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Chapter 1

Group Theory

1.1 Group Action

Definition 1.1.1 [def:group action]| Let G be a group and Q a set. An action of G on
Q is a binary operation

G X Q= Q(g,w) — gw
such that

(a) [a] (99)w = g(gw)
(b) [b] lw=w

forall g,g € G and w € ().
If - is an action for G on Q0 we say that G acts on ) and that  is a G-set.

Let © be a set. Then Sym(£2) denotes the set of all bijections of Q. Note that Sym({2)
is a group under composition. The map (a,w) — a(w) is an action of Sym(£2) on .

We some times refer to an action as a left action. A right action of G on €2 is map
Q — G — Q with w(gg) = (wg)g. If we denote by G°P the group which is G as set and with
binary operation g -op h = hg, then we se that a right action for Q x G —-— , (w, g) = wg
of G gives rise to a left action GP x Q — , (g,w) — wg and vice versa.

Definition 1.1.2 [bi-set] Let G and H be groups. A (G, H)-biset is a set I together with
a left G- and right-H -action on I such that gi-h = g-ih for allg € G,i € I,h € H. In this
case we just write gih for gi - h.

We remark that a (G, H)-biset the same as a G x H°P-set and right G°P x H-set.

Definition 1.1.3 [defiequivariant] Let G be a group, I and J G-sets, o : I — J a
function and K C I and H C G.
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(a) [a] « is G-equivariant if a(gi) = ga(i) for all g € G,i € 1.

(b) [b] « is a G-isomorphism if « is a bijection and G-equivariant .

(c) [c] I and J are isomorphic G-sets if there exists a G-isomorphism B : 1 — J.

(d) [d] HK = {hk|he H,ke K}, hK = {W\K and Hk = H{k} forhc H, k€ K.
(e) [e] Nu(K)={he€ H|hK =K}.

(f) fl Cu(K)={heH |hk=EkVke K}.

(9) [g] Cx(H)={ke K |hk=kvhe H}.

(h) [h] K C I is called H-invariant of hKK = K for all h € H, that is if Ng(K) = K.

We will usually write Cp (k) for Cy({k}. But observe that G via[L.1.3|(d), G also acts
on the set of subsets of I. So Cy(K') could now be intepreted as C ({ K}, for this reason we
will not use C (k) for Cr({k}, then k itself is a set. Also observe that Cy({K} = Ny (K).
Lemma 1.1.4 [cayley]| Let G is a (G, G)-biset via left and right multiplication.

Proof: This holds since multiplication is assocative. ]

Lemma 1.1.5 [diagonal action] G be a group, o : G — A and  : G — B be group
homomorphisms and I an (A, B)-biset. Then G acts on I via gi = a(g)iB(g™1).

Proof: gh-i= a(gh)if((gh)~") = a(g)a(h)iB(h~")B(g™") = g - hi. O
Lemma 1.1.6 [conj] Let G be a group. Then G x G — G, (g,h) — ghg™! is an action of
G on G.

Proof: [L1.4and[1.1.5 0
Lemma 1.1.7 [orbits| Let G be a group acting on set I. For i,j € I define i ~qg j if
j =gt for some g € G. Then ~ is an equivalence relation.

Proof: i = 14, if j = gi then ¢7'j = g7 'gi = 15 = i and if j = gi and k = hj, then

k=h-gi=hg-i. O

Definition 1.1.8 [def:orbit]
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(a) [a] Let G be a group acting on a set I. Then the equivalence classes of the relation
~qg on I are called the orbits of G on I. Note that the orbit G on I containing i is
Gi={gi|g e G}.

(b) [b] Let I be a (G, H)-biset. An orbit for (G,H) on I is an orbit for G x H°? on I.
The orbit {gih | g € G,h € H} of (G,H) on I containing i is denoted by GiH .

(c) [c] Let G be acting on a set I. Then G acts transitively on I provided that there exists
exactly one G orbit on I, that is I # () and for alli,j € I there exists g € G with gi = j.

Lemma 1.1.9 (Frattini Argument) [frattini argumnet| Let G be groups acting on a
setI,ie€l and H € G. If H acts trainisitively on I, then G = HCq(i).

Proof: Let g € G. Then there exists h € H with gi = hi. Thus h='g € Cy(i) and
g=h-h"tge HCs(3). O

Lemma 1.1.10 [orbits on pairs| Let G be a groups acting tranistively on the sets I and
J. Let K a G-invariant subset of I x J. Let (i,j) € K. Then the following are equivalent.

A [A] G acts tranisitively on K.

B [B] Cq(i) acts transitively on {k € J | (i,k) € K}.

C [C] Cq(j) acts tranistively on {k € I| (k,j) € K}.

Proof: (A)= (B)): Let (i,k) € K. Then there exists g € G eith g- (i,j) = (i, k). Thus

g € Ci(i), gj =k and holds.
B)= (A): Let ((k,!) € K. Since G is transitive on I there exists g € G wit g -k = i.

Then (i,gl) = g - (i,gl) € K and so (B)), there exists h € Cy(i) with hgl = j. Thus
hg - (k,1) = (i,7) and holds.
By symmetry and are equivalent. O

Definition 1.1.11 [def:conjugation| Let G be a group, g,h € G and A < G.

(a) [a] 9h:= ghg~'. % is called the conjugate of h under g.

(b) [b] The action of G on G with (g,h) — % is called the action by conjugation.

(c) [c] An orbits of G on G for the action by conjugation is called a conjugacy classe of G.
(d) [d] ©h = {% | g € G} is the conjugacy class of G containing h.

(e) (€] An orbit for A on G by right multiplication is called a (left) coset of H, G/A =
{gA | g € G} is the set of cosets of H.
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Lemma 1.1.12 [bisets]

(a) [a] Let I be (G,H)-biset. Then G acts on the set of orbits of H on I via gO = {gi |
i€ O}.

(b) [b] Let G be group and H a subgroup of then G acts on G/H wvia gT = {gt |t € T}.

Proof: (d) g-iH =gi- H.
is special case of @ O

Definition 1.1.13 [def: transversal] Let A be a partition of a set I. A transversal to A
is a set T with [T N D| =1 for all D € A. If H is a subgroup of G, then a transversal to
H is a transversal to the partition G/H of G.

Lemma 1.1.14 [transitive] Let G be acting on a set I, i € I and H = C(i). Then the
map
G/H — Gi | gH — gi

is a well defined G-isomorphism, in particular |Gi| = |G/Cq(7)|.

Proof: Let g € G and h € H. Then gh-i = g - hi = gi and the map is well defined.
Clearly it is onto. If gi = ki, then k~'gi =i, k~'g € H and so gH = kH. Thus the map is
1-1. Finally observe that the map is G-equivariant. U

Corollary 1.1.15 (Orbit Equation) [orbit equation| Let G be acting on a set I, let O
be the set of orbits for G on I and T a transversal to O. Then

1= lol=)1G/Cst)

0e0O teT

Proof: The first equality is obvious. For the second let O € O and ONT = {t}. Then
by [1.1.14] |O| = |G/Cq(t)| and the second equality holds. O

1.2 Balanced Products of GG-sets

Definition 1.2.1 [def:balanced product| Let G be a group, I a right- and J a left G
set. Let K be any set and f: I x J — K function.

(a) [a] f is called G-balanced if f(ig,j) = f(i,9j) foralli€ I, j € J and g € G.

(b) [b] f is called universal G-balanced if f is G-balanced and for all G-balanced functions
g:1IxJ— L, there exists a unique function h : K — L with g = ho f.
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(c) [c] If f is universal G-balanced, K is called the G-balanced product of I and J. We
write I Xg J for K and (i,q j) for f(i,7).

Proposition 1.2.2 [balanced product] Let G be a group, I a right- and J a left G sets.
Then there exists a universal G-balanced map f : I x J — K. Moreover, f is unique up to
an isomorphisms of G-balanced maps.

Note that I x J is left H-module via the action g - (i,j) = (ig~!,gj). Let K be the set of
orbits of G on I x J and define f : I x J — K, (i,j) — G - (i,7). Observe that a function
f:IxJ— Lis G-balanced iff f(i,j) = f(ig~',gj) foralli € I,j € J, g € G, that is iff f is
constant on each G-orbit on I x J. So any G-balanced map uniquely factors through K.[]

Proposition 1.2.3 [bi-product] Let F,G,H be groups, I an (F,G)- and J an (G, H)-
biset. Then I xgJ is a (F,H)-biset via f(i,n j)h = (fi,u jh) forall f € F,i,j € J,h € H.

Proof: Just observe that for given f € F.h € H the map I x J — [ xg J, (i,j) —
(fi,m jg) is G-balanced. d

Proposition 1.2.4 [induced set| Let G be a group, H a subgroup and I a G set. View G
as a right H-set by right multiplication. Then G Xy I is an G set via k(g ,g i) = (kg ,g 1)
forallk,ge GyielI. Themapa: I — Gxgl,i— (1,5 1) is H-equivariant and universal
in the following sense: If J is a G-set and B : I — K is H-equivariant, then there exists a
unique G-equivariant map v : G Xg I — J with 5 =yo a.

Proof: For a fixed k € G then map G x I — G xpg I,(g,i) — (kg,m i) is clearly H
balanced and induces a map

GXH]—)GXHI,(Q,H i)—>(l€g,H Z)
Clearly this defines an action of G on G x g I. Now let h € H. Then
h-a(i)=h-(1,gi)=(h,gi)= (1, hi) = a(hi)

So « is H-invariant.

Given a G-set J and an H-equivariant 8 : I — J. Then the map G x I — J,(g,i) —
gB(i) is H-equivariant and so induces a unique map v : G xg I — J, (9,1 1) — gB(4).
Then vy(k - (9,1 7)) = (kg)B(i) = k- (9B(i)) = kv((9,m 7)) and v is G-equivariant. Also
v(a(?)) =~v((1,m 7)) = 18(i) = B(i). The uniqueness of v is obvious. O

Definition 1.2.5 [def:multi-equivariant] Let A be an abelian group, I an A set, (Is,s €
S) a family of A-sets and o : @g Is — I a function.

(a) [a] « is called A-multi-equivariant if o is A-equivariant in each coordinate.
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(b) [b] « is called universal A-multi-equivariant if o is A-multi-equivariant and for each
A-multi-equivariant 3 : @g I, — J there exists a unique A-equivariant v : 1 — J with

B=roa.

(c) [c] If a is universal A multi-equivariant, I is called the A-multi-equivariant product of
(Is,s € S). We denote I be sA@s Is and a(m) by am.

Proposition 1.2.6 [easy m-product] Let A be an abelian group and (Is,s € S) a family
of A-sets and I an A-set.

(a) [a] BgA acts on s I via (as)(is) = (asis) and on I via (as)i = [[gas - .
(b) b] A map f:@s I, — I is A-multi-equivariant iff it is @ g A-equivariant.

Proof: Obvious.

Proposition 1.2.7 [m-product] Let A be an abelian group and (Is,s € S) a family of
A-sets. Then there exists a universal H-multi-equivariant map o : @g Iy — I and « is
unique up to isomorphism of A-multi-equivarinat maps.

Proof: Let B = {(is) € @,csA | [licris = 1}. Let I be the set of orbits of B on
@s I; — I and define a : @g I, — Bi. Let 5 : @g I, — J be A-multi-equivariant. Since
B acts trivially on J, implies that g is constant on the orbits of B. Thus 8 induces
a unique function v : I — J with f =~voa. g

Lemma 1.2.8 [decomposing universal| Suppose A is an abelian group and (Is,s € S)
a family of A-sets. Let Og be the sets of orbits for A on Is. Then

A@ Is = L"_'J{A@ Os | (OS)SES € @ Os}
as an A-set.

Proof: For O = (Oy)s € @s O; let ag : @ses Os — By be universal H-multi-equivariant
map. For i = (i) € s I define O(i) = (Os(i))s € s Os by is € Os(i) € Os. Define

o @IS —H{Bo|O€ @Os,lﬁaom(@)

Then it is readily verified that « is universal H-multi-equivariant. O

Lemma 1.2.9 [regular balanced| Suppose A is an abelian group, (Is,s € S) a finite
family of transitive A-sets. Put C = (Cq(I5) | s € 5).

(a) [a] Leti = (is) € @s s and (as) € s A. Then the map @sIs — A/C, (asis) —
Dses asC is welldefined and universal A-multi-equivariant.
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(b) [b] A acts transitively on A@gs Is and C = Cg(I).

Proof: @ Since A is tranisitive each (js)e @s I is of the form (agis). Also if (agis) =
(bsis) then asb;t € Ca(l) and so [Jas - ([[bs)~* € C. Thus « is well defined. Clearly «
is A-multi-equivariant. Let 8 : @; I, — J be A-multiequivariant. Pick a fixed ¢ € S and
define

v: AJC > T[] asC — B((asis)s)
This clearly has all the required properties, but we must verify that it is well defined. So
suppose [[as,C = [[bsC. Since C' = (Ca(ls)) = [[gCa(ls), the exists ¢ € Cg(I,) with

a:=[Jas = @ bscs and since B is A-equivariant we get B((asis)s) = B((bscsis)s) = B((bs)s))
and so v is well-defined. 0

Definition 1.2.10 [def:g-i-sets| Let G be a group and I a G-set. A (G-I, H)-biset is a
family (M;,i € I) of right H-sets together with a G-action on the disjoint union |#;c; M;
such
(a’) [a] gMZ = Mig
(b) [b] pilg) : My = Mg;, m — gm is H-equivariant for all i € I.
A G-I-set is a (G-1,1)-biset.

Note here that condition @ ensures that l#,.; M; is a (G, H)-biset.

Some examples: If G acts trivially on I (that is gi = i for all g € G,i € I), then an
(G-I, H)-set is just a family (M;,i € I) of (G, H)-bisets.

Let M be (G, H)-biset and K < G and W a (K, H)-subset of M. Then (TW | T € G/K)
is an (G-G/K, H)-biset. Here for T € G/H, TW = {tw |t € T,2w e T} =tW for all t € T.

Let (M;,i € I) be a system of imprimitivity of H-invariant subsets for G on M. Then
(M;,1 € I) is an (G-1, H)-biset.

Lemma 1.2.11 [g-i-set] Let G and H be a groups with H-abelian, I a G-set and (M;,i € I)
a (G-1,H)-set.

(a) [a] (M, i€ I) is an H-invariant system of imprimitivity for G on ;¢ M;.

(b) b] g@; M; is a (G, H)-biset via g-ym = g(g-mog~t). Moreover, (g-gm); = H(gmg-1;)
for all g € G and m = (m;); € @1 M;.

Proof: @ is obvious.
@ Let f,g € G and m = (m;) € I. Put n; = gmg-1; and so g - m = n. Then

f-lg-m)=f-n= (fngflz')z‘ =(f- (gmgflffli)i =(f- m(fg)*li)i = fg-m.

So G acts on @7 M;. Moreover, for fixed g € G the map @; M; — g@ 1 M;, m — ggm
is clearly H-multi-equivariant and so (]ED holds. O
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Definition 1.2.12 [def:product action] The action of G on y@; M; as in[1.2.11)(H]) is
called the product action of G on y@1 M;.

Consider the case H = 1 in [1.2.11|(b)). Let 7 be the set of all transversal to (M;,i € I).
Then map @7 M; — T,m — Imm is a G-isomorphism, where Sm = {m; | i € I}.

Lemma 1.2.13 [transfer map] Let G be a group and H < G with |G/H| finite.

(a) [a] (K/H'|K € K€ G/H) is a (G-G/H,H/H')-set.

(b) [b] H/H' acts regqularly on I := /i@ K/H'.

(c) [c] For g € G there exists a unique h(g) € H/H' with gi = ih(g) for alli € I.

(d) [d] Then map 1¢—p : G — H/H',g — h(g) is a homomorphism.

(e) le] Let K € G/H pick tx € K and for K € K and g € G define hx(g) € G by
gtk =tgxh(g, K). Then

H) = h(g,K))H'
(G H) = @ ho.K)

Proof: (a) Clear H/H' acts G/H' by right multiplication, (K/H' | K € K € G/H) is the
set of orbits for H/H' on G/H' and so an (G-G/H, H/H')-set.

(o) H/H' acts regularly on K/H' for all K € G/H. So (p]) follows from

(c) Follows from the fact that I is a G, H/H')-biset and H/H' acts regulary on I.

@ Obvious, since G acts on I.

(@ We have
g-ultx) = agty-1k = a(txh(g,97 K))
= (k) - HKeG/H Mg,9'K) = ultk)- HKeG/H h(g, K)
and so ¢ m(g) = h(g) = @KeG/H h(g, K). O

Definition 1.2.14 [def:transfer| Let G be a group and H a subgroup. Then Dery(G) =
(hh=t|he H,ge G,% € H)

Lemma 1.2.15 [transfer| Let G be a group and H a subgroup of finite indexn. Let g € G.

(a) [a] Let B be the set of orbits for (g) on G/H. For B € B pick Tg € B and rp € Tp.
Then

1 _|B
rsn(a) = (T 50"
BeB
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(b) [b] Put D =Dery(G). If g € H, then 1au(g9)D = ¢g"D.
(c) [c] If H<Z(G) then 7(g) = g".

Proof: (a)) Observe that (¢rp | B € B,0 < i < |B|) is a transversal to H. Define h(g, K)

for g € g and G/H as in ??(??). We have g - g'rg = ¢'"'rp. So h(g,¢'Tg) = 1 for all

0<i<|B|—1and h(g,gP1-'Tp) = rélg?‘rg. So @ follows from the definition of 7¢_, 7.
Since r;g'B'r’B € H and g%l € H we get

—1,1Bl

rg g ng*‘B‘ eD

and so
Télnglrgg_‘mD = ¢IBID.

Hence by @

BeB BeB
But Y pcp|B| = |G/H| =n and so (b)) holds.
We have r5'glBlry € H < Z(G) and so r3'g/Plrg = ¢/Bl. Also H' = 1 and
> pes | Bl =n. So () follows from (). O

1.3 Central by finite groups

Lemma 1.3.1 (Reidemeister-Schreier) [rs] Let G be a group and N subgroup of G.
Let I be a transversal to N and J C G with G = (J) and J = J~*. Fori € I,j € J

pick n(i,7) € N and k(i,75) € I with ji = k(i,7)n(i, 7). Then N = (n(i,j)|i € I,j € J).
In particular, N can be generated by |J||G/N| elements.

Proof: Let A= (n(i,j) |i € I,j € J). Leti € I,j € J. Then jiA = k(i,j)n(i,j)A =
k(i,j)A. Thus JIA C IA. Since J = J~ ! we get JIA = IA. Since the set of all g € G
with g/A = I A is a subgroup group of G, we get G = GIA = IA. Hence N = A(NN1I)
and since [INNI| =1, N = A.

Definition 1.3.2 [def:commutators| Let G be a group.

(a) [a] Forz,y € G, [z,y] = zyzly~ L.

[x,y] is called the commutator of x and y.
(b) [b] For A,B C G, [A,B] = ([a,b] |a € A,be B).
(c) [c] G'=]G,G]. G is called the commutator or derived group of G.

Lemma 1.3.3 [commutators| Let G be a group and x,y,z € G. Then
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(a) [a] xy = [z,ylyz.
(b) [b] [z,y]~" = [y, 2].
(c) le] [y, 2] ="y, 2][x,2] and [z, 2y] = [2, 2] "z, 9]
(d) [d] [A,B]=[B,A] for all A,B CG.
1

Proof: @ [z, ylyr = zyx=t -y~ ly 2z =2y - 27l = 2y,
[ [z,9]7! = (eyaty™) 7 = yay et = [y, 2],

(8)
[zy,z] = ayzy telzl = x-yzy tz bzt
= z-[y, 2] a7t zza 27l = My, ][z, 2]
and so using (]ED
[2,2y) = [2y, 2] = (Ty, 2], 2) 71 = [2,2] T2, 9]
(d) follows from (). O

Proposition 1.3.4 [center of finite index| Let G be a group with Z(G) of finite index n
. Then |G| is finite of order bounded in terms of n. Moroever, G has exponent dividing n.

Proof: Let n = |G/Z(G)|. By [L.2.15|d), the map 7 : G — Z(G),g — ¢" is homo-
morphism. Since Z(G) is abelian, G’ < ker7 and G’ has exponent dividing n. Since
(9121, g2z2] = [g1, g2] for all g1, g2 € G and 21,2, € Z(G), there exists at most n? commuta-
tors. So by G' N Z(G) can be generated by n3 elements. So G’ N Z(G) is abelian of
exponent dividing n, |G’ N Z(G)| < n™ and so |G'] < n™"+1. O

1.4 Finite p-Groups

Lemma 1.4.1 [aut cylic] Let n € ZT and let n = [[I", p be the prime factorization of
n. Let P be a cyclic group of order n. Then |Aut(P)| = [T (pi — 1)pf"_1.

Proof: Let P; be the Sylow p; subgroup of P. Then P = ", P; and each P; is invariant
under Aut(P). So Aut(P) = @!~; Aut(P;) and we may assume n = p* for some prime p
and some k € ZT. Let @ be the cyclic subgroup of order p*~1 in P. If € P then P = (x)
iff x ¢ Q. Fix x € P\ Q. Then for each y € P\ Q there exists unique a € Aut(P) with
a(z) =y. Thus Aut(P) = [P\ Q| =p* —p* ' =p" ' (p—1). O

Lemma 1.4.2 [central commutator| Let G be a group with G' < Z(QG).
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(a) [a] The commutator map G/Z(G) x G/Z(G) = G, (2Z(G),yZ(G)) — [z,y] is well
defined and Z-bilinear.

(b) [b] [2',9] = [x,y]7 forx,y € G,i,j € L.
(c) [c] (zy)' = [y,x](;) 2y’ for all z,y € G,i € N.

Proof: (d) By [1.3.3|d), [zy, = My, z][x, z]. Since G' < Z(G) we conclude [zy,z] =
[x, 2]y, z]. Similary [z, yz] = [z, y] [l‘ z] and so () holds.

@ follows immediately from @

() Let z = [y,z]. Fori = 0, both sides in are 1. For i = 1 both sides are zy.
Suppose () is true for i. By (]EI) [y, z] = 2* and so y'z = zizy’. Hence

0

Definition 1.4.3 [def:frattini] Let G be a group.

(a) [a] ®(G) is the intersection of the mazximal subgroups of G, with ®(G) = G if G has
no mazximal subgroups. ®(G) is called the Frattini subgroup of G.

(b) [b] Let p be a prime or p = co. Then G is an elementary abelian p group if G is
abelian and |g| = p for all g € G*.

(c) [c] Zo(G) =1 and inductively Z;11(G)/Z:(G) = Z(G/Z;i(G)). Zi(G) is called the i-th
center of G.

(d) [d] G is called nilpotent if G = Z,(G) for some n € mnN. The smallest such n is
called the nilpotency class of G.

Lemma 1.4.4 [p groups nilpotent| All finite p-groups are nilpotent.

Proof: Let P be a non-trivial finite p-group and 7" a transversal to the conjugacy classes
of P. By the orbit equation [1.1.15

|P| =Y _|P/Cp(t) =1+ > |P/Cp(t)

teT 1#£4teT

Since p | |P| we conclude that p ¥ |P/Cp(t)| for some 1 # t € T. Hence P = Cp(t),
t € Z(P) and so Z(P) # 1. By induction P/Z(P) is nilpotent. So P/Z(P) = Zy(P/Z(P ))
for some k and thus P = Zj41(P).

Lemma 1.4.5 [nilpotent] Let G be a nilpotent group.
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(a) [a] If1# H <G, then HN Z(G) # 1.
(b) [b] If1# H <G, then [H,G] < H.
(c) [c] If H <G, then H< Ng(H).
(d) [d] If H is mazimal in G, then H <G and |G/H]| is a prime.
Proof: (@) Let & be minimal with HNZy,(G) # 1. Then [HNZ(G),G] < HNZx_1(G) =1
and so H N Z,(G) < Z(G).

(]ED Since H £ 1 = Zy(G) but H < G = Z,(G) for some n, there exists a maximal k
with H ¢ Z4(G). Then H < Zy,1(G) and [H,G) < H N Zy(G) < H.

Since G £ H, there exists a maximal k with Z;(G) < H. Then Z;41(G) ¢ H and
[Ze1(Q), H] < Z4(G) < H. Thus Zy1(G) < Ne(H) and H < Ng(H).

(d By (d), H < Ng(H) and so by maximality of H, G = Ng(H). So H < G. By
maximality of H, G/H has no proper subgroups and so G/H has prime order.

Lemma 1.4.6 [char nilpotent] Let G be a finite group. The the following are equivalent
(a) [a] G is nilpotent.

(b) [b] For all H < G, H < Ne(H).

(c) [c] All maximal subgroups of G are normal in G.

(d) [d] For all primes p, G has a unique Sylow p-subgroup.

(e) [e] G is a direct product of p-groups.

Proof: ()= (b): See[L.4.5|d).
@:> : Let M be a maximal subgroups of G. Then M < Ng(M) < G and by

maximality of G, M < G.
()= (d): Let S be a Sylow p-subgroup of G. If G = N¢(S), holds. So suppose

Ng(S) # G and let M be a maximal subgroup of G with Ng(S) < M. By assumption
M < G and so by the Frattini argumment, G = Ng(S)M < M, a contradiction.
@:> @: Let S and T be Sylow subgroups for distinct primes. Then by S and

T are normal in G and so [S,T] = 1. It follows that G is the direct product of irs Sylow
subgroups.
@:> @): Since finite direct products of nilpotent groups are clearly nilpotent, this

follows from [[.4.4] g

Lemma 1.4.7 [frattini] Let p be a prime and P a finite p-group. Then ®(P) = P'(g" |
g € P) and ®(P) is the smallest normal subgroup of P with elementary abelian quotient.



Section 1.5. A p-complement Theorem 17

Proof: Let H = P'(¢? | g € P) and let N 9 G. Then P/N is elementary abelian iff
H < N. So it remains to show that H = ®(P).

If M is a maximal subgroup of P, then by @, P/M is cylic of order p and so
H < M. Thus H < (P).

Let P = P/H. Then P is elementary abelian and so a vector space over Z/pZ. Let
a € P\ H. Tt follows that P = (@)® A for some H < A < P. Then A is a maximal subgroup
of Pand a ¢ A. Thus a ¢ ®(P) and so ®(P) < H. O

1.5 A p-complement Theorem

Definition 1.5.1 [def:hall] Let 7 be a set of primes and G a finite group.

(a) [z] Let n be an integer then mw(n) is the set of positive prime divisors of n. nn is the
largest divsor of n, with w(n;) C .

(b) [yl =(G)=mn(G|), G is a w-group if m(G) C .

(c) [a] A m-Hall subgroup of H is a subgroup H with |H| = |G|

(d) [b] O(Q) is the largest normal w-sibgroup of G.

(e) [c] O™(G) is the smallest normal subgroup of G such that G/O™(QG) is a w-group.
(f) [d] = is the set all primes not in .

(9) le] G is called a w-group if |G| = |G|x.

(h) [f] g€ G is called a w-element if |g| = |g|r-

Lemma 1.5.2 [decompose x| Let G be a group and x € G with finite order. Let w be a
set of prime. Then there exists unique y,z € (x) with v = yz, x a ™ and y a pi’-element.
We denote y by x, and z by x,.

Proof: Let n = |g|. Since n, and n, are relative prime, there exists my, m, € Z with
1=nymz+mymy. Put y = 2™ my and z = 2. The lemma is now easy to verify.[]

Lemma 1.5.3 [easy hall] Let 7 be a set of primes, G a finite group and N < G.
(a) [a] O™(G) is the subgroup of G generated by all the n'-elements.

(b) [b] If G is nilpotent, G = Ox(G) x Ox(G) and O,(G) = O™ (G).

(¢) [c] O"(G/N)=O"(G)N/N.

(d) [d] Or(H)= HNO(G) for all subnormal subgroups H of G.
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(e) [e] Let H be a w-Hall subgroup of G. Then HN/N is a w-Hall subgroup of G/N. In
particular, G = HO™(G).

(f) [l 07 (G)G'NO™(G)G' =G
(9) [g] HNO™(G) <G for all w-subgroups H of G.
(h) [h] O™(H) < O™(Q) for all H < G.

Proof:

@ Let H be the subgroup generated by all the n’-elements in G. Let g € G, then
g = xy where z is a 7 and y is a 7’-element. |yO™(G)/O7(G) is a 7— and a 7’-element and
so y € O™(G). In partculcar, H < O™(G). Now gH = xH and so G/H is a m-group and
O™(G) < H.

() Follows from [1.4.6](d).

G/O™(G)N is a m-group and so O™ (G/N) < O™ (G)N/N. O™ (G)N/N is generated
by 7'-elements and so O™ (G)N/N < O™(G/N).

(d) Let H<I<M <G. By induction on |G|, Ox(H) = O-(M)NH. Ox(M) is characteristic
in M and so normal in G. So O(M) < O(G). Or(G) N M is a normal w-subgroup of M
and so O(G) N M < Or(M). Thus O(M) = O-(G) N M and

Ox(H) = Ox (M) N H = (0x(G) N M) N H = O,(G) N H.

() |HN/N| divides |H| and |G/HN]| divides |G/H|.
({f) Follows from (d) (with N = G’) and (b).

Follows from @ and @
(h)) Follows from @ O

Proposition 1.5.4 [focal| Let 7 be a set of primes, G be a finite group and H a w- Hall-
subgroup of G. Then

HNG' =Dery(G) and O.(G/G') = H/ Dery(G)

Proof: Let D = Dery(G) and 7 = 7¢_p. Clearly D < HNG'. Since 7 is a homomorphism
and 7(G) < H/H' is abelian, G’ < ker7. Let g € HN G and put n = |G/H|. Then by
g"D = 1(9)D = D. So g" € D. Since |H/D| is relatively prime to n we get
geD. Thus HNG' = D.

by [L5.3|f) HG'/G' is a m-Hall subgroup of G/G’' and so by [L5.3(b), HG'/G' =
0:(G/G"). Also HG'/G' 2 H/H N G' = H/D and so the proposition is proved. O

Lemma 1.5.5 (Burnside lemma) [central fusion| Let G be a finite group, p a prime
and S € Syl,(G). Let A, B be normal subsets S. Then A and B are conjugate in G iff they
are conjugate in Ng(S).
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Proof: Let g € G with YA = B. Then both 95 and S are Sylow p-subgroups of N¢(B)
and so S = S for some h € Ng(A). Thus hg € Ng(S) and WA = "B = B.

Lemma 1.5.6 [focal burnside| Let G be a finite group, p a prime and S € Syl,(G).
Suppose that S is abelian.

(a) [a] SNG" = Derg(G) = [Na(9), 5] = [OP(Na(5)), 5] = SN OP(G).
(b) [c] IfS < Z(Ng(S)), then SN OP(G) =1 and SOP(G) = G.
(c) [d] If G = OP(G) then [Ng(S),S] = S.

Proof: @ By

(1) SNG" =Derg(G)
By [L.5.

Derg(G) = (%ss ' |geG,s€S5,9% e S)=(%s'|ge Ng(S),s €S =[Ng(S),S]

That is

(2) Derg(G) = [Na(S), S].

Put H = Ng(S). By [1.5.3|¢), H = OP(H)S and since [S,S] =1

(3) NG (S), S] = [OF(H), S] < O"(G) N S.
By [L5.3(g).

(4) SNOP(G)<SNG.

(1)-(4) imply (&).
[®) By (&) SN OP(G) = [N(S), S] =1 and by [5.3[), G = SOP(G).
By @) S =5n0P(G) = [Na(S), 5. 0

Corollary 1.5.7 [cyclic sylows| Let G be a finite group.

(a) [a] Let p be the positive prime dividing |G|. If the Sylow p-subgroups of G are cyclic,
OP(QG) is a p'-group.
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(b) [b] Suppose all Sylow subgroups of G are cyclic. Let p1 > pa > ps > ...p, be the prime
divisors of |G| and let S; € Syl,, (G). Put T; = S183...S; and m; = {p1,...,pi}. Then

(o) [a] To=1<Ti<To<Ts...<T,1<T, =G.

(b) [b] T/Tzl—Sforalll<z<n

(c) [c] Ti= O (G) <G and T; is the unique m;-Hall subgroup of G.
(d) [d] G is solvable.

Proof: () Let S be a Sylow p-subgroup of G. Since S is abelian S < C¢(S) and so
Na(S)/Cq(S) is a p'-group. Thus [Ng(S)/Cq(S)| divides [Aut(S),|. By |[Aut(S)|, =
p — 1. Since |[Ng(S)| is not divisible by any prime smaller than p, Ng(S)/Cqg(S) = 1 and
so [Ng(S), 5] = 1. Thus (@) follows from [L.5.6|[b).

Let p = p,. Then by @, H := OP(G) is p'-group. So p1,...,pn—1 are exactly the
prime divsiors of |H|. Thus O, _,(G) < H < O, ,(G). So H = O, ,(G). Moreover,
S; < H and so by induction on n,

1° [1

(a) 1:a] To=1<T1<To<T5...<T,—1 = H.

(b) [1:b] Ty/Tio1 22 S; for all1 <i<n—1.

(c¢) [1:c] T; = O, (H) and T; is the unique m;-Hall subgroup of H for all1 <i<n — 1.

We have G = S, H = S,1,,_1 = T, and so @ implies .

We have S, "H =1 and so G/T,,—1 = S,, and so (]E[) implies .

Clearly O, (G) = G =T, and T, is the unique m,-Hall subgroup of G.

Let i < n. Then Oy, (H) is a m,—1-subgroup and so contained in H. So by [L.5.3|(d) and
@ sives

OTFz(G) = Om(G) NH= Om(H) =T

Also any m;-Hall subgroups of G is contained in H and so implies (b:d)).
follows from @ and (]E[) O



Chapter 2

General Representation Theory

2.1 Basic Definitions

With ring we always mean a ring with 1 and all ring homomorphisms send 1 to 1.

