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Abstract

A locally finite, simple group G is called of 1-type if every Kegel cover for G has
a factor which is an alternating group. In this paper we study the finite subgroups
of locally finite simple groups of 1-type. We also introduce the concept of ”block-
diagonal embeddings” for groups of alternating type. We show that the groups of 1-
type are exactly the groups which have an alternating Kegel cover with block diagonal
embeddings.

1 Introduction

Let G be a group. G is locally finite if every finite subset of G lies in a finite subgroup of G.
G is finitary if there exist a field K and a faithful KG-module V' so that V/Cy (g) is finite
dimensional for all g € G.

If H is a group and  is an H-set, we denote by H* the image of H in Sym(Q). So
H® = H/Cy(Q).

Let G be an infinite, locally finite, simple group. Let A be the set of pairs (H,(2) so
that H is a finite subgroup of G, Q is an H-set, |Q| > 7 and H® = Alt(Q).

We say that G is of alternating type if G is non-finitary and if for each finite subgroup
F of G there exists (H,2) € A such that F' < H and F' acts faithfully on Q.

Let G be of alternating type and F' < G finite. We say that F' is non-regular if there
exists a finite subgroup F* < G with F' < F™* and so that for all (H,2) € A with F* < H,
F' has no regular orbit on (2.

G is called of non-regular alternating type if G is of alternating type and G has a
non-regular finite subgroup.

Our first theorem (proven in section ?7) describes the normal closure of a non-regular
subgroup in (large enough) finite over-groups.



1 INTRODUCTION 2

Theorem 1.1 Let G be a locally finite simple group of alternating type and F a finite non-
reqular subgroup of G. Then there exists a finite subgroup F < F* < G such that for all
finite F* < L <G

(a) There exist normal subgroups Ry, ..., R, of (FF) such that
(FIY = RiRy... R,

and

for some finite group K; and some finite set €;.

(b) Fori=1,...,n let B; be the base group of R; and choose notation so that [R;, F| £ B;
if and only if it < m. Then

Rl...Rm:Rlngx...me.

Recall that a Kegel cover for GG is a set K such that

(a) Each K € K is a pair (H, M), where H is a finite subgroup of G and M is maximal
normal subgroup of H.

(b) For each finite subgroup F' of G there exists (H, M) € K with F' < H and FNM = 1.

The groups H/M, (H, M) € K, are called the factors of IC. K is alternating if all the
factors of IC are alternating groups. If IC is an alternating Kegel cover, we view K as a subset
of A. Indeed, if (H,M) € K with H/M = Alt(Q2), then H acts on Q (with M = Cg(f2))
and (H,Q) € A. This also reveals that a non-finitary locally finite simple group G is of
alternating type if and only if G has an alternating Kegel cover.

Our next theorem (proven in section ??) shows that non-regular subgroups can be
detected from a given alternating Kegel cover.

Theorem 1.2 Let G be a locally finite, simple group of alternating type and F a finite
subgroup of G. Then F is non-reqular if and only if there exists an alternating Kegel cover
K and a non-negative integer t such that for all (H,Q) € K with F < H, F has at most t
reqular orbits on 2. O

The preceding theorem, together with [?, Proposition 1.33], shows that the groups
Brian Hartley called Mf-groups of ’visual diagonal alternating type’ [?, Definition 1.31],
are in fact of non-regular alternating type. Hence (see section ?? for the details) some of
the non-absolutely simple, locally finite simple groups constructed in [?, Section 6] are of
non-regular alternating type :
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Theorem 1.3 There exist non-absolutely simple, locally finite, simple groups of non-regular
alternating type. O

Let G be of alternating type

Let F' < G be finite. Let Ay¢q(F) be the set of all (H,Q) € A so that F < H and F has
a regular orbit on 2. We say that F' is regular if A,q(F') is a Kegel cover for G. Note that
the definition of a Kegel cover implies that F' is non-regular if and only if F' is not regular.
G is of regular alternating type if G is locally regular, that is if every finite subgroup of G
is regular.

We say that G is of co-type if G has the following property :

Let § be any class of finite simple groups such that every finite group can be
embedded into a member of S. Then there exists a Kegel cover for G all of
whose factors are isomorphic to a member of S.

We say that G is of 1-type if every Kegel cover for G has a factor which is an alternating
group.
The next theorem (proven in section ??) shows the relationship between groups of 1-,

oo-, regular- and non-regular type.

Theorem 1.4 Let G be a locally finite, simple group of alternating type.
(a) G is of non-regular alternating type if and only if G is of 1-type.

(b) G is of regular alternating type if and only if G is of co-type.

Let p be a prime and G a non-finitary, locally finite, simple group. G is of p-type if
every Kegel cover for G has a factor which is a classical group in characteristic p. From
Theorem ?? and [?, Theorem A] we have

Theorem 1.5 Let G be a locally finite, simple group. Then exactly one of the following
holds:

. G is finitary.

. G is of 1-type.

. G is of p-type for a unique prime p.

