of Λ so that the action of

H on ∆ is isomorphic to the action of H on the subsets of Ω of size t.
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Proof: See [?, Lemma 2.14]. 2

For A ∈ A, we define HA and ΩA by A = (HA,ΩA). Let D ⊆ A. We say that D is
Kegel cover for G if {(H,CH(Ω)) | (H,Ω) ∈ D} is Kegel cover for G.

Let D ⊆ A be a Kegel cover for G. Let F be a finite subgroup of G. Put

D∗(F ) = D(F, freg(|F |).

We say that F is D-regular if there exists D ∈ D∗(F ) so that F has a regular orbit on
ΩD. In other words, F is D-regular if and only if D∗(F ) ∩ Areg(F ) 6= ∅. We will prove in
Theorem ?? that F is D-regular if and only if F is regular.

3 Block-Diagonality in Groups of Non-Regular Alternating

Type

We continue to use the notation introduced in the previuos section. In particular, G is a
locally finite, simple group of alternating type.

Proposition 3.1 Let F be a finite subgroup of G, (H,Ω) ∈ A∗(F ) ∩ Areg(F ) and Σ an

H-set. Then F has a regular orbit on each Ω-essential orbit for H on Σ. In particular,

A(H) ⊆ Areg(F ).

Proof: Let Λ be an Ω-essential orbit for H on Σ. We need to show that F has a regular
orbit on Λ. So we may assume that (2) in ?? holds. Since F has a regular orbit on Ω, there
exists ω ∈ Ω with CF (ω) = 1. Since |Ω| ≥ freg(|F |) ≥ 9|F |2 ≥ 2|F |, there exists a subset U
of Ω of size t with U ∩ ωF = {ω}. Then NF (U) ≤ CF (ω) = 1 and F has a regular orbit on
∆. Hence F has a regular orbit on Λ. 2

Proposition 3.2 Let F be a finite subgroup of G, (H,Ω) ∈ A∗(F ) and A ∈ A with H ≤
HA. Suppose that Λ is an Ω-essential orbit for H on ΩA and ω ∈ Ω such that

(i) F has no regular orbit on Λ.

(ii) There does not exist λ ∈ Λ with CF (λ) � CF (ω).

Then

(a) There exists an H-invariant partition ∆ of Λ so that ∆ ∼= Ω as an H-set.

(b) If ω̌ is the element in ∆ corresponding to ω, then CF (ω) = NF (ω̌) = CF (ω̌) = CF (λ)
for all λ ∈ ω̌.
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Proof: Note that all the assumptions of ?? are fullfilled. By (i), ??(1) does not hold. So
we can choose t and ∆ as in ??(2).

Let 1 6= f ∈ CF (ω). Suppose that t 6= 1. Since degΩ(f) ≥ 9|F |2 ≥ 2|F |, there exists
ρ ∈ Ω with ρ 6∈ ωF and ρ 6= ρf . Since t ≤ |F | − 2, there exists a subset U of Ω of size
t with ρ ∈ U, ρf 6∈ U and U ∩ ωF = {ω}. Then NF (U) ≤ CF (ω) and f 6∈ NG(U). Thus
NF (U) � CF (ω).

Let δ ∈ ∆ so that δ corresponds to U . Note that δ is a subset of Λ and pick λ ∈ δ. Then

CF (λ) ≤ NF (δ) = NF (U) � CF (ω),

a contradiction to the assumptions.
Thus t = 1 and (a) holds. For (b), pick λ ∈ ω̌ and note that

CF (λ) ≤ NF (ω̌) = CF (ω).

This implies that CF (λ) = CF (ω) = NF (ω̌) = CF (ω̌). So (b) holds. 2

Theorem 3.3 Let G be a locally finite, simple group of alternating type and F a finite

subgroup of G. Then the following are equivalent :

1. F is not A-regular.

2. F is not D-regular for some alternating Kegel cover D for G.

3. There exists an alternating Kegel cover D for G and a non-negative integer t such

that for all A ∈ D(F ), F has at most t regular orbits on ΩA.

4. F is non-regular.

Proof: Clearly (1) implies (2).
Suppose (2) holds. By ??, D∗(F ) is a Kegel cover for G. Hence (3) holds with t = 0

and D∗(F ) in place of D.
Suppose (3) holds but (4) does not. Then F is regular and so Areg(F ) is a Kegel cover

for G. By ??, there exists (H,Ω) ∈ Areg(F ) ∩ A∗(F ). Let A ∈ D(H). By assumption, F
has at most t regular orbits on ΩA. Hence by ??, H has at most t Ω-essential orbits on ΩA.
Let R be the minimal normal supplement to CH(Ω) in H. As each Ω-essential H-orbit has
size at most |H| and since R acts trivially on the non-Ω-essential orbits, degΩA

(x) ≤ t|H|
for all 1 6= x ∈ R. Hence by Hall’s Finitary Lemma ??, G is finitary, a contradiction. So
(3) implies (4).