Definition 2.1.1 [defir-module| Let R be a ring and M an abelian group. An R-module
structure on M is a binary operation

- :Rx M — M,(r,m) — rm
such that

(a) [a] r(m+m)=rm+rm
(b) b] (r+7)m=rm+rm

(c) [e] (rF)m = r(Fm)
(d) [d] 1m =m.

for allr,7 € R and m,m € M.
An R-module is an abelian group M together with an R-module structure - on M.

Let M be an abelian group. End(M) denotes the endomorphism ring on M. So, as a
set, End(M) consists of all homomorphisms from M to M. For «, 8 € End(M), o + 3 and
af are defined by (a+ f)(m) = a(m)+ B(m) and (af)(m) = a(B(m)). Note that M is an
End(M) module via am = «a(m) for all « € End(M), m € M.

Definition 2.1.2 [def:r-linear| Let R be a ring and let M, N be R-modules. A homo-
morphism o : M — N is called R-linear provided that a(rm) = ra(m) for all v € R and
m € M. Hompg(M,N) denotes the set of all R-linear homomorphisms. Endg(M) con-
sists of all R-linear endomorphisms of M. GLr(M) consists of all R-linear isomorphisms
of M. M and N are called isomorphic R-modules provided that there exists an R-linear
isomorphism from M to N.

21
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Note that Endg(M) is a subring of End(M) and GLg(M) is a subgroup of Aut(M).
For every abelian group M there exists a unique Z-module structure on M. Indeed
Im =m, 2m = (1 4+ 1)m = m + m and so inductively

nm=m-=+...+m
—_——

n times

for all n € Z* and m € M. Also Om = 0 and (—n)m = —(nm). So there exists at most

one Z-module structure on M. Conversely, it is easy to see that the above actually defines
a Z-module structure on M. Note also that End(M) = Endz(M).
If K is a field, then a K-module is called a wvector space over K or a K-space.

Lemma 2.1.3 [hom and r-modules] Let R be a ring and M an abelian group. Then
there exists a natural 1-1 correspondence between Hom,ng(R, End(M)) and the set of R-
module structure on M.

Proof: Let ¢ : R — End(M) be a ring homomorphism. Define

i Rx M — M, (r,m) — ¢(r)(m)

Then it is readily verified that - is an R-module structure on M.

Conversely, suppose that - : R x M — M is an R-module structure. For r € R
define ¢(r) : M — M,m — rm. Then it is easy to verify that ¢(r) € End(M) and
¢: R— End(M),r — ¢(r) is a ring homomorphism. O

The preceding lemma gives a second proof that there exists a unique Z structure on
a given abelian group M. Indeed, there exists a unique ring homomorphism from Z to
End(M).

If R is a ring and M an R-module, then GLr(M) acts on M via am = a(m) for all
a € GLr(M) and m € M.

Definition 2.1.4 [def:rg-module| Let R be a ring, M an R-module and G a group. Then
an RG-module structure on M is a binary operation

G M—>M
such that
(a) [a] (9g)m = g(gm)
(b) [b] Im=m
(c) [c] g(rm)=r(gm)

(d) [d] g(m+m)=gm+ gm
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forallg,ge G, m,m € M andr € R. An RG-module is an abelian group M together with
an RG-module structure on M.

Note that @ and in the preceding definition just say that G' acts on M, while
and @ say that the action is R-linear.
Let K be a field, V' a K space with basis V. Let G be a group acting on V. Then

GXV%V,(g,ZkUU)%Zkng

veY veY

is a KG-module structure on V. In particular, V' can be viewed as a KSym())-module such
that av = a(v) for all @ € Sym(V) and v € V.

Definition 2.1.5 [defirep] Let R be a field, M an R-module and G a group. A represen-
tation of G on M over R is a group homomorphism p: G — GLr(M).

Lemma 2.1.6 [reps and modules| Let R be a ring, M an R-module and G a group.
Then there exists a natural 1 — 1-correspondence between representations of G on M over
R and RG-module structures on M.

Proof: If p: G — GLg(M) is a homomorphism, then G x M — M, (g,m) — p(g)(m) is
an R-module structure. Conversely if G x M — M, (g, m) — gm is an R-module structure,
define p(g) € GLRr(M) by p(g)(m) = gm. Then p: G — GLr(M) is a representation of G
on M over R. g

Definition 2.1.7 [direct sums]

(a) [a] Let (Ai,i € I) be a family of sets. Then

@Ai ::@Ai = {f: I—>i€UIAZ- | f(i) € A;,VieI}.
We denote f € @1 A; by (f(i))ier- @1 A; is called the direct product of (A;,i € I).

(b) [b] If (A;,i € I) is a family of groups, then
P Ai = {(ai)ics € @Ai | Hi € I]a;#1} < oo}

i€l
@D, Ai is called the direct sum of (A;,i € I).

We often will write @7 A; for @;er A; and (a;)1 or (a;) for (a;)icr.

If (A;,i € I) is a family of groups, then both @ A; and @ A; are groups via (a;)(b;) =
(a;b;). Similarly if (A;,| i € I) is a family of rings, then @ A; is a ring. If I is finite, then
also @; A; is a ring, but if I is infinite, @; A; might not have a multiplicative identity.

If (M;,i € I) is a family of R-modules then both @; M; and @D, M; are R-modules via
r - (mg) = (rm;).
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Definition 2.1.8 [def:group ring] R be a ring and G a group. Then the group ring
RG for G over R is the ring defined as follows: RG = @ R as an abelian group and

multiplication

(ri)i - (s5); = (> _(ris; | 4,5 € Gyij = k,ri # 0,55 # 0) ).

We identify r € R with (d147)y in RG and h € G with (dg),4 in RG. So we view R as a
subring of RG and G as a subgroup of the R*, the group of multiplicative units in R. With

this identification, (rg) = >_ c; g9 and
(Z rit) - (Z $;j) = Z 7851
i€G j€G i,jeq

Note also the rg = gr in RG. One might view RG as the largest ring generated by the
subring R and multiplicative subgroup G subject two the relations rg = gr for all » € R,
g € G. More precisely we have:

Lemma 2.1.9 [universal group ring| Let R and S be rings and G a group. Let o : R —
S be a ring homomorphism and B : G — R* a multiplicative homomorphism. Suppose that
a(r)B(g) = B(g)a(r) for allT € R and g € G. Then

v:RG — S, ngg — Za(rg)ﬁ(g)

is the unique ring homomorphism v : RG — S with v(r) = a(r) and v(g) = B(g) for all
reR,ged.

Proof:  Define 7(3_ry9) = 3. a(ry)B(g). Then ~(g) = ~(19) = a(1)8(g) = 15(9) = B(g)
for all g € G. Similarly v(r) = a(r). Since « is an additive homomorphism, v is an additive

homomorphism as well. To check that ~ is a multiplicative homomorphism we compute

~ (Z rph) - (Z 3,1)) = ’y(z rps;hi)
h 7 h,i
= Z a(rps;)B(hi)

hyi
= Y alr)als)8(h)B0)
h,i
= > a(ry)B(h)a(s:)B(i)
hyi
= O alm)Bh) - (O als)B)
h 7
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Thus + is a ring homomorphism.
Now suppose that v : RG — S is a ring homomorphism with v(r) = «a(r) and v(g) =
B(g). Then

YO reg) =D A(rg)v(g) =Y alr)Blg)

and so 7y is unique. O

We reader should notice that with the introduction of the group ring RG the term “RG-
module” now has been defined twice. Namely by applied to the ring RG and also in
Luckily these two definitions are the same:

Suppose first that RG x M — M, (d,m) — dm is an RG-module structure in the sense
of Then M is an R-module via (r,m) — rm. Moreover, since rg = rg in RG one
easily verifies that G x M — M, (g, m) — gm is an RG-module structure for G on M over
R in the sense of 2.T.4]

Conversely, if M is an R-module and G x M — M is an RG-module structure on M in
the sense of 2.1.4] then

RG x M — M, (ngg,m) — nggm
g g

is an RG-module structure in the sense of Indeed, this can be verified by direct
calculation. Alternatively, one can apply to @ : R — End(M),a(r)(m) = rm and
B :G — End(M), B(g)(m) = gm to obtain a homomorphism v : RG — End(M). According
to 7 gives an RG-module structure on M.

Definition 2.1.10 [submodules] Let R be a ring and M an R-module.
(a) [a] An R-submodule of M is a subgroup N of M with rn € N for allT € R, n € N.

(b) [b] M is a simple R-module M # 0 and if 0 and M are the only R-submodules of M.

Let R be a ring and M,,(R) the ring of n x n matrices over R. Identify R"™ with the
n X l-matrices over R. Then matrix multiplication M,,(R) x R™ — R"™(A,b) — Ab, is an
M, (R)-module structure on R". Let 1 < m < n and let S be consist of all matrices of the
form

A B
0 D

)

where A, B, D are m x m,m X n —m and (n —m) X (n —m) matrices, respectively. Let
W ={(r1,...,7m,0,...,0) | € R}.
Then S is a subring of M, (R) and R™ is an S-submodule of R".

Definition 2.1.11 [generation] Let R be a ring and M an R-module.
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(a) [a] N <g M means that N is an R-submodule of M.
(b) [b] ForI C M define (I)r=({N|IC N <prM}.
(c¢) [c] For a family (N;,i € I) of R-submodules in M, let
D ONi={> ni|(n) € PN}
I iel I
(d) [d] We say that M s the internal direct sum of the family (N;,i € I) of R-submodules
in M if for each m € M there exists a unique (n;) € @; N; with m =, n;.

(e) [e] We say that a family (N;,i € I) of R-submodules in M is linearly independent if
N; #0 for alli € I and if (n;) € @; N; with Y ;c;n; = 0 implies n; =0 for all i € 1.

Note that (I)g is an R-submodule of M containing I. So loosely speaking (I)p is the
smallest R-submodule of M containing I. Observe that » ; N; = (U;c; Vi) r-

Lemma 2.1.12 [easy independent] Let (N;,i € I) be a family of R-submodules of the
R-module M. Then (Nj,i € I) is linearly independent iff (N;,j € J) is linearly independent
for all finite subsets J of I.

Proof: Obvious. O

Lemma 2.1.13 [sums of submodules| Let M be an R-module (M;,i € I) a family of
non-zero R-submodules of M. Let W =3, M;. Then the following are equivalent.

(a) [a] W is the internal direct sum of (M;,i € I).
(b) [z] (M;,i€ I) is linearly independent.
(c) [b] The map ¢ : Py M; — W, (m;) — > c;my is an R-linear isomorphism.

(d) [c] Foreachk €I, MMy ier Mj=0.

Proof: ¢ is clearly R-linear and onto. The definitions imply that ¢ is a bijection if and
only if W is the internal direct sum of the (M;,i € I). Also (M; | i € I) is linearly
independent iff ker ¢ = 0. So @, and are equivalent.

Suppose () holds and let m € My N3, ,;c; M;. Then there exists (m;) € @y..jcr M;
with Y m; = m. Put my = —m. Then ¢((m;)) = 0. Thus m; = 0 for all i and so
m = —my, = 0. Thus @ holds.

Suppose that @) holds and let (m;) € @,;c; M; with ¢((m;)) = 0. Let k € I. Then

—my = Z ijMkﬂ Z M = 0.
kAjel kAjel
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Thus my =0, (m;) =0 and ¢ is one to one. So () holds. O

By the previous lemma, if >~ M; is the internal direct sum of (M;,i € I), then > M; =
@D,cr M;. In this case we usually identify ) ; M; with @; M;. In particular, we will write
> M; = € M, to indicate that Y M; is the internal direct sum of (M;,i € I). We will also
write just “direct sum” instead of “internal direct sum”.

Definition 2.1.14 [def:free module] , Let R a ring and I a set.

(a) [a] A function f: 1 — M, where M is an R-module is called R-free and M is called
a free R-module of rank I if for all R-modules N and all functions g : I — N, there
exists a unique R-linear map h: M — N with g = ho f.

(b) [b] Let M be an R-module and b = (b;) € @; M. Then b is called a basis for M if for
all m € M there exists a unique (r;) € @; R with m =, rim;.

Lemma 2.1.15 [free module] Let I be a set, R an R-module and b = (b;) € @ M. Then
the following are equivalent.

(a) [a] The function o: @; R — M, (r;) = > rym; is an isomorphisms.
(b) [b] b is a basis for M.
(c) [c] f:1— M,i— m;is R-free.

Proof: Clearly @ and (]E[) are equivalent.
Suppose (]ED holds. Let N be an R-module and g : I — N be a function. If h : M — M
is linear with g = h o f, then h(m;) = ¢(i) and so for all (r;) € @, R,

(*) h(z ribi) = an(i)

So such an A is unique. Conversely, since b is a basis for M, (*) defines an R-linear map
M — N with h(m;) = g(i). Thus f is R-free and () holds.

Suppose now that holds. Let a; = (0i5)jer € @;R. Then (a;,i € I) is a basis
for @; R. Since (]ED implies , g : I — a; is a free map. Since a free map is unique
up to isomorphism, we conclude that there exists an isomorphism o : @; R — M with
ala;) =m;. So @ holds. O

Definition 2.1.16 [def:semisimple] Let R be a ring and M an R-module.
(a) [a] We say that M is semisimple if M is the direct sum of simple R-submodules.

(b) [b] M is indecomposable if M is not the direct sum of two proper R-submodules.
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(c) [c] Let N be an R-submodule of M. Then we say that N is a direct summand of M
or that M splits over N as an R-module if there exists an R-submodule K of M with
M=NgkK.

Lemma 2.1.17 [sum to direct sum| Let S a set of simple R-submodules of the R-module
M. Also let N be a R-submodule of M and suppose that M =>_S.

(a) [a] There exists a subset M of S with M = N & @ M.

(b) [b] N is a direct summand of M.

(c) [c] M=@T for someT CS.

(d) [d] M/N =& M for some linearly independent subset M of S.
(e) [e] M/N is semisimple.

(f) Ifl N=@N for some linearly independent subset N of S.

(9) [g8] N is semisimple.

(h) [h] If N is simple then N = S for some S € S.

Proof:

Let B consists of all the linearly independent subsets 7 of S with N N> 7 = 0. Since
0 € B, B # (. Order B by inclusion and let C be a chain in B. Let D = [JC. By
D is a linearly independent subset of S. Let m € M N Y D. Then there exists D; € D,
1 <i<nandd; €D; withm = >"",d;. For each D; there exists C; € C with D; € C;.
As C is a chain we may assume that C;1 C Cy C ...C,. Then D; € C,, for all 1 <i <n and
someNNY C,=0.

Therefore NNY_ D =0 and D € B. So we can apply Zorn’s lemma to obtain a maximal
element M in B. Put W = > M. Suppose that M # N + W. Then there exists S € S
with S £ N + W. Since S is simple, (N + W)NS =0. So (N+W)N(S+W) =
W+ (N+W)NnS)=Wandso NN(S+W) < NNW =0. Also WnNS = 0 implies
that > SU{M} =W & S = P MU{S}. Thus M U {S} is linearly independent and so
MU {S} € B, a contradiction to the maximality of M.

Thus M = N @ W. So and (]ED hold.

follows from (@) applied with N = 0. (d)) follows from (a). (e) follows from (d). Note
that N = M/W. So @ follows from @ applied to W in place of N. @ follows from @
Suppose N is simple. Then the set A/ from @ only contains one element, say S. So N = S
and is proved. ]

Lemma 2.1.18 [semisimple| Let R be a ring and M an R-module. Then the following
are equivalent

(a) [c] M is a sum of simple R-modules.
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(b) [a] Every R-submodule of M is semisimple.
(c) [b] M is a semisimple R-module.

(d) [d] Ewvery non-zero R-submodule of M is a direct summand of M and contains a simple
R-submodule.

(e) [e] If N is an R-submodule of M with N # M, then there exists simple R-submodule
S with S £ N.

Proof: By @, @ implies (]ED Clearly (]ED implies .

Suppose that holds and let N be a non-zero R-submodule of M. By (]E[) N is
a direct summand of M and by N is semisimple. So since N # 0, N has a simple
submodule.

Suppose now that @ holds and let N # M be an R-submodule of M. By @ M =
N @ W for some R-submodule W. Since N # M, W # 0. Thus @ implies W has a simple
R-submodule S. Since NNW =0, S £ N and @ holds.

Suppose holds. Let N be the sum of all the simple R-submodules in M. If N # M,
then @ implies the existence of a simple R-submodule S of M with S £ N. But this
contradicts the definition of N. So N = M and @ holds. O

Corollary 2.1.19 [sections of semisimple]| Let M semisimple R-module. Then all R-
sections of M are semisimple.

Proof: Let A < B < M be R-submodule of M. 2.1.17 implies that B is semisimple.
Then 2.1.17(¢) applied to (A, B) in place of (N, M) shows that B/A is semisimple. O

2.2 Krull-Schmidt Theorem

Definition 2.2.1 [def:local ring] A ring with a unique maximal left ideal is called a local
Ting.

Lemma 2.2.2 [inverses| Let G be a monoid and a,r,l € G. Ifla = ar =1, then a is unit
and r =1 is the inverse of a.

Proof: [ =11=I(ar) = (la)r=1r = 1. O

Lemma 2.2.3 [splitting] Let o : A — B be an R-linear map and D an R-submodule of A
(a) [a] If o |p is 1-1 then D Nkera = 0.

(b) [b] If a|p is onto then A = D + ker av.
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(¢) [c] If a|p is an isomorphism, A = D & ker .

Proof: () is obvious. For (b) let @ € A and pick d € D with a(a) = a(d). Then
a—dekeraandsoa=d+ (a—d)e D+ kera. follows from () and (b). O

Lemma 2.2.4 [easy local ring] Let R # 0 be ring. R is local if and only if the set of
non-units I = R\ R* is an ideal. In this case I is the unique mazimal left ideal in R and
the unique mazimal right ideal in R.

Proof: Suppose first that I is an ideal and let J be a right ideal in R. If J £ I there exits
j € J\I. Thus j is a unit and so R = Rj C J and R = J. Thus I is the unique maximal
left ideal in R. By symmetry [ is also the unique maximal right ideal in R.

Suppose next that R has a unique maximal left ideal J. We will first show that J is also
a right ideal in R. Let r € R. Then Jr is a left ideal in R. So either Jr C J or Jr = R.
Suppose that Jr = R. Let o : R — R,t — tr and note that « is R-linear if we view R as
an R-module by left multiplication. In particular, ker « is a left ideal in R. Also « | is
onto and so by (]ED, R =J+kera. Thus kera < J, R=keraand R = Rr =0, a
contradiction. Thus Jr C J and J is a right ideal.

Let r € R\ J. Then Rr £ J and so Rr = R and there exists s € R with sr = 1. If
s € J, then, since J is a right ideal, also 1 = sr € J, a contradiction. Thus s ¢ J and so
ks =1 for some k € R. Thus by [2.2.2] k = r is the inverse of s. Thus r ¢ I.

If i ¢ I, then Ri = R and so i ¢ J. Thus I = J is an ideal in R. O

Lemma 2.2.5 [sum invertible| Let R be a local ring and r1,...7, € R such that r +
ro+ ...+ 1y is a unit. Then r; is a unit for some 1 < i < n.

Proof: By the set I of non-units is an ideal in R. If r; € I for all 1 < i < n, then
alsory +ro+ ...+ 7, €I, a contradiction. O

Lemma 2.2.6 [composition invertible] Let o : A — B and 5 : B — C be R-linear maps
such that B o « is invertible.

(a) [a] a:A— Ima is an isomorphism.
(b) [b] B |ima is an isomorphism.
(c) [c] B=Ima® kerg.

(d) [d] If, in addition, B is indecomposable and A # 0, then both « and (8 are isomorphisms.
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Proof: @ and are readily verified.
follows from (] and [2.2.3(d).

@ Suppose now that B is indecomposable. Then either Ina = 0 or Ima = B. In
the first case @ gives A = 0. In the second case @ and give that both « and ( are
isomorphisms. ]

Definition 2.2.7 [def:acc| Let M be an R-module.

(a) [a] We say that M fulfills the ascending chain condition (ACC) if each ascending chain

MlSMQSSMnSMn—HS

terminates, that is there exists m € Z© with My = M,, for all k > m.
(b) [b] We say that M fulfills the descending chain condition (DCC) if each descending

chain

My >My>...>M,> M1 >...

terminates.
Lemma 2.2.8 [char dcc| Let M be an R-module. Then the following are equivalent.
(a) [a] M fulfills DCC.
(b) [b] Ewvery nonempty set of R-submodules of M has a minimal element.

(c) [c] If M is a set of R-submodules, then there exists a finite subset N of M with
AM=NN.
Proof: @:> : Let M be a non empty set of R-submodules of M and suppose
M has no minimal element. Let M; € M and inductively assume we already found
My, Mo, ..., M € M with
My > My > ...> My

Since Mj, is not a minimal element, there exists My, 1 € M with My > M. Hence
{My, | k € Z"} is a non-terminating descending chain of R-submodules, a contradiction to

DCC.
(]E[):> : Let M be a set of R-submodules and let

F = {ﬂ/\/’ | N finite subset of M}.
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By , F has a minimal element W. Then W = (N for some finite N' C M. Let
N e M. Then WNN =((NU{N}) € F and so by minimality of W, W = W NN < N.
Thus W = (N M and (b)) holds.

:> @: Let My > Ms > Ms... be an descending chain of R-submodules of M. By

applied to M = {M, | 1 <i < oo} there exists a finite subset N of M with YN = [ M.
Since N is finite and total ordered (YN = M;, where M; is the minimal element of A If
follows that M; < M; for all j and so M; = M for all j > 1. O

Lemma 2.2.9 (Fitting) [fitting] Let M be an R-module and f € Endg(M).

(a) [a] If f is onto and M fulfills ACC, then f is an isomorphism.

(b) [b] If M fulfills DCC, there exists n € Z+ with Im f* = Im fm*1.

(c) [c] If M fulfills ACC and DCC then there exists n € Z" such that M = ker f*®Im f™.

(d) [d] If M is indecomposable and fulfills ACC' and DCC, then f is either invertible or
nilpotent.

Proof: @ Let n € Z* and @ € M. Then f"(a) € ker f if and only if a € ker f*1.
Since f™ is onto, this implies f™(ker f"*1) = ker f and ker f™ < ker f**!. The isomorphism
theorem applied to the R-linear map f” : ker f**! — ker f gives

(%) ker f"T!/ker f = ker f.

Now 0 < ker f < ker f? < ... is an ascending chain of R modules and so by ACC' there
exists n with ker f"*1 = ker f*. Thus (*) implies that ker f = 0 and so f is one to one.

(]EI) Just observe that M > Im f > Im f2 > Im f2 > ..., is an descending chain of
R-submodules in M.

Choose n as in (]ED Then f : Im f — Im f™ is onto. Hence also f™ : Im f* — Im f"
is onto. By (]ED we conclude that f” : Im f* — Im f" is an isomorphism. So we can
apply to f* : M — Im f" in place of @ and Im f™ in place of D. Therefore
M =1Im f* @ ker f".

@ Since M is indecomposable, implies that either ker f* = M and Im f™ = 0, or
ker f* = 0 and Im f® = M. In the first case f® = 0 and so f is nilpotent. In the second
case f™ is an isomorphism and so invertible. But then also f is invertible. ]

Lemma 2.2.10 [local and indecomposable| Let M be an R-module.
(a) [a] If Endg(M) is a local ring, M is indecomposable.

(b) [b] If M fulfills ACC and DCC, then M is indecomposable iff Endr(M) is a local
Ting.
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Proof: Let A= Endg(M).

@ Suppose for a contradiction that A is a local ring and M is decomposable. Let
M = X @Y for some proper R-submodules X and Y. Let mx : M — M be the projection
map defined by, 7x(z+y) =z for all z € X and y € Y. Similarly define 7y. Then 7x and
7wy are in A and wx + my = idps. Since X = ker wy, my is not invertible. Similarly 7x is
not invertible. But this contradicts 2.2.5]

(]E[) By @ it remains to show that if M is indecomposable then A is a local ring. So
suppose M is indecomposable and let I be a maximal left ideal in A. Let f € A\ I. We
will show that f is invertible. Since I is a maximal left ideal in A, A = Af + I. Hence
1=af+1ifor somea € A, i€ I. Since Ai < I, i is not invertible and so by@, =0
for some n € Z*. Thus 1 — i has an inverse j, namely j = Zz;é i*. From af =1 —1i we
conclude that jaf = 1. Thus Af = A, f is not contained in any proper left ideal in A and
so I is the unique maximal ideal in A. Hence A is a local ring and @ holds.. g

Proposition 2.2.11 [exchange lemma] Let M be an R-module, B a finite set of inde-
composable R-submodules of M with M = @ B. If A is a direct summand of M such that
Endg(A) is a local ring, then there exists B € B such that

M:AEB@B*, where B* = B\ {B}.
In particular, A= M/ @ B* = B and M/A= @ B* = M/B as R-modules.

Proof: Let X be an R-submodule of M with M = A& X. Let 14 : A - M,a — a
and w4 : M — A,a+ x — a be the associate inclusion and projection maps. For D €
B,let .\p : D — M,d = dand 7p : M — D,) p.gmp — mp be the inclusion and
projection map associated to the direct sum decomposition M = @ B. Then w14 = idy
and ) pcptpmp = idy. Hence

Z TALBTRLA = TA - (Z LBTR) LA =malg =1idg
BeB BeB
By assumption, Endr(A) is a local ring and so implies that that there exists B € B
such that mqegmpL 4 is invertible. As B is indecomposable gives that gt 4 is invertible.
As mpta = wp |4 we conclude from that M = A @ kerrp. Now ker B = @ B* and
so the first statement of the lemma is proved. The remaining statements follow easily from
the first. O

Definition 2.2.12 [def:isomorphic sets of modules] Let A and B be sets of R modules.
We say that A and B are isomorphic as R-modules and write A = B or A =g B if there
exists a bijection o : A — B, A — A" with A =g A’ for all A € A.

Theorem 2.2.13 (Krull-Schmidt) [krull-schmidt] Let A and B be sets of indecompos-
able R-modules. Suppose that B is finite and that for each A € A, Endr(A) is a local ring.
If @A =R @B then A =g B.
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Proof: Note that the theorem holds if B = (). We proceed by induction on |B|. We may
assume that M := @A =@ B. Let A € A. Then by there exists B € B such that
A~ Band M/A= M/B. Let A* = A\ {A} and B* = B\ {B}. Then M/A = @ A* and
M/B = @ B*. Thus @ A* = @ B*. By induction A* = B* and since A = B, also A = B.
O

2.3 Maschke’s Theorem

Lemma 2.3.1 [semisimple is local] Let R be a ring and M an R-module. Then M is
semisimple if and only if Rm is semisimple for all m € M.

Proof: If M is semisimple, then by [2.1.18| also the submodule Rm is semisimple. So
suppose that Rm is semisimple for all m € M. Let m € M. Then Rm is a sum of simple

modules and so m is contained in the sum W of all the simple R-submodules of M. Thus
meW, W =M and W is semisimple.

Theorem 2.3.2 (Mascke) [maschke| Let K be a field and G a finite group with such that
char K does not divide |G|. Then every KG-module is semisimple.

Proof: Let V be a KG module. By [2.1.18 we may assume that V = KGu for some v € V.
In particular, V is finite dimensional over K. Let W be a KG submodule of V. We will show
that W is a direct summand of V' as a KG module. Note that there exists a K- subspace
Zof VwithV =Wa&Z. Definen:V — W by m(w+ z) =w for all we W,z € Z. Since
char K does not divide |G|, ﬁ is a well defined element of K and we can define

1
p:V—=Vuv— —Zg_lw(gv)
Gl =2

Since 7(gv) € W and W is a KG-submodule, g~ 'm(gv) € W and so p(V) < W. For
w € W, gw e W and so n(gw) = gw, g~ 'm(gw) = w and p(w) = w. Let Y = ker p. Since
plw=1idw, Y NW = 0. Also if v € V, then p(v — p(v)) = p(v) — p(v) =0, v —p(v) € Y
and so v =p(v)+ (v—pw)) e W+Y. ThusV=WaY.

We claim that p is KG-linear. p is a sum of compositions of K-linear maps and so
K-linear. Let h € G and v € V. Then
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phw) = Y g 'm(ghv)
geG
= > h(gh)'n(ghv)
geG
= 1Y (gh) 'w((gh)v
geG

= h) g 'm(gv)

geG
= hp(v)

Thus p is indeed KG-linear and so Y = kerp is a KG-submodule of V. Hence any
submodule of V is a direct summand of V. Suppose W # 0. Since W is finite dimensional,
we can choose a KG submodule U in W of minimal dimension. Then U is simple. [2.1.1§]
now implies that V' is semisimple. (]

As an example let G = (g) be a cyclic group of order 2 and K any field. Let M = K?
and define an action of G on M by g(a,b) = (b,a). Then M is a KG-module. Let M, =
{(a,a) | a € K} and M_ = {(a,—a) | a € K}. Then M, and M_ are KG-submodules of
M. Since they are 1-dimensional over K both M, and M_ are simple KG-modules.

If char K # 2, then M # M_ and so M = M. @®M_. So M is a semisimple KG-module.

Suppose now that char K = 2 and let U be a 1-dimensional KG-submodule in M. Let
0 # u € U. Then gu = ku for some k € K. Since ¢g> = 1 we get u = k*u and so
(k—1)2=%k>—-1=0. Thus k = 1. Hence gu = u and so u € M. It follows that M, is
the unique simple KG submodule of M and so M is not semisimple. This shows that the
assumption char K1 |G| in Maschke’s theorem is necessary.

For a second example let K be a field of characteristic p. Define ¢ € GLg(K?) by
¢(a,b) = (a+0b,b). Then ¢"(a+nb,b) and so ¢ = 1 Thus G = (¢) has order p if p # 0 and
G has infinite order if p = 0. Observe that (¢ —1)? = 0. Let W be a simple KG-submodule
in K2. Since also [W, ¢] is a KG submodule and [W, ¢, ¢] = 0, the simplicity implies that
(W, ¢] = 0. Hence W = {(a,0) | a € K} and so K? has a unique simple KG-submodule.
Thus K? is not semisimple. For p = 0 this shows is false for infinite groups. g

2.4 Jacobson Radical

Definition 2.4.1 [def:arm]| Let M be an R-module, S C R and N C M.

(a) [a] SN is the additive subgroup of M generated by {sn|s € S,n € N}

(b) [b] As(N):={se€S|sN =0}. Ag(N) is called the annihilator of N in S.
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(c) [c] An(S)={ne€ N|[S5n=0}

(d) [d] M is called a faithful R-module if Ar(M) = 0.

(e) [e] M is cyclic R-module if M = Rm for some m € M.

(f) [f] M is called a finitely generated R-module if M = RN for a finite subset N of M.

(g9) [g] N is called S invariant if sn € N for alls € S, n € N.

Lemma 2.4.2 [generating set] Let M be an R-module and N C M with M = RN. Then

¢: @ R/Ar(n) = M, (rn+ Ag(n)) = > ren

neN neN

is a well defined onto R-linear map. If [N| =1, then ¢ is a isomorphism.
Proof: Readily verified. O

Let R be aring. We view R as a R-module via left multiplication. Note that a submodule
of R in R is an ideal. If I is an ideal in R, then also R/I is an R-module. For a € R let
a=a+ 1€ A/I. Then

Ar()={reR|r1=0}={reR|T=0}=1.
Definition 2.4.3 [def:closed]| Let M be an R-module,N C M and I C R.
(a) [a] N is called closed in M if N = Ay (J) for some I C R.
(b) [b] N°:=Apn(AR(N)) is called the closure of N in M.
(¢) [c] I is called closed in R with respect to M if I = Ar(U) for some U C M.

(d) [d] I°:=Ar(Apn(I)) is called that closure of I in R with respect to M.

Lemma 2.4.4 [arm] Let M be an R-module, I C R and N C M.
(a) [z] 0 and M are closed in M.

(b) [y] R is closed and 0° = Ar(M).

(c) [a] Ar(N) is a left ideal in R.

(d) [b] If N is R-invariant, then Ar(N) is an ideal in R.

(e) [c] An(I) is an a Endg(M)-submodule of M.

(f) [d] If I is right ideal, then Apr(I) is an R-submodule of M
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(0) le] A(N) = Ap(N°) and N*° = N°,

(h) [f] Ap(I)=Apn(I°) and I°° = I°.

(i) [g] N° is a smallest closed subset of M containing N .

(j) [h] I° is the smallest closed subset of R containing I.

(k) [i] Ar(RN) is the largest right ideal of R contained in Ar(N).

() 5] M is faithful module for R} Ar(M) via (r + Ar(M)) - m = rm.

Proof: Let s,5€ Agr(N), m,m € Apy(I), r € R and a € Endr(M).
(&) 0=An (1) and M = Ap(0).
() R = Ag(0) and since Apr(0) = M, 0° = Ap(M).

Since (s£8)N < sN+3N = 0, Ag(N) is closed under addition and additive inverses.
Moreover, (rs)N =r(sN) =r0 =0 and so Ag(N) is a left ideal.

(d) If N is R invariant we have (sr)N = s(rN) C aN = 0 and so (d) holds.

I(m+m) CIm+ Im =0. Also 0 € Ap(I). Moreover, I(am) = a(Im) = 0 and so
(€) holds.

@ I(rm) = (Ir)ym C Im = 0.

Put J = Ar(N). Then N° = Ay (J), N C N° and J C Ag(N°). Thus

J CAR(N°®) CAR(N)=J

Thus J = Ar(N°) = Ar(N). Hence N°° = Ap(J) = N°.
Let D = Ap(I). Then I° = Ar(D), I C I° and D C Ap(I°). Thus

D CAN(I°) CAy(I)=D

Hence D = Ap/(I°) = Ay (1) and so I°° = Agr(D) = I°.

By N° = N° and so N° is closed. If N C Ay (J) for some J C R, then
J - AR(N) and so N° = AM(AR(N)) - AM(J))

(i) By () 1° = I°° and so I° is closed. If I C Ag(D) for some D C M, then D C Ap(I)
and so I° = Ar(Ap(I)) € Ar(D).