. G is of co-type. O
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In [?] ”pseudo natural orbits” have been introduced. They are used in [?, Theorem 3.4]
to devide alternating Kegel covers into two classes which Brian Hartley [?, Defintion 2.8]
called RA- and DA- type. Unfortunately these two types are not disjoint. For example
suppose {(G;,€;) | i = 1,2...} is a Kegel cover so that G; = Alt(;), G; < Gi41 and G;
acts semiregulary on €2;, then this Kegel cover is both of RA and DA type. This comes
from the fact that a regular orbit also is a pseudo natural orbit. In this paper we define
”block natural orbits” which avoid this problem:

Let (H,Q) € A. By [?, Lemma 2.8], there exists a unique minimal (sub)normal supple-
ment R to Cy(Q2) in H. Let A be an H-set. An orbit ¥ for H on A is called -essential if
Cu(X) < C(Q). That is if and only if R acts non-trivially on X. ¥ is called -natural if
3} is isomorphic to 2 as an H-set. X is called Q-block-natural if there exists an H-invariant
partition A of ¥ so that A is Q-natural and such that Ng(D) = Cy(D)Cu(2) for all
D € A. In this case, A is just the set of orbits of Cy(2) on 3. Indeed, since H is tran-
sitive on ¥, Ny (D) is transitive on D. Hence Cy(€2) is transitive on D. We remark that,
since Ny (D)/Cr(2) = Alt(|Q2] — 1) is simple, the condition Ny (D) = Cy(D)Cy(Q) is
equivalent to Cy(D) £ C (). A is called Q-block-diagonal if all the Q-essential orbits are
Q-block-natural.

Theorems 7?7 and 77 reveal that groups of 1-type are loosely speaking the groups of
alternating type with ”block-diagonal” embeddings.

Some of the results in this paper first appeared in [?] and some of the arguments have
been developed in [?].

2 The Set-up

Proposition 2.1 (Hall’s Finitary Lemma) A locally finite simple group G which has a
sectional cover composed of alternating groups and classical groups of unbounded dimension
in which the natural degrees of the element g # 1 are bounded, has a faithful representation
as o finitary linear group.

Proof: This is [?, Corollary 3.13]. O

The reader might consult [?] for the definition of a sectional cover. For our purposes
it is enough to know that every Kegel cover is a sectional cover. If H/M is a classical
group or an alternating group, pdegg, (g) denotes the natural degree of g in H/M. So if
H/M = Alt(€2), then pdegy/(g) = degq(g) is the number of elements in 2 not fixed by g;
if H/M is a classical group defined over a K-space V', then pdegy(g) is the minimum of all
dimg V/W, where W is a K-subspace of V' on which ¢ acts projectively trivially. If g & H,

we put pdeg;y (9) = 0.

Corollary 2.2 Let G be a non-finitary, locally finite, simple group and F' a finite subgroup
of G. Let K be a Kegel cover for G all of whose factors are alternating or classical groups.
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Let s be a positive integer. Then
K(F,s)={(H,M) € K|F < H and pdegy/(f) > s, V1# f € F}
is a Kegel cover for G.

Proof: For 1# f € F,let Ky = {(H,M) € K | pdegy/p(f) < s}. Suppose that Ky is
Kegel cover for GG. Then by Hall’s Finitary Lemma applied to the sectional cover K, G is
finitary, a contradiction. So Ky is not a Kegel cover for GG. Since

K=KFs)u |J Ky,
1£fEF

the Coloring Argument [?, Lemma 3.3] implies that IC(F), s) is a Kegel cover for G. O

Let D be a subset of A, F a finite subgroup of G and s a positive integer. Define
D(F,s) ={(H,Q) € D|F < H and degq(f) >s,V1# feF}

and
D(F)=D(F,1).

Lemma 2.3 Let G be a locally finite, simple group of alternating type, F < G finite and s
a positive integer. Then there exists a finite F < F* < G so that A(F*) C A(F),s).

Proof: Let [ be the function from [?, Lemma 2.5]. By ??, we can choose (F*,A) €
A(F,l(s)). Let (H,Q) € A(F*). Then by [?, Lemma 2.5, degq(f) > s for all elements f of
prime order in F'. Since every non-trivial cyclic group contains an element of prime order,
degq(f) > sforalll# feF. O

For the remainder of the paper, let G be locally finite, simple group of
alternating type.

The following result forms the technical basis for the investigations in this paper.

Lemma 2.4 There ezists an increasing function freg : 25 — ZT with freq(n) > 9In? and
so that the following statement holds :

Let F' be a finite subgroup of G and (H,QY) € A(F, freq(|F|)). Suppose that H is transi-
tive and 2-essential on a set A. Then one of the following holds :

1. F has a reqular orbit on A.

2. There exist 1 <t < |F|—2 and an H-invariant partition A of A so that the action of
H on A is isomorphic to the action of H on the subsets of ) of size t.
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Proof: See [?, Lemma 2.14]. O

For A € A, we define Hy and Q4 by A = (H4,Q4). Let D C A. We say that D is
Kegel cover for G if {(H,Cy(Q)) | (H,2) € D} is Kegel cover for G.
Let D C A be a Kegel cover for G. Let F be a finite subgroup of G. Put

D*(F) = D(F, freg(|F)).

We say that F' is D-regular if there exists D € D*(F') so that F has a regular orbit on
Qp. In other words, F' is D-regular if and only if D*(F) N Aeq(F) # 0. We will prove in
Theorem 7?7 that F' is D-regular if and only if F' is regular.

3 Block-Diagonality in Groups of Non-Regular Alternating
Type

We continue to use the notation introduced in the previuos section. In particular, G is a
locally finite, simple group of alternating type.

Proposition 3.1 Let F' be a finite subgroup of G, (H,Q) € A*(F) N Apeg(F) and ¥ an
H-set. Then F' has a reqular orbit on each 2-essential orbit for H on X. In particular,

A(H) C Areg(F).