Suppose finally that (4) holds but (1) does not. Then there exists (H,Ω) ∈ Areg(F ) ∩
A∗(F ). By ??, A(H) ⊆ Areg(F ). As A(H) is a Kegel cover for G, so is Areg(F ). So F is
regular, a contradiction. 2

Let F be a finite, non-regular subgroup of G. Let MF be the set of all E ≤ F so that
E = CF (ω) for some (H,Ω) ∈ A∗(F ) and ω ∈ Ω. Note that E 6= 1 for all E ∈ MF . Let
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M∗
F be the set of minimal elements of MF . We say that ω is F -extreme if CF (ω) ∈ M∗

F .
Let BF be the set of (H,Ω) ∈ A∗(F ) so that there exists an F -extreme ω ∈ Ω. Let B be
the union of the BF ’s as F runs through the non-regular finite subgroups of G.

Theorem 3.4 Let G be a locally finite, simple group of alternating type and F a finite

non-regular subgroup of G. Then the following holds :

(a) Let (H,Ω) ∈ BF and A ∈ A∗(F ) with H ≤ HA and CH(ΩA) ≤ CH(Ω). Then A ∈ BF

and H is Ω-block-diagonal on ΩA.

(b) Let (H,Ω) ∈ BF . Then A(H) ∩ A∗(F ) ⊆ BF .

(c) Let A,B ∈ BF with HA ≤ HB. Then HA is ΩA-block-diagonal on ΩB.

(d) Both BF and B are Kegel covers for G.

Proof: (a) Since CH(ΩA) ≤ CH(Ω), there exists an Ω-essential orbit Λ for H on ΩA. Let
Λ be any Ω-essential orbit for H on ΩA. Let ω ∈ Ω be F -extreme. Let ∆ be the H-invariant
partition of Λ, given by ??(a). Let ω̌ be the element of ∆, corresponding to ω and λ ∈ ω̌.
By ??(b),

CF (ω) = CF (ω̌) = CF (λ).

In particular, CF (λ) = CF (ω) ∈ M∗
F , λ is F -extreme and A ∈ BF .

Since CF (ω̌) = CF (ω) 6= 1 and F is faithful on Ω, CF (ω̌) � CH(Ω). Hence CH(ω̌) �
CH(Ω) and Λ is Ω-block-natural. So ΩA is Ω-block-diagonal.

(b) Follows from (a).
(c) If CHA

(ΩB) � CHA
(ΩA), HA has no ΩA-essential orbits on ΩB. So (c) holds in this

case. If CHA
(ΩB) ≤ CHA

(ΩA), we can apply (a) and again (c) holds.
(d) Let (H,Ω) ∈ BF . By ??, A(H) ∩ A∗(F ) is a Kegel cover for G. By (b), A(H) ∩

A∗(F ) ⊆ BF ⊆ B. So (d) holds. 2

4 Groups Acting Block-Diagonally on a Set

Let (H,Ω) ∈ A and Σ ⊆ Ω. If |Ω \ Σ| ≥ 5, let RΣ be the minimal normal supplement to
CH(Ω) in CH(Σ); otherwise put RΣ = 1. Put R = R∅.

Suppose that H is Ω-block-diagonal on a set Λ. Let Λ∗ be the union of the Ω-essential
orbits for H on Λ. As every orbit for H on Λ∗ is Ω-block-natural, there exists an H-
invariant partition ∆ of Λ∗ so that Ω and ∆ are isomorphic as H-sets. Note that this
isomorphism is unique. Let Σ̃ denote the image of Σ in ∆ under this H-isomorphism. Each
D ∈ Σ̃ is a subset of Λ∗. Let Σ̂ =

⋃
Σ̃ be the union of these subsets. So Σ̂ ⊆ Λ∗ and

NH(Σ̂) = NH(Σ̃) = NH(Σ). Define HΣ̂ = CH(Σ̂) and HΣ = CH(Σ). Then HΣ̂ ≤ HΣ. Note
that CH(Ω) = HΩ ≤ HΣ but HΩ 6≤ HΣ̂, unless HΩ acts trivially on Λ∗ or Σ = ∅.

Lemma 4.1 Let (H,Ω) ∈ A. Suppose that H is Ω-block-diagonal on a set Λ. Let Σ ⊆ Ω.
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(a) If |Ω \ Σ| ≥ 5, then

HΣ = HΣ̂HΩ = (HΣ̂ ∩R)HΩ and RΣ ≤ HΣ̂ ∩R.

(b) Both
⋂

ω∈ΩRω and R ∩HΩ̂ act trivially on Λ.

(c) Let Σ1,Σ2 ⊆ Ω with Ω = Σ1 ∪ Σ2. If H is faithful on Λ, then

[RΣ1
, RΣ2

] = [HΣ̂1
∩R,HΣ̂2

∩R] = [HΣ̂1
, HΣ̂2

] ∩R = 1.

Proof: (a) Let ω ∈ Ω. Let Ξ be an orbit for H on Λ such that R acts non-trivial on Ξ.
Then Ξ is Ω-essential for H and as Λ is Ω-block-diagonal, Ξ is Ω-block-natural. Hence

Hω = CH(Ξ ∩ ω̂)HΩ.

Thus Rω ≤ CH(Ξ ∩ ω̂). As Ξ was an arbitrary Ω-essential orbit for H on Λ, Rω ≤ Hω̂.
Thus

Hω = RωHΩ = Hω̂HΩ.