Since RN is an R-submodule, (d)) implies that Ap(RN) is an ideal in R. Now let J
be a right ideal of R with J C Ag(N). Then N C Ag(J). By () Aa(J) is an R-submodule
of M and so RN C Ap(J). Thus J C Ag(RN)

Readily verified. O

Corollary 2.4.5 [closed correspondence| Let M be an R-module. Then

(a) [a] The map N — AR(N) is a bijection between the closed subsets of M and the closed
subsets of R.
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(b) [b] Its inverse of the map in (d) is I — Ap(I).
(c) [c] If N is closed in M, then N is an R-submodule iff Ar(N) is an ideal.

(d) [d] IfI is closed in R then I is an ideal iff Aps(I) is an R-submodule of M.

Proof: Let N C M and I C R be closed. By i N = N° = Apy(Ar(N)) and
I =1°=Agr(An(I)). So the maps given in the corollary are inverse to each other. If NV is
an R-submodule, Ag(N) is an ideal. If I is an ideal, when Aj/([) is an R-submodule. O

Lemma 2.4.6 [simple and maximal ideal] Let M be an R-module and 0 # m € M.
(a) [a] If M is simple, then M = Rm.

(b) [b] If M = Rm, then M = R/ Ar(m). Moreover, M is simple if and only if Ar(m) is
a maximal left ideal in R.

Proof: @ Just observe that Rm is a non-zero R-submodule of M.
() By M = R/Agr(m). The second statement holds since the submodule of
R/ ARr(M) are exactly the J/ Ar(m) with J a left ideal of R containing A, (m). O

Theorem 2.4.7 [jacobson radical] Let R be a ring, T the set of maximal left ideal in R
and S the class of simple R-modules. Then

(N I=)Ar(S).

IeT SeS

Proof: For S € S let Z(S) = {Ag(s) | 0 # s € S}. Then by R.4.6/ Z(S) C Z. Also

Ar(M) =(Z(5).
Let I € Z. Then R/I € S and Ar(R/I) < Ar(1+1/I)=1. Thus

NI2A-®/D2 (ArS)=() () I21

Iez Iez Ses SeS IEZ(S) Iez

Thus equality holds everywhere and the lemma is proved. ( We remark that instead
of defining & to be the class of all simple R-modules we really should have define S to
be the set of isomorphism classes of simple R-modules, since otherwise some of the above
intersection would not be defined. Since Ar(S) only depends on the isomorphism class of
S some minor modification of the above will give a formally correct proof.) O

Definition 2.4.8 [def:jacobson radical] Let R be a ring, then J(R) is the intersection of
the mazimal left ideals in R. J(R) is called the Jacobson radical of R. If M is an R-module,
let Jpr(R) be the intersection of the mazimal R-submodules of M.
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Note that Jr(R) = R.

Lemma 2.4.9 [jacobson for semisimple| Suppose that M is a semisimple R-module,
then Jy(R) = 0.

Proof: Let S be a set of simple R-submodules with M = @S. For S € S let §* =
YH{S # T € S§}. Then M/S* =2 S and so S* is a maximal R-submodule of M. Clearly
Nses S = 0 and so Jy(R) = 0. O

Lemma 2.4.10 [semisimple for jacobson| Let M and R-module and M a finite set of
mazimal R-submodules of M with (YM = 0. Choose N C M with (\N = 0. Then the map

¢: M~ @ M/N,m— (m+N)y
NeM

is an R-isomorphism. In particular, M is semisimple.

Proof: Clearly ¢ is R-linear. Let m € ker ¢. Then m+ N = 0p;/y = N and som € N for
all Ne N. Thusme (YN =0and ¢pis 1 —1.Let L e N. Let L* = {L #T € N'}. The
b minimality of N/, L* # 0. Since ¢ is 1 — 1, also ¢(L*) # 0. Let W = @y M/N and let
W, be the image of M/L in W. Then Wy, = M/L is simple. Note that 0 # ¢(L*) < W,
and the simplicity of Wy, implies W = ¢(L*) < Im¢. Thus W = >y o\ Wy < Im¢ and
so ¢ is onto. O

Corollary 2.4.11 [semisimple = jacobson| Let M be an R-module with DCC. Then
M is semisimple iff Jpr(R) = 0.

Proof: If M is semisimple, Jy/(R) = 0 by Suppose now that Jy/(R) = 0 and let
S be the set of maximal R-submodules of M. Then (S = Jy(R) = 0. Since M fulfills
DCC, implies that there exists a finite subset M of S with [\ M = (M = 0. So by

M is semisimple. O

2.5 Simple modules for algebras

Lemma 2.5.1 (Schur I) [schur i] Let M, N be simple R-modules and f € Homg(M, N).
If f #0, then f is R-isomorphism. In particular, Endr(M) is a division ring.

Proof: Since f # 0, ker f # M. Also ker f is an R-submodule and so ker f = 0 and f is
1-1. Similarly, Im f # 0, Im f = N and so f is onto. So f is a bijection and has an inverse
f~1. An easy computation shows that f~! € Homg(N, M)). Choosing N = M we see that
Endg(M) is a division ring. O
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Definition 2.5.2 [def:k-algebra] Let R be commutative ring. A R-algebra A is a ring A
with R < Z(A).

Let K be a field and V' a non-zero K-space. We identify k € K with the endomorphism
v — kv of V. Then Endg (V) is a K-algebra. If dimg V = n < oo, then dimg Endg (V) = n?.

Lemma 2.5.3 (Schur IT) [schur ii] Let K be a a field, A a K-algebra and M a simple
A-module with dimg M finite. Let D = Endg(M). Then D is a K-algebra and dimg Doo.
If K| is finite, then D is a field. If K is algebraically closed, then D = K.

Proof: Clearly D is a K-subalgebra of Endg(M). Since Endg (M) is finite dimensional
over K, so is D. By D is a division ring. If V is finite, so is D and Wedderburn’s
Theorem implies that D is a field. Let d € D. Then K(d) is a finite field extension of K. If
K is algebraically closed, we conclude that d € K and so K = D.

Lemma 2.5.4 [closed in simple|. Let M be a simple R-module, A a closed subset of M,
J =Agr(A) andm € M\ A. Then M = Jm and the map J/ Aj(m) — M, j+A;(m) — jm
is a well defined R-linear isomorphism.

Proof: Since A is closed, A = Ar(J) and so Jm # 0. By J is a left ideal in R and
so Jm is an R-submodule of M. Since M is simple, M = Jm. Then map J — M,j — jm
exhibits J/ A j(m) = M. O

Lemma 2.5.5 [finite extension] Let M be simple R-module and D = Endgr(M). Let
V < W be D submodules of M with dimp(W/V') finite. If V is closed in M so is W. In
particular all finite dimensional D subspaces of M are closed.

Proof: By induction on dimp W/V we may assume that W = V +Dw for some w € W\ V.
Let I = Ag(V) and J = Aj(w). We will show that W = Ag(J). So let m € Ap(J). Then
J C Aj(m) and hence the map o : I/J — M,i+ J — im is well defined and R-linear.
By the map 8 : I/J — M,i+ J — iw is an R-isomorphism. Put § = a3~!. Then
d: M — M is R-linear and d(iw) = im for all i € I. Hence § € D and

i(6(w) —m) =id(w) —im = 6(iw) —im =0

forall i € I. Since V is closed, V = Aps(I) and so §(w)—m € V. Thus m € j(w)+V < W.
Clearly W < Aps(J) and so indeed, W = Ay (J) is closed. O

Definition 2.5.6 [def:dense| Let M be an R-module and D < Endr(M) a division ring.
Then we say that R is dense on M with respect to D if for each tuple D-linear independent
tuple (m;)?_, € M™ and each (w;)}, € M"™, there exists r € R with rm; = w; for all
1<e<n.
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Theorem 2.5.7 (Jacobson’s Density Theorem) [density] Let M be an R-module and
put D = Endg(M). If M is simple, then R is dense on M with respect to D.

Proof: Let (m;)]; € M™ be D-linear independent and (w;)?_; € M". By induction on
n we will show that there exists r € R with rm; = w; for all 1 < i < n. For n = 0, there
is nothing to prove. By induction there exists s € R with sm; = w; for all 1 < i < n. Let
V = Z?:_ll Dm;. Then by V' is closed and so by there exists t € Ar(V) with
tmy, = wy, — smy,. Put r =s+t. For 1 <i<n,tm; =0 = and so rm; = sm; = w;. Also
rm; = sm; + tm; = smy, + (w, — sm,) = w, and the theorem is proved. O

Corollary 2.5.8 [more density] Let M be a simple R-module, D = Endg(M) and W a
finite dimensional D-submodule of M. Put Np(W) ={r € R|rW CW}. Then Nr(W) is
a subring of W, W is a Ngr(W)-submodule of M, Ar(W) is an ideal in Nr(W) and if RW
denotes the image of Nr(W) in End(W), then

Ng(W)/Ar(W) = RY = Endp (W)

Proof: All but the very last statement in are readily verified. Clearly Ry is contained in
Endp(W). Let ¢ € Endp(WW) and choose a basis (v;,1 < i < n) for W over D. By
there exists r € R with rv; = ¢v;. Then rW < W and so r € Nr(W). The image of r in
End(W) is ¢. Thus ¢ € R" and so R = Endp(W). O

Definition 2.5.9 [def:simple] A ring with no proper ideals is called simple. A direct sum
of simple ring is called semisimple.

Corollary 2.5.10 [char simple rings| Let R be a simple ring. Then there exists a sim-
ple R-module M. Moreover, if M is a simple R-module and D = Endr(M), then R is
isomorphic to a dense subring of Endp(M).

Proof: Let I be a maximal left ideal, then R/I is a simple R-module. Now let M be any
simple R-module. Since R is simple, Ag(M) = 0. Thus R = RM and by m R and so
also RM is dense on M. g

Proposition 2.5.11 [unique simple] Let M be faithful, simple R-module and put D =
Endg(M). Suppose that dimp M is finite.

(a) [2] R=RM =Endp(M).
(b) [a] As a left R-module R = M"™, where n = dimpg.

(c) [b] Let I be a mazimal left ideal in R Then I = Ar(m) for some 0 € m € M and
R/I=M
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(d) [c] Each left ideal in R is closed with respect to M.

(e) [d] The map I — AR(I) is a bijection between the left ideals in R and the D-subspaces
in M. Its inverse is M — Apr(I).

(f) le] Each simple R-module is isomorphic to M.

(g9) [f] R is a simple ring.

Proof: () Note that Ng(M) = R and so (@) follows from

(]E[) Observe first that M is a simple R-module. Let B be a basis for M over D and let
b € B. Then by 2.4.6) Ar(b) is a maximal ideal in R and R/ Ag(b) = M. Let D be a subset
of B. Then

Mpep Ar(b) = Ag(DD). Moreover, by ID)D is closed in M. Also Ar(M) = 0 since
M is faithful and so Ar(DD) =0 iff DD = M iff B =D. Thus implies

R=DR/Ar(D) =M™
beB
By (]ED there exists a simple R-submodule S of R with § &2 M and INS = 0. By
maximality of I and simplicity of S, R=1+ S and INS =0. Hence R/I =S = M. Let
¥ : R/I — M be an R-isomorphism and put m = ¢(1 + I/I). Then

I=Ar(1+1/I)=Agr(m)

@ Let I be an left ideal in R and J the set of maximal ideals in R containing I. Since R
is a semisimple R-module, so is /1. Thus [2.4.9|implies that Jz,;(R) = 0. Thus J = I.
By (), for each J € J there exists m; € M with J = Ag(my). Put N = {m; | J € J}.
Then

Ar(N)= () Ar(my)=()J e TJJ=1.
JeJ

So I is closed.

follows from , and

() Follows from (d) and
Since M is simple, 0 and M are the only R-submodules in M. So by (d), and

M = AR(O) and 0 = Ar(M) are the only ideals in M. O

Lemma 2.5.12 [endend] Let D be a division ring and M a vector space over D. Then

(a) [a] Endgng,an (M) =D.

(b) [b] If dimDW is finite dimensional then Endp(M) is simple.
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Proof: @ Let F = Endgpnqg,ay(M). Then clearly D < F. By F is a division ring.
Let B be a D basis for M. Pick m € B and define ¢ € Endp(M) by ¢(b) = dpym for all
be B. Then (M) =Dm. Let f € F. Then

f(@(M)) = o(f(M)) < ¢(M)

Thus fm = dm for some d € F. Since f —d € F, (f —d)m = 0 an dF is a division
ring, f —d =0. Thus f =d and F = D.

(o) Note that M is a simple Endp(M)-module. By (&) we can apply to R =
Endp(M). So (b)) follows from [2.5.11](g). O

Definition 2.5.13 [def:artinian| A ring R is called Artinian if it fulfills the DCC on left
1deals.

Lemma 2.5.14 [simple for artin] Let R be an Artinian ring and M a simple R-module.
Then M s finite dimensional over D = Endg(M).

Proof: . Suppose that dimp Moo. Then there exists an infinite strictly ascending series

M1<M2<M3<...

of finite dimensional D-subspaces. By each M; is closed. Thus

AR(Ml) > AR(MQ) > AR(Mg) > ...

is a strictly descending chain of left ideals in R, contradicting the DCC' conditions of
Artinian rings. O

Lemma 2.5.15 (Chinese Remainder Theorem) [chinese| Let R be ring and Z a finite
set of ideals in R. Suppose that (\Z =0 and I+ J =R for all1 # J € Z. Let I € T and
put Ry =(W{J|I#J€Z}. Then

(a) [a] R=I@®R,.

() [b] I=@{Rs|I#JeT).

(c) [e] R=@eshr.

(d) [d] The map Ry — R/I, v — v+ 1 is an isomorphism.

(e) [e] The map R — @;cr R/I,v — (r + I)1cz is an isomorphism of rings.
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Proof: Let 7 =Z\{I} and let 0 # N C J. We claim that R =T+ NN. If |N]| =1,
this holds by assumption. Let J € A and but S = ({K € N | K # J}. By induction
R=I1I+S5=1+J. Since R has a one,

R=R*=(I+8)(I+J)=T*+SI+1J+SJ

Since [ is an ideal, 12+ ST+ 1J<1I. Since S and J are ideals SJ < SNJ = AN. So
R =1+ N, proving the claim.

For N' = J we conclude that R = I + R;. Since INR; = (1Z = 0 we have R =
I3 R;. Thus @ holds. In particular, I has a one element and so is a is a ring. Note that
ﬂjEJ(IﬂJ):ﬂI:OandRJ:ﬂ{IﬂK|J#KEJ}.

By induction (d) holds for R replaced by I and Z by {INJ | J € J}. This gives (b).

follows from @ and . @ follows from @) @ follows easily from (]E[), and

. O

Lemma 2.5.16 [basic direct sum of rings| Let S be a finite set rings and R = @ S.
ForSeSletS*=@{S#T €S} and S* ={5*| S € S}.

(a) [a] Let I be left ideal in R. Then I = PgcsINS.

(b) le] If I is a minimal left ideal of R, then I < S for some S € S. Moreover, I is a
minimal left ideal of S

(c) [f] IfI is a mazimal left ideal of R, then S* < I for some I. Moreover, I = (INS)&S*
and I NS is a mazimal ideal in S.

(d) [g] Let M be a simple R-module, then S* < Ar(M) for some S € S.
(e) [h] J(R) = DgecaJ(R).

Proof: @ Let I be an left ideal and i € I. Then i = 1gi = ) g g lgi. Since I is left
ideal, 1gi € I and since S is an ideal in R, 1gi € SNI. Thus i € Pg s INS and @ holds.

@ and follows immediately form @

@ By M = R/I for some maximal left ideal I in R. By , S* < I for some
S e S andso S* <Agr(R/I)=ARr(M).

@ Follows from . O

Corollary 2.5.17 [basic semisimple rings| Let R be a semisimple ring and let S be a
(finite) set of simple rings with R = @S. For S € S let S* = @{S # T € S} and
S*={S*|S eS8} Then

(a) [b] Let I be an ideal in R. Then [ = @{S|SeS,S <I}.
(b) [c] S is the set of minimal ideals of R.
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(c) [d] S* is the set of maximal ideals of R.
(d) [g] Let M be a simple R-module, then S* = Ar(M) for some S € S.
(e) [h] J(R) =0.

@ Let I be an ideal in R and S € §. Then SN[ is an ideal in the simple ring S. Thus
either SNI=0o0r SNI=S5. So @) follows from @
and follows immediately from @
(d) By 2.5.16|(d) S* < Ar(M) for some S € S. Since S* is a maximal ideal, Ag(M) =
S*

Let S € S. Since J(S) < S and S is simple, J(S) = 0. So (g follows from [2.5.16|€).
(]

Theorem 2.5.18 [classification of artin| Let R be an Artinian ring with J(R) = 0. Let
M be a set of representatives for the isomorphism classes of simple R-modules and let
M e M. Put Ry = ({Ar(P) | M # P € M}. Then

(a) [a] M is finite.

(b) [b] M is finite dimensional over Dy := Endp(M).
(¢) [e] Ry = RM™ = Endp,,(M).

(d) [d] R= e B = P yepn Endp,, (M)

(e) le] Ar(M)=@{Rp|M#Pec M}

(f) lf] R is semisimple.

Proof: By Nirem Ar(M) = J(R) = 0. By there exists a finite subset N of
M with ey Ar(N) = 0. By [2.5.14] M is finite dimensional and so by [2.5.11) RM =
Endp,, (M) is simple, and M is up to isomorphism the unique simple R/ A (M )-module.

In particular, if M # N € M then Agr(M) £ Ar(N). Since R/ Ar(N) = RY is simple ,
R =Agr(M)+ Ag(N). For N e N put Ry = ({P € N'| P # N}. Then by 2.5.15,

R =@nen By
Ry =2 R/ARr(N) = RN = Endp, (N)
N*:=@{R} | N #P €N} =Ag(N)

Let M € M. 2.5.17(d) implies N* < Ap(M) for some N € N. Hence Ag(N) < Ag(M)
and so M = N and M = N. Thus M =N and Ry = RY,. O
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Lemma 2.5.19 [all modules semisimple] Let R be a ring. Then R is semisimple as a
left R-modules iff all R-modules are semisimple.

Proof: Suppose R is semisimple as a left R-module and let M be an R-module. Let
m € M. Then Rm = R/ Ar(m). Since R is semisimple as an R-module, so is R/ Ar(m)
and hence Rm. Thus by M is semisimple.

The other direct is obvious . ([l

Proposition 2.5.20 [char semisimple artin| Let R be an Artinian ring. The the fol-
lowing are equivalent.

(a) [a] Every R-module is semisimple.
(b) [b] R is semisimple as left R-module.
(c) le] J(R)=0.

(d) [d] R is a semisimple ring.

Proof: @<:> @: Thus ism
@(z) : Follows from applied to M = R.
:> @: Follows from
@:> : See . O

Corollary 2.5.21 [semisimple implies artin| Let R be a ring and suppose that R is
semisimple as a left R-module. Then R is Artinian and so semisimple as a ring.

Proof: Since R is the sum of simple R-submodules, there exists a finite set Z of simple
R-submodules with 1 € >~ cal. But then R =R < > Z and R = Z. So by[2.1.17(f) every
R submodule W of R is the direct sum of finitely many simple R-submodule. By
the number dy of simple direct summands is independent from the choice of the direct
sum decomposition of W. If V. < W are R-submodules of R, then @ implies that
dy < dy. Thus R fulfills DC'C on left ideals, that is R is Artinian. The second statement
now follows from [2.5.20 O

Corollary 2.5.22 [simple rings and artin] Let R be a simple ring. Then the following
are equivalent.

(a) [a] R is Artinian.

(b) [b] R = Endp(M) for some division ring and some finite dimensional D-module M.
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(c) [c] R has a minimal left ideal.
(d) [d] R is semisimple as a left R-module.

Proof: @:> @: follows from

(]E[)c Since dimp M is finite there exists an D-subspace in M. By a we can apply
2.5.11f(f) and conclude that Endp (M) has a minimal left ideal.

d Let I be a minimal left ideal in R. For each r € R, the map I — R,i — ir is
R-linear. Thus either Ir = 0 or Ir is a simple R-submodule of R. Thus by 2.1.17 IR is a
semisimple R-module. Note that IR is an ideal in R and since R is simple /R = R.

@a follows from [2.5.21 OJ

Since there do exists non Artinian simple rings, we conclude that there exists simple
rings without minimal left ideals and in particular that semisimple rings do not need to me
semisimple as a left R-module.

Corollary 2.5.23 [group rings semisimple| Let K be a field and G o finite group. If
charK 1 |G| then J(KG) = 0 and KG is a semisimple ring.

Proof: Since KG is finite dimensional over K, KG is Artinian. By all KG-modules
are finite dimensional and so the Corollary follows from [2.5.20 O

Corollary 2.5.24 [fd k algebras| Let K be an algebraically closed field and A a finite
dimensional K-algebra with J(A) = 0. Let M be a set of representatives for the isomorphism
classes of simple R-modules. Then M is finite, each M € M is finite dimensional over K
and

A @ Endg (M)
MeM

Proof: Since dimg A is finite, A is Artinian. Let M € M and 0 # m € M. Then
M= A/ As(m). Thus dimg M < dimg A < co. By End (M) =K. So the Corollary
follows from 2.5.18

2.6 Tensor Products

Definition 2.6.1 [def:multilinear| Let R be a commutative ring and M an R-module.
Furthermore let (M;,i € I) a family of R-modules and f : @; M; — M a function. Let J
and K be subset of I with I = JUK and JNK = ().

(a) b] vk : @jes Mj x Qrex My = Dier Mi, ((my), (mg)) — (m;)

(b) [c] For m € @rex My define fm : @jes M; — M,n — f(rx(n,m)).
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(c) [d] f is called R-multilinear if for alli € I and allm € Mp;, fm : M; — M is R-linear.

We usually will identify (n,m) € ®jg M; x Drerx M), with 7k (n,m). In particular, we
will write f(n,m) for f(v;x(n,m)) and so fp,(n) = f(n,m).

Definition 2.6.2 [def:multilinear tensor] Let R be a commutative ring and f : @ M; —
M be R-multilinear map. Suppose that for all R-multilinear maps g : @7 M; — N there
exists unique R-linear map h : M — N with g = ho f. Then f is called a tensor map for
(M;,1 € I) and M a tensor product of (M;,i € I).

Lemma 2.6.3 [multilinear tensor| Let R be a commutative ring and (M;,i € I) a family
of R-modules. Then there exists a tensor map f : @; M; — M and f is unique up to
isomorphism.

Proof: Let F be a free R-module with basis (a(m) | m € @;e; M;). Let W be the R-
submodule generated by all the a(ru + sv,n) —ra(u,n) — sa(v,n), r,s € R,i € I, u,v € M;
and n € Mp\;. Put M = F/W and define f(m) = a(m)+W for all m € M;. Then clearly f
is R-multilinear. Now let g : @7 M; — N be R-multilinear. Then there exists an R-linear
map h : F — N with h(a(m)) = g(m) for all m € Mj. Since g is R-multilinear, W < kerh
and so there exists an R-linear h : M — N with h(a(m) + W) = g(m) for all m € Mj. So
g = ho f. The uniqueness of h is readily verified. So f is a tensor map of (M;,i € I).
That f is unique up to isomorphism is obvious. ]

Let f: @; M; — M be a tensor map for (M;,i € I). We will denote M by & M;,
f by ®; and write ®;erm; for f((m;)) and if m € @ie; My, ®m = @rm = f(m). If
g: @icr M; — N is R-multilinear ®g denotes the unique R-linear map ), ; M; — N with
g=(®g)o f. So (®g)(@m) = g(m) for all m € @;ecs M;.

i€l
Lemma 2.6.4 [basic multilinear tensor| Let R be a commutative ring and a (M;,i € I)
a finite family of R-modules.

(a) [a] If M; = R for alli € I, then @;e; R — R, (1;) — [Lic; 7 is a tensor product of
(Mi,l' S I)

(b) [b] Suppose for each i € I, M; = @ W; for some set W; of R-submodules of M;.
D M: = EB{(XI)W | (W) € E?%Wi}'

(c) [c] Suppose that for eachi € I, M; is a free R-module with basis B;. Then &);c; M; is
a free R-module with basis

®icrB; = (®b ’ be @BZ)
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(d) [d] IfI =0, then f: @y — R,() — 1 is a tensor product of ().

(e) [e] If I ={i}, thenidyg is a tensor product for (M;,i € I) over R.

Proof: @ Let f((r;)) = @serri. Then clearly f is R-multilinear. Let g : @;e; R — N
be R-multilinear. Define n = g((1);er) and R — N,r — rn. Then clearly g = ho f and h
is unique with this property. So @ holds.

@ Fori € I and W € W, let myy : M; — W be the projection according to M; = @ W;.
Define

[ Z@Mi - PR Wi | (W) € Z@Wi}v (mi) = (®iermw, (mq)) | (W;) € Z.@,Wi}

el

Note that for given i € I and m; € M;, my (m;) = 0 for almost all W € W;. Hence also
®iermw,; (m;) = 0 for almost all (W;) € @; W;. Thus f is a well defined R-multilinear map.

Now let g : @icr R — N be R-multilinear. For W = (W;) € @;W; let gy be the
restriction of g to @;er W;i. Then there exists hyy : Xicr Wi = N with gy (w) = hw (®w)
for all w € @;c; W;. Define

h: @{@W | W e @WZ} =N, (aw)yec@w, S {hw(aw) | W € @ Wi}

iel

Then it is easy to check that ¢ = ho f and h is unique with this property. So @ holds.

Let b; € B;, then by @ &), Rb; is free with basis ®;e1b;. Moreover, M; = @be&- Rb
and so follows from @

@ Note here that the direct product @y of the empty family of sets is a set with one
element. We call this element the empty tuple and denote it by (). Given an R-module N
and g : @y — N, () — n. Define h: R — N,7 — rn. Then g = ho f.

(€) is readily verified. O

Lemma 2.6.5 [tensor associative| Let R be a commutative ring, (M;,i € I) a family of
R-modules and (I,d € A) a partition of I. Then there exists a unique R-linear map

p:®Mi—>® ®Ml with ®i€]mi) _>®deA(®i€Idmi)
el deA \iely
Moreover, if A is finite, then p is an isomorphism.

Proof: Observe that the map @;c; M;, (m;) — Rde(®icr,m;) is R-multilinear. Thus
the uniqueness and existence of p follows from the definition of the tensor product.
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If A is finite, we may assume by induction that |A| = 2. It is now easy to define an
inverse to p. U

For finite A we will usually identify @) - <®z’eld Mz) with @), ; M; via the map p of
the preceding lemma. In particular, if I = JUK with JNK = § and p = (m;)jes € @jes M;
and ¢ = (my)kerx € @rex My then

(®p) ® (®q) = ®(p, q) = Ricrm;.

Definition 2.6.6 [def:balanced] Let R be a ring, X a right R module and Y a left R-
module, Z a Z-module and f: X XY — Z a function.

(a) [a] f is called R-balanced if it is Z-multilinear and for all z € X,y € Y and r € R,
fxr,y) = f(z,ry).

(b) [b] Suppose that f is balanced and that for each R-balanced map g : X XY — N, there
exists a unique Z-linear map, h : Z — N with g = ho f. Then f is called a tensor map
of X andY over R and Z 1is called a tensor product of X and Y over R.

Lemma 2.6.7 [balanced tensor| Let X be a right- and Y a left R-module. Then there
exists a tensor product for X and Y over R. Moreover, any two such tensor products are
isomorphic.

Proof: Let FF = X ®z Y and W the Z-subspace generated by the (zr) ® y — x ® (ry),
reX,yeYandr e R. Put Z=F/W and define f : X XY — X, (z,y) 22y +W.O

We denote the tensor product of X and Y over R by X ®p Y. We reader might convince
themselves that in the case of a commutative ring our two notation of tensor product agree.
More precisely suppose that X and and Y are left R-modules. Let X be a the right R-
module, define by X = X as abelian groups and zr = rx for all z € X,r € R. Then the
tensor product for X and Y over R is also the tensor product for X and Y over R.

Definition 2.6.8 [def:directed set] Let (I, <) be a partially ordered set.

(a) [a] (I,<) is called a directed set if for each i,j € I there exists k € I with i < j and
1< k.

(b) [b] A directed system consists of a directed set (I,<), a family of sets (M;,i € I) and
family of functions (o | My — M | i < j € I) such that oy = idpg, and a0 o = vy,
foralli <j<kel.

(c) [c] Let L = (auj | i < j € I) be a direct system. A direct limit for £ is a set L (
denoted by liglﬁ together with a family of functions (o : M; — L) such that

(a) [a] o = ajoay; foralli <jel;and
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(b) [b] whenever (B; : M; — N is a family of functions with ; = [ o ayj for all
i < j € I, then there exists a unique function B : L — N with 8; = 8o «; for all

€ 1.

Lemma 2.6.9 [basic direct limit] Let £ = (ayj | i < j € I) be a direct system. Then

(a) [a] L has a direct limit

(b) [b] Any two direct limits are isomorphic.

(c) [c] Let (a; : My — M;i € I) be a direct limit of L. Then M = J;c; Im ay.

Proof: () Let ' = {(i,m) | i € I,m € M;} be the disjoint union of the M;,i € I. Define

a relation ~ on F' by (i,m) ~ (j,n) if there exists k € I with 4,5 < k and a;(m) = a;i(n).

It is readily verified that ~ is an equivalence relation. Let L = F'/ ~ and define «; : M; —

L,m — [(i,m)]. Clearly holds. Let (8; : M; — N) be as in [2.6.8|[c:b). Define

B : L — N by B8([(i,m)]) = Bi(m). Then clearly 5; = 5 o a;, but we need to verify that (

is well defined. So let (i,m) ~ (j,n) and choose k with ¢, j < k with p := a;p(m) = aji(n).

Then 5;(m) = (Bk o air)(m) = Bi(p) and by symmetry, 8j(n) = Bi(p). So B is well defined.
(]E[) Follows easily from the definition of a direct limit.

By construction this holds for the direct limit found in . So follows from (]ED

U

Lemma 2.6.10 [easy direct limits] Let £L = (ay; | i < j € I) be a direct system, L a set
and (g : My — L) be a family of functions with o; = oj o g5 for all i < j € I. Suppose
that each a;; is one to one. Then the following are equivalent:

1. [a] (ay,i € 1) is a direct limit of L.
2. [b] Each aj,ielis1—1and L =J;c;Imay.

Proof: :> : Since any two direct limits are isomorphic we may assume that

(a,1 € 1) is the direct limit constructed in Since [(i,m)] = a;(m), L = |J;c; Im o
Suppose that «;(m) = a;(n). Then [(i,m)] = [(i,n)] and so there exists ¢ < k € I with
air(m) = a;r(n). Since ay is 1 — 1 by assumption we get n = m. So «; is 1 — 1 and
holds.

@)= (1): We will verify that (ay;4¢ € I) fulfills the definition of a direct limit. Let

(Bi : M; — K,i € I) be a family of function with 8; = 8; o o for all i« < j € I. Suppose
that o : L — K is a function with 8; = o «; for all i € I. Then

(%) a(l) = Bi(m) Vle L,i€l,me M; with [ = a;(m)

Since L = (J;c; Im oy, this uniquely determines o. To show the existence we define «
via (*), but need to verify that this is well defined. So suppose that i,7 € I,m; € M;
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and m; € M; with o;(m;) = a;(m;), Choose k with i,j < k and put n; = ay(m;) and
n; = Ozjk(mj). Then

ai(ng) = ag(aa(ms)) = ai(my) = aj(my) = an(aje(mj)) = ar(ng)

Since «y, is one to one we conclude n; = n;. Thus

Bi(mi) = Br(ix(mi)) = Br(ni) = Br(ng) = Br(ayr(my) = Bj(my)

So « is well defined.
O

Example 2.6.11 [direct limits of z| Let (n;,i € I) be a family of positive integers. Let
F(I) be the set of finite subsets of I. For J € F(I) put My = Z and ny = Hjejnj. For
J C K € F(I), define ayic : My — My, m — ng\j-m. Then L = (ayk) is a directed
system. Let L = {% | J € F(I),n € Z}. Then L is an additive subgroup of Q. Define
aJ:MJ—>L,m—>TTL”—J. ThenL:Ii_r>rlMJ.

Proof: Let JC K € F(I) and m € M;. Then ng = ny - ng\; and so

L QWARLL m

ag(ajg(m)) = aK(nK\Jm) = R = n—J =ay(m)
So holds. Clearly L = |JIm ax and each oy and ajx is 1 — 1. So by [2.6.10
L is the direct limit of the M. ]

Lemma 2.6.12 [direct limit of modules] Let R be a ring and L = (o, : M; — My) a
directed system of R-linear maps. Let (o; : M; — L) be a direct limit for L. Then there
exists a unique R-module structure on L such that each o; is R-linear.

Proof: Let a,b € L € L and r € R. By there exists 7,7 € I and a; € M; and
bj € M; with «;(a;) = a and a;(b;) = b. Choose k € I with i < k and j < k and put
ap = a;i(a;) and by = a;i(b;). Then a = ag(ax) and b = «a;(by). If L is an R-module and
ay, is R-linear, then ra = rayg(a;) = ag(rag) and a +b = ag(ag) + ax(by) = ag(ag + bx). So
there exists at most one R-module structure on L which makes each «; R-linear.
Conversely define ra = ay(rax) and a + b = oy(ay + by). Since the «;; are R-linear this
turns out to be well defined and gives an R-module structure on L which makes each each
«; R-linear. O

Lemma 2.6.13 [infinite tensor| Let (M;,i € I) be a family of R-modules. For n,m €
@1 M; define n ~ m if n; = m; for almost alli € I. For J C I, let J' =1\ .J. Form €
@icr M; and ™ be the equivalence class of m with respect to ~ (and so m = m—i—@iel M;).
Let x € @1 M;.
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(a) [b] Let Ps(I) be the set of finite subsets of I. Put

F={(nJ)| ] €Psl)ne @ M}

and define (n,J) < (p,K) if J C K and n |gr=p. Fore= (p,J) and f = (¢,K) € F
with e < f define

Qef - ®Mj — ®Mk,w —w® (Op [k\g)
jer keK

also put
F(x)=A(n,J) | n=m|y for somem € z}.
Then F(x) is a direct set and (ae ¢ | e < f € F(x)) is a direct system.