Proof: Let A be an Q-essential orbit for H on X. We need to show that F' has a regular
orbit on A. So we may assume that (2) in ?? holds. Since F' has a regular orbit on €, there
exists w € Q with Cp(w) = 1. Since Q| > freg(|F|) > 9|F|? > 2|F|, there exists a subset U
of Q of size t with U Nw!” = {w}. Then Np(U) < Cp(w) =1 and F has a regular orbit on
A. Hence F' has a regular orbit on A. O

Proposition 3.2 Let F be a finite subgroup of G, (H,Q) € A*(F) and A € A with H <
H 4. Suppose that A is an Q-essential orbit for H on Q4 and w € ) such that

(i) F has no regular orbit on A.
(ii) There does not exist A € A with Cr(\) < Cp(w).
Then
(a) There exists an H-invariant partition A of A so that A = Q as an H-set.

(b) If @ is the element in A corresponding to w, then Cp(w) = Np(©) = Cp(w) = Cr(X)
for all A € @.
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Proof: Note that all the assumptions of 7?7 are fullfilled. By (i), ?7(1) does not hold. So
we can choose t and A as in 77(2).

Let 1 # f € Cp(w). Suppose that t # 1. Since degqg(f) > 9|F|?> > 2|F|, there exists
p € Q with p & w and p # pf. Since t < |F| — 2, there exists a subset U of Q of size
t with p € U,p/ ¢ U and U Nw? = {w}. Then Np(U) < Cr(w) and f € Ng(U). Thus
Np(U) < Cp(w).

Let 6 € A so that § corresponds to U. Note that § is a subset of A and pick A € §. Then

Cr(\) < Np(0) = Np(U) £ Cp(w),

a contradiction to the assumptions.
Thus t = 1 and (a) holds. For (b), pick A € @ and note that

This implies that Cr(\) = Cr(w) = Np(w) = Cp(©). So (b) holds. O

Theorem 3.3 Let G be a locally finite, simple group of alternating type and F a finite
subgroup of G. Then the following are equivalent :

1. F is not A-regular.
2. F is not D-reqular for some alternating Kegel cover D for G.

3. There exists an alternating Kegel cover D for G and a non-negative integer t such
that for all A € D(F'), F has at most t regular orbits on Q4.

4. F is non-regular.

Proof: Clearly (1) implies (2).

Suppose (2) holds. By ??, D*(F) is a Kegel cover for G. Hence (3) holds with ¢ = 0
and D*(F') in place of D.

Suppose (3) holds but (4) does not. Then F' is regular and so A,¢q(F') is a Kegel cover
for G. By 77, there exists (H,Q) € Aq(F) N A*(F). Let A € D(H). By assumption, F'
has at most ¢ regular orbits on €2 4. Hence by 77, H has at most ¢ {2-essential orbits on €2 4.
Let R be the minimal normal supplement to Cg(€2) in H. As each Q-essential H-orbit has
size at most |H| and since R acts trivially on the non-Q-essential orbits, degg, , (z) < t|H|
for all 1 # x € R. Hence by Hall’s Finitary Lemma 7?7, GG is finitary, a contradiction. So
(3) implies (4).

Suppose finally that (4) holds but (1) does not. Then there exists (H,Q) € Apeq(F) N
A*(F). By 77, A(H) C Ayey(F). As A(H) is a Kegel cover for G, so is Ayeq(F). So F' is
regular, a contradiction. O

Let F be a finite, non-regular subgroup of G. Let Mp be the set of all £ < F' so that
E = Cp(w) for some (H,Q)) € A*(F) and w € Q. Note that E # 1 for all E € Mp. Let



4 GROUPS ACTING BLOCK-DIAGONALLY ON A SET 8

M. be the set of minimal elements of Mp. We say that w is F-extreme if Cp(w) € M7,..
Let Br be the set of (H,Q) € A*(F) so that there exists an F-extreme w € Q. Let B be
the union of the Br’s as F' runs through the non-regular finite subgroups of G.

Theorem 3.4 Let G be a locally finite, simple group of alternating type and F a finite
non-reqular subgroup of G. Then the following holds :

(a) Let (H,) € Br and A € A*(F) with H < Hp and C(Q4) < Cg(Q). Then A € Bp
and H is Q-block-diagonal on Q4.

(b) Let (H,Q) € Bp. Then A(H)NA*(F) C Bp.
(¢) Let A,B € Bp with Hy < Hp. Then Hy is Qa-block-diagonal on Qp.
(d) Both Br and B are Kegel covers for G.

Proof: (a) Since Cy(Q4) < Cu(Q), there exists an 2-essential orbit A for H on Q4. Let
A be any Q-essential orbit for H on Q4. Let w € €2 be F-extreme. Let A be the H-invariant
partition of A, given by ??(a). Let & be the element of A, corresponding to w and A € @.
By 7?(b),

Crp(w) =Cp(w) = Crp(N).

In particular, Cp(\) = Cp(w) € M}, A is F-extreme and A € Bp.

Since Cp(w) = Cp(w) # 1 and F is faithful on Q, Cp(w) £ Cu(Q?). Hence Cy(w) £
Cy(92) and A is Q-block-natural. So Q4 is 2-block-diagonal.

(b) Follows from (a).

(c) If Cr(QB) £ Cu,(Q4), Ha has no Qg-essential orbits on Qp. So (c) holds in this
case. If Cp, () < Cr,(24), we can apply (a) and again (c) holds.