Let ω ∈ Σ. We compute

HΣ = Hω ∩HΣ = (Hω̂HΩ) ∩HΣ = (Hω̂ ∩HΣ)HΩ.

By minimality of RΣ, RΣ ≤ Hω̂∩HΣ ≤ Hω̂. As this is true for all ω ∈ Σ andHΣ̂ =
⋂

ω∈ΣHω̂,
RΣ ≤ HΣ̂. As HΣ = RΣHΩ, HΣ = HΣ̂HΩ. Finally, H = RHΩ implies HΣ = (R ∩HΣ)HΩ

and so RΣ ≤ R ∩HΣ. Hence RΣ ≤ HΣ̂ ∩R and HΣ = RΣHΩ = (HΣ̂ ∩R)HΩ. This proves
(a).

(b) Note that Ω̂ = Λ∗ and so HΩ̂ acts trivially on Λ∗. Since R acts trivially on each of
the non-Ω-essential orbits for H on Λ, R acts trivially on Λ \ Λ∗. So HΩ̂ ∩ R acts trivially
on Λ. By (a),

⋂

ω∈ΩRω ≤
⋂

ω∈Ω(Hω̂ ∩R) = HΩ̂ ∩R. So (b) holds.
(c) Note that HΣ̂1

≤ HΣ1
≤ HΩ\Σ2

≤ NH(Σ2) ≤ NH(HΣ̂2
). Similarly, HΣ̂2

≤ NH(HΣ̂1
).

So
[HΣ̂1

, HΣ̂2
] ≤ HΣ̂1

∩HΣ̂2
≤ H

Σ̂1∪Σ2
= HΩ̂.

Using (a) we get that

[RΣ1
, RΣ2

] ≤ [HΣ̂1
∩R,HΣ̂2

∩R] ≤ [HΣ̂1
, HΣ̂2

] ∩R ≤ HΩ̂ ∩R.

Since H is faithful on Λ, (b) implies HΩ̂ ∩R = 1. Thus (c) holds. 2

Theorem 4.2 Let G be a locally finite, simple group of alternating type and D an alter-

nating Kegel cover for G. Suppose that there exists (H,Ω) ∈ A such that for all A ∈ D(H),
H is Ω-block-diagonal on ΩA. Then H is non-regular and G is of non-regular alternating

type.
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Proof: By ??, D∗(H) is a Kegel cover for G. By ??(2), it suffices to show that for all
A ∈ D∗(H), H does not have a regular orbit on ΩA . Pick A ∈ D∗(H) and λ ∈ ΩA. Put
Λ = λH . Suppose that Λ is regular. If Λ is not Ω-essential, then 1 6= R ≤ CH(λ), a
contradiction. Hence Λ is Ω-essential and so λ ∈ ω̂ for some ω ∈ Ω. By Lemma ??(a),
1 6= Rω ≤ Hω̂ ≤ CH(λ), a contradiction. So Λ is not regular. 2

Theorem 4.3 Let (H,Ω) ∈ A and suppose that H is faithful and Ω-block-diagonal on

some set. Let R be the minimal normal supplement to HΩ in H. Let ω ∈ Ω and put

K = CR(ω)/Rω. Then

R ∼= (K oΩ Alt(Ω))′.

Proof: To simplify notation, we assume that Ω = {1, . . . , n} and ω = 1. For i ∈ Ω, pick
ri ∈ R with 1ri = i. Let π : R → Alt(Ω) be the homomorphism arising from the action of
R on Ω. Note that rigr

−1
ig ∈ CR(1) for all g ∈ R and all i ∈ Ω. Hence we obtain a map

φ : R→ K oΩ Alt(Ω) : g → ((rigr
−1
ig R1)i∈Ω, π(g)).

We will first show that φ is a homomorphism. Indeed let g, h ∈ R. Then

φ(g)φ(h) = ((rigr
−1
ig R1)i∈Ω, π(g))((rihr

−1
ih
R1)i∈Ω, π(h))

= ((rigr
−1
ig righr

−1
ighR1)i∈Ω, π(g)π(h))

= ((righr
−1
ighR1)i∈Ω, π(gh))

= φ(gh).

If φ(g) = 1, then π(g) = 1 and so

φ(g) = ((rigr
−1
i R1)i∈Ω, 1).

Thus rigr
−1
i ∈ R1 and g ∈ Rri

1 = Ri for all i ∈ Ω. By ??(b), g = 1. So φ is one-to-one.
Put D = φ(R) and S = K oΩ Alt(Ω). It remains to show that D = S′. For i ∈ Ω let

Di = φ(Ri). Also let B be the base group of S. Then B =
⊕n

i=1Bi with Bi
∼= K for

all i ∈ Ω. Note that B ∩ D = φ(CR(Ω)). Since CH(1) = R1CH(Ω) and R1 ≤ R we have
CR(1) = R1CR(Ω). As K = CR(1)/R1, we conclude that B ∩ D projects onto Bi for all
i ∈ Ω. For i ∈ Ω, put Qi = Bi ∩ D. As B ∩ D normalizes Qi, Qi � Bi for all i ∈ Ω. Let
Q =

⊕

i∈ΩQi. Then Q�BD = S.
Put E = 〈B ∩Di | i ∈ Ω〉 and D∗ = 〈Di | i ∈ Ω〉. Note that both E and D∗ are normal

in D and D = D∗(B ∩D). By the definition of R, R has no proper normal supplement to
CR(Ω). Thus D = D∗.