(b) [c] Put F(z)= li_r}n]-"(x). Then

Proof:

(a) is readily verified.

(b) For & € icr My let (Bg,5) 1 @, M; — F(x) | (n,J) € F(x)) be the direct limit of
(aef | e < f € F(z)}. Define

fz @]\414)F(33)7 m — {gx(m) :B(W,@)(®()) ifmezx

ifmé¢ax
Define
- @ M; F
@M~ P Fa), m= (fo(m)
IG@I M;
To show that f is R-multilinear we need to show that each f, is R-multilinear. Let j € I,

u€ M;, J={j}and n € @rey Mx. Put m = (u,n) € @;ecs M;. Note that (m,0) < (n,J).
Also

U ) (n,0) (@) = (®() @ (@m |7) = Qu =u
where we did identify ), ; M; with M;. Thus

Bim,0)(20) = Bn,1) (@(m,0)(n,.) (@()) = Bn,s) (w)

Note that 7 only depends on n but not on u. If 2 # m we have f;(u) = 0 and so f;
is linear in the j-coordinate. If x = 7 the above calculations show that f,(u,n) = By s(u).
Since [y, 7 is R-linear, we see that f, is R-linear in the j-coordinate.
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So f is indeed R-multilinear. Now let ¢ : @;er M; — N be any R-multilinear map. Let
x € @; M;. For e = (p,J) € F(z) define he = ®gj, 50

he : ) M; — N with @q — g(q.p)
jeJ
for all g € @jeJ M;
Ife=(p,J) < f=(¢,K) € Fla), then for all w € @jes M;,

he(@w) = g(w,p) = gw,plpsnplx) = glwplr\,9)
= hi(@w) @ (plr\y) = hilae(@w))

Thus he = hyoaer and by definition of the direct limit there exists a unique h, : F'(z) —
N with h; o By = hy for all f € F(x). Define

h: @ F@) = N, (f)e =D hal(ws).
IG@I M; *
Let m € @ M;. If 2 # m, then f.(m) = 0. Thus

Wf(m)) = ha(fmm) = haBme)(@0) = ko)
The uniqueness of h is readily verified. ([l

Corollary 2.6.14 [infinite tensor ii| Let (M;,i € I) be a family of R-modules. For x €
@ M; let M, = (m | m € x)z. Then

(a) la] &; Mi =@, M..

(b) [b] Fore = (p,J) € F(x) define ae : @ ; Mj — My, w — w® (®p)). Then (o, e €
F(x)) is a direct limit for (cepie < f € F(x)).

Proof: Since any two tensor products of (M;,i € I) are isomorphic we may use the tensor
product constructed in 2.6.13| Also we identify F'(x) with its image in Q; M; = @, F(z).
Since fz(m) = 0 for x # m we then have @m = f(m) = fm(m) = B0)(®()). So

®m = B ) (®())
and ®m € F(m). Thus

Q) M; = (m|me @MQ =Y M, <> F(z)=EDF(x).
I x x x

So M, = F(z) and () holds.
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Also for e = (p,J) € F(z) and w € @y M;,

ae(@w) = (Qw) @ (®p) = (W, p) = B((wp)0)(())
Since (w,p),0) < e = (p,J), we have 3, o Awp)e) = Bw,p). Also a((wp)0)(p,1)(®() =
(®() ® (®w) = @w and so
e (®W) = Bw,p)0)(®() = Be(a(w, p)(®()) = Be(®w)
Hence a. = B, and so holds. O

As an exercise the reader might prove [2.6.14] without referring and to[2.6.13|and thereby
giving an alternative proof for [2.6.13

Definition 2.6.15 [def:cofinal] A subset J of a directed set I is called cofinal if for all
1 € I there exists j € J with i < j.

Lemma 2.6.16 [cofinal| Let I be a direct set and J a cofinal subset. Then J is directed.
Let (oG © My — My, be a direct system and (a; : M; — L) a family of functions with
a; = ag o aji for all j,k € J with i < k. Then (o375 € J can be uniquely extended to a
family (g, : My, — L) a family of functions with o; = oy, 0 oy, for all i,k € I with i < k.
In particular li_I)nieIMi = li_I)n jesM;.

Proof: Let j,k € J. Then there exists n € I with j,k < n and m € J with n < m. So
J,k <m and J is directed.

Suppose that (oy;i € I) is an extension of (oy;j5 € J). let i € I and m; € M;. Pick
j € J with i <j. Then

(%) ai(m;) = aj(aij(my;))
and so «; is uniquely determined. To show existence we define «; via (x). This is well
defined: Let j,k € J with ¢ < j, k and choose m € J with j,k < n. Then
aj(aii(mi)) = anloyn(ei(mi))) = an(ain(mi))
= an(arn(aix(mi))) = ar(ow(mi))

So «; is well defined. Now let i < k € I and pick j € J with k < j. Then

ag(ai(mi)) = aj(ajp(ai(m;))) = aj(as;(ms)) = a;(m;)

SO (v = Qi O Q. ]
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Lemma 2.6.17 [easy f(x)] Let (M;,i € I) be a family of R-modules and m € @;cs M;.
For J C K C I define

QJKm - ®Mj — ®Mk,w —w (®keK\Jmk)
jeJd keK

Also put F(m) = (oyxm | J € K € Pr(I)).
Then F(m) is a directed system and F(m) := liin F(m) = F(m).

Proof: Let J C K € Py(I). Then J := (m |p,J) € F(m). Moreover, J < K and
ajKm = jp. Let (p,J) € F(m). Then there exists n € m with n |;= p. Since n ~ m,
there exists a K € P(I) with J C K and mgr = ng: = pgs. Thus (p,J) < K. So F(m)
is isomorphic to the cofinal subsystem (a7 | J € K € F(I)} of F(m). Thus the lemma
holds.

Lemma 2.6.18 [structure of f(m)] Let (M;,i € I) be a family of R-modules and m €
@icr M;. Suppose that for each i € I, M; is free R-module. Let J be a finite subset of I.

(a) [a] Let ke J and K = JU{k}. Then

ker AJKm = AR(mk) . ® Mj
J

(b) [b] Suppose that R is an integral domain and m; # 0 for all i € I. Then for all
K e Pr(I) with J < K, aygm s 1 — 1. Moreover, oy, is 1 — 1.

Proof: @ For z € Q,c; M; we have ajgm(z) = z ® my. By , ®jesM; is free
with basis say D. Let B be a basis for M} and let my = ZbeB rpb. Then

aJKM(Z sqd) = Z TpSq - d @ .

deD deD,beB

Since (d® b | d € D,b € B) is a basis for ), M; we conclude that

w = std e kerajigm
deD

iff rpsq = 0 for all b € B,d € D. Note that this is the case iff sym; = 0 for all d € D and iff
wGAR(mk)'®j€JMj. ]

(o) Let J C X C K with |K \ X| = 1. By induction we may assume that ajxy, is 1— 1.

By @ also axgm is 1 — 1. Hence ajxm = axgm o ayx is 1 — 1. [2.6.10| implies that also
ajrm is 1 — 1. O
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Lemma 2.6.19 [more structure of f(m)] Let K be a field, (M;,i € I) a family of K-
spaces. Let m = (m;) € @icr M; with m; # 0 for alli € I. For each i € I choose a basis
B; of M; with m; € B;. Then

D:=(®@n|ne @_Bi,nwm).
is a basis for F(m).

Proof: Let w € F(m). Then w € Im,,,,, for a finite subset J of I. Since ®;B; spans
®; M; we conclude that w is in KD.

Next let ni,ng,...,ns € @ie] B; be pairwise distinct with ny; ~ m for all s. Then
there exists a finite subset J of I with ng |p= my, for all s. Let us = ns |j. Then
®ng = o yrm(®us. Since ® jB; is linearly independent in @) ; M, (®u1, ..., ®uy) is linearly
independent. Since ajr,, is 1-1 also (®nq,...,®n;) is linearly independent. Thus D is
linearly independent, proving the lemma. O

Lemma 2.6.20 [tensor of algebras] Let R be a commutative ring and let A and B be
R-algebras. Then there exits a unique R-multilinear binary operation

A®RrBx (A®rB) - A®gr B with (a®b) - (c®d) = (ac) @ (bd)
for all a,c € A,b,d € B. Moreover, A® B is a Z(A) ® Z(B)-algebra.
Proof: For a fixed (¢,d) € A x B, the map

AxB— A® B, (a,b) = (ac) ® (bd)

is R-multilinear and we obtain a uniquely determined R-linear map

fea i A®B - A® B,a®b— (ac) ® (bd)
The map A x B — Hompg(A® B, A® B), (¢,d) — f.q is R-multilinear and so we obtain
a uniquely determined R-linear map
f:A®B - Homgp(A® B,A® B), c¢®d— feq
For z,y € A® B define zy = f(y)(x). The lemma is now readily verified. O

Lemma 2.6.21 [extension of scalars| Let R and S be commutative fields with R < S.
Let A be an R-algebra and M an A-module. Then there exists a unique R-multilinear
module structure

S@rAXS®rM — S®r M with (s®a) - (t®m) = st ®am.
forall s,t € S;a e A,me M.
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Proof: Readily verified. U

Definition 2.6.22 [def:absolutely simple| Let K be a field, A an K-algebra and M an
A-module. Then M 1is called absolutely simple over K if for all fields F with K < F, Fog M
is simple F Qg A-module.

Lemma 2.6.23 [absolute and end| Let K be a field, A an K-algebra and M an simple
A-module. Then M is absolutely simple iff Enda(M) = K.

Proof: Let F be a subfield of End4(M) with K <F. Since F®y — M, (f,m) — f(m) is
K-multilinear and so we obtain a unique K-linear map

a:Feg M — M, f@m — f(m).

Also observe that M is a F @ A module via (f ® a) -m = f(am) for all f € F,a €
Ame M.
Let f,g € F,a € Aand m € M. Then

a((fea)geom)) = alfg@am) = (fg)lam) = f(g(am))
= flag(m)) = flaa(gem)) = (f®a)-alge@m)

Thus « is F' ® A-linear. Since f | 1® M is onto we have F@ M =1® M + ker a.

If M is absolutely simple over R, we get kera = 0 and F® M = 1® M. Let B be a
F-basis for M. Then 1 ® B is an F-basis for F ®x M and spans 1 ® M as a K-space. Hence
F =K. Let d € D := Enda(M) and put F = K(d). Since K < Z(D), F is a field. So
deF =K and so D =K.

Conversely suppose that End (M) = K. The by the Jacobson’s Density Theorem, A is
dense on M with respect to K. Let [F be a field extension of K and let v,w € F ®g M with
v # 0. Then there exists e1,...ey, f1,... fm in F and vy, v, vy, w1, ..., wy, € m with

n m
U:Zei(@vi andw:ZfiQ@wi
i=1 i=1

We may assume without loss that the v; are linearly independent over K and that e; # 0.
Since A is dense on M with respect to K, there exists a; € A for 1 < i < m with a;v1 = w;
and a;v; =0 for all 2 <i < n. Put d:= er-ilg—i(@ai € F® A. Then dv = w.

We conclude that (F ®g A)v =F @x M and so F ®g M is a simple F @k A-module. [

Corollary 2.6.24 [splitting field of a module| Let K be a field, A a K-algebra and M
a simple A-module. Let F be a mazimal subfield of Enda(M). Then M is an absolutely
simple F Qg A-module.
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Proof: Let D = Ends(M). We have Endpg, 4(M) = Enda(M) N Endp(M) = Cp(F).
By maximality of F, Cp(F) = F. Thus [2.6.23] implies that M is an absolutely simple
F Qg A-module. O

Corollary 2.6.25 [algebraically to absolute] Let K be a algebraically closed field, A a
K-algebra and M a simple A-module. If M is finite dimensional over K, then M is an
absolutely simple A-module over K.

Proof: By Enda(M) =K and so [2.6.23| implies that M is absolutely simple over K.
(]

2.7 Induced and Coinduced Modules

Definition 2.7.1 [def:induced] Let R be a ring, S a subring of R and W an S module,
M an R-module.

(a) [a] Let f: W — M be S-linear. We say that f is induced from W to R provided that
whenever N is an R-module and g : W — N 1is S-linear, then there exists a unique
R-linear map h : M — N with g = ho f. In this case M is called the R-module induced
from W to R and is denoted by W1E. f is denoted by L%(W) and h by hTISDL.

(b) [b] Let f: M — W be S-linear. We say that f is coinduced from W to R provided that
whenever N is an R-module and g : N — W is S-linear, then there exists a unique R-
linear map h : N — M with g = foh. In this case M is called the R-module coinduced
from W to R and is denoted by Wﬂ?. f is denoted by WI%(W) and h by hﬂ%.

Lemma 2.7.2 [induced] Let R be a ring, S a subring of R and W an S module. View R
as a right S module via right multiplication.

(a) [a] There exists a unique R-module structure

RxRRsW - RsW withr(t@w) =rt @ w
forallr,te RiweW.

(b) [b] The map f: W — R®s W,w — 1®@w is induced from W to R.

(c) [c] Any map induced from W to R is isomorphic to f.

Proof: () Let .t € R,s € S and w in W. Then t(rs) ® w = (tr)s ® w = tr @ sw and so
the map oy : Rx W — R®g W, (r,w) — tr ® w is S balanced. The universal property of
the tensor product implies that @ holds.
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Let N be an R-module and g : W — N an S-linear map. Then the map R x W —
N, (r,w) — rg(w) is S balanced. So by definition of the tensor product there exists a Z-
linear map h : R®gW — N with r@w — rg(w). Then h(f(w)) = h(l®@w) = 1g(w) = g(w)
and so ho f = g. Moreover th(r @ w) = t(rg(w)) = (tr)g(w) = h(tr @ w) = h(t-r ® w) and
so h is R-linear. Thus (b)) holds.

is obvious. O

Lemma 2.7.3 [coinduced]| Let R be a ring, S a subring of R and W an S module. View
R as S-module via left multiplication.

(a) [a] Homg(R, W) is an R-module via (ta)(r) = a(rt) for all r,t € R,a € Homg(R, W).
(b) [b] The map f:Homg(R, W) — W, — «(1) is S-linear and coinduced from W to R.

(c) [c] Any map coinduced from W to R is isomorphic to f.

Proof: @ We first need to verify that ta is S-linear. Let s € S and r € R. Then

(ta)(sr) = a((sr)t) = a(s(rt)) = sa(rt) = s - (ta)(r)

So indeed ta € Homg(R,W). To check that this is an R-module structure let also
u € R. Then

((ut)a)(r) = alr(ut)) = a(ru)t) = (ta)(ru) = (u- (ta))(r)

So (ut)or = u(ter) and () is proved.

() We have f(sa) = (sa)(1) = a(sl) = s-a(l) = s- f(a) and so f is S-linear.
Let N be an R-module and g : N — W be S-linear. Define h : N — Homg(R,W) by
h(n)(r) =r-g(n). We have

h(n)(sr) = (sr) - g(n) = s (r-g(n)) = s - h(n)(r)

and so h(n) is indeed S-linear. Also

and so foh=g.
Obvious. O

Proposition 2.7.4 (Frobenius Reciprocity) [frobenius rec| Let R and S be rings with
S<R,Wan S- and V an R-module.

(a) [a] The map Homp(W 1%, V) — Homg(W, V), a — aoi3(W) is a Z-isomorphism with
inverse 3 — BT%.



Section 2.7. Induced and Coinduced Modules 61
(b) [b] The map Homp(V,W13) — Homg(V, W), a — 73(W) o a is a mbZ-isomorphism
with inverse  — Bﬂf‘%.

Proof: This proposition merely rephrases the definitions of induced and coinduced maps.
O

Lemma 2.7.5 [induced for r free over s| Let R and S be rings with S < R and let W
be an R-module.

(a) [a] Suppose that R is a free right S-module with basis B. Then the map

@W—)WT%, (wb)—>Zb®wb
B beB

s a Z-isomorphism.

(b) [b] Suppose that R is a free S-module with basis B. Then the map

Wﬂfﬁ@w, a—alB
18 a Z-isomorphism.

Proof: @ We have R = @,czbS and bS @ W = W.
(]E[) Follows immediately from the definition of an S-basis. g

Definition 2.7.6 [def:imprimitive] Let R be a ring, G a group and M an RG-module.
(a) [a] A system of imprimitivity for RG on M is a tuple (M | b € B) such that

el
Q
s
Il
S
T
3
3
S
m
Q
S
m
=

(b) [b] A system of imprimitivity is called proper if |B| > 1.
(c) [c] An RG- module with a proper system of imprimitivity is called imprimitive.

(d) [d] A RG- module M s called primitive if M is simple and not imprimitive.

Suppose that (M, | b € B) fulfills (a:a)-(a:d) of 2.7.6, Then M = {M, | b € B} is a
G-invariant set of non-zero R-submodules of M. Moreover M = @,z M, iff M = P M
and M, # M, for all a,b € B.

In particular, if M is G-invariant set of R-submodules of M, then (W | W € M) is a
system of imprimitivity for RG on M.
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Lemma 2.7.7 [submodules of induced| Let R be a ring, G a group, M an RG-module
and (My | b € B) a system of imprimitive for RG on M. Fiz a € B and let W, be non-zero
Ca(a) submodule of M,. Put W = RGW,. Then WN M, = Wy, W < 37 Mo and
(WnNM,|be Ga) is a system of imprimitivity for G on W.

Proof: For g € G put Wy, = gW,. Since Cg(a)W, = Wy, this is well defined. Then for
all b € Ga, W, < M, and so

W=GWo=> gWa=> Wo=PW,

geG beGa beGa
Hence W N My = W, for all b € B and the lemma is proved. O

Lemma 2.7.8 [imprimitive and induced]| Let R be ring, G a group and V an RG-
module.

(a) [a] If H< G and W is a non zero RH-module with V.= W 1%, then (&(W) is 1 — 1
and (T@W |T € G/H) is a system of imprimitivity for G on V.

(b) [b] Let (V,b € B) be a system of imprimitivity for RG on V. Let b € B. Then V}, is
an RC¢(b)-submodule and there exists a unique RG-linear map

p: VngG(b)% V with (v) = v

for all v € Vy, where v = LgG(b)(V},).

Moreover, pis 1 —1 and Imp =
p s an isomorphisms.

acqp Va- In particular, if G'is transitive on B, then

Proof: () Let 7 be a left transversal for H on G (that is (tH |t € T) is a partition
of G) with 1 € T. Clearly T is a basis for RG as a right RH-module. Then by @),
a: @ W =V, (w) > >t ®wy is a Z-isomorphism. In particular, .5 (W) : W — V,w —
lowisl—1land V =@,c.rt@W. Since th@ W =t @hW =t @ W for all h € H we
have t@ W =tH @ W = (tH)(1 ® W) and so

V=T oW)|TecG/H)

Also g(T® W) = ¢gT @ W and so (a]) holds.

@ Put H = Cg(b) and W = V;. Then for all h € H, hb = b and so hV, = V4. So
W is an RH-submodule of V. Let j : W — V be the inclusion map. The uniqueness and
existence of p follows from the definition of the induced module, namely p = jTg. Let T
be as in 1} Let u € WT%. Then u =), 7t ® w; for some wy € W and so

0=p(u)=pd t@w) =" tp(low) =" tw

teT teT teT
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Since w; € V,, twy € V. Conversely if a € Gb and m € Vj, then a = tb for some ¢t € T
and t7'm € V,. Thus Imp =3 .y Va.

Suppose that u € kerp. Since T is transversal to H = Cg(b) we have tb # sb for all
t,s € T. Thus V = @ ez Vs implies tw; = 0 for all ¢ € 7. Hence also wy = 0 and u = 0.
So pis 1-1. 0

2.8 Tensor Induction and Transfer

Definition 2.8.1 [def:rgi-module| G a group and I a G-set. Let R be a ring. A G — I-
set (M;,i € I) is called an RG — I-module provided that each M; is an R-module and each
pg(i),g € G,i €I is R-linear.

Let M be an RG-module and H < G and W an RH-submodule. Then (TW | T € G/H)
is an RG — G/H-module. Here for T € G/H, TW = {tw |t € T,w € T} = tW for all
teT.

Let (M;,i € I) be a system of imprimitivity for G on M with respect to R.. Then
(M;,i € I)is an RG — I-module

Lemma 2.8.2 [rg-i-module| Let R be a ring, G a group I a G-set and (M;,i € I) an
RG — I-module.

(a) [a] @ M; is an RG-module via g - (m;); = (gmy-1;) for all g € G and m = (m;); €
@1 M;. Moreover, the action of G on (; M; view as a subset of M is the same as the
action of G on jM;.

(b) [b] M = @; M; is an RG-submodule of @ M; and (M;,i € I) is a system of im-
primitivity for G on M with respect to R.

(¢) [c] Suppose R is commutative, then @ M; is an RG-module via g ® m = @gm for all
geG me @nm,.

Proof: @ By G acts on @7 M; in the given way. This action is clearly R-linear. Let
oj : M; — @ M; be natural monomorphism, that is o (m;) = (6;jm;. Then (g-0j(m;))g =
gdiym; and so g - 0 = (0gi jgms) = og;(gm;), proving the last statement in (a)).

(b)) follows directly from @

For g € G define a4 : D M; — ®? M;m — ®gm. This is R-multilnear and
we obtain an R-linear map S, : Q; M; — @; M;,®@m — ®gm. Then p,(betan(®@m)) =
®@ghm = Bgp(®@m) and so Bgn, = Byfh. Thus G acts R-linearly on &), M;. O

Lemma 2.8.3 [basis for rg-i-module] Let R be a ring, G a group, I a G-set and (M;,i €
I) an RG — I-module. Suppose that G acts transitively on I and fir k € I. Let H = Cg(k).
Let i € I and choose r; € H with i = r;k. Suppose that My, is a free R-module with basis A
and that for h € H, (hap)(ap) 15 the matriz of py(h) with respect to A. Put A; = r; A. For
g € G define h(g,i) € H by gr; = r4h(g,17)
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(a) [a] A; is an R-basis for M;.

(b) [b] Let j = gi. The matriz of pi(g) with respect to A; and A; is (h(g,%)ab) (rsa,r;b)-
(c) [c] A :=W;c; Ai is an R-basis for M = @; M;.

(d) [d] The matriz for g on M with respect to Ay is (Ogi,j (g, 7)ab) (r;a,r;b)-

(e) [e] Suppose I is finite and R is commutative. Then ®@1A; is an R- basis for N :=

X M;.

(f) [f] Suppose I is finite and R is commutative. Then the matriz for g on M with respect
to @ierAi is (I1jer M9, 7)ajbe; )(@riasorib)-

Proof: Recall first that if VW are free R-modules with R basis C and D respectively,
then the matrix (k.q)(c,d) of f € Hompg(V, W) is define by f(c) = > cp kead.
@, and (E[) are obvious.

@ Since gr; = rjh(g, 1),

g-ria=rph(g,d)a=ry Y (g, D)asb =Y h(g,i)aprsb

beA beA
@ Follows from (@
@ Let a ®5 A;. Then a = ®r;a; for some q; € A.

ga = g ®a; = QGrg—1iQg-1;
= ®> peahly, gili)(ag_li,bi)ribi = Z(m)e@m\ (ITics Mg, g i) (@g—14,b5)) @ ribs
= Z(bi)e@uﬁl (Hje] h(g,5) (@, bgj)) ® 7ib;
and so @ holds. O

Definition 2.8.4 [def:tensor induction| Let R be a commutative ring, G a group, H < G
and W an RH-module. ForT € G/H let T@W ={t@w |teT,we W} < RGQry W.
The RG-module ®TeG/H T®W is called the tensor induced RG-module of W and is denoted
by W15C.

Lemma 2.8.5 [transfer hom]| Let R be a commutative ring, G a group, H < G with G/H

finite. Let A : H — R a multiplicative homomorphism. Let (rp,| T € G/H) be a transversal
and define

X9 G = Ryg— [ Mhlg. 1))
TeG/H

Let Ry be the RH module with Ry = R as R-module and hr = A\(h)r for allT € R,h € H.
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(a) [a] detpa(g) = A9 (g)sgng/m(9)-
(b) [b] R,\T%G% Rysc as an RG-module.

(c) [c] A®C is a multiplicative homomorphism.

Proof: (@) and follow from follows from and equally well from (). O

2.9 Clifford Theory

Definition 2.9.1 [def:homogeneous| Let R be a ring and M an R-module. Then M s
called R-homogeneous if M is the direct sum of isomorphic simple R-modules. For S an
isomorphism class of simple R-modules, Mg denotes the sum of all simple R-submodules
contained in S. Mg is called a homogeneous components for R on M. Also let Syr(R) be
the sum of all simple R-submodules in M.

Lemma 2.9.2 [basic homogeneous| Let S the set of isomorphism classes of simple R-
submodules of M.

(a) [a] Spr(R) is the largest semisimple R-submodule if M.

(b) [b] Each Mg, S € S, is a mazimal homogeneous R-submodule of M.
(¢) le] Su(R)=DgesMs-

Proof: () and (b)) are fairly obvious. For (d) let S € S and put W =Y {My | S#T €
S}. By any simple submodule of Mg is contained in S and any simple submodule
of W is contained in a member of S\ {S}. Thus W N Mg contains no simple R-submodule.
By W N Mg is semisimple. So W N Mg =0 and so holds. ]

Definition 2.9.3 [def:conjugate modules| Let N be a group, R a ring and W and RN -
module. For a € Aut(N), “W denotes the RN-module with W = “W as R-module and
n-qw=a (n)w for alln € Nywe W. If G is a group with N <G and g € G we write

IN for °N, where a: N — N,n — gng~'. Son-,w = (¢~ ng)w.

Lemma 2.9.4 [basic conjugate modules| Let R be an ring.

(a) [a] Let N a group, a € Aut(N) and V and W are RN-modules. Then V = W iff
oy =W,

(b) [b] Let N a group, a, 8 € Aut(N) and V an RN-module. Then “(%V) = 5V,

(¢) [c] Let G be a group, N <G,V an RG-module, W an RN -submodule of V and g € G.
Then gW is an RN -submodule and gW = 9V .
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@ and (]ED Readily verified.
Define p : W — V,w — gw. Then clearly p is 1-1, Imp = gW and p is R-linear.
Now let n € N and w in W. Then

p(n-gw) = p((g~'ng)w) = gg~'ngw = ngw = np(w)

Thus p is RN-linear. In particular, gW = Im p is an RN-submodule and is proved.
O

Definition 2.9.5 [iso classes| Let R be a ring and M an R-module.

(a) [a] [M] denotes the isomorphism class of M that is the class of all R-modules isomor-
phic to M.

(b) [b] If R = K[N] for some ring K and some group N, and o € Aut(N), then “[M] =
[“M].

Theorem 2.9.6 (Clifford) [clifford] Let R be a ring, G a group, N < G and M and
RG-module. Let I be the set of simple RN -submodules in Z. For I € T let [I] be the
isomorphism class of I. Put S = {[I] | I € T}.

(a) [a] gMs = Msg for all S € S and g € G.

(b) [b] (g,5) — 95 is an action of G on S.

(c) [c] (Ms|S€S) is a system of imprimitivity for G on Sy/(RN).
(d) [d] Ng(Mg) = Ng(S) for all S € S.

(e) [e] Suppose that S # () and let S € S. Then M is a simple RG-module iff each of the
following holds:

(a) [a] M = Sy(RN).
(b) [b] G acts transitively on S.
(c) [c] Mg is a simple RNg(S)-module.

(f) ] If M is a simple RG-module and there exists S € S, then M = MST%g(S)'

Proof: () I € Z with I € S and g € G. Then by[2.9.4)d), g1 € [4I] = 9S. Thus gI < Mg
and so Mg < Msg. Since g is invertible in G. By [2.9.4{(b), ¢ (95) = S and so also Myg < Mg
and so @ holds.

(]E[) If T is an isomorphism class of RN-modules, then T' € S iff My # 0. So implies,

95 € § for all g, S € S. now follows from (]ED

Follows from (@), (b)) and [2.9.2{().
(d) By (&), Na(S) < Ne(Mg). Let g € Ng(Mg) and I € T with I € S. Thus gl is a
simple RN-submodule isomorphic to %. Also gI < Mg and so [I9] = S and g € Ng(9).
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@ Suppose first that M is a simple RG-module. By assumption Sy;(N) # 0 and since
M is simple for RG, Sy (N) # 0 and so Sy (N) = M. Let S € S and Wg a nonzero
Ng(S)-submodule of Mg. Put W = RGWg. Since M is simple, W = M. By
M =W <3 rceg Mr and so G is transitive on S. Also Wy = W N Mg = Mg and so Mg
is a simple RNg(S)-module.

Suppose now that — hold. Let W be a non-zero RG-submodule of M. By ,
M and so also W is semisimple for RN. In particular there exists I € Z with I < W. By
(e:b), 91] = S for some g € G. Thus gI < W N Mg. Hence W N Mg # 0 and implies
Mg =MgNW < W. and imply that M = RGMg = W. Thus M is a simple
RG-module.

@ Follows from , @ and O

Lemma 2.9.7 [interwining numbers] Let K be am algebraicly closed field and R a finite
dimensional K-algebra. Let S be a set of representatives for isomorphism classes of simple

A-modules. For R-modules M, N define i(N, M) = dimg Homp(N,M). Let S € S and M
an R-module.

(a) [a] (S, M) =i(N,Sy(R)) = i(S, Mig)).

(b) [b] If M is finite dimensional ( over K), then Mg = SUSM) 45 an R-module.
(c) [e] If M is semisimple and finite dimensional, M = @ g5 SUSM),

(d) [d] If N and M are semisimple, then i(N, M) = g.5i(S, N)i(S, M).

Proof: @ Let 0 # f € Homg(M). Then 3f = S and so Sf < Mg < Spy(R). Thus
Hompg(S, M) = Homg(S, Sy (R) = Homg(S, M|g). So @ holds.

(b) Note that Mg = S™ for some n € N. Thus Hompg(S, Mg)) = Hompg(S,S)" and by
HomR(S, M[S}) = K"

(c) Since M = Pges Mg, this follows from .

(d)) Follows from and (b).
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Chapter 3

Character Theory

3.1 Semisimple Group Algebra

Definition 3.1.1 [def:splitting field] Let G be a finite group. Then a splitting field for
G is a field K such that all simple KG-modules are absolutely simple.

Lemma 3.1.2 [existence of splitting fields| Let G be a finite group.

(a) [a] Let K be a field, then there exists a finite extension F of G such that F is a splitting
field for &.

(b) [b] Ewvery algebraicly closed field is a splitting field for G.

Proof:

@ Let S be a set of representatives for the isomorphism classes of KG-modules. Since
KG is Artinian, S is finite and all S € S are finite dimensional. Let K be an algebraic
closure of K. For S € S choose a subfield Kg in Endgg(S) and K-linear monomorphism
os : Kg — K. Let F be the subfield of K generated by all the Sog, S € S. Then by
F is a splitting field for G.

(o) Follows from (&) and equally well from

In this section we assume that G is a finite group, and K is a splitting field for G with
charK 1 |G|. Let S = S(KG) be a set of representatives for the isomorphism classes of
simple R := KG modules. For S € S let dg = dimg S and Rg = [{Ar(T) | S # T € S}.
Let C be the set of conjugacy classes of GG, that is the set of orbits of G acting on G by
conjugation. For H C G put ag =) H € KG. For C € C choose g¢ € C.

Theorem 3.1.3 [structure of group algebra] Let S € S.

(a) la] R=@ges Rs-
(b) [b] Rs = RY = Endk(S) is simple and dimg Is = d2.

(¢) [e] 1G] = Fsesds-

69
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(d) [d] Let eg be the multiplicative identity in Is. Then Z(Rg) = Keg and (es, S € S) is
a basis for for Z(R).

(e) [e] (ac|C €C) is a basis for Z(R).

(f) If] 18] = dimg Z(R) = [C|.

Proof: () and (b) By [2.5.23) J(R) = 0. Thus () and (b)) follows from
Follows immediately from and (]ED

@) By Endgpg, (5)(S) = K. Hence Z(Endg(S)) = K and so Z(Rs) = Kes. By

@ Z(R) = Pges Z(Rs) and so @ holds.
(E[) Let a =) geG kg9 € R. Then the following are equivalent:

a € Z(R)
ah = ha Vh € G
hah™! =a Vh € G

> e kghah™ =Y o kg Vh e G
ZQEG kh*lghg — EQEG kgg Vh S G

kh_lgh — k?g \V/h € G
kg = kn vC eC,g,heC
a=> cecckcac for some(kc) € @ K
So @ holds.
@ follows immediately from @ and @ |

Lemma 3.1.4 [class algebra constant]| There exists integers kcpg, C, D, E € C with

acap = Y _ koprag.
EeC

forall C,D, E.
Proof: This follows from acap € Z(ZG). O

Definition 3.1.5 [def:class algebra constant| The integers kcpg in are called the
class algebra constants of G.
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3.2 Characters

From now an K is a splitting field of G contained in C and all KG-modules are assumed to
be finite dimensional over K.

Definition 3.2.1 [def:character| Let M be a R-module of finite dimension dpr andr € R.
py 2 R — Endg (M) is the corresponding homomorphism defined by ppr(r)(m) = rm for all
r € R,m € M. ny(r) is the characteristic polynomial ppr(r). trar(r) is the trace of par(r).
XM s the restricton of ttryr to G. xm

Definition 3.2.2 [def:class function]

(a) [a] A class function is a function T : G — K which is constant on every conjugacy
class.

(b) [b] F(G,K) denotes the set of all class function.

(c) [c] For any funtion 7 : G — K, T denotes the unique K-linear extension of T to KG,

that is 7(3_p, 9)) = 2_kg7(9)-
Observe that for an KG-module M, xpr = tray.