(d) Let (H,Q) € Bp. By 7?7, A(H) N A*(F) is a Kegel cover for G. By (b), A(H)N
A*(F) C Br C B. So (d) holds. 0

4 Groups Acting Block-Diagonally on a Set

Let (H,2) € Aand ¥ C Q. If |2\ X| > 5, let Ry, be the minimal normal supplement to
C(Q) in Cy(X); otherwise put Ry, = 1. Put R = Ry.

Suppose that H is Q-block-diagonal on a set A. Let A* be the union of the Q-essential
orbits for H on A. As every orbit for H on A* is -block-natural, there exists an H-
invariant partition A of A* so that € and A are isomorphic as H-sets. Note that this
isomorphism is unique. Let & denote the image of ¥ in A under this H-isomorphism. Each
D € ¥ is a subset of A*. Let ¥ = [JX be the union of these subsets. So 3 C A* and
Ny (%) = Nu(E) = Ny(%). Define He = C(E) and Hy, = C (). Then Hy, < Hs. Note
that Cy () = Hq < Hy, but Hg £ Hy, unless Hq acts trivially on A* or 3 = ().

Lemma 4.1 Let (H,Q) € A. Suppose that H is Q-block-diagonal on a set A. Let ¥ C Q.
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(a) If |2\ X| > 5, then
Hy, = Hﬁ)HQ = (Hfl N R)HQ and Ry, < Hf] NR.

(b) Both (\,cq Ro and RN Hyy act trivially on A.
(¢) Let ¥1,%9 C Q with Q = X1 UX,. If H is faithful on A, then

[Re,, Rs,) = [Hy, N R,Hy N R)=[Hg  Hg JNR=1.

Proof: (a) Let w € Q. Let = be an orbit for H on A such that R acts non-trivial on =.
Then Z is Q-essential for H and as A is 2-block-diagonal, = is ©2-block-natural. Hence

H, = CH(E N @)HQ

Thus R, < Cy(EN®). As = was an arbitrary Q-essential orbit for H on A, R, < H,.
Thus
H,=R,Hyg=H_ Hg.

Let w € ¥. We compute
Hs =H,NHsx = (H@HQ) NHs = (H@ N HE)HQ.

By minimality of Ry, Ry, < HyNHsx, < Hy. Asthisistrue for allw € ¥ and H¢ = ﬂwEE H,
Ry < Hy. As Hy = RyHq, Hy = HyHgq. Finally, H = RHgq implies Hy = (RN Hx)Hgq
and so Ry < RN Hyx. Hence Ry < Hy N R and Hy = RyHq = (Hs, N R)Hg. This proves
(a).

(b) Note that € = A* and so Hy, acts trivially on A*. Since R acts trivially on each of
the non-Q-essential orbits for H on A, R acts trivially on A\ A*. So Hy N R acts trivially
on A. By (a), Nyea Bo < Npea(Hs NR) = Hy N R. So (b) holds.

(C) Note that Hfh < Hy, < EIQ\E2 < NH(EQ) < NH(Hf)g) Similarly, Hﬁ)g < NH(Hf)l)
So

[Hy,, Hy, | < Hy) N Hy, < He, = H.

Using (a) we get that
[Ryx,, Rs,] < [Hil N R, Hilg NR] < [Hil’Hig] NR<HyNR.

Since H is faithful on A, (b) implies Hy, N R = 1. Thus (c) holds. O

Theorem 4.2 Let G be a locally finite, simple group of alternating type and D an alter-
nating Kegel cover for G. Suppose that there exists (H,Q2) € A such that for all A € D(H),
H is Q-block-diagonal on Q4. Then H is non-reqular and G is of non-reqular alternating

type.
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Proof: By 7?7, D*(H) is a Kegel cover for G. By 77(2), it suffices to show that for all
A € D*(H), H does not have a regular orbit on Q4 . Pick A € D*(H) and A € Q4. Put
A = M. Suppose that A is regular. If A is not Q-essential, then 1 # R < Cg()\), a
contradiction. Hence A is Q-essential and so A\ € @ for some w € Q. By Lemma ?7(a),
1# R, < H; < Cpg(\), a contradiction. So A is not regular. O

Theorem 4.3 Let (H,Q) € A and suppose that H is faithful and Q-block-diagonal on
some set. Let R be the minimal normal supplement to Hq in H. Let w € Q and put
K = Cgr(w)/Ry. Then

R 2 (K g Alt(Q))'.

Proof: To simplify notation, we assume that Q = {1,...,n} and w = 1. For i € Q, pick
r; € R with 1" = 4. Let m : R — Alt(Q2) be the homomorphism arising from the action of
R on €. Note that rigri_gl € Cg(1) for all g € R and all i € Q2. Hence we obtain a map

¢:R— K Alt(Q) : g — ((rigris" R1)ica, 7(9))-
We will first show that ¢ is a homomorphism. Indeed let g, h € R. Then

o(g)p(h) = ((ngng Rl)zesz, ©(9))((ribr;;! Ra)ieq, (h))
((ngr 9 nghr gth)zeQa (g)m(h))

((righr; 1 Ri)ica, 7(gh))

= ¢(gh).

If ¢(g) =1, then w(g) = 1 and so

¢(9) = ((rigr; 'R1)ica, 1).

Thus rigri_l € Ry and g € R" = R, for all i € Q. By 7?(b), g = 1. So ¢ is one-to-one.