Let i ∈ Ω. Then [CR(Ω), Ri] ≤ CR(Ω) ∩ Ri and so [B ∩D,Di] ≤ B ∩Di. As D = D∗,
we get [B ∩ D,D] ≤ E and D/E is a perfect central extension of D/B ∩ D ∼= Alt(Ω).
Note that D1/D1 ∩ B ∼= Alt(Ω \ {1}). Since D1 6≤ E and D1 ∩ E = D1 ∩ B we conclude
D1E/E ∼= D1/D1 ∩ E = D1/D1 ∩ B ∼= Alt(Ω \ {1}). From the Schur multiplier of Alt(Ω)
[?] and since |Ω| ≥ 7 we see that no non-trivial,perfect, central extension of Alt(Ω) has a
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subgroup isomorphic to Alt(Ω \ {1}). Thus B ∩D = E. Let i 6= j ∈ Ω. As [B ∩D,Di] ≤
B ∩ Di, Di normalizes (B ∩ Dj)(B ∩ Di). Since Di acts transitively on Ω \ {i}, we get
B ∩Dk ≤ (B ∩Dj)(B ∩Di) for all k ∈ Ω. Thus

E = (B ∩Di)(B ∩Dj), ∀i 6= j ∈ Ω.

Put
X = [B ∩D,B ∩D2, . . . , B ∩Dn].

Since B ∩Dj projects trivially onto Bj for all 2 ≤ j ≤ n, X ≤ B1 and so X ≤ Q1. Since
B ∩D = E = (B ∩Dj)(B ∩D1) for all 2 ≤ j ≤ n,

X(B ∩D1) = [B ∩D, . . . , B ∩D]
︸ ︷︷ ︸

n terms

(B ∩D1).

Projecting this equation on B1 and using that the projection of B ∩D1 is trivial, we get

[B1, . . . , B1]
︸ ︷︷ ︸

n terms

= X ≤ Q1.

So B1/Q1 is nilpotent. Hence also B/Q is nilpotent.
Suppose for the moment that B is abelian. Let B0 = {b ∈ B |

∑
bi = 0}. So [B,S] =

[B,D] = B0 and S′ = B0 Alt(Ω). As D is perfect, D ≤ S′ and so E = B ∩D ≤ B0.
Put L = 〈ei−ej | e ∈ E, 1 ≤ i < j ≤ n〉 ≤ K and Y = {b ∈ B | bi ∈ L}. Note that Y ∩B0

is generated by elements of the form (0, . . . , 0, ei − ej , 0, . . . , 0, ej − ei, 0, . . . , 0) where the
non-zero entries are in arbitrary positions and (e1, . . . , en) ∈ E. Let e = (e1, . . . , en) ∈ E.
Pick s1, s2 ∈ R with π(s1) = (1, 2, 3) and π(s2) = (1, 4)(5, 6). Then

[e, φ(s1), φ(s2)] = [(e3 − e1, e1 − e2, e2 − e3, 0, . . . , 0), φ(s2)] = (e1 − e3, 0, 0, e3 − e1, 0, . . . , 0).

We conclude that Y ∩B0 ≤ E. Pick e = (e1, . . . , en) ∈ B ∩Di ≤ E. Since B ∩Di projects
trivially on Bi, ei = 0. Hence ej = ej−ei ∈ L for all j ∈ Ω and e ∈ Y . So B∩Di ≤ Y and the
definition of E implies E ≤ Y . Thus Y ∩B0 ≤ E ≤ Y ∩B0 and E = Y ∩B0. As E = B∩D
projects onto B1, we get that K = L, B = Y and E = B0. So D ≤ S′ ≤ B0D = D and
S′ = D.

Thus the theorem holds if B is abelian. More importantly, note that all the above
arguments are valid in S/B′ and so S′ = DB′. Hence B0 = EB′ where B0 = S′ ∩ B. For
j = 2, 3, pick dj ∈ D with 1dj = j. Then for j = 2, 3, [B1, dj ] ≤ B1Bj and [B1, dj ] projects
onto B1. Thus

[[B1, d2], [B1, d3]] = [B1, B1].

Hence B′
0 = B′ and B0 = EB′

0. As B/Q is nilpotent and Q ≤ E ≤ B0, B
′
0Q/Q ≤ Φ(B0/Q).

So B0 = EQ = E and S′ = DB′ = DB′
0 = DE′ = D. 2

The preceding theorem is false for |Ω| = 6 and thus our assumption that |Ω| ≥ 7 for
all (H,Ω) ∈ A. Indeed, let 3.Alt(6) be the 3-cover of Alt(6). Then 3.Alt(6) has Alt(5) as
a subgroup. Also, 3.Alt(6) acts faithfully and block-natural on the cosets of Alt(5). But
3.Alt(6) is not the derived group of a wreath-product.
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5 Groups of 1-Type and ∞-Type

The main goal of this section is to prove theorems ?? and ??. For this, we first prove a
couple of technical lemmas.