Lemma 3.2.3 [class functions] Let 7 € F(G,K). Then =3 ;7(9)g € Z(K(G)). In
particular, F(G,K) = Z(KG).

Proof: Just recall that by definition KG is the set of all functions f : G — K and we
identified g with the functions h — 4. O

Lemma 3.2.4 [characters are class functions| Let M be a KG-module.
(a) [a] xar is a class function.
(b) [b] If N is an KG-module isomorphic to M, then XN = XM -

(¢c) [c] If N is a set of R-submodules with M = @ N then Xpr =Y yepn XN-

Proof: (a) and (b) follow from the fact that tr(a) = tr(8) for any two equivalent K-
endomorphism « and S.

@ is obvious. OJ

Definition 3.2.5 [def:algebraic integers] Let a € C.

(a) [a] a is called an algebraic integer if f(a) =0 for some monic f € Z[x]. A denotes the
set of all algebraic integers.
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(b) [b] @ is the commplex conjugate of a and |a| = v/aa.

Lemma 3.2.6 [algebraic integers]

(a) [a] A is a subring of Z

(b) [b] ANQ=Z.

(c) [c] Ifa € A and let f, be the minimal polynomial of a over Q. Then f € Z[z].

(d) [d] Let A € K be a root of unity ( that is \* =1 for some n € Z*. Then |A\| = 1 and
A=x"1

(e) [e] Let a € K and suppose a = Z?:l i, where each A; is a root of unity.

(a) [a] a is an algebraic integer.

(b) [b] |a| <d.
(¢)
(d) d] a:diﬁ)\lz)\g— ..:)\d:1.

T EETE
s
I
S
.
=
>~
2
I
>
(V]
I
I
>
=

Proof: () See any graduate algebra book. For example [Gr, VI.4.4].

@ Let a = ANmbQ. Then a = - for some n, m € Z with ged(n,m) =1 and f(a) =0
for some monic f = Z?:o a;x’ € Z[z]. So n? = — Zf:_& ainimd=1
ged(n,m) =1, m = +1. So a € Z.

Let I be the splitting field of a over Q and H = Autg(F). By Galois theory
[ =Ilpeg(x = h(a)). Clearly each h(a) € A and so by @7 J € Alz]. Thus (c) follos from

. Thus m | n and since

@ A" = 1 implies (AX)" = 1. Since A\ is a positive real number, A\ = 1. So |\ = 1|
and A = —A~L. Also ) is a root of " — 1 and so \ € A.

@each)\iEAandsoby @,aGA.
(e:b) By the tringualar inequality,

d
(%) lal <D Il =d
i=1

Equality holds in (*) iff exists there exists A € K and r; € RZ? with \; = r;\. Since
[Ai| =1 we get r; = 1 and the \; are all equal.

Follows from .
Let f be the minimal polynomial of § over Q, F = Q(A1,...,A\q) and h € H :=
Autg(F). Then

h(a) = sumle h(A;)
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Each h()\; is a root of unity and so by , |h(a)| < d. Thus |h(§] < 1. Put e :=
[lhem h(§5. Then |ef < |2] < 1. But e = £f(0) and so by @, e €Z. Thus e = 0,£1. In
the first case we get a = 0 and in the second |e] = 1 and so also |fracad =1 and |a| = d. O

Definition 3.2.7 [dual] Let F' be a commutative ring, A an F-algebra and M an A-module.

(a) [a] Then M* = Hom(M, A) is called the dual of M. We view M* as a right R-module
via (ab)(m) = a(bm) for alloo € M*,be A and m € M.

(b) [b] If A = F[H] for a group H, let o : A — A be F-linear anti-automorphism with
¢° =g for all g € G. Then we view M* has a left R-module via ba. = ab® for all
be A, ae M*.

Lemma 3.2.8 [basic character| Let M be an R-module and g € G.
(a) [a] xum(1) = da := dimg M.

(b) [b] xar(g) is the sum of the eigenvalues for g on M over C, counting multiplicities. In
particular, xar(g) is an algebraic integer.

(c) [c] xa(g~1) = xa(g), where k denotes the complex conjugate of k € K.
(d) [d] X1 = xm-

(e) le] [xam(9)| < du.

() ] |xa(9)l = duas iff g acts as a scalar on M.

(9) 8] xm(9) =dn iff g € Ca(M).

Proof: @ is obvious.

(o) For example by Maschke’s Theorem and Schur’s Lemma there exists a basis B of
eigenvectors for g on m. For b € B let )\ the the corresponding eigenvector. Let n = |g|.
Then b = ¢g"b = A\J'b and so A}’ = 1. Moreover xn(9) = > pecp Mo € A and so (]ED follows
from [3.2.6|(€).

(c) Since X = A\~! we have ¢g7'b = Ag and so holds.

(d) Let b* € M* be define by 8*(a) = da for all a € B. Then B* is a basis of M*. From
(gb*)(a) = b* (g7 a)) = b*(M\a)a) = Sapra, We see that B* is a basis of eigenvectors form g
on M* with eigenvalues \,. Thus @ holds.

, @) and follow from (]ED and .

Definition 3.2.9 [trivial module]

(a) [a] Kg is the KG-module defined by Ko = K has a K-space and gk = k for all g € G
and k € K. Any module isomorphic to Kg is called a trivial KG-module. x1 = Xk, 15
the character of the trivial module and so x1(g) =1 for all g € G.
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(b) [b] Let Q be a G-set. Then K is the KG module with K-basis Q and g- ), cqkow =
ZWGQ kwgw'

Note that for 2 = G with G acting by left multiplication the just defined KG module
K€ is the same as KG- view as a KG-module by left multiplication.

Lemma 3.2.10 [permutation character| Let Q be a G-set.

(a) [a] (Kw|w € Q) is a system of imprimitvity for G on KQ.

(b) [b] xxa(g) =[Calg)| for allg € G.

(c¢) [c] Suppose G acts transitively on Q and let w € Q. Put H = Cg(b). Then then
KH == Ky1%.

Proof: () We have gKw = K(gw) and KQ = ®,coKQ. So (a]) holds.
(@) Fori € Q, gi = ZjeOmega dg4i,jJ So the matrix for g on Kf2 with respect to the basis
Q is (9,

gi,j- Hence xkg(9) = Zieg Ogii = Ziecg (9)1 = |Cal(g)|-
Observe that Kw is a trivial KH module. So follows from (&) and 2.7.8(b). O

Lemma 3.2.11 [reg char] Let g € G.

(a) [a] R=Y g s8% as an left R-module.

(b) [b] Xr=>gcsdsXs-

(c) [c] Xr(9) =2 sesdsxs(9)-

(d) [d] xr(1) = Ygesdz = |G|

(e) [e] If g # 1, then xr(9) = Y ges dsxs(g) =0.

Proof: @) By:3.1.3@, R = @g.s Rs as aring and by By (]E[), Rg = SPs as a left
Rg-module. So holds.

(]ED follows from @ and .

follows from (]ED

Let Q = G view as a G-set by left multiplication. Then Cq(g) = 0 if ¢ # 1 and
Cq(1) = Q. So by xr(1) = |G| and xp(g) =0 for 1 # g € G. (d) and (d) now follow
from (c) and xs(1) = Dg. O

Lemma 3.2.12 [change of basis] Let S € S and C € C.
(a) [a] es= |dﬁs| ZQGGXS(Q)Q = % >-cec Xs(gc)ac.

(6) [b] ac = Y ses roxs(go)es
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Proof: @ Let es = 3 e kgg with kg € K. Let h € G. Then heg = }_

@), @, xr(hg) = |G| if h = g~! and 0 otherwise. So

ginG kyhg. By

(1) xr(hes) = kp-1|G].

On the otherhand pr(eg) =0 for all S # T € S and pg(eg) = idg. Thus xr(hes) = 0
and xg(heg) = xs(h). So 3.2.11 Xr(hes) = dsxs(h). So by (1) kj—1 = f%s‘)(s(h) and so
ki = @5 xs(h!) = £5%s(h). Thus @ holds.

@ By ac = Y ges kses for some kg € K. Also x7(es) = dsrds and so

krdr = xr(ac) =Y xr(9) = |Clxr(9c)
geC

So ky = |C|X{92). 0

Lemma 3.2.13 [eigenvalue| Let C € C and S € S. Then ps(ac) = %Xs(gc)ids and

%XS(QC) is an algebraic integer.

The first statement follows immediately [3.2.12([b). In particular, eg is an eigenvector with
eigenvalues %Xg(gc) for ac on Z(KG). By|3.1.4|the matrix of ac with respects to the basis
(ap,D € C) of Z(KG@G) is integral. Thus the characteristic polynomial for ac on Z(KGQG) is

monic integral. Thus all the eigenvalues are algebraic integers. t

Theorem 3.2.14 (Orthogonality Relations) [orthogonality]

(1) [a] For all S,T €S,

|c1:| > xs(9)Xr(g) = dsr

geG

(II) [b] For all C,D €C,

> xs(ge)xs(9p) = [Calge)lden.
ses

Proof: Let A be the matrix for the change of bases for Z(KG) from (ac,C € C) to

(es | S € S). Then by 3.2.12@), A = (%ys(gc))gc. Also let B be the matrix for

the change of basis for Z(KG) from (eg | S € S) to (ac,C € C). Then by [B.2.12f(),
B = (Elxs(ge))es.
Since AB = Ig we get for all T, S € S that
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d C

> ‘,GT|XT g9c) ’ |Xs(gc)) = O

CceC
and so

_ dg
sumgeaxs(9c)Xr(9c) = £5ST = dgr
So hold.

Since BA = I¢ we get for all C, D € C

and so

SeS

> xs(ge)Xs(gp) =
Ses

Since |C| = |G/Ca(gc)| we see that holds.

|Gl
Cl

C
Z' |ngc |Xs(gD) dcp

—10cD

Proposition 3.2.15 [ds divides g| dg divides |G| for all S € S.

Proof: By the first orthogonality relation 3.2.14 applied with S =T,

ceC
Multiplication with l | gives:
|Clxs(ge) \Xs _
> xs(gc) =
CeS
By 3.2.13 |Clxs(ge)

|G| > " [Clxs(gc)Xs(gc) =1

G|
ds

ids] is an algebraic intgeger, by 3.2.8(15!), xs(gc) is an algebraic integer and

so by [3.2.6

(Eb also |G‘ is an algebraic integer. So by

3.2.6

(b).

Gl . .
dg 1s an integer. U

Definition 3.2.16 [def:char table] The S x C matriz (xs(gc))sc is called the character

table of G.

The next lemma shows how the class algebra constants can be computed from the
character table.

Lemma 3.

2.17 [compute constants]
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(a) [a] For allC,D,E €C:

Gl

k = )
“PE [Calgo)|Calgn)] Sze;gd xs(9¢)xs(9p)Xs(95)
(b) [b] For allC,D €C
Gl Xs(9¢)Xs(gp)
acap =
P [Colge)[Calon) 2 ds

Proof: @ By definition of the kopr,

acap = Z kcprar

FeC
and so also
ps(ac)ps(ap) =Y keprplar)
FeC
Thus [3.2.13| gives
C D F
[Clxs(gc) | !Xs 9p) =S ken ! \XS gr)
ds
FeC
Thus
|C|D]
F|k
ds xs(9c)xs(gp) = > _ |Flkcor

FeC

Multiplying with X¢(¢r) and summing over all S € S gives

C|[D] Y ;SXS(Q(J)Xs(gD)Xs(gE) = Y |Flkepr Y xs(gr)Xs(gz)

Ses FeC Ses
(2nd Orthogonality relation) = Z |F\kcpr|Ca(9E)dEF
FecC

|Elkcpr|Ca(g9r)|

Since |X| = 7 I% for X = €, D and E, @) holds.

(]E[) Note that kcpg is real valued. So (]E[) follows from @ O
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3.3 Burnside’s p”¢® Theorem

In this short section we will show that all groups of order p®q®, where p and ¢ are primes
are solvable.

Definition 3.3.1 [def:zchi| Let x be a character of G. Then

kerxy = {g€G|x(g)=x(1)}
Z(x) = {9€G|Ix(g)=x1)}

Lemma 3.3.2 [zchi] Let S € S. Then
(a) [a] ker xg = kerg(ps) = Ca(S).

(b) [b] Z(xs) consists of all g € G which act as scalars on G. Moreover, Z(xs)/ ker xs =
Z(G/ ker xs).

Proof: (f]) follows from and the first part of from [3.2.8|(f). For the second
statment since G/ ker xys = ps(G) we may assume that G < GLg(S). The Z(G) = GnN

Endga(S) and by Schur’s Lemma Endga(S) = K. So Z(G) = GNK and so the
second statement in (]ED holds. O

Lemma 3.3.3 [gcd=1] Let S € S and C € S with ged(ds, |C|) = 1. Then either x(9c) =0
or C C Z(xm)-

Proof: Choose integers a,b with adg + b|C| = 1. Multiplying with XscggC) gives

C
axs(ge) + bl EXs9e) _ xslgo)
dg ds

By [3.2.13|3.2.8|(b]) and [3.2.6{(a]) the left side of this equation is an algebraic integer. The
right side is the sum of dg roots of unity devided by dg. So by |3.2.6(l), xs(gc) = 0 or
Ixs(gc) = ds. O

Proposition 3.3.4 [towards pagb]| Suppose that C € C with |C| = p* for some prime p
and some t € N. If G # 1, then there exists a non-trivial simple character x with C C Z(x).

Proof: 1If C' = {1}, this is true for any non-trivial simple character x. So suppose C' # {1}.
By the second orthogonal Relation applies with D = 1:

> xslge)xs(1) =0

Ses

and so
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1+ Z xs(Ge)ds =0
Kg#SeS
By @, 1% ¢ A. Thus 1 ¢ pA and by the preceeding equation there exists Kg # S €

S with xs(gc)ds ¢ pA. Since xs(gc) € A this implies p { ds and xs(gc). Since |C| = p!
we get ged(dg, |C|) =1 and the proposition follows from O

Theorem 3.3.5 (Burnside’s p?p’-Theorem) [paqb] Let p and q be primes, a,b € N
and G a finite group of order p*qP. Then G is solvable.

Proof: By induction on |G|. The Theorem is clearly true for |G| = 1. So suppose |G| # 1
and say ¢ # 1. Let @Q be a Sylow g-subgroup of G and 1 # g € Z(Q). Then ¢* | |Cg(9g)
and so |G/Cg(g)| = p! for some 0 < ¢t < a. Put C = %. Then |C| = p' and by
C C Z(x) for some non-trivial simple character y. Since x is non-trivial simple, ker y # G.
So by induction ker y is solvable. By Z(x)/ ker x is abelian and so solvable. Since
C C Z(x), Z(x) # 1 and so by induction also G/Z(x) is solvable. Since extensions of
solvable groups are solvable, GG is solvable. O

3.4 An hermitian form
Recall that r € K[G] is a function from G — KG and 7 is linear extension of r to K[G].

Definition 3.4.1 [def:inner product| Let r, s € KG.

(a) [a] T is defined by 7(g) = r(g), in other words if r = dea reg, then T = deG?gg.
() 1b] (1] ) = &) = i Xyece o

Lemma 3.4.2 [inner product]

(a) [a] G is a positive orthogonal basis for KG with respect to (- | -).

(b) [b] (-]-) is a positive definite hermitian form on KG.

(c) [c] (rt]s)=(r]|st) and (tr|s)= (r|ts) for allr,s,t € KG.

(d) [d] roinn(g) =g 'rg for allr € KG, g € G.

Proof: (EI} Let g,h € G. Then by defintion (g | h) = ‘—aégh.

() Clearly (- | -) is K-linear in the first coordinate and (K,)-similinear in the second.
Also by (B), (- | -) is symmetric and real valued then restricted by the basis G. So by
sesquilinearity (r | s) = (s | r) for all r,s. Thus (- | -) is an hermitian form. So by @), (1)
is positive definite.
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Let g,h,l € G. Then gl = h iff g = k™! and so

1 1 _ o
(gl | h) = @%l,h = @%,hl—l =(g| M) =(g| ")

Sesquilinearity now implies the first statement in . The second follows similarly (or
by applying the first to the opposite group of G.)
@ By K-linearity we may assume r = h € G. Let [ € G. Then

(hoinn(g)) (1) = h(glg™") = g1 = 64-1hg0 = (9~ hg) (1)
So hoinn(g) = g 'hg. O

Lemma 3.4.3 [orthonormal basis| (xs | S € S) is an orthonormal basis for Z(KG).

Proof: By the First Orthogonality Relation, sysxr = dsr. In particular,(xs | S € S) is
lineraly independent and since dim Z(KG) = [S|, (xs | S € S) is a basis for Z(KG). O

Corollary 3.4.4 [i=s] Let N, M be KG-modules. Then

(a) [a] For any o € Z(KG), o = Y gos(xs | @)xs.

(b) [b] Let M =Y ¢ 55" and N = > gc5575. Then (xum | Xn) = D ges isis = i(N, M).
(¢) ] N = Fgeq SO0,

(d) [d] M2 xa N if and only if xar = X

@ Follow from

@ Note that xar = > gesisXxs and Xy = Y gegisxs. Thus @ folloes from and
291

By (]E[) applies with M = S, is = (xs | xv)-
@ follows from . O

Definition 3.4.5 [def:gen char| Let U be an additive subgroup of K. A U-linear combi-
nation of characters ic called a U-generalized character. Fy(G,K) denotes the set of all
U-generalized character. A generalized character is a Z-generalized character.

Note that a chacter is the same as a N-generalized character. And a generalized character
is just the difference of two characters.

Corollary 3.4.6 [gen char| Let U be an additive subgroup of K and a € F(G,K). Then
a € Fy(G,K) iff (a | x) € U for all charaters x of G over K and iff sax € U for all
irreducible characters x of G over K.
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Proof: This follows immediately from [3.4.4|(al).

Lemma 3.4.7 [products of char| Let N, M be KG-modules. Then xnXm = XNeoxM- In
particular, the product of two charcters is a character and if U is a subring of K, Fy (G, K)
is a subring of Fu(G,K).

Proof: Recall first by N ® M is a KG-module via g(n®@m) = gn®@gm. If A and B is
K-basis for N and M respectively and A = (aij)(i’j) and B = bkl)(m) are the corresponding
matrices for g, then (a;;jbr) gk, jei) is the matrix for g with respect to the matrix A ® B.
So

xnenm(9) = Y aibw = (D ai) Y b = xn(9)xn(9)
i k

i€ AkeB
]

Definition 3.4.8 [def:induced class| Let H < G and o € F(H,K). Then a 1% is the
unique element of F(H,K) with

(@[ B)a = (a| B |n)u

for all B € F(G,H). In other words, the map o — aTg 1s the adjoint of the restrictions
map B — By.

Lemma 3.4.9 [induced gen char| Let U be a an additive subring of K and a € Fy(H,K).
Then a1$%e Fu(G,K).

Proof: Thus follows from [3.4.6] and definition of the induced character. OJ

Lemma 3.4.10 [induced=induced] Let H < G, W and KG-module and V o KH-
module. Then (xv) |u= xv|, and xw %= X6 -

)

The first statement is obvious. For the second note that by Homgg(W 14,V) =
Homy i (W, V). Hence also i(W1%, V) = i(W,V |y) and so by

g [ xv)e = OawW [ (xv) [u)-

By any aF (G, K) is the K linear combinations of xy’s and so

(XWTg | a)e = (xwW | aln).

Thus xw T%: Xwh¢ - ([l
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Lemma 3.4.11 [induced class function] Let H < G and z € Z(KH). Let T be a left
transversal to H in G. Then Then

aTH |H Zgzg thtil

geG teT

Proof: Let u € Z(KG) and put v = ‘—;I' > geG gzg~!. Then cleary v € Z(KG) and

1G|
(v |u)a (929" | w)c (z| g 'ug He = (z | u)a.
|H\Z !H!Z \H!Z ~ H]

9€G e
Also |G|(z | u) = |H|(2 | v |g) and thus
svug = (2 | u|g).
Thus v = zTg . ]
Using [3.4.2|(d) and that F(H,K) = Z(KG), we can rephrase the preceeding theorem as

Lemma 3.4.12 [induced class function ii] Let H < G and o € F(H,K) and define
ap € F(G,K) byag | H=f and ag |g_g=0. Then o = ﬁ Y ieq ao o inn(l), that is

g ao(lgl™ 1
P

3.5 Frobenius’ Theorem

Theorem 3.5.1 (Frobenius) [frobenius] Let H be a subgroup of G and suppose that

(x) HNYH =1 forallge G\ H.

Then N := G\ {% | h € H* g € G} is a normal subgroup of G. Moreover, HNN =1 and
G =HN.

Proof: TLet H ={% |h € H* g€ G} and N = N\ {1}. Then G is the disjoint union of
{1}, H and N. Let R be a left transversal to H in G. We claim that

1° [1]  For each | € H there exist a unique h € H* and r € R with | = "h.

Let [ € H. Then by definition of H, | = 9n for some m € H®. Moreover g = rm for
some r € R and m € H. Put h = ™. Then h € H? and [ = "h. Suppose also | = i for
someh e Hand7 € R. The™ "h=7""1=he HN™ "H. Thus (*) implies that 717 € H.
Thus #H = rH and since R is a transversal » = 7. Hence also h = h and holds.
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2° [2] Leta=) c.yanh € Z(KH) Then

¥ =|G/Hla; + Z Zahrh

heHireR
Since "l = r for all r € R and |R| = |G/H, follow from [3.4.11

3° [3] Ifa,be Z(KH) with a; = 0, then (a® | b%)g = (a | b)y.
From and and a1 = 0:

I _
(% | 0%)6 = & Cnems Srer bn = &1t Snens anbn = (a | b)ur.

4° [4] Let S be non-trivial simple H-character and put ag = xs — dslyg. Then ag =
Bs — dsla for some simple G-character Bs of dimension dg.

By Frobenius Reciprocity
(a§ | xie)e = (xs | 1) — ds(xxy | 16) = —ds
Put Bs = a§ + dglg. Then (bs | 1) = 0 and so

(a§ | a§) = (Bs | Bs) + d§
On the otherhand implies

(0§ [ af) = (xs —dslu | xs — dsluy) = 1+ d

So (bs | Bs) = 1. Hence g or —bg is a simple character. But Ss(1) = ag(1l) + dg = dg
and so (g is a simple character.

5° [5] Bs =2 pendsn+ X pem 2orer Xs(R)'.

Let M = ({kerBs | 15 # S € S(H)}. Then by N C M. Suppose there exists hinH*
and r € R with "h € M. Then h € keryg for all 1 # S € S(H). So h € Cg(S) for all
S € S(H). But KH = 3 gesim S4s and so h acts trvialy on KH by left multiplication.
Hence h = hl = 1, a contradiction. Thus M NH = () and so M = N. Thus N <G. Clearly
HON =1 By (1), [#| = [RI|H| = [F(H| - 1) = |G] - {] and so |N| = {F and
|HN| = |H||N| = |G|. Thus G = NH and all parts of the Theorem are proved. O

Corollary 3.5.2 [frobenius ii] Suppose G acts transitively on set Q and every non-trivial
element fizes at most one element in Q. Let N be the set of elements in G acting fized-point
freely on Q. Then N = N U {1} is a normal subgroup of G.

Proof: Fixw € Qand put H = Cg(w). If g € G\ H, then w # gw and so every element of
HnNYh as at leat two fixed-points, namely w and gw. So by assumption HNYH = 1. Moreover,
if 1 € Q then p = gw for some g € G and so Cg(u) = 9H. Thus N = G\{¢"| g € G,h € H*}
and by N <@G.
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3.6 Quaternion Groups

Lemma 3.6.1 [unique p| Let p be a prime and Q a non-cyclic p-group. Suppose that Q
has a unique subgroup of order p. Then

(a) [a] Q[ = 8.

(b) [b] Q has a cylic subgroup of M of index p.
(c) [c] p=

(d) [d] |g| =4 forallge @\ M.

(e) [e] Sh=h"" forallge Q\ M and h € M.

(f) | 12(Q)] =2.

Proof: Any abelian group is the product of cylic p groups. So @ is not abelian and
|G| > p3. So @ holds. Let Z be the unique subgroup of order p in Q. Then Z < @ and
so Z < Z(Q). The Z(Q/Z) # 1 and so there exists Z < F < Q with |F/Z| = p. Then F is
cylic of order p?.

By 7?7 |Aut(F)|, = p and so |Q/Cq(F)| < p. Hence there exists a maximal subgroup
M of Q with F < M < Cq(F). Then F < Z(M) and so by induction and (f), M is cylic.
So (b)) holds.

Now let M be any cylic subgroup of |Q[ with [M/Q[ = p and let z € M with M = (z).

Let y € Q \ M and let M be maximal subgroup of Q with g € M. Put D = M N M.
Then Q = MM, Q' = [M,M] < D and |[M/D| = |M/D| = p. Then D = (2P). Put
= |D)|.

Suppose first that M is abelian. Then also M is cyclic, M = (y) and D < Z (M M) =
Z(Q). Moreover |z| = |y| = pi and so 2% and 3’ both have order p. Hence Z = (x B = (yt
and replacing 3’ for some 1 < j < p we may assume 2z y = 1 Let z = [z,y]. The by
1.4.2@, P =[2P,y] € [D, M]—l Thusby-. (zy) g xy i = ,0),

If |i| > 2, then p| (3)- So (zy)" =. But then D(zy) abelian, but not cyclic, a contradic-
tion.

Thusi=2,p=2, |Q| =8 and |z| = |y| = |zy| = 4. Also %z # x and %o = 2~1. So the
lemma holds in this case.

Suppose next that M is not abelian. Then by induction @) @ hold for M. In particular,
either |D| = 4 and M| = 8 and or D is the unique cyclic subgroup of order i in M. In
either case y has order 4 and y inverts D. In particular @ holds and (¥z)? = 272. There
are only two elements in M whose square is =2 namely 2! and zz~!, where 1 # z € Z.

Suppose that Y%z = z~'z. Since |y| = 4, |¢?| = 2 and > = z and y = y~'2. So

yry 1l =a"1z implies ryrylx~! =1 and |zy|? = 1, a contradiction.

Thus Y%z = z~ andso@holds Let a € Z(Q) By@ aGMandagaln@ a=a"1
and so > =1. Thus a € Z and Z(Q) = Z. So @) holds

Let @ be as in the preceeding lemma and n = |@|. Then @ is called a quaternion group

of order n.
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Lemma 3.6.2 [char table q2n] Let n > 2, Q a quaternion group of order 2"t!, z € Q
with |z] = 2" and y € Q \ (z). Put z = 2¥"

(a) [a] Let Q has 2n=t 4+ 3 conjugacy classes namely {1}, {z}, {2%y | 0 < i < 2771,
{22y |0 <i < 2"} and {2%, 27}, 1 <i < 2nh

(b) [b] 1,z,y,2y,2% 1 <i< 2" 1 is transversal to conjuagacy classes of Q.

(¢) [e] Coll) = Calz) = @ Caly) = (v), Colzy) = (zy) and Col(a’) = (z) for 1 <i <
2n,

(d) [d Q" = (2?).

(e) [e] Up to isomorphism there are four 1-dimensional KQ module S

€x,Ey — K, (6$,6y) €
{pm} x {£} with basis zk = e,k and yk = e,k for all k € K.

(f) [f] Let &€ be a primitive 2™-root of unity in K. Up to isomorphism there are 2"~ — 1
2-dimensional KQ module S¢;,1 <i < 2" with basis u,v such that the matrices of x
and y are

&0 0 1
T . Y .
0&~ (-1)7 0

(9) [g] The character table of KQ is

1 z Y| xy xt
S |1 1) 1] 1 1
S._ |1 1|-1]-1 1
S |1 1| 1]-1 (—1)°
S__ |1 1|-1| 1 (—1)°
Sy l2|(=1y-2| o] of&iqg?

Proof: () Let M = (z) and h € M. Then by [3.6.1]yhy~! = h~!. Since Q = M UyM and
M centralizes h, we conclude that ®h = {h,%} = {h,h™'}. If h = 1,2 we have h = h™L.
Otherwise h # h=! and {h,h=1} = {2%, 27} = {2, 22"~} for some 1 < i < 2"~ L.

Next let g € @\ M. Then Q = M U Mg and so % = Mg. We have

sigr— = aigz~lg~ g = diig = x¥q.

Hence
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Q ={2%y|0<i<2" '} and %y = {22y |0 <i < 2"}

So @ holds.

(b)) follows immediately from @

Cleary Co(1) =Q = Cg(z), If1 <i < 2"~ —1, then [y,2%] # 1 and so Cg(z?) = M.
For g € Q@ \ H we have C(g) = (z) € (g) and so Cq(g) = (9)Cnm((g) = (9)-

@) [z,y] = 2%2—1 = 2z = 22

Let S be 1-dimensional KQ-module. Then Q/Cgs(Q) is abelian and so Q' < Cs(Q).
Hence both 22 and z = y? are in C5(Q) and so both x and y acts as +idg on S.

@ Let S be a simple module K@-module with dimg .S > 2. Let u be an eigenvector
with eigenvalue A for x on S. Since |z| = 2”, A= £j for some 0 < j < 2". Let v = yu. Then
v =ayu =y -y ‘xy-u=yr ‘u=y A tu=A"tu. So v is an eigenvector with eigenvalue
£77 =g2n — j Replacing u by v if necessary we may assume that 0 < j <27 L Note also
that yo = y2u = zu = 2" Ju. Since €2"" has order two, €2 = —1 and so yv = (—1).
In particular, Ku + Kv is a K@Q-submodule and since S is simple S = Ku + Kv. So (u,v) is
a K-basis for S.

Suppose that i = 0 or i = 2"~!. Then z?u = u and z?v = v. Hence Q' < Cg(S). But

simple modules for abelian groups are 1-dimensional, a contradiction. Thus 1 < j < 27!
and so @ holds.
From @) the matrices for elements in on ng are
. €90 0 1
Tt g y < .
0 &V (=1)7 0
(=17 0 o g
Z < TY <> A
0 (=1 (=6~ 0
Also ¢! = ¢ and is readily verified. 0

Lemma 3.6.3 [quaternion] Let n be an integer of with n > 2. Then there exists a quater-
nion group of order 2"t! and any quaternion group of order 2" isomorphic to the group
with generators and relations

(wy|a® =112 =2"" yay ' =a7").
Proof: Let P = (z,y| 2% =1,y°> = :UQnil,gmy_l =z~ 1. We first show

1° [1]  |z|=2" and y ¢ (x).

For this let F be any field containing an element A of multiplicative order 2". Put
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A0 0 1
a = b =
0 ! -1 0
Then |a| = 27, b = —id = a®" ', bab™' = o' and b ¢ (a). Hence there exists a

homomorphism « : P — (a,b) with a(x) = a and a(y) = b and so holds.

2° [2] |P|=2"tL.

Since y normalizes < ), P = (x,y) = (x)(y). Since y? € (z), gives |(y)(x)/{x)| =2
and (r) = 2". So holds.

3° [3] P is quaternion group.

P is not abelian and so not cyclic. If u € P\ (x) then u = 2’y for some i. So

w? = giyaty = diyziyty? = dlaiy? = o £ 1.

Moreover (x) contains a unique involution and so holds.

4° [4]  Let Q be a quaternion group of order 2"+t1. Then Q = P.

By @ fulfills the relations for P and so is a quotient of P. Since |P| = |Q|, P = Q.
U

3.7 Groups with quaternion Sylow 2-subgroup

Definition 3.7.1 [def:ti-set]| Let G be a group and T C G. Then T is called a TI-set in
Gifforall AAB e T, AnNBC1.

Lemma 3.7.2 [trivial ti] Let T be a T1-set in G. Then T < Ng(T).

Proof: Lette€T. Thent=%e€TNT andsoT ="T. O
Lemma 3.7.3 [induced ti] Let T' be TI sets in G and put N = Ng(T). Let a,b €
Z(KN) N KT.

(a) [a] a%|ps=a

(b) [b] Ifay =0, then (a® | b%) g = (a | b)N.
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Proof:

Let R be a transversal to N with 1 € R .

@) Then a% =3 cprar™t =3, 03 cpat. If t € T% then t ¢ T for all 1 #r € R.
Thus the coefficent of ¢ in a© is a; and so holds.

(]EI) By Frobenius reciprocity, (a“ | b%)g = (% |§ | b)N.

Since b, =0 for n € N \ X and a; = 0 we have conclude that from @

1
(a® |§| b)Ny = ] > ay = (a| b)n.
teT!
O

Theorem 3.7.4 (Brauer-Suzuki) [brauer-suzuki| Let G be a finite group, p a prime
and S € Syl,(G). Suppose S contains a unique subgroup Z of order p and that Ng(S) =
SCq(S). Then [Z,G] < Oy (G).

Proof:

Suppose first that S is abelian. Then S < Z(Ng(S)). So by [L.5.6] G = SO, (G) and so
the theorem holds in this case.

Suppose next that S is not abelian. Then by p =2 and S is a quaternion group
of order 2", n|geq3.

1° [0] Let M be the subgroup generated by all the elements of order p in G. Then M
acts transitively on the cyclic subgroups of order p in G and M = (M?).

Let T < G, |T| = p. Since SN M is a Sylow p-subgroup of G, T™ < SN M for some
m € M. SoT™ = Z and so M = (M?%).

If the theorem holds for any subgroup of G' containing M we conclude that |M /Oy (M) =
2 and the theorem holds.

We may assume that G = MS. Suppose that M NS is cylic. Since p = 2, Aut(M N S)
is a 2-group and we are done by the cylic case.

So M N S is not cylic and so has order at least 8. Note that the assumption Ng(S) =
SCq(S) is automatically fulfilled if |S| > 16. So we may assume that |G/M| < 2.