Put D = ¢(R) and S = K 1o Alt(Q2). It remains to show that D = S’. For i € Q let
D; = ¢(R;). Also let B be the base group of S. Then B = @), B; with B; = K for
all i € 2. Note that BN D = ¢(Cr(2)). Since Cy(1) = RiCx () and Ry < R we have
Cr(1) = R1CRr(2). As K = Cgr(1)/R;, we conclude that B N D projects onto B; for all
1€ Q. Fori e Q, put Q; = B;ND. As BN D normalizes Q;, Q; < B; for all i € Q. Let
Q=P;cqQi- Then QIBD =8S.

Put E=(BND;|i€Q) and D* = (D; | i € ). Note that both £ and D* are normal
in D and D = D*(BN D). By the definition of R, R has no proper normal supplement to
Cr(9Q). Thus D = D*.

Let ¢ € 2. Then [Cr(02), Ri] < Cr(2) N R; and so [BND,D;] < BND;. As D = D*,
we get [BN D,D] < E and D/FE is a perfect central extension of D/B N D = Alt(Q).
Note that D;/Dy N B = Alt(Q2\ {1}). Since D; £ E and D; N E = Dy N B we conclude
D\E/E=Dy/DiNE =D;/DinNB=Alt(Q\ {1}). From the Schur multiplier of Alt(2)
[?] and since |Q| > 7 we see that no non-trivial,perfect, central extension of Alt(2) has a
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subgroup isomorphic to Alt(Q2\ {1}). Thus BN D =E. Let i # j € Q. As [BN D, D;] <
BN D;, D; normalizes (B N D;)(B N D;). Since D; acts transitively on Q \ {i}, we get
BN Dy, <(BNDj;)(BND;) for all k € 2. Thus

E=(BND)(BND,), Vi#jeq.

Put
X =[BND,BNDs,...,BND,].
Since B N D; projects trivially onto B; for all 2 < j < n, X < By and so X < Q4. Since
BND=FE=(BND;)(BND)forall2<j<n,

X(BnNnD;)=[BND,...,BND|(BNDy).

/

~
n terms

Projecting this equation on B; and using that the projection of B N Dy is trivial, we get
[Bla"'vBl] =X< Ql'
—_——
n terms

So B1/Q; is nilpotent. Hence also B/Q is nilpotent.

Suppose for the moment that B is abelian. Let By = {b € B | Y b, = 0}. So [B,S]| =
[B,D] = By and S’ = By Alt(2). As D is perfect, D < 5" and so E = BN D < By.

Put L= (e;—ej|lec E,1<i<j<n)<KandY ={be B|b; € L}. Note that YNBy
is generated by elements of the form (0,...,0,e; —e;,0,...,0,e; —€;,0,...,0) where the
non-zero entries are in arbitrary positions and (eq,...,e,) € E. Let e = (e1,...,e,) € E.
Pick s1,s2 € R with 7(s1) = (1,2,3) and 7(s2) = (1,4)(5,6). Then

[ea¢(51),¢(52)] = [(63 —€1,€61 —€2,€2 — 63707 s 70)a ¢(52)] = (61 - 637070763 - 61507 e 70)

We conclude that Y N By < E. Pick e = (ey,...,e,) € BN D; < E. Since BN D; projects
trivially on B;, e; = 0. Henceej = ej—e; € Lforall j € Qande € Y. So BND; <Y and the
definition of F implies E <Y. ThusYNBy < E<YNByand E=YNBy. AsE=BND
projects onto By, we get that K = L, B=Y and F = By. So D < S’ < ByD = D and
S’ =D.

Thus the theorem holds if B is abelian. More importantly, note that all the above
arguments are valid in S/B" and so S’ = DB’. Hence By = EB’ where By = S’ N B. For
j =2,3, pick d; € D with 1% = j. Then for j = 2,3, [Bi,d;] < B1B; and [By, d;] projects
onto By. Thus

[[B1, d2], [B1,ds]] = [B1, Bul.

Hence B, = B’ and By = EB|,. As B/Q is nilpotent and Q < E < By, B,Q/Q < ®(By/Q).
So By=EQ=FE and S'=DB =DB=DE' = D. O

The preceding theorem is false for 2] = 6 and thus our assumption that || > 7 for
all (H,Q) € A. Indeed, let 3. Alt(6) be the 3-cover of Alt(6). Then 3. Alt(6) has Alt(5) as
a subgroup. Also, 3. Alt(6) acts faithfully and block-natural on the cosets of Alt(5). But
3. Alt(6) is not the derived group of a wreath-product.
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5 Groups of 1-Type and oco-Type

The main goal of this section is to prove theorems 7?7 and ?7?. For this, we first prove a
couple of technical lemmas.

Lemma 5.1 Let H be a group, K a field and 0 < X <Y a chain of KH-modules. Let P
be its stabilizer in GLx(Y). If H acts projectively non-trivially on Y /X, then

X = [v,[P, H].

Proof: Let Z =[Y, [P, H]] and suppose that Z # X. Then Z < X. Replacing0 < X <Y
by 0 < X/Z <Y/Z, we may assume that Z = 0. So [Y,[P,H]] =0 and [P,H] = 1. It is
well-known and easily verified that Cqp, (vy(P) < Z(GLg(Y))P. But this implies that H
acts as scalars on Y/ X, a contradiction. O

Lemma 5.2 Let T be a finite group, n € Z+ and Ty, Ts, ... T, non-trivial subgroups of T'.
Suppose that T < PGLg(V) and that pdegy (t) > (n+ 1)|T|? for all 1 #t € T. Then there
exists a T-invariant unipotent subgroup Q@ < PGLg(V) with TNQ =1 and

[Q,T1],[Q, T2]], ..., [Q, T,]] # 1.