Lemma 5.1 Let H be a group, K a field and 0 ≤ X ≤ Y a chain of KH-modules. Let P
be its stabilizer in GLK(Y ). If H acts projectively non-trivially on Y/X, then

X = [Y, [P,H]].

Proof: Let Z = [Y, [P,H]] and suppose that Z 6= X. Then Z ≤ X. Replacing 0 ≤ X ≤ Y
by 0 ≤ X/Z ≤ Y/Z, we may assume that Z = 0. So [Y, [P,H]] = 0 and [P,H] = 1. It is
well-known and easily verified that CGLK(Y )(P ) ≤ Z(GLK(Y ))P . But this implies that H
acts as scalars on Y/X, a contradiction. 2

Lemma 5.2 Let T be a finite group, n ∈ Z+ and T1, T2, . . . Tn non-trivial subgroups of T .

Suppose that T ≤ PGLK(V ) and that pdegV (t) ≥ (n+ 1)|T |2 for all 1 6= t ∈ T . Then there

exists a T -invariant unipotent subgroup Q ≤ PGLK(V ) with T ∩Q = 1 and

[[Q,T1], [Q,T2]], . . . , [Q,Tn]] 6= 1.

Proof: For 1 6= t ∈ T , let Ut be a one-dimensional subspace of V such that (Ut)
t 6= Ut.

Put V1 = 〈UT
t | 1 6= t ∈ T 〉. Then dimK V1 ≤ |T |2, T acts projectively faithfully on V1 and

pdegV/V1
(t) ≥ n|T |2 for all 1 6= t ∈ T .

An easy induction argument now shows that there exists an ascending chain

0 = V0 ≤ V1 ≤ V2 ≤ Vn ≤ Vn+1 ≤ V

of T -submodules so that T acts (projectively) faithfully on Vi+1/Vi and dimK Vi+1/Vi ≤ |T |2

for all 0 ≤ i ≤ n. Let P ≤ GLK(V ) be the stabilizer of this chain and Q the image in
PGLK(V ) of P . For i = 1, . . . , n, let Si be the pre-image in GLK(V ) of Ti and Pi = [P, Si].
Put A0 = CP (V/V1), A1 = [A0, S1] ≤ P1 and inductively Ai = [Ai−1, Pi] for i = 2, . . . , n.

We will prove by induction that

(∗) [Vi, Ai] = 0 and [V,Ai] = [Vi+1, Ai] = V1

for all 1 ≤ i ≤ n. Note first that Ai ≤ A0 for all i and so [Vi+1, Ai] ≤ [V,Ai] ≤ [V,A0] ≤ V1.
By ?? applied to 0 ≤ V1 ≤ V2 and H = S1, [V2, [A0, S1]] = V1. Thus (*) holds for i = 1.

Suppose that (∗) holds for i− 1. Then

[Vi, Pi, Ai−1] ≤ [Vi−1, Ai−1] = 0

and
[Vi, Ai−1, Pi] = [V1, Pi] = 0.
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Thus by the Three Subgroup Lemma,

[Vi, [Ai−1, Pi]] = 0.

So the first statement in (*) holds.
By ?? applied to 0 ≤ Vi/Vi−1 ≤ Vi+1/Vi−1 and H = Si,

[Vi+1, [P, Si]] + Vi−1 = Vi.

Taking the commutator with Ai−1 on both sides (and using the induction assumption), we
conclude

[Vi+1, Pi, Ai−1] = V1.

Also
[Vi+1, Ai−1, Pi] ≤ [V,A0, Pi] ≤ [V1, Pi] = 0.

Thus by the Three Subgroup Lemma,

[Vi+1, [Ai−1, Pi]] = V1.

Hence (*) holds for all 1 ≤ i ≤ n. In particular, [V,An] = V1 and An 6≤ Z(GLK(V )). Note
that

An ≤ [[P, S1], [P, S2], . . . , [P, Sn]]

and the lemma follows by considering the image of the last equation in PGLK(V ). 2

Theorem 5.3 Let G be a locally finite, simple group of alternating type and F a finite

subgroup of G. Then the following are equivalent :

1. F is regular.

2. Let L be a finite group and φ : F → L an embedding. Then there exists a finite

subgroup E of G, containing F , and an epimorphism ξ : E → L with φ = ξ |F .

Proof: Suppose (1) holds. Let φ : F → L be as in (2). By ??(3), there exists (H,Ω) ∈
A(F ) so that F has at least |L|/|F | regular orbits on Ω and |Ω| ≥ |L| + 2. In particular,
there exists an F -invariant subset Λ of Ω of size |L| so that all the orbits of F on Λ are
regular. Let ρ : L → Sym(Λ) be an embedding such that ρ(L) acts regularly on Λ. Let
ψ : NH(Λ) → Sym(Λ) be the homomorphism arising from the action of NH(Λ) on Λ. As
both ψ(F ) and ρφ(F ) act semi-regularly on Λ, there exists an inner automorphism τ of
Sym(Λ) with ψ |F = τρφ. Thus

ψ(F ) = τρφ(F ) ≤ τρ(L) ≤ Sym(Λ).