Suppose that |S| = 8. Put D = Derg(G). We claim that D = S’.. Let s€ Sand g € G
with 9 € S. If |s| < 2 we get 9 < S’. So suppose that |s| = 4. Then both (s) and %s) are
normal in S and so by 9 < s) = s for some h € Ng(S). Since Ng(S) = Cq(S)S we
may choose h € S and so %s) = (s) and [g,s] € §'. So indeed D = S’. Hence SNG' = 5
and M N S is cylic a contradiction.

Thus |S| < 16 and S has a unique cyclic subgroup H of order index two. Let P and
U be the subgroups of H of index 2 and 4 respectively. Then |P| > 4, P £ Z(S) and so
Cg(P) = H. Let C = Cg(P) and N = Ng(P). Then S € Syly(IN) and since Aut(P) is a
2-group, N = C'S. In particular, H = SN C € Syl,(C) and so C = HK and HN K =1,
where K = 0%(C). Let
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X={geC||P|||gl}=C\UK
We will show that

2° [1] X isa TI-set on G and Ng(X) = N.

Let x € X and g € G with y = % € X. Then |P| | |y| and so (y) contains a subgroup
T of order |P|. Then T'< PK. But [P, K| =1 and so P is the unique Sylow 2-subgroup of
PK. Thus T = P and ¢ = P. So g € N and 9X = X. So holds.

Let A be a linear ( that is 1-dimensional) character of C' with ker A = UK. Put 6 =
ANV — 1.

3° 2] O<KX and (6|0)n = 3.

For g € UK = ker A we have A\(1) = 1¢(g). Thus A € KX. Since X is normal subset of
N we het 0 € KX.

Since 15(1) =2 and (1¢ | 1y) = (1¢ | 1¢) = 1, 18 = 15 + p for some linear character
p# 1y. Since P = 5" £ ker A\, P % ker A\ Thus the 2-dimensional character A\“ is not the
sum of linear characters and so AV is simple. § = A4 — 1y —  now implies (6 | §) = 3.

4° (3] 0% X =0|x and 0¢ = x1 — x2 — 1g for simple characters x1, x2 of G.

By and the first statement holds and (#% | %) = 3. Also (6% | 1g) = (4 |
1y) = —1 and so

0¢ = +x1 £ x2 — lg

for some simple characters x;. Since §%(1) = (1) = 0 we have +x1 + x2(1) = 1 > 0 we
may assume £x1(1) > 1 and so £x2(1) < 0. So holds.

5° [4] K be the set on involutions in G. Then K is a conjugacy class and |ab| is odd
fora,be k.

The first statement follows from (1°). Suppose |ab| is even and let u be the involution
in (ab). Then (u,a) is a 2-group containing two different involutions, a contradiction.

6° [5]  Leta=a>%. Then a(g)fc(g) =0 for all g € G. In particular (a | %) = 0.

Let g € G with a(g) # 0. Then g = de for some d, e € d,e € K. Thus by , g has odd
order and so is not conjugate to an element of X. Thus implies 0(g) = 0.

7 [6]  ka=3) gcs Xsd(:)2X5 for1# 2z € Z and some 0 # k € Q.

Let k = |CC|;C(7,Z‘)|2. Note that z € K. 22 = 1 implies that any eigen value for z is £1 and
so xs(z) = Xg(z) for all S € §. Thus follows from [3.2.17|(b) applied with C' = D = K.
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8 [7] z€kery; and d; > 1.
From and (ka | x1 — x2 — 1g). So from and (xs | xT) = dsr

2

x1(2)? xa(2)?
(+) ldl - 2d2

where d; = x;(1). For u € {1, z} and (4°) imply 6 (u) = 0 and so x2(u) = x1(u) — 1.
Let x = x1(2) and d = d;. Substitution into (*) gives:

—1=0

%_(311)2_1 -
2?(d—1)—(x—1)%d—d(d—1) =
22d —2? —2?d+22d —d—d*>+d =

— (2% — 2xd + d?) =

(z — d)* -

o o o o o

So x = d. That is x1(1) = d; and so holds.

From z € ker x; we get M < ker x; and so |G/ker x1| < 2. But a group of order at
most 2 does not not have a non-linear character. Thus contradiction completes the proof.[]
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Linear Algebra

4.1 Bilinear Forms

Definition 4.1.1 [def:bilinear form| Let R be a ring, V an R-module and W a right
R-module and s : V x W — R,(v,w) — (v | w) a function. Let A CV and B C W.
Suppose that s is R-bilinear, that is (3 iy rvi | D201, wysy) = >y Y50 ri(vi | wy)s; for
all v e Viw; € W oand ri,s; € R. Then

(a) [a] s is called a bilinear form.
(b) [b] s is called symmetric if V. =W and (v |w) = (w | v) for all v,w € V.
(c) [z] s is called symplectic if V=W and (v |v) =0 for allv e V.

(d) [c] Letv eV and w € W we say that v and w are perpendicular and write v L w if
(v|w)=0.

(e) [d] We say that A and B are perpendicular and write A L B if a L b for all a € A,
be B.

(f) [e] At={weW |ALw}and B ={veV|vLlB}. At is called the right perp of
A and B the left perp of B.

(9) [f] If A is an R-submodule of V, define sq : W — A* by sa(w)(a) = (a | w) for all
acAweW.

(h) [g] If B is an R-submodule of W, define sp : V. — B* by sg(v)(b) = (v | b) for all
veVbe B.

(i) [h] s is called non-degenerate if V- =0 and *W = 0.

() [i] If V is free with basis V and W is free with basis W, then the V x W matriz
MY (s) = ((v | w) )vevwew is called the Gram Matrix of s with respect to V and W.
Observe that the Gram Matriz is just the restriction of s to V x W.

91
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Let I be a set, R aring,g W = @;R and V = @;R. Define s : Vx W — R,
(v | w) = > ,c;viw;. Note that this is well defined since almost all v; are zero. Note also
that if we view v and w as I x 1 matrices we have (v | w) = vTw.

As a second example let V' be any R-module and W = V* and define (v | w) = w(v). If

V is a free R-module this example is essentially the same as the previous:

Lemma 4.1.2 [dual basis| Let V' be a free R module with basis V. For u € V define
u* € V* by u*(v) = dyp. Define

¢y :V = P Rv— (w(v)wey
%

and

B V" > @ Roa > (a(v))uey

(a) [a] Both ¢y and ¢y, are R-isomorphisms.
(b) [b] Letw € V* and v €V and put v = ¢y(v) and @ = ¢y (w). Then w(v) = 9.

Proof: @ Since V' is free with basis V, the map ®yR — V,(r,) — > ,cp7ov is an R-
isomorphism. Clearly ¢y is the inverse of this map and so ¢y is an R-isomorphism. To
check that ¢y, is an R-linear map of right R-modules recall first that V* is a right R-module
via (wr)(v) = w(v)r. Also @y R is a right R-module via (r,),r = (r,7),. We compute

Py« (wr) = ((wr)(v))o = (W(V)r)y = (W(v))or

and so ¢y, is R-linear. Given (r,), € @y R, then w : V — R, D ovey SuU = D ey SoTw 18
the unique element of V* with w(v) = ry, for all v € V, that is with ¢y.(w) = (74)s. So Py.
is a bijection.

For u € V let s, = w*(v) and r, = w(u). Then v = >
> ey Suw(u) =3 ey Sury = 0710,

wey Sut and so w(v)

O
Definition 4.1.3 [dual map]| Let R be a ring and o : V- — W an R-linear map. Then the
R-linear map o : W* = V* ¢ — ¢ o« is called the dual of .

Lemma 4.1.4 [matrix of dual] Let R be a ring and V' and W free R modules with basis

V and W, respectively. Let o : V. — W be an R-linear map and M its matriz with respect
toV and W. Let § € W*. Then

Pyx (a*(5)) = MT¢W* (6)

Proof: Let v € V. Then the v-coordinate of ¢y, (a*(6)) is a*(0)(v) = (doa)(v) = §(a(v)).
By definition of M = (muwy)wew,vev, a(v) = >, cpp Muwvw and so
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QSV*(CK*((;)) = Z mwv M ¢W*( )

weW
]

Lemma 4.1.5 [associated non-deg form| Let R be a ring and s : V. x W — R an R-
bilinear form. Let A be an R-subspace of V and B an R-subspace of W. Then

Sap:AJANTB x B/BN AL (a+ (ANLB),b+ (BNAY) = (a|b)
is a well-defined non-degenerate R-bilinear form.

Proof: Readily verified. O

Lemma 4.1.6 [basic bilinear| Let R be a ring and let s : V x W — R be an R-bilinear
form.

(a) [a] Let A be an R-subspace of V, then At =kersa.
(b) [b] Let B be an R-subspace of W then B = ker sp.

(c) [c] s is non-degenerate if and only if sy and sy are 1-1.

Proof: @ and (]E[) are obvious and follows from @ and (]ED O

Lemma 4.1.7 [finite dim non-deg] Let F be a division ring and s : V. x W — F a non-
degenerate F-bilinear form. Suppose that one of V. or W is finite dimensional. Then both
V and W are finite dimensional, both sy and sw are isomorphisms and dimgp V' = dimp W.

Proof: Without loss dimp V' < oo and so dim V' = dim V*. By , sy and sy are 1-1
and so dimW < dimV* = dim V. So also dim W is finite and dimV < dim W* = dim W.
Hence dimV = dim W = dim W* = dim V*. Since sy and sy are 1-1 this implies that sy
and sy are isomorphisms. O

Corollary 4.1.8 [dual s-basis] Let F be a division ring, s : V. x W — F a non-degenerate
F-bilinear form, B a basis for V. Suppose that B is finite. Then for each b € B there exists
a unique b € W with s(a,b) = dqp for all a,b € B. Moreover, (b| b € B) is an F-basis for
Ww.

Proof: By[l.1.7sy : W — V* is an isomorphism. Let b* € V* with b*(a) = J, and define
b= syt (bY). O
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Definition 4.1.9 [def:s-dual basis] Let F be a division ring, s : V. x W — F a non-
degenerate F-bilinear form, B a basis for V. A tuple (b | b € B) such that for all a,b € B,
be W (a|b)=0du and (b | b€ B) is basis for W is called the basis for W dual to B with
respect to s.

Definition 4.1.10 [def:adjoint] Let R be ring , s;,V; x Wy — R (i = 1,2) R-bilinear
forms and o : Vi — Vo and B : Wy — W1 R-linear maps. We say that « and 8 are adjoint
(with respect to s1 and s3) or that 8 is an adjoint of a provided that

(a(v1) | wa)2 = (v1 | B(w2))1
for all vi € V1, wy € Wi

Lemma 4.1.11 [basic adjoint] Let R be a ring , s; : Vi x W; — R, (v,w) — (v | w);
(i =1,2) R-bilinear forms and o : Vi — Va and 8 : Wy — Wi R-linear maps. Then « and
B are adjoint iff s1y, o B = a* o s9y;.

Proof: Let v; € V4 and wy € Ws. Then

(a1 | wa)2 = sav, (w2)(a)(v1) = (" (5215 (w2))(v1) = (" 0 s913) (w2)(v1)
and
(v1 | B(w2))1 = s1v3 (B(w2))(v1) = (s1v4 © B)(w2)(v1)
and the lemma holds. O

Lemma 4.1.12 [kernel of adjoint] Let R be a ring , s; : Vi x W; — R (i = 1,2) R-
bilinear forms and o« : Vi — Vo and B : Wo — W1 R-linear maps. Suppose o and (8 are
adjoint. Then ker o < +1Im 3 with equality if ~Wo = 0.

Proof: Let v; € V4. Then

v1 € ker av
= a(vy)) =0
— (<= if W5t =0) (a(v1) | wa) = 0Vws € Wh
(’1)1 ’ ﬂ(wz)) = 0Vwy € Wy
v € FImp

11

O

Lemma 4.1.13 [unique adjoint] Let R be a division ring, s; : Vi x W; — R (i = 1,2)
R-bilinear forms and o : Vi — Vo and B : Wo — W1 R-linear maps. Suppose s1 is non-
degenerate and Vi is finite dimensional over R.

(a) [a] There exists a unique adjoint o of a with respect to s and ss.
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(b) [b] Suppose that also sz is non-degenerate and Vz is finite dimensional. Let V; be a
basis for V; and V; = (0 | v € V;) the basis W; dual to V; with respect to s;. If M is the
matriz of o with respect to Vi and Vs, then MT is the matriz for a®d with respect to

]72 and f/l.

Proof: @) By 51y, is an isomorphism and so by 4.1.11 51_\}1 o a* o s9y, is the unique

adjoint of a. O

() Let v; € Vi. Then the (v1,vs)-coefficient of M is (a(v1) | T2)2. By definition of the
adjoint (a(vy) | ¥2)2 = (v | a®d(#2))1 and so @ holds.

Corollary 4.1.14 [dual basis for subspace] Let F be a field, V' a finite dimensional F-
space and s : V XV — F an non-degenerate symmetric F-bilinear form on V. Let W be an
s-non-degenerate F-subspace of V. Let V be an F-basis for V. and W an W-basis for W.
Let V= (0|veVand W= (0| weW) be the corresponding dual basis for W and V,
respectively. Let M = (myy,) be the V x W matriz over F defined by

U“‘WL: Z 777/1)1()'U~)‘|‘VVL
wew

for allveV. Then
W= Myl

Proof: Since W is non-degenerate, V.= W oW+, Let a : V — W be the orthogonal
projection onto W, that is if v = w + y with w € W and y € W+, then w = a(v). Observe
that the matrix of a with respect to V and W is M'. Let B : W — V,w — w, be the
inclusion map. Then for all v € V,w € W:

(a(v) [w) = (v|w) = (v] fw)

and so f is the adjoint of . Thus by 4.1.13@ the matrix for 8 with respect to W and V
is M = M. So

W= B(W) =Y Myuth.
veY
O

Lemma 4.1.15 [gram matrix| Let R be a ring, V' a free R-module with basis V and W a
free right R-module with basis W. Let ¢y : V. = @y R, dw : V — Dy R, oV = Dy R
and gy W* — @y R be the associated isomorphisms. Let s : V x W — R be bilinear form
and M its Gram Matriz with respect to V and W. Letv € V, w € W, 0 = ¢p(v) and

w = ¢W(w)7
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(a) [a] (v]w)=0"Mwb.

(b) [b] ¢yp(VL) = Null(M), the Null space of M.
(c) [e] ¢py(*W)=NullMT

(d) [d] pwa(sw(v)) = MTT.

(¢) ] ¢vil(sv(w)) = Mb.

Proof: @ We have v = > cp0qa, w = > o biy and M = ((a | b))ap. Since s is
R-bilinear,

(wlw)= > Talal|b)iby=7" M
aeV,bew

(b) By (a) w € V* iff 5T Mw = 0 for all 9, iff M = 0 and iff @ € Null(M).
(c) ve Wit 5TM =0, iff MTo =0iff o € Null M.
(d) Let uw = sy (v) and @ = Py, (v). Then by “right-module” version of

T T

ww) =W op=1u -u.

On the other hand

u(w) = sy (v)(w) = (v | w) ="M - =
Thus @¥ = 9" M and so & = MTv and @ holds.
(€) Let uw = sy(w) and @ = ®y,(u). Then by
u(v) = 9" - a.

On the otherhand
u(v) = sy (w)(v) = (v | w) = 2% - Mab.

So 4= Mw®w and @ holds. O

Lemma 4.1.16 [gram matrix of dual basis] Let F be a division ring and s : VW — F
a non-degenerate F-bilinear form. Let V and W be F-basis for V. and W respectively and V
and W, the corresponding dual basis for W and V. Let M be the Gram matriz for s with
respect to V and W. Let N the Gram matrix for s with respect to W and V. Then

(a) [a] MT is the matriz for idy with respect to V and W.
(b) [b] N is the matriz for idy with respect to W and V

(c) [c] M and N are inverse to each other.
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-1
Proof: (Q} We have idy : V 2% W+ oy By 4.1.15@}, the matrix of sy with respect
to V and W* is M. By definiton of W the matrix of sy with respect to W* and W is the
identity matrix. So @ holds.
(b)) Similar to @, use sy and (ED
1) By {D N1 is the matrix of idy with respect to V and W. Note that idy is the

adjoint of idy. So by (a) and 1. 1.13[), N=' = M™T = M. O

Lemma 4.1.17 [circ and bilinear| Let R be a commutative ring, G a group and let V
and W be RG-modules. Let s: V x W — R be R-bilinear form.

(a) [a] s is G-invariant iff (a®v | w) = (v | aw) for all a € inRG.
(b) [b] Let a € RG. Then Aw(a) < (a°V)* with equality if V+ = 0.
Proof: @ Recall first for a =3 s aq9 € Rg, a® =3 ¢ agg~'. Thus

s is G invariant
— (gu|gw)=(u|w) VgeGueV,weW
(u — v = gu is a bijection) <= (v | gw) = (¢ v |w) Vge G,v e V,w e W

(s is R bilinear) <~ (v|aw) = (av |w) Yae RG,v e Vwe W
([) By a and a° are adjoints. So (b)) follows from [1.1.12 O

Lemma 4.1.18 [extending scalars and bilinear| Let R < ]?N be an extensions of rings
and s : V x W — R an R-bilinear form. There exists a unique R-bilinear form

5:RORV XW®&rR—= R, (a®v,w®b) =a((|v),w)b
foralla,be RoveV,weV.
Proof: Observe that the map

RxV xW x R toR, (a,v,b,w) — a((| v),w)b

is R-balanced in (a,v) and (b, w). The universal property of the tensor product now shows
the existence of the map §. A simple calculation shows that 5 is R-bilinear. ]

Lemma 4.1.19 [extending scalars and intersections] Let F < K be an extension of
division rings and V an F space.

(a) [a] Let W be a set of F-subspaces of V.. Then

| KeW=Ke (| W
wew wew
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(b) [b] Lets:V@W —F be an F-bilinear form and extend s to a bilinear form §: K ®p
VxWerK — K (seel|4.1.18). Let X an F-subspace of V. Then Kop X+ = (K® X)* .

Proof: @ Suppose first that W = {1, Ws}. Then there exists F-subspaces X; of W; with
W; = X;®(W1NWs). Observe that Wi +Wy = (W1NW3)® X1 ® Xs. For X an F-subspace of
Viet X = KopX < K@pV. Then W; = Wi N WadX; and Wi + Wo = Wi N Woa X1 8 Xs
and so W, N Wy = W) N Ws,. So @) holds if [W| = 2. By induction it holds if W is finite.

In the general case let ¥ € V. Then there exists a finite dimensional U < V with v € U
Moreover, there exists a finite subset X of W with UN(xcx X = UN(\xey X. By the
finite case, U NNxexr X = U N(Nxer X and so is proved.

(]EI) Note that X+ = MNeex z. So by we may assume that X = Fx for some z € X.
If X L V, then also X L V and we are done. Otherwise dimV/X* = 1 and so also

dimV/X+ = 1. From X+ < X" <V we conclude that X~ = X . O

Lemma 4.1.20 [symmetric form for p=2] Let F be a field with charF = 2. Define o :
F =T, f— f? and let F° by the F-space with F° = F as abelian group scalar multiplication
fok=f2l. Let s a symmetric form on'V and define o : V — F° : v — (v | v). Then « is
F-linear, W :=kera = {v € V | (v | v) = 0} is an F-subspace, s |w is a symplectic form
and dimp V/W < dimp F? = dimp2 F.

Proof: Since (v+w |v+w) = (v]|v)+(v|w)+(w|v)+(w]|w)=(v|v)+2(v]|w)+(w|
w) = (v]v)+ (w|w)and (fv | fv) = f2(v|v) = f s (v ] v) conclude that « is F-linear.
Thus W = ker « is an F-subspace of V and V/W = Ima. Also dimypIma < dimp F?. The
map (o,idp : F x F7 — F2 x F, (f, k) — (f2, k) provides an isomorphism of the F space F’
and the F2-space F. So dimp F’ = dimgp: F.

Cleary s | is a symplectic form. O

Lemma 4.1.21 [symplectic forms are even dimensional] Let F be a field, V a finite
dimensional F-space and s a non-degenerate symplectic F-form on V. Then there exists an
F-basis v;,i € {£1,£2,... £ n} for V with (v; | vj) = 6; —; - sgn(i). In particular dimgp V' is
even.

Proof: Let 0 # vy € V. Since vy ¢ 0 = V*, there exists v € V with (v; | v) # 0. Let
v_1 = (v1 | v)7tv. Then (v | v_1) =1 = —(v_1 | v1). Let W = F(vy,v_1). The Gram

1
Matrix of s on W with respect to (vi,v_1) is (_01 O)' So the Gram matrix has determinant
1 # 0. Thus W is non-degenerate and so V = W @ W=. Hence also W+ is non-degenerate

and the theorem follows by induction on dimp V. ([l

Lemma 4.1.22 [selfdual and forms| Let F be field, G a group and V' simple FG module.
Suppose that 'V is self-dual (that is V* =2V as FG-module).
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(a) [a] There exists a non-degenerate G-invariant symplectic or symmetric form s on V.

(b) [b] Suppose that charF = 2 and F is perfect. Then either V= TF¢q or s is symplectic.

() Let a : V. — V* be an FG-isomorphism and ¢ : V x V — F, (v,w) = a(v)(w), the
corresponding G-invariant F-bilinear form. Since V is a simple FG-module any non-zero
G-invariant bilinear form on V' is non-degenerate.

Define 7(v, w) = t(v,w) + ¢(w,v). Then r is a symmetric form. If r # 0, then (&) holds
with s = r. If r = 0 then t(v,w) = —t(w,v) for all v,w € V. If charF = 2, then ¢t is
symmetric and @ holds with s = ¢. If charF # 2, then t(v,v) = —t(v,v) implies that ¢ is
symplectic. So again @ holds with s = t.

(]E[) Let s be as in @ and observe that in either case of @, s is symmetric. Let
a:V — Fo be as in [£.1.20] View F? as an FG-module with G acting trivially. Then by
4120« is F linear and since S is G-invariant also FG-linear. Since F is perfect, dimp F7 = 1.
So F? =2 Fg has FG-modulo and either o = 0 or « is onto. If a = 0, s is symplectic. If
« is onto kera # V is an FG-submodule of V. Since V is simple, kera = 0 and so
V2Ima=F°=Fg. ]
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Chapter 5

Representations of the Symmetric
Groups

5.1 The Symmetric Groups

For n € Z* let Q, = {1,2,3...,n} and Sym(n) = Sym(f,). Let g € Sym(n) and let
O(g) = {O1,...0;} be the sets of orbits for g on Q,,. Let |O;| = n; and choose notation
such that ny > ng > n3 > ...n;. Define n; = 0 for all @ > 1. Then the sequence (n;):2,;
is called the cycle type of g. Pick ajo € O; and define a;; = ¢/(aj) for all j € Z. Then
a;j = a;i, if and only if j = k (mod n);. The denote the element g by

g= (011, a12, ... alm)(azbaz% cee 7a2n2) cee (akh a2, . . ~aknk)-

Lemma 5.1.1 [conjugacy classes in sym(n)| Two elements in Sym(n) are conjugate if
and only if they have the same cycle type.

Proof: Let g be as above and h € Sym(n). Then

hgh~' =
(h(all), h(alg), e h(alm))(h(agl), h(azg), ey h(a2n2)) e (h(akl), h(akg), e h(a;mk))

and the lemma is now easily proved. O

Definition 5.1.2 [def:partition of n] A partition of n € N is a non decreasing sequence
A= (Ni)$2, of non-negative intergers with n =Y .2, A;.

Note that if A is a partion of n the necessarily \; = 0 for almost all 7. For example
(4,4,4,3,3,1,1,1,1,0,0,0,...) is a partition of 22. We denote such a partition by (43,32, 1%).

Observe that the cycle type of g € Sym(n) is a partition of n. Together with [3.1.3{(f) we
conclude

101
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Lemma 5.1.3 [number of partitions] Let n € Z*. The follwing numbers are equal:
(a) [a] The numbers of partitions of n.
(b) [b] The numbers of conjugacy classes of Sym(n).

(¢) [c] The number of isomorphism classes of simple CSym(n)-modules. O

Our goal now is to find an explicit 1-1 correspondence between the set of partions of n
and the simple CSym(n)-modules. We start by associating a Sym(n)-module M* to each
partition A of n. But this modules is not simple. In later section we will determine a simple
section of M.

Definition 5.1.4 [def:lambda partition] Let I be a set of size n and \ a partition of n.
A A-partition of I is a sequence A = (A;)°, of subsets of A such that

(a) [a] T =UZ, A
(b) [b] A;NA; =0 foralll <i<j<oo.

(c) le] 1Al = A

For example ({1, 3,5}, {2,4},{6},0,0,...)isa (3,2, 1) partition of Is where I, = {1,2,3,...n}.
we will write such a partition as

135

24

[u—

The lines in this array are a remainder that the order of the elements in the row does
not matter. On the otherhand since sequences are ordered

13 24
24 7 13

t
D

D
ot

Let M* be the set of all A-partions of I,. Note that Sym(n) acts on A via 7A =
(m(A;))22,). Let F be a fixed field and let M* = Mp = FM()). Then M?* is an FSym(n)-
module. Note that for M™~11 = FJ,. Let (- | -) the unique bilinear form on M?* with
orthonormal basis M?*. Then by (- | -) is Sym(n)-invariant and non-degenerate.

5.2 Diagrams,Tableaux and Tabloids

Definition 5.2.1 [def:diagram| Let D CZ, x Z4

(a) [z] Let (i,7),(k,l) € Z* X Z*. Then (i,j) < (k,l) provided that i < k and j <1
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(b) [a] D is called a diagram i if for alld € D and e € Z4 X Z4 with e < d one has e € D.
(¢) [b] The elements of diagram are called the nodes of the diagram.
(d) [c] r:ZT xZ" x (i,j) =i and c: Z* x Z* x (i,§) — j.
(e) [e] The i-th row of D is D; := DN {i} x Z* and the j-column of D is D’ := Z x {j}.
(f) [d] MD) = (IDil)iZ; and N'(D) = (|D?])5°
Definition 5.2.2 [def:diagram2] A\ € ZS° define

A ={(,)) € Z4 xZ1 [1 < j < A}

Lemma 5.2.3 [basic diagram| Let n € N. Then the map D — Ap is a bijection between
the Diagram of size n and the partitions of n. The inverse is is by A — [A].

Proof: Let D be a diagram of size n and put A = A(D). Let ¢ € N and let j be maximal
with (i,7) € D. By maximality of j and the definition of a diagram, (i,k) € D iff £ < j.
Thus j = |D;| = A\; and D = [A]. Let k <. Since (i, A;) € D, the defintion of a diagram
implies (k, A;) and so A; < A,. Thus X is non-increasing. Clearly Y .2, A; = |D| = n and so
A is a partition of n.

Conversely suppose that A is a partition of n. Let (¢,7) € D and (a,b) € Z4+ X Z4 with
a<iand b<j. Thena <i<\; <X\ and so (a,b) € [A]. Thus [\ is a diagram. Clearly
[[Ali] = Ai, that is A([A]) = A. O

We draw diagams as in the following example:

TTTTT
TTT
TTT
[5,3%,22 1] =222
TT
TT
x

Definition 5.2.4 [def:dominates] Let A\ and p be partitions of n € Z*. We say that \
dominates p and write A\ > u if

forall j € Z7".
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Note that “dominates” is a partial orderi(I@ but not a total ordering. For n = 6 we have

(5,1)

(19

On rare occasions it will be useful to have a total ordering on the partition.

Definition 5.2.5 [def:lexiographic ordering] Let A\ and p be partitions of n € Z+. We
write A\ > p provided that there exists i € Z with \; > p; and \j = p; for all 1 < j < i.

Observe that ” <” is a total ordering on the partitions of n, called the lexiographic

ordering. If A> p and 4 is minimal with \; # mu;, then Z;;ll Aj = Z;;ll i and 23:1 Aj >
23:1 wi- Thus A; > p; and so A > p.

Definition 5.2.6 [def:conjugate partition]
(a) [a] Let D CZ* xZ*. Then D' = {(j,i) | (i,7) € D}. D’ is called the conjugate of D.

(b) [b] Let \ be a partition of n. Then N = (|[\]!]) is the number of nodes in the i’th
column of [A].

Lemma 5.2.7 [basic conjugate]
(a) [a] The conjugate of a diagram is a diagram.

(b) [b] Let D be a diagram. Then the rows of D' are the conjugates of the columns of D:
Dj = (D",

(c) [c] Let A be a partition of n. Then X' is a partition of n and [N = [N].
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Proof: @ follows immediately from the definition of a diagram.

(b)) is obvious.

(c) By () |[\)j] = [[X'] = Ai. Thus X = A([\]'). So (d) follows from O
Lemma 5.2.8 [reverse ordering| Let A and u be partitions of n. Then A> p if and only
if N <.

Proof: Let j € Z" and put i = p/;.Define the following subsets of Z* x Z*

Top = {(a,b) | a < i} Bottom = {(a,b) | a > i}
Left ={(a,b) | b<j} Right={(a,b)|b> 1}

Since A dominates p:

(1) [Top N [A]| = [T'op N [p]|

By definition of i = u;-, Ai > j and A\jy1 > j. Thus

TopN Left C [u] and Bottom N Right N [u] = 0

Hence
) (Top Left NN| < |Top ) Left 0 [u]
and
(3) | Bottom N Right N [A]| > |Bottom N Right N [u]

From (1) and (2) we conclude

(4) |Top N Right N [A]| > |Top N Right N [p]]
(3) and (4) imply:

|Right N [A]| > |Bottom N [p]

Since |[A]] = n = |[p]| we conclude

Left O[N] > Left [
Thus Zizl A, < ijl ploand N <. O

C
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Definition 5.2.9 [def:tableau| Let A be a partition of n. A A-tableau is a function t :
A = I.

We denote tableaux as in the following example

514
23

denotes the [3,2]-tableau ¢ : (1,1) — 4,(1,2) = 1,(1,3) — 4,(2,1) — 2,(2,2) — 3.
Definition 5.2.10 [def:partition of tableau| Let t : D — I,, be a tableau. Then A(t) =

(t(D;))2,) and A'(t) = ((D")2,. A(t) is called the row partition of t and A/(t) the
column partition of t.

Note that if ¢ is a A-tableau, then A(t) is a A partition of I,, and A’(t) is a A-partition
of I,. For example

243 243
ift=61 then A(t)=61
5 5

Definition 5.2.11 [def:tabloids| Let s,t be A-tableau.

(a) [a] s and t are called row-equivalent if A(t) = A(s). An equivalence class of this
relations is called a tabloid and the tabloid containing t is denoted by t.

(b) [b] s andt are called column-equivalent if A’'(t) = A’(s). The equivalence class of this
relations containing t is denoted by |t|.

For example if t = ;g then

|+
Il
—N
—_
o~
o~
—_
—_
o~
N
—_

|

Lemma 5.2.12 [action on tableaux| Let A be partition of n. Let m € Sym(n) and s,t be
A tableaux.

[\)
w
[\)
w
w
[\)
w
[\)

(a) [a] Sym(n) acts transitively on the set of A\-tableauz via 7t = wot.
(b) [b] wA(t) = A(nt)).

(c) [c] s andt are row equivalent iff ms and wt are row equivalent. In particular, Sym(n)
acts on the set of \-tabloids via 7t = mt.
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Proof: () Clearly mt = 7 ot defines an action of Sym(n) on the set of A tableaux. Since
s,t a bijections from [A\] = I,,, p:= sot ! € Sym(n). Then pot = s and so the action is
transitive.

() Let D = [A]. Then A(t) = (D;)$2,) and so

mA(t) = m(H(Di)Z1) = (m(t(Di)Z1) = ((wt)(Di))iZ1 = A(mt)

(d) s is row-equivalent to t iff A(s) = A(t) and so iff 7A(s) = 7A(¢). So by (b)) iff
A(rs) = A(nt) and iff 7t and 7s are row-equivalent. O

Let A = (A;)2, be A-partition of I,,. Let 7 € Sym(n). Recall that 7 € Cg(A) means
A = A and so w(4;) = A; for all 4.

CSym(n)(A> = ﬂzoi1 NSym(n)(Az)) = ®$il Sym(A,) So CSym(n)(A) has order Al :=
[T, Al

Definition 5.2.13 [def: row stabilizer| Let t be a tableau. The Ry = Cgy(n)(A(t) and
Ct = Csym (t)(A'(t). Ry is called the row stabilzer and Cy the column stablizer of t.

Lemma 5.2.14 [char row equiv] Let s and t be A-tableauz. The s and t are row equiva-
lent iff s = 7wt for some ™ € Ry.

Proof: Then by [5.2.12(a)), s = mt for some 7 € Sym(n). Then s is row-equivalent to ¢ if
and only if A(t) = A(nt). By [p.2.12(b), A(7)t) = 7A(t) and so s and ¢ are row equivalent
iff me R;. O

Lemma 5.2.15 [basic combinatorical lemma| Let A and u be partions of n, t a A-
tableauw and s a p-tableau. Suppose that for all i,j, |A(t); N|A'(s);| <1 ( That is no two
entrees from the same row of t lie in the same column of s). Then A<u. Moreover if A = p,
then there exists A-tableau r such that r is row equivalent to t and r is column equivalent to
S.

Proof: Fix a column C' of Changing the order the entrees of C' neither effects the assump-
tions nor the conclusions of the lemma. So we may assume that if ¢ appears before j in
C, then 7 also lies earlier row than j in the tableau t. We do this for all the columns of
s. It follows that an entree in the k-row of ¢ must lie in one of the first k-rows of s. Thus
Zle Ai < Zi’:l w; and p dominates .

Suppose now that A = p. Since A\; = p1 and the firs row of ¢ is contained in the first row
of s, the first row of A(t); = A(s)1. Proceeding by induction we see that At); = A(s); for
all s and t. So s and t are row equivalent. [l
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5.3 The Specht Module

Definition 5.3.1 [def:fh] Let G be a group, H C G, R a ring and f € RG. Then fg =
ZheH fuh.

Lemma 5.3.2 [basic fh] Let G be a group, R a ring and f € RG. Suppose that f view as
a function is a multiplicative homomorphism.