Proof: For 1 #t € T, let U; be a one-dimensional subspace of V such that (U;)! # Us.
Put V4 = (Ul | 1 # t € T). Then dimg V; < |T|?, T acts projectively faithfully on V; and
pdegyy; (t) > n|T|? for all 1 #t € T.

An easy induction argument now shows that there exists an ascending chain

of T-submodules so that T acts (projectively) faithfully on Vi1 1/V; and dimg Vi1 /V; < |T'|?

for all 0 < i < n. Let P < GLg(V) be the stabilizer of this chain and @ the image in

PGLg(V) of P. For i =1,...,n, let S; be the pre-image in GLg (V') of T; and P; = [P, S;].

Put Ay = Cp(V/V1), A1 = [Ag, S1] < P; and inductively A; = [A;—1, Bi] for i =2,...,n.
We will prove by induction that

(*) [VlvAl] =0 and [V7 AZ] = [ViJrlaAi] =W

for all 1 <i <mn. Note first that A; < Ay for all i and so [Vi41, A;] < [V, Ai] <[V, Ap] < V1.
By ?? applied to 0 < V; < Vs and H = Sy, [V, [Ao, S1]] = V4. Thus (*) holds for i = 1.
Suppose that (x) holds for i — 1. Then

Vi, Pi, Ai—1] < [Vic1,Ai1] =0

and
Vi, Aic1, B] = [V1, P] = 0.
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Thus by the Three Subgroup Lemma,
[‘/ia [Aiflvpi]] =0.

So the first statement in (*) holds.
By 7?7 applied to 0 S V;'/V;,l S ‘/iJrl/V:ifl and H = Si,

[Vit1, [P, Si]] + Vie1 = Vi

Taking the commutator with A;_; on both sides (and using the induction assumption), we

conclude
[Vig1, P, Aim1]) = V1.
Also
Vig1, Ai—1, B < [V, Ag, P < [V1, P} = 0.

Thus by the Three Subgroup Lemma,
[Vit1, [Aio1, B]] = V1.

Hence (*) holds for all 1 < i < n. In particular, [V, 4,] = Vi and A4,, £ Z(GLg(V)). Note
that
An S [[P?Sl]a [Pa 52]77[P75’nﬂ

and the lemma follows by considering the image of the last equation in PGLk (V). O

Theorem 5.3 Let G be a locally finite, simple group of alternating type and F a finite
subgroup of G. Then the following are equivalent :

1. F is regular.

2. Let L be a finite group and ¢ : F' — L an embedding. Then there exists a finite
subgroup E of G, containing F', and an epimorphism & : E — L with ¢ =& |p.

Proof: Suppose (1) holds. Let ¢ : F' — L be as in (2). By ?7?(3), there exists (H,Q) €
A(F) so that F has at least |L|/|F| regular orbits on Q and |Q| > |L| + 2. In particular,
there exists an F-invariant subset A of Q of size |L| so that all the orbits of F' on A are
regular. Let p : L — Sym(A) be an embedding such that p(L) acts regularly on A. Let
¥ : Ng(A) — Sym(A) be the homomorphism arising from the action of Ngy(A) on A. As
both ¢(F) and p¢(F) act semi-regularly on A, there exists an inner automorphism 7 of
Sym(A) with ¢ |p= Tp¢. Thus

Y(F) = 71pp(F) < 7p(L) < Sym(A).

As ]Q| IL| +2, [\ Al > 2. Since H® = Alt(Q2), ¥(Ng(A)) = Sym(A). Let E =
“L(1(p(L))). Since ¥(F) < 7p(L), F < E. Since p : L — Sym(A) is one-to-one, there
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exists a partial inverse p* : p(L) — L. Put & = p*7 ¢|g: E — L. As ¢, 77! and p* are
onto, {(E) = L and
Elr=p" 1m0 [p=p" 1 Tpd = ¢,

So (1) implies (2).

Suppose that (2) holds. Let s > freq(|F|) with s even, 2 a set with || = s|F| and
L = Alt(2). Let ¢ : FF — L be an embedding so that ¢(F') is semi-regular on €. Let E and
€ be given by (2). Then (E,Q) € A*(F) and all the orbits for F' on Q are regular. Hence
Fis A-regular and so by 7?7 F is regular. O

We remark that the preceding theorem remains true if in part 2. "¢ : FF — L an
embedding” is replaced by "¢ : F' — L a homomorphism. ” Indeed suppose that o : FF — L
is a homomorphism. Define ¢ : FF — F x L, f — (f,a(f)) and 7 : F x L — L, (f,1) — L.
Then ¢ is one-to-one and o = 7. Soif{ : E — F x L is onto with £ |p= ¢, then 7€ : E — L
is onto with (7€) |p= .