As |Ω| ≥ |L| + 2, |Ω \ Λ| ≥ 2. Since HΩ = Alt(Ω), ψ(NH(Λ)) = Sym(Λ). Let E =
ψ−1(τ(ρ(L))). Since ψ(F ) ≤ τρ(L), F ≤ E. Since ρ : L → Sym(Λ) is one-to-one, there
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exists a partial inverse ρ∗ : ρ(L) → L. Put ξ = ρ∗τ−1ψ|E : E → L. As ψ, τ−1 and ρ∗ are
onto, ξ(E) = L and

ξ |F = ρ∗τ−1ψ |F = ρ∗τ−1τρφ = φ.

So (1) implies (2).
Suppose that (2) holds. Let s ≥ freg(|F |) with s even, Ω a set with |Ω| = s|F | and

L = Alt(Ω). Let φ : F → L be an embedding so that φ(F ) is semi-regular on Ω. Let E and
ξ be given by (2). Then (E,Ω) ∈ A∗(F ) and all the orbits for F on Ω are regular. Hence
F is A-regular and so by ?? F is regular. 2

We remark that the preceding theorem remains true if in part 2. ”φ : F → L an
embedding” is replaced by ”φ : F → L a homomorphism. ” Indeed suppose that α : F → L
is a homomorphism. Define φ : F → F × L, f → (f, α(f)) and π : F × L → L, (f, l) → l.
Then φ is one-to-one and α = πφ. So if ξ : E → F×L is onto with ξ |F = φ, then πξ : E → L
is onto with (πξ) |F = α.

Proof of Theorem ??:

Suppose first that G is of non-regular type. Let F be a finite, non-regular subgroup of
G. Assume for a contradiction that G is not of 1-type. Then there exists a Kegel cover
K for G, none of whose factors are alternating groups. By [?, Proposition 3.2(b)], we may
assume that all the factors of K are of the form PSLK(V ) for some finite field K and a
K-vectorspace V . Let (T,Σ) ∈ BF with |Σ| ≥ 10. By ??, we can choose (L,M) ∈ K(T ) so
that pdegL/M (t) ≥ 9|T |2 for all 1 6= t ∈ T . For i = 1, 2 pick Σi ⊆ Σ so that Σ = Σ1∪Σ2 and
|Σ \ Σi| ≥ 5. For i = 1, 2, let T ∗

i be the minimal normal supplement to CT (Σ) in CT (Σi).
By ??, there exists a T -invariant unipotent subgroup Q/M of L/M so that T ∩Q = 1 and

[[Q/M,T ∗
1 ], [Q/M,T ∗

2 ]] 6= 1.

Note that Q/M is a p-group for some prime p. Put H = TQ. Then Σ is an H-set with
Q acting trivially on Σ and (H,Σ) ∈ BF . Pick A ∈ BF (H). By ??(c), both T and H are
faithful and Σ-block-diagonal on ΩA. We use the notation introduced just before Lemma
??. Let R be the minimal normal supplement to HΣ in H. Note that HΣ = QTΣ. By
??(a),

HΣi
= (HΣ̂i

∩R)HΣ = (HΣ̂i
∩R)QTΣ.

Hence TΣi
= (((HΣ̂i

∩ R)Q) ∩ T )TΣ and the minimality of T ∗
i implies T ∗

i ≤ (HΣ̂i
∩ R)Q.

Since T ∗
i is perfect and (HΣ̂i

∩R)Q/(HΣ̂i
∩R)M is a p-group, T ∗

i ≤ (HΣ̂i
∩R)M . Thus

[[Q,T ∗
1 ], [Q,T ∗

2 ]] ≤ ([HΣ̂1
, HΣ̂2

] ∩R)M.

By ??(c), [[Q,T ∗
1 ], [Q,T ∗

2 ]] ≤M , a contradiction.
So non-regular type implies 1-type.
Suppose next that G is locally regular. We will show that G is of ∞-type. So let S be a

class of finite simple groups such that every finite group is embedded into a member of S.
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Let F be a finite subgroup of G. Pick L ∈ S such that F is embedded in L. By ??, there
exist a finite subgroup E of G and M � E such that F ≤ E, F ∩M = 1 and E/M ∼= L.
Put KF = (E,M). Then {KF | F is a finite subgroup of G} is a Kegel cover for G all of
whose factors are isomorphic to members of S.

So we proved that locally regular implies ∞-type.
Suppose next that G is of 1-type. Then clearly G is not of ∞-type and so also not

locally regular. Thus G is non-regular.
Suppose finally that G is of ∞-type. Then G is clearly not of 1-type. As non-regular

implies 1-type, we conclude that G is locally regular. 2

Proposition 5.4 Let G be a locally finite, simple group of alternating type and F a non-

regular subgroup. Then there exists a finite F ≤ F̃ ≤ G such that for all finite F̃ ≤ H ≤ G
and all maximal normal subgroups M of H with M ∩ F̃ = 1, there exists a finite set Ω such

that

(a) H/M ∼= Alt(Ω).