(a) [a] Let A, B C G such that the maps Ax B — G, (a,b) — G is 1—1, then fap = fafB.
(b) [b] Let A< B <G and T a left-transversal to A in B. Then fp = frfa.

(c) [c] Let A1,A2, A, < G and A = (A; | 1 < i < n) Suppose A = @;_, A;, then
fa=fafa, - fa,-

(d) [d] Suppose f is a class function, then for all g € G and H C G, gfng~ ' = Jotg—1-

Proof: @ Since the map (a,b) — abis 1—1, every element in AB can be uniquely written
has ab with a € A and b € B. Thus

fafe=" Ylacataa 3 pepfob =3 a€Abe Bfafrab
=2 weapen fabab = cap fec
= faB
(]E[) is a special case of @
follows from @ and induction on n.
@ Readily verified.
Since the map £ — A(t) is a well defined bijection between the A tabloids and the the A
partitions of I,, we will often identify Z with A(t). In particular, we have £ € M?*.

Definition 5.3.3 [polytabloid] Let t be \-tableau.
(a) [a] ki =sgng, = o, senmm € FSym(n).
(b) [b] e = kit = Y reC, sgnmt € M. e; is called a polytabloid.

(c) [c] S* is the F-subspace of M* spanned by the \-polytabloids. S is called a Specht
module.

(d) [d] F* is the left ideal in FSym(n) generated by the ki, t a A-tableau.

325

14 -

The Cy = Sym({1,3}) x Sym({{2,4},

k= (1—(13)- (1 —(24)) =1 — (13) — (24) 4 (13)(24) and
325 125 345 145

=14 34 12 32

As a first example consider t =

€t




Section 5.3. The Specht Module 109

As a second example consider A = (n — 1,1) and t = ; Then C; = Sym({i,j} =
{17 (Zaj)} kt =1- (Zvj) and

.

€t =
2

‘u.

For i € I,, put z; := (I,\,{i}) = 12”'2_12—’_1'””

Then M (™11 ig the F space with basis (xi,i € I,) and e, = x; — ;. Thus

S("_Ll):F<9cj—:ci]z';réj61'n>={Z:fz'fJCi!fz‘EF\z:fizo}‘:(961+902-i----+90n)L
i=1 i=1

The reader should convince herself that if char F { n, then S~ is a simple FSym(n)-
module and if char F | n, then x := Y7 x; € S™~1Y and =LY /Fz is a simple FSym(n)-
module.

Lemma 5.3.4 [transitive on polytabloids| Let 7 € Sym(n) and t a tableau.
(a) 2] Thim™! = ke

(b) [a] mer =ent.

(¢) [b] Sym(n) acts transitively on the set of A-polytabloids.

(d) [c] S is a FSym(n)-submodule of M.

(e) [d] If m € Cy, then kry = ky = sgnmk, and ey = sgnmey.

Proof:
@) We have Cry = 7Cin~! and so by @ applied to the class function sgn on
Sym(n),

-1 -1
krt =sgng , =8N, o, -1 = TSgNE, T = whyT

Using , ent = kmrt = keIt = wkit = ey

and @ follow from .
@ Since w € Cy, Cry = Cy = Cymr. Thus ky = ky and

ke = Zaec’t sgno - = Z,Bect sgn(Bm) - (B)
=SgNT Y 5cc , senf - f= sgnmkym

The second statement follows from the first and 7t = «t. O
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Lemma 5.3.5 [action of es on ml] Let A\ and p be partitions of n.
(a) [a] If FFM* #0, then A < p.
(b) [b] Ift and s are A-tableau with kst # 0, then then kst = +es.

Proof: Let s be a yu tableau and ¢ and M-tableau with kst # 0.
Suppose first that there exists a ¢ # j € I, such that i and j are on the same row of ¢
and in the same column of s. Let H = Sym({7,j} = {1, (¢,7)}. Then

senpf =+ sgn((i, 1)) (i, )i = E == 0.
Since i, j are in the same column of s, H < (s and we can choose a transversal 7 to H
in Cs. Then
kst = (sgnT)sgnHt = 0,

contrary to our assumption. Thus no such 4, j exists. So by 5.2.15| A < u. Moreover, if
A = u, there exists a A tableau r» which is row equivalent to ¢ an columns equivalent to s.
Hence k, = ks and T = 5. Moreover s = r for some 7w € Cs and so by @,

kst = e, = sgnme,

O
Lemma 5.3.6 [es self dual] Let A\ and p be partitions of n and s an p-tableau. Then
(a) [a] ks =Fkg
(b) [b] (ksM*)* = Appa(ks).
(c) [c] ksMH = Fey and Apru(ks) = ex.
(d) [d] ksv=(v|es)es for allv e M".
Proof: @ If T € Oy then also 7! € C,. Moreover sgnm = sgnm— ! and @ holds.
(b)) Follows from (&) and
(c) By esM? = Fe, and so by (]EI) A (ks) = ex.
@ By ksv = feg for some f € F. Hence
(v]es) = (v]kst) = (ksv [ 1) = (fer [ 1) = f
O

Lemma 5.3.7 [l and ml] FAM?* = S* and Ay (F?) = S
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Proof: This follows immediately from [5.3.6|(b) and [5.3.6/(d). O

Lemma 5.3.8 [submodules of ml| Supp F is a field and let \ be a partition of n and V
be an FSym(n)-submodule of M*. Then either FAV = S* and S* <V orFAV = 0 and
SA<V.

Proof: If FAV =0, then by V< SM

So suppose FAV # 0. Then k,V # 0 for some A-tableau s. Sounphes ksV = Feg =
ksM?. Since by-@) implies k,V = k,M* for all \-tableaux s. Thus FAV = FAM* = §*
and S < V. O

If F < K is a field extensions we view M? = Mﬁ‘ has a subset of S*. Note also that Mﬂé
is canonically isomorphic to K ®p M. Put DX = S*/(S* N SA).

Lemma 5.3.9 [dI=fldl] Let A be a partition of n. If F is a field then FAD* = D*.

Proof: Byl E either FASA = S* or S < M. In the first case FAD* = D* and in the
second D* = 0 and again FAD* = D>,

Proposition 5.3.10 [dl=du] Let A and p be partitions of n with D* = 0. Suppose F
is a field. If D is isomorphic to an FSym(n)-section of M*, then A < . In particular,
D* = DF then A = p.

Proof: By [5.3.9 FAD*» = D* # 0. Hence also FAD* # 0 and F*M* # 0. So by-@
A< p. If DA = DF, the D* is a section of M* and so < A and p = \.

Lemma 5.3.11 [scalar extensions of ml] Let \ be a partition of n and F < K a field
extension.

(a) [a] S} =KS*=K @p S,

(b) [b] S =K(SM) =K ep S

(c) [d] SN Spt=K(S*nSM)=KapS*ns*).
(d) [¢] D} =K op D,

Proof: @ is obvious.

(]E[) follows from @ and (]E[)
@ follows from @, (]ED and .
@ follows from @ and . OJ

Lemma 5.3.12 [d] absolutely simple] Let \ be a partition of n and suppose D* # 0.
Then D* is an absolutely simple FSym(n)-module.
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Proof: By it suffices to show that D is simple. So let V be an FSym(n)-
submodule of S with SA N S*M < V. By either S* <V or V < S*. In the first case
V = S* and in the second V < S* N SM and V = SN SM. Thus D = $*/(S* N S is
simple. ]

5.4 Standard basis for the Specht module

Proposition 5.4.1 [garnir relations| Let t be a A-tableau, i < j € ZT, X C A'(t); and
Y C A'(t);. Let T be any transversal to Sym(X) x Sym(Y) in Sym(X UY).

(a) [a] sgnre; is independent from the choice of the tranversal T .

(b) [b] If|IXUY|> \. Then
sgnre; = 0

Proof: () Let 7 € Sym(X UY) and p € Sym(X) x Sym(Y) < C;. Then

oV
W
N

sgn(mp) - mp - e, = sgn(m)w - sgn(p)pey — = 9 sgn(7)mey
and so (&) holds.

@ Since |[X NY| > A} > X}, there exists i € X and j in Y such that i and j are in
the same row of t. So (1 — (ij))nt = 0. If 7 € Sym(X UY), then 7 and 7 - (ij) lie in
differen cosets of Sym(X) x Sym(Y'). Hence we can choose R C Sym(X UY) such that
RNR-(i,5) =0 and RUR - (ij) is a transversal to Sym(X) U Sym(Y). By (b)) we may
assume 7 =R UTR - (ij) and so

SgT = SEURSEN( (i)} = Sgig - (1 — (i)

and
sgnye; = sgng - (1 — (ij))e; = 0.
U

Definition 5.4.2 [def:garnir] Let t be a A-tableau, i < j € Zt, X C A'(t); and Y C
A'(t);.

(a) [a] Txy is the set of all m € Sym(X U SymY') such that the restrictions of wot to
7 Y(X) and 771(Y) are increasing.

(b) [b] Gxy:=sgny,,.. Gxy¢ is called a Garnir element in F'Sym(n).
Lemma 5.4.3 [basic garnir| Let t be a A-tableau, i < j € ZT, X C A'(t); andY C A'(t),.

(a) [a] Txy is a transvsersal to Sym(X) x Sym(Y) in Sym(X UY).
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(b) [b] If|IXUY|> X,. Then
GXy,get =0.

Proof: () Just observe that if 7 € Sym(X USym(Y'), then there exists a unique element
p € Sym(X)USym(Y) such that the restriction of 7p to t~(X) and to t~*(Y') are increasing.

(]ED follows from @ and @ O

Consider n =5, A = (3,2), t = 1? , X ={2,5},Y = {3}

w

W

Then Gxyes =0 gives

123_132_125_0
45 45 43

Definition 5.4.4 [def:increasing tableau] Let \ be a partion of n and t a \-tableau.
(a) [a] r¢=rot™' andc; =so0t™t. Soi € I, lies in row r(i) and column c;(i) of t.
(b) [b] We say that t is row-increasing c; is increasing on each row A;(t) of t

(c) [c] We say that t is column-increasing if ¢ is increasing on column AL(t).

Note that r; only depends on T and so we will also write g for ;. Indeed 7 = 5 iff
Tt = Ts.

Lemma 5.4.5 [basic increasing| Let \ be a partion of n and t a A-tableau.
(a) [a] T contains a unique row-increasing tableau.

(b) [b] |t| contains a unique column-increasing tableau.

(c) [c] Let m € Sym(n) andi € I. Then (i) = rpe(mi).

Proof: @ and (]E[) are readily verfied.

cl) rrrom=ro Wot_low:rot_lzrt. ]
(c) (

Definition 5.4.6 [def:standart tableau]| Let A be a partition of n and t a A-tableau. A
standard tableau is row- and column-increasing tableau. A tabloid is called standard if it
contains a standard tableau. Ift is a standard tableau, then e; is called standard polytabloid.

By [5.4.5|fa)), a standard tabloid contains a unique standard tableau.
We will show that the standard polytabloids form a basis of S* for any ring F.
For this we need to introduce a total order on the tabloids

Definition 5.4.7 [def:order tabloids| Let t and 5 be the distinct A-tabloids. Let i € I,
be mazimal with r(i) # rs(i). Then t <3 provided that r(i) < rs(i).
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Lemma 5.4.8 [basic order tabloids| < is a total ordering on the set of \ tabloids.

Proof: Any tabloid £ is uniquely determined by the tuple (r7(4));- ;. Moreover the ordering
is just a lexiographic ordering in terms of it associated tuple. U

Lemma 5.4.9 [proving maximal I] Let A and B be totally ordered sets amd f: A — B
be a function. Suppose A is finite and m € Sym(A) with f # fopi. Let a € A be mazimal
with f(a) # f(n(a)). If f is non-decreasing then f(a) > f(w(a)) and if f is non-increasing
then f(a) < f(m(a)).

Proof: Reversing the ordering on F' if necessary we may assume that f is non-decreasing.
Let J ={j e J| f(j) > f(a)} and let j € J. Since f is non-decreasing, j > a and so
by maximality of f, f(7j) = f(j) > f(a). Hence m(J) C J. Since J is finite this implies
m(J)=J andso since mis 1 — 1, w(I \ J) C I\ J. Thus n(a) ¢ J, f(7(a) < f(a) and since
F(r(@)) # f(a), f(x(a)) < f(a). O

The above lemma is false if I is not finite ( even if there exists a maximal a): Define
f:Z" — {0,1} by f(i) =01if i <0 and f(i) = 1 otherwise. Define m : ZTZ% i — i+ 1.
Then f is non-decreasing and a = 0 is the unique element with f(a) # f(w(a)). But
fla) =0 <1 = f(r(a)).

Allthough the lemma stays true if there exists a maximal a and f is increasing ( de-
creasing). Indeed in thus case J = Cy(w) and so (I \ J) =1\ J.

Lemma 5.4.10 [proving maximal| Let ¢t be a A\-tableau and X C I,,.
(a) [a] Suppose that ry is non-decreasing on X. Then wt <t for all * € Sym(X).

(b) [b] Suppose that ry is non-increasing on X. Then wt >t for all m € Sym(X).

Proof: (a) Suppose that 7t # £. Let i be maximal in I,, with r¢(i) # 7r(i). Note that
rrt(i) = r¢(m~1(i) Since r; is non-decreasing [5.4.9| gives 7;(i) < ri(7 ') = rm(i). Thus
t <7t

(]ED Similar to @ O

Lemma 5.4.11 [maximal in et| Let ¢t be column-increasing A tableau. Then t is the maz-
1mal tabloid involved in e;.

Proof: Any tabloid involved in e; is of the form 7wt with 7 € C;. Since r; is increasing
on each column, we can apply to the restriction of 7 to each of the columns. So the
result holds. O
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Lemma 5.4.12 [linear independent and order| Let F be ring, V a vector space with a
totally ordered basis B and L a subset of V.. Letb € B andv € V.. We say that b is involved
in v if the b-coordinate of v is non-zero. Let b, be mazximal element of V involved in v.
Suppose that the by, l € L are pair wise distinct and the coefficient f; of by in l is not a left
zero divisor.

(a) [a] L is linearly independent.

(b) [b] Suppose in addition that each fi,1 € L is a unit and L is finite. PutC ={b; |l € L}
and D =B\ C.

(a) [a] LUD is an R-basis for M.

(b) [b] Suppose R is commutative and (- | -) be the unique R bilinar form on M with
orthormal basis B. Then

(a) [a] For each d € D there exists a unique eq € d + RC with eq € L*.
(b) [b] (eq|d €D isan R-basis for L.
(c) [c] £+ =RL.

Proof: @ Let 0 # (f;) € @, F. Choose | € £ with b maximal with respect to f; # 0.
Then b; > by, for | # k € L with fi # 0. So b; is involved in f;l, but in not other fik. Thus
> ier il #0 and L is linearly independent.

@ We assume without loss that f; =1 for all [ € L.

Let m = ) ,cgmpb € M. We need to show that m € R(DU L. If my = 0 for all
b € B, this is obvious. Otherwise pick b € B, maximal with m; # 0 and let [ € £ with
b = b;. Then by induction on b, m —mul € R(D U L).

We will first show that

(*) RNCNLT=0

Let 0 # m = >, myb; and choose [ with m; # 0 and b; minimal. Then (m | [) = m; # 0
and m ¢ Lt

This is just the Gram Schmidt process. For completeness here are the details.
Let £ = {ly,la,...1,} and b; = b, with by < by < ...b,}. Put ep = d and suppose
inductively that we have found e; € d + Rby + ... + Re; with e; L [ for all 1 < j <e;. If
i <mnput e =e — (€ | liz1)bi+1. Then (41 | li+1 = 1 and since b1 L [ for all j <.
Put eq = e,. By (*), €4 is unique.

(b:b:b)) Clearly (eq | d € D) is R-linearly independent. Moreover if m = >, . pmyb €
L1, then m :=m — Y jepmaeq € RCN LE . So (*) implies m = 0 and holds.

m =3 pcean Mub € L+, By there exists m € RL with m = m € RD and
so we may assume that m, = 0 for all ¢ € C. Then 0 = (m | eq) = my for all d € D and so
m = 0. ]
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Theorem 5.4.13 [standard basis] Let F' be a ring and \ a partition of n. The standard
polytabloids form a basis of S*. Moreover, S*™+ = S* and there exists an R-basis for S
indexed by the nonstandard \-polytabloids.

By 5.4.10@ and |5.4.12| the standard polytabloids are linearly independent. Let ¢ be A-
tableau. Let |t| be the column equivalence class of ¢. Total order the column eugivalence

classes analog to We show by downwards induction that e; is a F-linear combination
of the standard polytableaux. Since e; = +eg for any s column-equivalent to t we may
assume that ¢ is column increasing. If ¢ is also row-increasing, t is standard tableaux and
we are done. So suppose t is not row-increasing so there exists (i,j) € Z'x such that
t(i,7) > t(i,j+1). Let X = {t(k,j) |i <k <X andY = {t(k,j+1)|1 <k <j. Then
| X UY]| =X\, +1 and so by [5.4.1]

Z sgnmers = 0

T€Txy

Since ¢; is increasing on X and on Y and since t(i,j) > t(i,j + 1), r¢ is non-increasing
on X UY. So by 5.4.10 |7t| > |— for all 1 # 7 € Sym(XU). Thus by downwards induction
ext 1s an R-linear combination of the standard polytabloids. Hence the same is true for

er = — 2175”7— SENTEry.
The remaining statements now follow from [5.4.12 U

5.5 The number of simple modules

Definition 5.5.1 [def:p-regular class| Let p be an integer. An element g in a group G is
called p-singular if p divides |g|. Otherwise g is called p-regqular. A conjugacy class is called
p-reqular if its elements are p-reqular.

The goal of this section is to show that if K is an algebraicly closed field, G is a finite
group and p = char K then the number of isomorpism classes of simle KG-modules equals
the number of p-regular conjugacy classes.

Lemma 5.5.2 [cyclic permutation]

(a) [a] Let G be a group, n € Z" and a1,...a, € G. Then for all i € N a;41a;42 ... 0i1n
is conjugate ai1as . ..a, in G.

(b) [b] Let R be a group, n € Z" and ay,...a, € R. Then for alli € N, aj110i12...aj1n =
ajasy...a, (mod )S(R)

Proof: @ We have al_1 Sa1a9 .. .0y ... Q1 = A9 ...0p01. SO @ follows by induction on n.
(]E[) ay-ag...anp —ag...a,-a; € S(R) So (]ED follows by induction on n. O
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Definition 5.5.3 [def: sr| Let R be ring and p = char R. Then S(R) = (zy —yx | z,y €
R)z. Let p=pifp#0andp=1ifp=0. T(R)={r € R|rP" € S(R) for some m € N}.

Lemma 5.5.4 [sr for group rings| Let R be a commutative ring and G a group. Then
S(RG) consists of all a = ngg € RG with dec rq = 0 for all conjugacy classes C of G.

Proof: Let U consists of a = ngg € RG with dec ry = 0 for all conjuagacy classes C
of G. Note that both S(R) and U are R-submodules. As an R-modules S(R) is spaned by
the gh — hg wth g,h € G. By [5.5.2] gh and hg are conjugate in G. Thus gh = hg € U and
S(R) CU. U is spanned by the g — h where g, h in G are conjuagte. Then h = aga™! and
g—h=a'ag=ag-a ! andso g—h € S(R) and U C S(R). O

Lemma 5.5.5 [basic sr| Let R be a ring with p := char R a prime.

(a) [a] (a+0b)P" =a”" +b"" mod S(R) for all a,b € R and m € N.

(b) [b] T(R) is an additive subgroup of R.

(¢c) [c] Suppose that R = @;_, R;. Then S(R) =@._,S; and T(R) = DT (R;).
(d) [d] Let I be an ideal in R. Then S(R/I) = S(R)+I/I.

(e) [e] LetI be a nilpotent ideal in R. Then I <T(R), T(R/I)=T(R)/I and R/T(R) =
(R/D)/T(R/T).

Proof: () Let A = {a,b}? and let H = (h) be a cyclic group of order p acting on A via
h(a;) = (aj+1). Then H has two fixed points on A namely the constant sequence (a) and
(b). Since the length of any orbit of H divises |H]|, all other orbits have lenghth p. Let C
be an orbit of length p for H on A. For a = (a1,a2,...ap) € Apuy [[a =ajaz...a,/ Then
byHa =][b (mod )S(R) for all a,b € C and so ) ;.o [[b=p[[a=0 mod S(R).
Hence for (a+b)P =3 ;.4 Ta =a? + b mod S(R). (&) now follows by induction on m.

(o) Follows from (a)).

Obvious.

(d) Obvious.

(e) Since I is nilpotent, I* = 0 for some integer k. Choose m with p™ > k. Then for
alli € I, " =0 € S(R) and so i € T(R). Thus I < T(R). Since S(R) + I/I = S(T/I)
we have T(R)/I < T(R/I). Conversely if t + I € T(R/I), then t* € S(R) + I. Since bith
S(R) and I are in T'(R), (]%I} implies 7' € T(R) and so also t € T(R). O

Lemma 5.5.6 [tr for group rings| Let F be an integral domain with charF = p. Let G
be a periodic group and let Cp, be the set of p-reqular conjugacy classes of G. For C € C,, let
gc € C. Then (gc + S(FG) | C € Cp) is a F-basis for FG/S(FG).
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Proof: Let g € G and write g = ab with [a,b] = 1, @ = 1 and b, p-regular. Then

g?" — " = 0 and so by -(]EI) g = mod T(FG). Also by- 5.5.4 b = gc where C' = %b.
(9c + (FG) | C € Cp) is a spanning set for FG/S(FG). Now let rc € R with

Z rege € T(FG)
CceC,

Then there exists m € N with (3 cce, regc)?" € S(FG). Since g¢ is p-regular, p { g
and so p is invertible in Z/|gc|Z. Hence there exists m¢o € Z with |go ipmc — 1. Put
b

k=m]]cec, mc. Then g‘gk = gc and (P cee, rege)?" € S(FG). By [5.5.5((b

k k
Z % go = Z 7, g7, € S(FG)

)

cec, cec,
Thus shows that rgk =0 for all C € Cp. So also r¢ = 0 and (g¢ + (FG) | C € Cp)
is a linearly independent. O

Lemma 5.5.7 [sr for matrix ring] Let R be a commutative ring and p = char R.
(a) [a] S(M,,(R)) consists of the trace zero matrices and M,(R)/S(M,(R)) = R.

(b) [b] p = charK is a prime, then T(M,(R)) = {a € M,(R) | tr(a)?” = Ofor somem €
N}}.
(c) [c] If R is a field, then S(M,,(R)) = T(M,(R)) and M,(R)/ T(M,(R)) = R.

Proof: Since tr(zy) = tr(yz) and so S(M,,(R)) < ker tr. ker tr is generted by the matrices
E;j and E;; — Ej; with i # j. E;; = EE;j — EijE;; and so Ejj € S(Mp(R). Eiy — Ejj =
EijEji — EjiEzj and so F;; — EJ] € kertr.

Suppose now that p is a prime and let a € M, (R). Let b = tr(a)E1l and ¢ = a — b.
Then trc = 0, ¢ € S(M,,(R)) and so by a € T(M,(R)0 if and only if b € T(M,(R)).
Since tr(b?") = tr(a)?” the lemma is proved. O

Theorem 5.5.8 [pmodular simple| Let G be a finite group, F an algebraicly closed field
and p = char F'. Then the number of isomorphism classes of simple FG-modules equals the
number of p-reqular conjugacy classes.

Proof: By [5.5.6) the number of p’ conjugacy classes is dimg FG/ T(FG).

Let A = FG/J(FG). By [6.3.4] J(FG) is nilpotent and so by [.5.5(), FG/ T(FG) =
A/T(A).

By [2.5.24 R = ;" ; My, (FF), where n is the number of isomorphism classes of simple
FG-modules.

Thus by [5.5.5(d) and 5.5.7(c), R/T(R) = F". So dimpFG/T(FG) is the number of

isomorphism classes of simple FG-modules. O
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5.6 p-regular partitions

Definition 5.6.1 [def:p-regular partition| Let p and n be positive integers with p being
a prime. A partition X\ of n is called p-singular, if there eizsts i € N with A\jy1 = Mo =
... = XNitp- Otherwise X is called p-regular.

Lemma 5.6.2 [p-regular=p-regular| Let p,n be positive integers with p beieng a prime.
The number of p-reqular conjugacy classes of Sym(n) equals the number of p-regular parti-
tions of Sym(n).

Proof: Let g € G and p its cycle-type. Then g is p-regular iff none of the p; is divisible
by p. Any such partions we can uniquely determined by a sequence (z;),; of non-negative
integers with Y iz; = n, where j; is the number of &’s with p, = 4. Any p-regular partion
we can write as a sequence (z;)5°; with 0 < j; < p.

Let f = % viewed as an element of Z(x)), the ring of formal integral power
series. -

We compute f in two different ways:

(i) [1] Let A = N\ pN. For each i cancel the factor 1 — zP* in the numerator and
denumerator of f to obtain:

. 3
[ = [pen =5 = Jlea>jsoz”
Z(ji)E@AN [Lica g = Z(ji)E@AN gdiea i

Thus the coefficent of ™ is the number of partions of n, none of whose parts is divisible
by p. So the coefficent of " is the number of p-regular conjugacy classes in Sym(n).

(ii) [2] Let B={0,1,...p—1}.

Io= 1= 11_—3? = Hf;Zj:oP—lxj
Sipeannlleh = Tippequpesins

So the coefficient of ™ in f is the number of p-regular partitions.

Definition 5.6.3 [def:glambda] Let A be a partition of n and F = Z. Then

g = ged{(e; | es) | t, sA — tableaux}

Lemma 5.6.4 [glambda and dlambda] Let \ be a partition of n. Then D* = 0 iff
char F' | g*.
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Proof: Since S* is spanned by the A-polytabloid we have

D=0
= S =5 nsM
= SA 1L SA
= er 1 eg VA — tableauxs, t
= (et | es) V-tableauxs, t
<= charF | (e; | es)z VA-tableauxs,t
= char F | g

Lemma 5.6.5 [glambda] Let A be a partition of n and for F =7 define

g = ged {(es | es) | t, s\ — tableauz}
Let z; = |{i | \i = j|}. Then g* divides [1521(2Y) and [152, 2! divides g

Define two A-tabloids s and £ to be equivalent {A;(t) | i € Z1t = {A;(s) | i € Z}, that is if
t and s have the rows but in possible different orders. Define Z; = {i € Z* | \; = j and
7 = (Zj);?‘;l. Then Z is partition of Z*. Note that £ and 3 5 are this is the case if and only
if there exists 7 = 7(7,s) € Sym(Z™") with Az;(¢t) = Ai(s). Then Ay = [An| = |Ai(s)] = N
and so 7Z = Z. Conversely if 7 € Sym(Z) := Csymz+)(Z) = @jez+ Sym(Z;), then there
exists a unique tabloid s with A;(s) = Ar;(¢) and $ is equivalent to s.

Hence

1° [1]  Each equivalence class contains |Sym(Z) = z!:=[[;Z z;! tabloids.
For a tabloid 7 and a tableau t let €,(T) be the coefficient of T in e;. So e, = > €/(T)T.

2° [2]  LetT and s are equivalent A-tableauz. Then there exists € = €(T,5) € {£1} such
that for any A-tableauz t, €,(3) = € - €(F).

Let m = m(T,5). Let 7; be the restriction of 7 to Z; and define € = [, sgnm/. We may
assume that 7 is involved in e; and so T = pt for some p € C;. Without loss r = pt. Define
7* € Sym(n by 7*(r(i, j) = 7(n(i), ). Then 7* € C}, sgnm* = € and 7°r = 5. Thus 3 = 7% p,
the coefficent of T in e; is sgnp and the coefficent of s is sgn (7 * sgnp) = esgnp. o

3° [3] 2! divides g’
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Let t,u be A tableaux. Let A be an equivalence class of tabloids and 7 € A. Let s € A
and choose € as in . Then

€t(8)eu(3) = €- €(3) - € €5(T) = €(T)e(5)
Thus >, 4 €1(5)eu(s) = |Aler(T)eu(T)
By (1), |A|] = z!. Summing over all the A’s we conclude that z! divides (e; | e5). Thus

holds.

Let t be A-tableau. Define o € Sym(n) by o(t(i,)) = t(i, \; + 1 — j) and put ¢ = ot.
So t is the tableaux obtained by reversing the rows of t. We will show that (e; | () | ¢;) =
121 (2! ~

Put U; :=U;(t) := Uypez, Ak(t), the union of the rows of ¢ of size i. Note that U; = Ui(?)
and U = (U;) is partion of I,,. Also put Ug = Uij(t) = U; N A’} the part of column j of ¢
lying in U;. Then Uij(f) = UZ+1_j = U(Ul-j). Let P = (Uz]) | i,j € Z). Then P is a partition
of I, refining both U and column partition. A’(t). Hence Sym(U) < C;. Also o permutes
the U;; and so o normalizes Sym(U) and so Sym(U) < 0Cio~! = C;. Observe |U} ()| = z;
if j <i and Uij (t) = 0 otherwise. Thus

4[4 [Sym(U)| =TI, [U7 ()] =TI, (=)
We show next
5° [5]  Let m € Sym(U). Then e(nt) = €;(mt) = sgn.

Since m € C} we have ¢/(nt) = sgnm.
Since m € C; we have ¢ (nt) = sgnr.
Since o fixes the rows of t, mom ! fixes the rows of 7t. Thus

it = wom 17rt:ﬁ::t~

and so holds.

6° (6]  Let € Cy such that zt is involved in e;. Then m € Sym(U).

Since mt is involved in e; there exists 7 € C; with nt = E Hence for all k£ € I,
Tapy(k) = r27(k) and so ry(m k) = rg(7—1k). Put @ = 7~ and @ = 7*~'. Then for all
kel

(%) acC, aecC; and r(alk)) =rialk))

We need to show that a(UZ:j ) = Uij = d(Uij ) for all 7, j. The proof uses double induction.
First on j and then downwards on <.
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For I,J C Zt let U = U{U/ |i e I,j € J}. If I = Zt or J = Z* we drop the
subscript 1, respectively superscript. For example US/ = (JUF | i,k € ZT | k < j} consists
ofthe first j columns of t. ‘

Suppose that a(U}) = U} = &(U}) whenever | < j or I = j and k > i. Then a(UZ,) =
a(Uii) and a(U7) = U’ implies oz(Uij) - Uiz Hence by (*) also

(%) alpha(U?) C Ug;
Let c=74+1—j. Then Ufzf]f and

ug;=Juittt
k<i

and so by induction aU¢, = U¢,. Hence a(U?y d(UEZ) = ng C Us; = Us;. So by
(") a(U}) CU;n0°® = Uf = U} and a(U!) = U;;. Hence by (*) also a(U{ < U;NU7 = U}
and o(U}) =U;.

So is proved.

From (5°) and we conclude that (e; | ;) = [Sym(U)| = [[32,(z:!)%. Since g* divides
(et | €f) the lemma is proved. O

Proposition 5.6.6 [dlambda not zero| Suppose F is an integral domain and X\ is a par-
tition of n. Let p = char F. Then D # 0 iff X is p-reqular.

Proof: Since F' is an integral domain, p = 0 or p is a prime. Let A\ = (i7);=1. Then
p | T1; 2! iff p < z; for some i, iff p | [[;(2:!)* and iff X is p-singular.

So implies that p | gy iff A is p-singular. And so by Dy = 0 iff \ is p-singular.
(]

Theorem 5.6.7 [all simple sym(n)-modules] Let F be a field, n a postive integer and
p = char F.

(a) [a] Let A be a p-regular partition of n. Then Dy is an absolutely simple, selfdual
FSym(n)-module.

(b) [b] Let I be a simple FSym(n)-module. Then there exists a unique p-regular partition
X\ of n with I = D>,

Proof: @ By D* £ 0. By s induces a non-degenerate G-invariant form on
D* and so by |4.1.6{[c), D? is isomorphic to its dual. By D* is absolutely simple.
(]EI) If A and p are distinct p-regular partition then by and @), D* and D* are
non-isomorphic simple F'Sym(n)-modules. The number of simple F'Sym(n)-modules is less
or equal to the number simple Sym(n)-modules over the algebraic closure of F. The latter
number is by equal to to the number of p’-conjuagacy classes and so by equal to
the number of p-regular partitions of n. So (]ED holds. O
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5.7 Series of R-modules

Definition 5.7.1 [def:series| Let R be a ring and M and R-module. Let S be a set of
R-submodules of M. Then S is called an R-series on M provided that:

(a) [a] 0€S and M € S.

(b) [b] S is totally ordered with respect to inclusion.
(c) [c] ForallD#T CS, NT €S andJT €S.

For example Z > 27 > 6Z > 30Z > 210Z > ... > 0 is an Z-series on Z.

Definition 5.7.2 [def:jumps]| Let R be a ring, M an R-module and S an R-series on M.
For0#AeSput A~ ={BeS|BCA}. If A# A™ then (A~,A) is called a jump of
S and AJ/A™ a factor of S. S is called a composition series for R on S provided that all its
factors are simple R-modules.

The above example is composition series and its sets of factors is isomorphic to Z/pZ,
p a prime.

Lemma 5.7.3 [basic series| Let R be a ring, M an R-module, S an R-series on M.

(a) [a] Let A,B € S with B C A. Then (B, A) is a jump iff A= C or B = C for all
C e S with BCC C A.

(b) [b] Let U C M. Then there exists a unique A € U minimal with U C A. If U is finite
and contains a non-zero element then A~ # A and AUU ¢ A™.

(c) [c] Let 0 # m € M. Then there exists a unique jump (B, A) if S with v € A and
v ¢ B.

Proof: @ Suppose first that (B, A) isajump. Then B=A". Let C e SwithBC C C A
Suppose C C A. Then C C A~ = B and C = B.

Suppose next that A = C or B = C for all C € § with B C C C A. Since B C A,
B C A™. Let C' € § with C' C A. Since S is totally ordered, C C B or B C C. In the latter
case, B C C' C A and so by assumption B = C. So in any case C C B and thus A~ C B.
We conclude that B = A~ and so (B, A) is a jump.