Proof of Theorem 77:

Suppose first that G is of non-regular type. Let F' be a finite, non-regular subgroup of
G. Assume for a contradiction that G is not of 1-type. Then there exists a Kegel cover
K for G, none of whose factors are alternating groups. By [?, Proposition 3.2(b)], we may
assume that all the factors of K are of the form PSLgk(V) for some finite field K and a
K-vectorspace V. Let (T, %) € Br with |X| > 10. By ??, we can choose (L, M) € K(T') so
that pdegy,/p(t) > 9|T|? forall 1 # ¢ € T. Fori = 1,2 pick ¥; C ¥ so that ¥ = ¥; UY5 and
|\ ;| > 5. For i = 1,2, let T} be the minimal normal supplement to Cr(X) in Cr(%;).
By ??, there exists a T-invariant unipotent subgroup Q/M of L/M so that TN @ = 1 and

[[Q/M,T7], [Q/M, Ty]] # 1.

Note that Q/M is a p-group for some prime p. Put H = T'Q. Then ¥ is an H-set with
@ acting trivially on ¥ and (H,X) € Bp. Pick A € Brp(H). By ??(c), both T and H are
faithful and X-block-diagonal on €24. We use the notation introduced just before Lemma
?7?7. Let R be the minimal normal supplement to Hy, in H. Note that Hy, = Q7. By
77(a),

Hzi = (stz N R)HZ = (sz N R)QTZ

Hence Ty, = (((Hyg, N R)Q) N T)Ts; and the minimality of T} implies 7" < (Hy N R)Q.
Since T7 is perfect and (Hy N R)Q/(Hy, N R)M is a p-group, T} < (Hgz N R)M. Thus
[Q.T7],1Q, T51] < ([Hy,, Hg,] N R)M.

By ??(c), [[@,T}],[Q, T5]] < M, a contradiction.

So non-regular type implies 1-type.

Suppose next that G is locally regular. We will show that G is of co-type. So let S be a
class of finite simple groups such that every finite group is embedded into a member of S.
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Let F' be a finite subgroup of G. Pick L € § such that F' is embedded in L. By 7?7, there
exist a finite subgroup E of G and M < F such that F < E, FNM =1 and E/M = L.
Put Krp = (E,M). Then {Kp | F is a finite subgroup of G} is a Kegel cover for G all of
whose factors are isomorphic to members of S.

So we proved that locally regular implies co-type.

Suppose next that G is of 1-type. Then clearly G is not of co-type and so also not
locally regular. Thus G is non-regular.

Suppose finally that G is of co-type. Then G is clearly not of 1-type. As non-regular
implies 1-type, we conclude that G is locally regular. O

Proposition 5.4 Let G be a locally finite, simple group of alternating type and F a non-
regular subgroup. Then there exists a finite F' < F < G such that for all finite F < H < G
and all mazrimal normal subgroups M of H with M NF = 1, there exists a finite set Q such
that

(a) H/M = Als(Q).
(b) F has no regular orbit on Q.
(c) (H,Q) € Bp

Proof: Let U be the set of pairs (H, M) where H is a finite subgroup of G, M is a maximal
normal subgroup of H and H/M is not isomorphic to an alternating group. By ?7?(a), G
is of 1-type and so U is not a Kegel cover for G. Hence there exists a finite subgroup
Fy with U(F1) = 0. Let s = freq(|F|). By ?7?, there exists a finite F < F; < G with
A(Fy) C A(F,s) = A*(F). Since Br is a Kegel cover for G, there exists (F, ) € Bp with
(F1,F) <F.

Let H and M be as in the proposition. Since U(Fy) =0, H/M = Alt(Q) for some set €.
Thus (H, M) € A(F). Since Fy < F, (H,Q) € A*(F). In particular, since F is non-regular,
F has no regular orbit on Q. Finally, (c) follows from (F, %) € Br and ??(b). O

Proof Of Theorem 77 :

Let F be a non-regular finite subgroup of G. Let F be given by ??. For 1 #d € G, we
have that G = (d%) = <d<dG>> and so we can choose a finite F' < F* < G with

forall1#deF.

Let F* < L < G be finite and put H = (F*). Then F < H. Let {Mj,...,M,} be the
set of all maximal normal subgroups of H. Pick i € {1,...,n}. Since (FF) £ M;, F £ MZZ’
for some I; € L. Suppose that 1 #d € F N Mlll Then

F<F< @)y <@y <mb,
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a contradiction. So F'N lel = 1. Thus by ??(a)(c), H/lel = Alt(€2;) for some set €; and
(H,Q;) € Br. Note that Mlll = Cp (). Let R; be the minimal normal supplement to M;
in H. By ?7?(d), there exists A € Bp(H). By ??(c), H is faithful and €;-block-diagonal on
Qa. By 72, Ri-i ~ R; & (K, o, Alt(£;)) for some finite group K;. As Ry ... R, lies in none
of the M;’s, H = R1Ry...R,. Thus (a) holds.

Let R=Ry and T = Ry... Ry,. To show (b), it suffices to show that RNT = 1. Note
that B; = R; N M; and so [R;, F| £ B; just means F' £ M;. Thus we can choose [; = 1
for all 1 < ¢ < m. Suppose that RNT # 1. Pick an orbit A for H on Q4 so that RNT
acts non-trivially on A. Then R; and at least one R; with 2 < j < m act non-trivially
on A, say j = 2. As Q,4 is Q;-block-diagonal, there exist H-invariant partitions 4A; of A
so that A; is isomorphic to £2; as an H-set for ¢ = 1,2. Let w € €1 be F-extreme and Uy
the corresponding element in Aj. For all A € U, Cp(\) < Np(U;) = Cp(w). Since w is
F-extreme, Cp(\) = Cp(w) for all A € Uy and so Cp(w) acts trivially on Uy. Let Uy € Ag.