(b) F has no regular orbit on Ω.

(c) (H,Ω) ∈ BF

Proof: Let U be the set of pairs (H,M) where H is a finite subgroup of G, M is a maximal
normal subgroup of H and H/M is not isomorphic to an alternating group. By ??(a), G
is of 1-type and so U is not a Kegel cover for G. Hence there exists a finite subgroup
F1 with U(F1) = ∅. Let s = freg(|F |). By ??, there exists a finite F ≤ F2 ≤ G with
A(F2) ⊆ A(F, s) = A∗(F ). Since BF is a Kegel cover for G, there exists (F̃ ,Σ) ∈ BF with
〈F1, F2〉 ≤ F̃ .

Let H and M be as in the proposition. Since U(F1) = ∅, H/M ∼= Alt(Ω) for some set Ω.
Thus (H,M) ∈ A(F̃ ). Since F2 ≤ F̃ , (H,Ω) ∈ A∗(F ). In particular, since F is non-regular,
F has no regular orbit on Ω. Finally, (c) follows from (F̃ ,Σ) ∈ BF and ??(b). 2

Proof Of Theorem ?? :

Let F be a non-regular finite subgroup of G. Let F̃ be given by ??. For 1 6= d ∈ G, we
have that G = 〈dG〉 = 〈d〈d

G〉〉 and so we can choose a finite F̃ ≤ F ∗ ≤ G with

F̃ ≤ 〈d〈d
F∗

〉〉

for all 1 6= d ∈ F̃ .
Let F ∗ ≤ L ≤ G be finite and put H = 〈FL〉. Then F̃ ≤ H. Let {M1, . . . ,Mn} be the

set of all maximal normal subgroups of H. Pick i ∈ {1, . . . , n}. Since 〈FL〉 6≤Mi, F 6≤M li
i

for some li ∈ L. Suppose that 1 6= d ∈ F̃ ∩M li
i . Then

F ≤ F̃ ≤ 〈d〈d
F∗

〉〉 ≤ 〈dH〉 ≤M li
i ,
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a contradiction. So F̃ ∩M li
i = 1. Thus by ??(a)(c), H/M li

i
∼= Alt(Ωi) for some set Ωi and

(H,Ωi) ∈ BF . Note that M li
i = CH(Ωi). Let Ri be the minimal normal supplement to Mi

in H. By ??(d), there exists A ∈ BF (H). By ??(c), H is faithful and Ωi-block-diagonal on
ΩA. By ??, Rli

i
∼= Ri

∼= (Ki oΩi
Alt(Ωi))

′ for some finite group Ki. As R1 . . . Rn lies in none
of the Mi’s, H = R1R2 . . . Rn. Thus (a) holds.

Let R = R1 and T = R2 . . . Rm. To show (b), it suffices to show that R ∩ T = 1. Note
that Bi = Ri ∩Mi and so [Ri, F ] 6≤ Bi just means F 6≤ Mi. Thus we can choose li = 1
for all 1 ≤ i ≤ m. Suppose that R ∩ T 6= 1. Pick an orbit Λ for H on ΩA so that R ∩ T
acts non-trivially on Λ. Then R1 and at least one Rj with 2 ≤ j ≤ m act non-trivially
on Λ, say j = 2. As ΩA is Ωi-block-diagonal, there exist H-invariant partitions ∆i of Λ
so that ∆i is isomorphic to Ωi as an H-set for i = 1, 2. Let ω ∈ Ω1 be F -extreme and U1

the corresponding element in ∆1. For all λ ∈ U1, CF (λ) ≤ NF (U1) = CF (ω). Since ω is
F -extreme, CF (λ) = CF (ω) for all λ ∈ U1 and so CF (ω) acts trivially on U1. Let U2 ∈ ∆2.

Suppose that U2 ∩ U1 = ∅. As M1 6= M2, H = M1M2 and so M1 acts transitively on
∆2. So we conclude U ∩ U1 = ∅ for all U ∈ ∆2, a contradiction. Hence U2 ∩ U1 6= ∅ and so
CF (ω) fixes an element in U2. Thus CF (ω) normalizes U2. As U2 was arbitrary, CF (ω) acts
trivially on ∆2 and so on Ω2. Thus 1 6= CF (ω) ≤M2, a contradiction to F ∩M2 = 1. 2

6 Non-Absolutely Simple Groups of 1-Type

In this section we present examples of non-absolutely simple, locally finite, simple groups of
non-regular alternating type. The existence of such groups also follows from [?, 1.33] and
Theorem ??. Our class of examples is slightly larger than the one in [?] and also shows that
one does not have any control over the quotient L/〈FL〉 in Theorem ??. Since knowledge
of most of details of [?, Section 6] is required, they are repeated here.

Lemma 6.1 Let H be a perfect, finite group and Ω a faithful, finite H-set. Then there exist

a perfect, finite group H∗ containing H, a function X which associates to each subgroup A
of H a subgroup X(A) of H∗, and a faithful, finite H∗-set Ω∗ such that

(a) H ≤ 〈hH∗

〉 for all 1 6= h ∈ H.

(b) X(A) ∩H = A for all A ≤ H.

(c) If A ≤ B ≤ H, then A�B if and only if X(A) �X(B).

(d) X(H) � 〈X(H)H∗

〉 but X(H) is not a normal subgroup of H∗.

(e) Every non-trivial orbit for H on Ω∗ is isomorphic to an orbit for H on Ω.

(f) There exists a finite X(H)-set Λ so that

(fa) X(H)Λ = Alt(Λ)

(fb) H acts faithfully on Λ.
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(fc) Every non-trivial orbit for H on Λ is isomorphic to an orbit for H on Ω.

Proof: Let I be a faithful, finite H-set so that every non-trivial orbit for H on I is
isomorphic to an orbit for H on Ω. Let S = Alt(I) and α : H → S be the monomorphism
associated to the action of H on I.

Let T be any non trivial, finite, perfect group and J a faithful, finite T -set such that T
acts transitively on J . We assume that 0 ∈ I and {0, 1} ⊆ J . Let K = HoIS. For i ∈ I, let
βi : H → K be the canonical isomorphism between H and the i-th component of the base
group of K and let β be the canonical monomorphism from S to K. Let H∗ = KoJT and for
j ∈ J , let γj : K → H∗ be the canonical isomorphism between K and the j-th component
of the base group of H∗. Define ρ : H → H∗ by ρ(h) = γ0(β0(h))γ1(β(α(h))). Then ρ is
clearly a monomorphism. For A ≤ H, let X(A) be the set of elements in the base group
of H∗ such that the projection onto the 0-th component is contained in γ0(

∏

i∈I βi(A)).
Identifying H with ρ(H), we see immediately that (b) and (c) hold. Note that 〈X(H)H∗

〉
is the base group of H∗ and so (d) holds. One easily checks that 〈hH∗

〉 is the base group of
H∗ for all 1 6= h ∈ H and so (a) holds.

Note that K = H oI S acts faithfully on Ω × I and H∗ = K oJ T acts faithfully on
Ω∗ := Ω × I × J . By definition of the embedding of H into H∗, we see that

• Ω × {0} × {0} is isomorphic to Ω as an H-set.

• H acts trivially on Ω × {i} × {0} for all i ∈ I \ {0}.

• {ω} × I × {1} is isomorphic to I as an H-set for all ω ∈ Ω.

• H acts trivially on Ω × I × {j} for all j ∈ J \ {0, 1}.

By assumption, every non-trivial orbit for H on I is isomorphic to an orbit for H on Ω. So
(e) holds.

Put Λ = {Ω × {i} × {1} | i ∈ I}. Then the base group of H∗ normalizes Λ. Hence Λ is
an X(H)-set. Since γ1(K) ≤ X(H) and S = Alt(I), we get X(H)Λ = Alt(I). Also, Λ is
isomorphic to I as an H-set. So (f) holds. 2

Proof of Theorem ??:

Let G1 be a finite perfect group and Ω1 a faithful, finite G1-set so that G1 has no regular
orbits on Ω1 . Inductively, for i ≥ 1, let Gi+1 = G∗

i , Xi a function from the subgroups of
Gi to the subgroups of Gi+1, Ωi+1 a faithful, finite Gi+1-set and Λi+1 a finite Xi(Gi)-set
which fulfills ??. Let G =

⋃∞
i=1Gi. Then by ??(a)(d), G is an infinite, locally finite simple

group.
Put M1,1 = 1, M1,2 = G1 and inductively, for n ≥ 1, we put Mn+1,j = Xn(Mn,j) for

1 ≤ j ≤ 2n, Mn+1,2n+1 = 〈Xn(Gn)Gn+1〉 and Mn+1,2n+2 = Gn+1. Using induction on n and
??(c)(d), we get that for all n ≥ 1, Mn,i �Mn,i+1 for 1 ≤ i ≤ 2n− 1 and Mm,i ∩Gn = Mn,i

for all m > n and 1 ≤ i ≤ 2n. For i ≥ 1, put Mi =
⋃

n≥ i
2

Mn,i. Then Gn ≤ M2n for all



REFERENCES 18

n ≥ 1 and so G =
⋃∞

i=1Mi. Also, Gn ∩Mi = Mn,i for all n ≥ 1 and 1 ≤ i ≤ 2n. By ??(d),
Mi �Mi+1 for all i ≥ 1.

Hence G is not absolutely simple. Suppose G is finitary. Then by [?], G is an alternating
group and so absolutely simple. Therefore G is not finitary. For i ≥ 1, let Hi+1 = Xi(Gi).
Then Gi acts faithfully on Λi+1 and so D = {(Hi,Λi) | i ≥ 2} is an alternating Kegel
cover for G. By ??(e)(fc) and induction on i, each non-trivial orbit for G1 on Ωi or Λi is
isomorphic to a G1-orbit on Ω1 for all i ≥ 2. Since G1 has no regular orbits on Ω1, we
conclude that G1 has no regular orbits on Λi for all i ≥ 2. So by ??, G1 is non-regular and
G is of non-regular alternating type. 2
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