Suppose that Us N U; = 0. As My # My, H = MM, and so M; acts transitively on
As. So we conclude U NU; = () for all U € Ag, a contradiction. Hence Us N Uy # () and so
Cr(w) fixes an element in Us. Thus Cr(w) normalizes Us. As Uy was arbitrary, Cr(w) acts
trivially on Ag and so on §23. Thus 1 # Cp(w) < Ms, a contradiction to F'N My = 1. O

6 Non-Absolutely Simple Groups of 1-Type

In this section we present examples of non-absolutely simple, locally finite, simple groups of
non-regular alternating type. The existence of such groups also follows from [?, 1.33] and
Theorem ?7?. Our class of examples is slightly larger than the one in [?] and also shows that
one does not have any control over the quotient L/(F¥) in Theorem ??. Since knowledge
of most of details of [?, Section 6] is required, they are repeated here.

Lemma 6.1 Let H be a perfect, finite group and 2 a faithful, finite H-set. Then there exist
a perfect, finite group H* containing H, a function X which associates to each subgroup A
of H a subgroup X (A) of H*, and a faithful, finite H*-set Q* such that

(a) H< (W) forall1#he H.
(b
(c
(d

X(A)NH=A forall A< H.
If A< B < H, then AL B if and only if X(A) < X(B).
X(H) <(X(H)H") but X(H) is not a normal subgroup of H*.

e) FEvery non-trivial orbit for H on Q* is isomorphic to an orbit for H on Q.

)
)
)
)
(e)
(f) There exists a finite X (H)-set A so that
(fa) X(H)* = Alt(A)

(fb) H acts faithfully on A.
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(fc) Ewvery non-trivial orbit for H on A is isomorphic to an orbit for H on Q.

Proof: Let I be a faithful, finite H-set so that every non-trivial orbit for H on I is
isomorphic to an orbit for H on Q. Let S = Alt(/) and o : H — S be the monomorphism
associated to the action of H on [I.

Let T be any non trivial, finite, perfect group and J a faithful, finite T-set such that T’
acts transitively on J. We assume that 0 € [ and {0,1} C J. Let K = H;S. Fori € I, let
B; : H — K be the canonical isomorphism between H and the i-th component of the base
group of K and let 3 be the canonical monomorphism from S to K. Let H* = K ;T and for
j€J,let v, : K — H* be the canonical isomorphism between K and the j-th component
of the base group of H*. Define p : H — H* by p(h) = v0(6o(h))y1(6(c(h))). Then p is
clearly a monomorphism. For A < H, let X(A) be the set of elements in the base group
of H* such that the projection onto the 0-th component is contained in ~vo(][;c; Bi(4)).
Identifying H with p(H), we see immediately that (b) and (c) hold. Note that (X (H)")
is the base group of H* and so (d) holds. One easily checks that (hf") is the base group of
H* for all 1 # h € H and so (a) holds.

Note that K = H {5 S acts faithfully on Q x I and H* = K ;T acts faithfully on
O .= Q x I x J. By definition of the embedding of H into H*, we see that

e Q2 x {0} x {0} is isomorphic to © as an H-set.

e H acts trivially on Q x {i} x {0} for all i € T\ {0}.

o {w} x I x {1} is isomorphic to I as an H-set for all w € Q.
e H acts trivially on Q x I x {j} for all j € J\ {0,1}.

By assumption, every non-trivial orbit for H on [ is isomorphic to an orbit for H on 2. So
(e) holds.

Put A ={Q x {i} x {1} | i € I'}. Then the base group of H* normalizes A. Hence A is
an X (H)-set. Since v1(K) < X(H) and S = Alt(I), we get X (H)* = Alt(I). Also, A is
isomorphic to I as an H-set. So (f) holds. O

Proof of Theorem 77:

Let 1 be a finite perfect group and €2y a faithful, finite G1-set so that G has no regular
orbits on € . Inductively, for i > 1, let G;41 = G , X; a function from the subgroups of
G; to the subgroups of Gjt1, Qi1 a faithful, finite G;1-set and A; 1 a finite X;(G;)-set
which fulfills ??. Let G = |J;2; G;. Then by ??(a)(d), G is an infinite, locally finite simple
group.

Put M1 =1, My = G and inductively, for n > 1, we put M,,11; = X, (M, ;) for
1<3<2n, Myii9n41 = (X (Gp)CGm+1) and My 41,2n+2 = Gpt1. Using induction on n and
??(c)(d), we get that for all n > 1, M, ; < My, ;41 for 1 <i <2n—1and M,,; NG, = My ;
for all m > n and 1 < ¢ < 2n. For i > 1, put M; = Unz% M, ;. Then G, < My, for all
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n>1and so G =J;2; M;. Also, G, N M; = M, ; for all n > 1 and 1 < i < 2n. By ?7(d),
M; < M1 q for all i > 1.

Hence G is not absolutely simple. Suppose G is finitary. Then by [?], G is an alternating
group and so absolutely simple. Therefore G is not finitary. For i > 1, let H;11 = X;(G)).
Then G; acts faithfully on A;1; and so D = {(H;,A;) | i« > 2} is an alternating Kegel
cover for G. By ?7?(e)(fc) and induction on i, each non-trivial orbit for G; on €; or A; is
isomorphic to a Gi-orbit on €y for all ¢ > 2. Since G7 has no regular orbits on €2y, we
conclude that G has no regular orbits on A; for all i > 2. So by 7?7, (G is non-regular and
G is of non-regular alternating type. O
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