) Put A =J{S € S| U C S}. By A € S and so clearly is minimal with respect
to U C A and is unique with respect to this property. Suppose now that U is finite and
contains a non-zero element. Then A ## 0. Suppose that A = A~. Then for each u € U we
can choose B, € S with u € B, and B, C A. Since U is finite {By,u € U} has a maximal
elemeent B. Then U C B C A, contradicting the minimality of A

Thus A # A~ and by minimality of A, U ¢ A.

Follows from (b)) applied to U = {m}. O
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Lemma 5.7.4 [series and basis| Let R be a ring, M a free R-module with basis B and S

be an R-series on M. Then the following four statements are equivalent. one of the follwing
holds:

(a) [a] For each A€ S, ANB spans A over R.

(b) [b] For each B€ S, (a+ B |a € B\ B} is R-linear independent in V/B. Then

(¢) [c] For each jump (B, A) of S, (a+ B | a € BNA\B} is R-linear independent in A/B.
(d) [d] Forall A,B €S with BC A, (a+B|aecBnA\B} is an basis R-basis for A/B.

Proof: @: @: (ra) € Duepya B with 3= cp a7aa € B. Then by @ applied to B
there exists (r4) € @ epna With

E Tl = g a0

a€B\A a€BNA

Since B is linearly independent over R this implies r, = 0 for all @ € B and so @ holds.
:> : Obvious.
:> @: Let a € A. Since B spans M over R there exists afinite subset C of B and

(re) € @ R* with a = Y o rcc. Let D € S by minimal with C € D. Then (D, D) is a
jump and C \ D~ # (. Suppose that D ¢ A. Since S is totally ordered, A C D~. Thus

Op/p-=a+D" = ZTCC—I—D_ = Z rec+ D™
ceC ceC\D~

a contradiction to .
(@)= (d): () implies that (a + B | @ € A} and so also (a + B | a € A} spans A/B.

Since () implies (b)), (e + B | a € B\ B} and so also (a + B | a € BN A\ B} is R-linear
independent. So @ holds.
@:> @: Just apply @ with B = 0. ]

5.8 The Branching Theorem
Definition 5.8.1 [def:removable node| Let A be partion of n
(a) [a] A node d € [A] is called removable if [\ \ {d} is a Ferrers diagram.

(b) [b] di = (ri,¢i),1 < i <k are the the removable nodes of [\] ordered such that r; <
ro < ... <rp. A = XN\ {di} and X = {\D |1 <i<k}

(c) [c] e € ZT — ZT is called an exterior node of [\ if D U{e} is a Ferrers diagram . X\ 1
is the set of partions of n obtained by extending [\ by an exterior node.
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Lemma 5.8.2 [basic removable| Let A\ be a partition of n and (i,j) € D. Then the
following are equivalent

(a) [a] (i,]) is a removable node of [A].
(b) o] j =\ and Ai > Ais1.

(c) [e] i=X, and \; > N,

(d) [d] j=X andi=X,

Proof: Obvious. O

Definition 5.8.3 [def:restrictable] Let \ be partition of n and t be a \-tableau. We say
that t is restrictable if t~*(n) is a removable node of [\]. In this case t |-1(;, .y is denoted
by t Li is called restrictable if t contains a restrictable tableau s. In this case we define

El=s1

Lemma 5.8.4 [basic restrictable| Let A be a partion of t. If t is restricable then t | is
a tableau. If t is standard then t is restrictable and t | is standard. Let m € Sym(n — 1).
Then t is restrictable iff 7t is restrictible. In this case (wt) \= 7 (t ). t is restrictable iff ©t
is restrictable In this case (wt) = (¢t ).

Proof: Obvious.

Theorem 5.8.5 [restricting specht] Let A be a partition of n. For 0 < i < k let V; be
the F-submodule of S* spanned by all e; where t is a restrictable A\-tableau with n in one of
the rows r1,72,...7;. Then

0=Vo<Vi...<Vi1 <V =28

as a series of FSym(n — 1)-submodules with factors V;/V;_1 = A

Proof: Clearly the the set of restrictable A tableaux with n in row r; is invariant under
the action of Sym(n — 1). Thus each V; is an F.Sym(n — 1) submodule of S*. Also clearly
Vi—1 <V, and it remains to show that V;/V;_; = S’\m. For this define and F-linear map

(1) 0, M» > M T

_ t] ifnisinrow r; of t
0 otherwise
Clearly 6; commutes with the action of Sym(n — 1) and so 6; is F'Sym(n — 1) linear. Let

n be a restrictable tableau with n in row r;. Then for all 7 € C; n is in a row less or equal
to r;, with equality iff 7 fixes n, that is if 7 € Cy). Thus
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e, j=i
9 0:(e,) —
@ (ee) {o if j <

If 5 is a A(-tableau, then s =t | for a (unique) restrictable A tableau ¢ with n in row
r;. Hence

(3) Vi1 <Vinkerd; and V;/V;Nkerf; = Img; = S*”

Let B be the set of standard A-polytabloids and B; the e; with ¢ standard and n in row
r;. Then by (1) 0;(B;) is the standard basis for 29 and so is linear independently. Thus
also the image of B; in V;/V; ker 0; is linearly independent. Consider the series of F-modules

0=Vo<Vinkerfy <Vi<Viankerfy <Vo<...<Vi_y <ViNkerfp <Vj < S*

Each e; € B lies in a unique B; and so in V; \ (V; Nker ;). Thus BNV, Nkerf; C V;_.
So we can apply to the series of F-modules and conlcude that V; Nkerf;/V;_; is as
the emptyset as an R-basis. Hence V;_; = V; Nker#;. For the same reason Vj, = S* and
theorem now follows from (3). O

Theorem 5.8.6 (Branching Theorem) [branching theorem)| Let F' be a field with char F' =
0 and A a partition of n.

(a) [a]

s* \l/Sym(nfl): @ St
HEAL

(b) [b]
S)\TSym(n—l): @ SH
HEAT

Proof: (f]) Follows from and Maschke’s Theorem [2.3.2]
() Follows from (&) and Frobenius Reprocity
59 S22
In this section we investigate the Specht modules S, S(=11) and §7—22,
Lemma 5.9.1 [s(n)] M =50 = p) ~ p,

Proof: There there a unique (n)-tabloid ¢ and «t = ¢t for all # € Sym(n). Moreover e; = t
and so S =M™ Also S+ = 0 and the lemma is proved. O
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Lemma 5.9.2 [s(n-1)] Let x; the unique (n—1,1)-tabloid with i in row 2. Let z =Y\ | x;
be the sum of all A-tabloids. Then

(a) [a] SO=UD = {3 | fir; | fie F,Y0, fi=0.
(b) [b] SC—LOL = pz,

(c) [c] S=LDLng0=1L — (fr| fe Fnf=0}.

Proof: (@) If ¢ is tableau with ¢(1,1) = i and #(2,1) = j, then e; = x; — x;. This easily
implies @

() >y, Lowi—z; it fi = fj.

(c) Follows from @ and @ O

Corollary 5.9.3 [dim d(n-1)] Let F' be a field and p = charF.
(a) [a] If ptn, then S=1D = D=L has dimension n — 1 over D.

(b) [b] Ifp|n, then D™V has dimension n — 2 over F.
Proof: Follows immediately from [5.9.2] O

To analyze S(n — 2,2) we introduce the follwing notation: Let n € N with n > 4 and
A = (n—2,2). Let P be the set for subsets of size two in I,,. For P € P, let xp be the
A-partition (P, I, \ P). Then (zp | P € P) is an F-basis for M*. For a,b,c,d pairwise
distinct elements in I,, put €abled = Tac + Tbd — Tad — The- So Cabled = €t for any A tableau

ac...
of the form v

For i € I,, define z; := Y, pcpxp and y; = ZigéPeP xp. Alsolet z = ) popap and
observe that x; +y; = z for all ¢ € I.

Lemma 5.9.4 [basis for s(n-2,2)perp]

(a) [a] x1,2,...2n0 1,Yn is an F-basis for SM.
(b) [b] x1,29,...Tn 1,2 is an F-basis for SM.

(c) [c] y1,y2,.- -Yn_1,2 is an F-basis for S .
(d) [d] If 2 is invertible in F then x1,xa,. ..y, is an F-basis for SM.

(e) [e] Ifn —2 is invertible in F, then y1, Y2, ... Yn is an F-basis for SM-.
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Proof: @ We will first show that z; L eg)q for all appropriate i, a,b,c,d. If i ¢
{a,b,¢,d}, v and egpjcq have do not share a tabloid and so (z; | €gp)eq) = 0. So suppose
i = a, then z; and e,p|.q share x4, and x,q With opposite signs and so again x; L €gp|cq-
Clearly z L egpjcq and so also y; L e4pjcq- Thus z;,y; and z are all contained in S

Now let a = ) pep I'PTP € S We need to show that a is a unique F-linear combi-
nation of x1,x9,...Ty_1,yn. For n #i € I,, x; is the only one involving x;,. So replacing
a by a — Z?:_ll rinT; we assume that r;, = 0 for all ¢ # n. And we need to show that a
is scalar multiple of y,,. That is we need to show that r;; = ri; whenever {7, j}, {k,l} € P
with n ¢ {4,j,k,l}. Suppose first that PN Q # 0 and say i = k and withoutloss j # .
Since a € SM, a L €in)jt- Thus rij + 1y — 1y — rny = 0. By assumption 7, = rp,; = 0 and
so 13j = r; = 71 In the geneal case we conclude r;; = ry, = 71y and @ is proved.

Observe that z = Z?:_ll x; — Yn. Thus @ follows from @

(c) Since y; = z — x; this follows from (b)).

(d) Observe that 37" | 2; = 2z and so z, = — Z?:_ll x; +22. So @ follows from (b))

() We have 377 yi = 300, (2 — @) = nz = Yo @ = (n = 2)z. S0 Yo = — 200, yi +
(n —2)z and () follows from (d). O

It might be interesting to observe that y1, ..., yn_1, Ty is only a basis if n—2 is invertible.
Indeed x, = — S0 @i + 22 =30 i — 2) + 22 = 3, vi + (n — 2)2.
We know proceed to compute S* N SM if F is a field.

Lemma 5.9.5 [s(n-2) cap s(n-2)perp| Suppose F' is field and put p = char F'.

(a) [a] Suppose p=0 orp is odd and n # 1,2 mod p or p =2 and n =3 mod 4. Then
n SM N SM = 0.

(b) [b] Suppose p is odd andn =1 mod p orp=2, n=1 mod 4. Then S*NSM = Fz.

(c) [c] Suppose p is odd and n =2 mod p or p =2 and n =2 mod 4, then S} N SM =
(Fy; |1 <i<mn)and >  y; =0.

(d) [d] Suppose p =2 and n =0 mod 4. Then S* N SM = (Fyy; |1 <i<j<n)and
Z?:l Yn = 0.

Proof: Since F is a field and (- | -) is non-degenerate, S*+ = S* and so S N S*M =
SAM-L N S s the radical of the restriction of (- | -) to S

By |5.9.4y1, 92 . . . yn_12 is basis for SM-. Let a = gz + Z?;ll r;y;. Then

Observe that

i ) = ("))

(Wi ly) = (") i#J

(i | 2) = ("3")
(z]2) = (3)
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So(a|y;) =ro("3 ") +ri (") +3 i i ("57). Putr = 35 . Since (") —("57) =

(”Iz) =n — 1 we conclude a € S* if and only if
(1) (alyj)I(n2 )ro+(n2)m~+<"2 >7“:0V1§j<n
and

(2) (G\Z)ZTD(Z>+r<n;1>=0

Sustracting (1) for two diffrent values of for j gives

(3) n=2)rj=Mm-2)V1<j<k<n-1

(4) (n—2)r = (n—1)(n—2)r,

Substracting (2) from (1) gives

(5) (n—Dro+ (n—2)r; =(n—2)r

and using (4)

(6) (n—1)rog=(n-— 2)2rj

Note also that (1) and (2) are equivalent to (2),(3) and (6).

Suppose first that n —2=0in F. Then > " ;y, = (n—2)z=0and (y; | 1 <i<n)p =
(yi|1<i<n-—1)p and

Alson —1# 0. So (3) and (6) hold if and only if 7o = 0. If p £ 2 or p=2 and n = 2
mod 4, then also (ngl) = 0in F and so also (6) holds. Thus () holds in this case. If p =2
and n =0 mod 4, then (”51) = 1 and so (6) holds if and only if » = 0. Observe also that
>oiiyi =0and neven implies (y; +y; |1 <i<j<nmrp=(yi+yj|1<i<j<n—1)p
and so @ holds.

Suppose next that n —2 # 0 in F. Then (3) just says r; = r,. Assume that n —1 =0
in F. Then (6) holds iff r; = 0 for all j. Hence (2) says ro(3)r =0. If p#£2 or p =2 and
n=1 mod 4, (g) =0 and @ holds. If p =2 and n = 3 (mod 4), then (g) =1.Sorg=1
and @ holds.

Assume next that n—1 # 0 and so p # 2. Multipying (2) with % gives nrg = —(n—2)r.
Adding to (5) gives ro = 0. So also 0 = (n — 2)r = (n — 2)(n — 1)r; and r; = 0. Thus (&)
holds. g
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Corollary 5.9.6 [dimension of d(n-2,2)] Suppose F is a field, then dimp S("=22) =

@ Moreover,

(a) [a] Suppose p =0 orp is odd and n # 1,2 mod p or p =2 and n =3 mod 4. Then
dimp D(n=22) = Mn=3),

(b) [b] Suppose p is odd andn =1 mod p orp =2, n=1 mod 4. Then dimp D22 =

n(n—3
(n-3)

(¢) [c] Supposep isoddandn =2 mod p orp=2andn =2 mod 4. Then dimp D("~22) =
(n—1)(n—4) 1
T -1

(d) [d] Suppose p=2 andn =0 mod 4. Then dimp D*~22) = Wléﬁ.

Proof: Since dim D* = dim S* — dim(S* N $*+), this follows from and some simple
calculations. 1

Definition 5.9.7 [def:shape] Let M be an R-module.
(a) [a] A shape of height n of M is inductively defined as follows:

(i) [i] A shape of height 1 of M is any R-module isomorphic to M.
(i1) [ii] A shape of height h of M is one of the following.
(a) [1] A triple (A, ®, B) such that there exists R-submodules X,Y of M with
M =X &Y such that A is a shape of height i of X, B is a shape of height j
of Y and k =i+ j.
(b) [2] A triple (A,|, B) such that there exists R-submodules X of Y such that A
is shape of height i of X, B is a shape of height j of M/X and k =1+ j.

(b) [b] If M ~ S means that S is a shape of M. A shape (A, ®, B) as in is denoted

by A® B. A shape (A, |, B) as in (a:ii:d) is denoted by A | B or %

(c) [c] A factor of a S shape of M is incuctively defined as follows: If S has height 1, then
S itseld the only feator of S. If S=A| B or S = A® B, then any factor of A or B is
a factor of S.

(d) [d] A simple shape of M is a shape all of its factors are simple.

Observe that if M ~ A | (B | C then also M ~ (A | B) | C and we just write
M| A|B|C. Similar M ~ (A@& B& C) means M ~ (A@ B) & C and equally well
A® B(®C). We also have M ~ A@ B it M ~ B® A. But M ~ A | B does not imply
M ~B|A Wehave M ~ A& (B | C) implies M | (A®& B) |C and M ~ B | (Aa ().
But M ~ (A@® B) | C does not imply M ~ A& (B ~ C).
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For example if F' is a field with char F' = p then by MO=1L1) D) g pir=1L1) jf
ptn and MO=LU~D" | D=L | D(p) if p | n.

If might also be worthwhile to define the following binary operation on classes of R-
modules. If A, B are classes of R-modules, then A & B denotes the set of all R-modules M
such that M 2 X @Y with X € Aand Y € B. A| B is the class of all R-modules M such
that M has an R-submodule X with X € A and M/X € B. A shape of M then can be
interpreted as a class of R-modules containing M obtained form the isomorphism classes of
R modules and repeated application of the operations @& and |.

To improve readabilty we write D(a,b,c...) for D(®b¢) in the next lemma.

Corollary 5.9.8 [shape of m(n-2,2)] Suppose F is a field. Then D22 has simply
shapes as follows:

(a) [a] Suppose p =0 orpis odd andn # 0,1,2 mod p orp=2 andn =3 mod 4. Then
M®=22)  D(n—2,2)& D(n —1,1) & D(n)
(b) [b] Supose p# 0,2 and n=0 mod p. Then
D(n)
M"=22 ~D(n-2,2) @® D(n—1,1)
D(n)

(c) [c] Suppose p is odd andn =1 mod p orp=2,n=1 mod 4. Then

M"=22 ~ Dn-22 @ Dn-1,1)

(d) [d] Suppose p is odd and n =2 mod p. Then

D(n—1,1)
M=22 o Dn-2,2) @& D)
D(n—1,1)

(e) [e] Supposep=2 andn =2 mod 4. Then

D(n—1,1)
D(n)
M=22 o Dn—-2,2) @& D)
D(n)
D(n—1,1)
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(f) [f] Suppose p=2 and n =0 mod 4. Then

D(n—1,1) & D(n)
M™=22) o7 D(n —2,2)
D(n—1,1)® D(n)

Proof: This is straighforward from As an example we consider the case p = 2 and
n =2 (mod 4). Observe that (z | z) = (3) # 0 and so M* = Fz. Thus M* ~ D(n) & z L,
and the restrition of (- | -) to z* is a non-degenerate.

mB =5 N SM = (y; |1 <1<n). So B has the submodule, A = (y;y; | 1 <u <
Jj <mn). Since I ;y; =0, B= D(n—1,1). Since n is even, A/B # 1 and A/B = D(n).
S*JA = D* = D(n—2,2). Since S™ = A+ Fz, S* = ztNAt. SoztNB+/S* = (A/B)* =
D(n)* = D(n). Moreover, z+/z+ N A+ =2 A* =~ D(n —1,1)* = D(n —1,1). Thus (EI) holds.
O

5.10 The dual of a Specht module

Definition 5.10.1 [def:twisted module| Let R be a ring, G a group , M an RG-module
and € : G — Z(R)! a multiplicative homomoprhism. Then M, is the RG-module which is
equal to M as an R-module and g-c m = €(g)gm for all g € G,m € M.

Note that this definition is consistent with our definition of the RG-module R..
Proposition 5.10.2 [slambdaprime] Let A\ be a partion of n. Then
S)\* ~ M)\/S}\J_ ~ Ss)\gn

as FSym(n)-module.

Proof: Fix a A tableau s. Let m € Ry = C(3). Since Ry = Cy, @ gives mey =
SgNTey = T -sgn €5. Hence there exists a unique F'Sym(n)-linear homorphism

(1) ag : M — MY with 5 — ey

Let t be any A-tabloids. Then the exists 7 € Symn with ws = ¢ (namely 7 = ts~!) and
SO

Qg @)as (E) = T 'sgn €5/ = Sgn(ﬂ')ews’ = Sgn(t‘sil)et’

that is

(2) as(D) = sen(ts e
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Observe that (2) implies

(3) Ima, = SV

Since A" = X we also obtain a unique F'Sym(n — 1) linear map

(4) g s MY — MM E — sgn(ts™ e
Then
(5) Im oy = S*

We claim that ag is the adjoint of as. That is

(6) (as(®) | ) = (] ax (t)T

for all A-tableaux ¢,r.
Indeed suppose that 7/ is involved in involved in ay(f) = sgnts~'ey. Then there exists
B € Cp with 17 = ft’ and so there exists 0 € R,» with d7" = t'. Moreover

(as(@) | 17) = sgn(ts™")sgnp
Observe that § € C,. and 3 € R;. Thust = @ = Jr and so t is involved in e, and

(] ag (1)) = sgn(rs™")sgnd
or = t implies 6rs~! = Bts~! and so

sgn(rs1)sgnd = sgn(ts~1)sgnf
and so (6) holds.
Let m € M*. (-] ) is non-degenereate, (6) implies as(m) = 0 iff (as(m) | m’) = 0 for
all m’ € M iff (m | g (m/)) = 0 and iff m € (Imay) L. So by (5) ker iy = S* and so
M*/SM = M* /kera, = Ima, = S*
U
Lemma 5.10.3 [tensor and twist| Let R be a ring, G a group , M an RG-module and
€: G — Z(R)* a multiplicative homomoprhism. Then
M= R.®@r M

as an RG-module.
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Proof: Observe first that there exists an R-isomorphism « : Re®r M — M with r@m —
rm. Moreover, if g € G,r € R and m € M then

a(glr@m)=a(g-er@gm) = a(e(g)r) ® gm
= e(g)rgm = e(g)grm
= grerm =  gea(r®m)
and so « is an RG-ismomorphism. U

Corollary 5.10.4 [slambdaprime II]
(a) [a] ST = Fg.
(b) [b] Let X be a partition of n. Then S™ = S(1") @ SN

Proof: () By [5.9.1] S 2 F and so by [5.10.9 F = F* = g0+ = s — gl
) M= 8X, =F0 sV =50 g sV, O

sgn



Chapter 6

Brauer Characters

6.1 Brauer Characters

Let p be a fixed prime. Let A be the ring of algebraic integers in C. Let I be an maximal
ideal in A containing pA and put F = A/I. Then F is a field with with charF = p.

TA—>TFa—a+1

be the correspoding ring homorphism.
Let A be the localization of A with respect to the maximal ideal I, that is A = {¢ | a €
A,be A\ I. Observe that * extends to a homomorphism

AR e )
In particular I := ker* = {{ | a € I,b € A\ I} is an maximal ideal in A, A/T 2 F and
is the kernel of the homomorphism I NA = I. Let U be the set of elements of finite p/-order

in A,

Lemma 6.1.1 [f=fpbar|
(a) [a] The restriction U — F* u — u* is an isomorphism of multiplicative groups.
(b) [b] F is an algebraic closure of its prime field Z* = F,,.
Proof: Let u € U and m the multiplicative order of u. Then
m_q1 ™ 1

m—1 ' . — '
Z xt = p— (x —u')
=0

=1

Substituting 1 for x we see that 1 — w divided m in A. Thus 1 — «* divides m* in F.
Since p 10 and char F' = p, m* # 0 and so also 1 — u* # 0. Thus * is 1-1 on U.

135
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If a € A then f(a) = 0 for some monic f € Z[z]. Then also f*(a) =0 and f* # 0. So a*
is algebraic over Z*. Let K be an algebraic closure of F and so of Z*. Let 0 # k € K. Then
k™ =1 where m = |Z*[k]| — 1 is coprime to p. Since U* contains all m roots of " — 1 we
get k € U*. Thus K* C U* C F* C K* and the lemma is proved. O

Definition 6.1.2 [def:brauer character| Let G be a finite group and M an FG-module.
G is the set of p-reqular elements in G. Let g € G and choose &,...&, € U such that
n(g) = [l (@ — &), where na(g) is the characteristic polynomial of g on M. Put
dm(g) = D11 &. Then the function

or G — A g — dulg)

is called the Brauer character of G with respect to M.

Recall that if H C G t}}en we view RH as R an an R-submodule of RG. Also note that
oM = deé om(9)g € AG C AG. Observe also that 1ge is the Brauer character of the
trivial module F.

Lemma 6.1.3 [basic brauer| Let M be a G-module.

(a) [a] ¢ is a class function.

(b) o] Barlg) = darle™)-

() [e] s = our-.

(@) [d] If H<G then ¢ 5= ba,-

(e) [e] F be the sets of factors of some FG-series on M. Then

¢M=Z¢F

FeF

Proof: Readily verified. See O

Definition 6.1.4 [def tilde a]

(a) [a] For g € G let gp,gy be defined by gy, 9y € (9), 9 = Gp9p'» gp 5 a p- and gy is a
p’-element.

(b) [b] Fora=3% cqa99 € CG, a=alg=3 cqa99-
(¢) [c] Fora=CG define a € CG by a(g) = a(gy-

Recall that xas(g) = tras(g) is the trace of g on M.



Section 6.2. Algebraic integers 137

Lemma 6.1.5 [brauer and trace] Let M be a FG-module. Then (dpr)* = xar.

Proof: Let W;,1 <i < n be the factors of an F(g) composition series on M. Then since
F is algebraically closed, W; is 1-dimensionaly and g acts as a scalar p; on W;. Since F
contains no non-trivially p-root of unity g, acts trivially on W; and so also g, acts as y; on
W;. Pick & € U with & = p;. Then

on(9) = omlgy) =D &
=1

and so

(bar(9))" =D pi = xm(g)
=1

Let S, be a set of representatives for the simple FG-modules.

6.2 Algebraic integers

Definition 6.2.1 [def:tracekf] Let F : K be a finite separable field extension and E a
splitting field of F over K. Let X3 be set of F-linear monomorphism from F to K.

tr:trﬁ:F—)K|f—>Za(f)

oeEY

Lemma 6.2.2 [basic tracekf] Let F : K be a finite separable field extension. Then s :
FxF — K, (a,b) — tr(ab) is a non-degenerate symmetric K-bilinear form.

Proof: Clearly s isK-bilinear and symmetric. Suppose that a # f € F+. Then tr(ab) = 0
for all b € F and since a # o, tr(f) = 0 for all f € F. Thus ) .5, o, contradiction the linear
idependence of filed monomorphism [Grl, I11.2.4].

Corollary 6.2.3 [trace dual basis] Let F : K be a finite separable field extension and B
a K basis for F. Then b € B there exists a unique b € F with tr(ab) = dqp for all ab € F.

Proof: [6.2.2] and [4.1.8 O

Definition 6.2.4 [def:integral| Let S be a commutative ring and R a subring.

(a) [a] a € R is called integral over S if there exists a monic f € S[x] with f(a) = 0.

(b) [b] Ints(R) is the set of elements in S intgeral over R.
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(c) [c] R is integrally closed in S if Intg(S).

(d) [d] If Ris an integral domain, then R is called integrall closed if R is integraly closed
in its field of fractions Fg.

Lemma 6.2.5 [basic integral] Let S be a commutative ring, R a subring and a € S.
Then the following are equivalent:

(a) [a] a is integral over S.
(b) [b] Rla] is finitely generated S-submodule of R.
(c) [c] There exists a faithful, finitely R-generated Rla] module M

Proof: ()= (b): Let f € R[z] be monic with f(a) = 0. Then a" € R(1,...,a" ') and

so Rla] = R(1,a,...,a""!) is finitely R-generated.
(&)= (b): Take M = Rla].

()= (dJ): Let B € M be finite with M = RB. Choose a matrix D = (d;;) € Mp(R)

with ai = ), pd;;j for all i € B. Let f be the characteristic polynomial of D. Then
f € R[z] and f is monic. By Cayley-Hamilton [La, XV Theorem 8] f(D) = 0. Since
fla)i=23_,cp f(D)ijj for all i € I we get f(a)M = 0. Since Ag(M) = 0 we have f(a) = 0.

]

Lemma 6.2.6 [integral closure| Let S be a commutative ring and R a subring of S.
(a) [a] Leta € S. If a is integral over R, then also Rla] is integral over R.

(b) [b] Let T be a subring of S with R C T. Then S is integral over R iff T is integral
over R and S is integral over T .

(c) [c] Ints(R) is a subring of R and Intr(S) is integrally closed in S.

Proof: () Let b € R[a]. By[6.2.5|[b), R[a] is finitely R-generated. Since Rla] is a faithful
R[b]-module, implies that b is integral over R.

One direction is obvious. So suppose S : T and T : R are integral and let a € S. Let
f = sum!_ t;z* € T[z] be monic with f(a) = 0. Put Ry = R and inductively R; = R;_1[a;].
Then a; is integral over R;_1, R; is finitely R;_i-generated. Also f € R,[x| and so Ry[a] is
finitely R,-generated. It follows that R,[a] is finitely R-generated and so by , a is
integral over R.

Let a,b € Intg(R). By (a) Rla] : R and Rla,b] : Rla] are integral. So by (b)
Rla,b] : R is integral and so R[a,b] C Intg(R) and Intg(R) is a subring. Since both
Intg(Intg(R) : Intg(R) and Intg(R) are integral, (D) implies that Intg(R) is integrally
closed in R. O
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Lemma 6.2.7 [f integral| Let R be a integral domain with field of fraction F and let K
be a field extension of F'. Let a € F' be integral over R and f the minimal polynomial of a
over IF.

(a) [a] All coefficents of f are integral over R.
(b) [b] IfK:T is finite seperable, then tr(a) is integral over R.

Proof: @ Let A be the set of roots of f in some splitting of f over K. Alos let g € R[x]
be monic with f(a) = 0. Then f | g in F[z] and so f(b) = 0 for all b € A. Thus A is integral
over R. Since f € R[A][z], (g]) holds.

(o) Let ¥ be the set of monomorphism from K to the splitting field of K over OF. Then
each o(a),o € ¥ is a root of f. Thus tra =[], .5 0(a) € R[A]. O

Lemma 6.2.8 [k=int/r|Suppose R is an integral domain with field of fraction F. Let K
be an algebraic field extension of F. Then K = {% | i € Intg(R),r € R*}. In particular, K
is the field of fraction of Intg(S).

Proof: Let k € K. Then ther exists a non-zero f € Flz| with f(k) = 0. Multitiplying f
with the product of the denominatos of its coeeficents we may assume that f € R[z]. Let
f =31 aiw; with a, # 0. Put g(z) = ap~' f(£) = Yl gaa" ' ~'a'. Then g € R[z], g is
monic and g(a,k) = a1 f(k) = 0. Thus a,k € Intx(R) and k = 2. O

Definition 6.2.9 [def:lattice] Let R be a ring, S a subring of R, M an R-module and L
an S-module of M. Then L is called a R : S-lattice for M provided that there exists an
S-basis B for L such that B is also an R-basis for M.

Lemma 6.2.10 [intfr noetherian| Suppose R is an integral domain with field of fraction
F. Let K be a finite seperable extension of F.

(a) [a] There exists an F : R-lattice in K containing Intg (R).
(b) [b] If R is Noetherian, so is Intg(R).
(c¢) [c] If R is a PID, Intg(R) is an F : R-lattice in K.

@ Let B be a [ basis for K. For each b € B there exisst 4, € Intg(R) and r, € Rf with
b = i—f. So replacing B by b][;cpm we may assume that B C Intg(R). By @ and
there exists b* €€ K with tr(b*d) = dpq for all b,d € B and (b* | b € B) is a F-basis
for K. Thus L = Intg(R)(b* | b € B) is an Intg(R)-lattice in K. Let ¢ € Intg(R). Then
i =) pertr(bi)b*. Since Intg(R) is a subring bi € Intg (R). So by tr(bi) € Intg(R)
and so ¢ € L.

(]E[) By @ Intg (R) is contained in a finitely generated R-module. Since R is Noetherian
we conclude that Intg(R) is a Noetherian R- and so also a Neotherian Intk (R)-module.
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By @ Intg (S) ia a finitely generated, torsion free R-module and so is free with
R- basis say D. It is easy to see that D is also linearly independent over F. From
K = FIntx(S) and so FD = K and D is also an F basis. O

Definition 6.2.11 [def:algebraic number field] An algebraic number field is a finite
field extension of Q.

Lemma 6.2.12 [primes are maximal| Let K be an algebraic number field and J a non-
zero prime ideal in R := Intg(Z). R/J is a finite field and in particular J is a maximal
tdeal in R.

Proof: Let 0 # j € J and let f € Z[z] monic of minimal degree with f(j). Let f(z) =
g(x)r + a with a € Z. Then f(j) = 0 gives a = —g(j)j € J. By minimality of deg f,

9(j) # 0 and so also a # 0. Thus JNZ # 0 and so Z + J/J is finite. By [6.2.10|fa) R is a
finite generate Z-module. Thus R/J is a finitely generated Z + J/J-module and so R/J is
a finite. Since J is prime, R/J is an integral domain and so R/J is a finite field. O

Definition 6.2.13 [def:dedekind domain] A Dedekind domain is an integrally closed
Noetherian domain in which every which every non-zero prime ideal is mazximal.

Corollary 6.2.14 [algebraic integers are dedekind] The set of algebriac integers in an
algebraic number field form a Dedekind domain.

Proof: Let K be an algebraic number field and R := Intg(Z). By [6.2.§ K is the field of
fraction of R. So by -. c) R is integrally closed. By m 6.2.10| R is Noetherian and bym

all prime ideals in R are maximal.

Lemma 6.2.15 (Noetherian Induction) [noetherian induction] R be a ring and M
be an Noetherian R-module and A and B sets of R-submodules of M. Suppose that for all
A€ A such that D € B for all A< D € A, then A C B.

Proof: Suppose not. Then A\ B has a maximal element element A. But then D € B for
all A < D € A and so by assumption A € B, a contradiction. O

Lemma 6.2.16 [contains product of prime| Let R be a commutative Noetherian ring
and J an ideal in R. Then there exist prime ideals Py, P>... P, € R with J C P; and
[lie, P e J.

Proof: If J isis a prime ideal the lemma holds with n = 1 and P; = J. So suppose J is
not a prime ideal. The there exists ideal J < J, < R, k = 1,1 with J;J5 C R. By Notherian
induction we may assume that there exists prime ideals J; C P, in R with H?:’Cl Py, C Jg.
Thus [[;_, [11*, Px < J1J2 C J. O
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Definition 6.2.17 [def:division| Let M be an R module and N C M and J C R. Then
N+yJ={meM|JmCN}.

For example 0 +ps J = Ap/(J) and if N is an R-submodule of M, then N < N +,; J
and N =y J/N = Apyn(J). If R is an integral domain with field of fraction K and a,b € K
with b # 0, then Ra +x Rb = RY.

Definition 6.2.18 [def:fractional ideal] Let R be a integral domain with field of fraction
K. A fractional ideal of R is a non-zero R-submodule J of R such that kJ C R for some
k € K* FI(R) is the set of fractional ideals of R. Observe that FI(R) is an abelian
monoid under multiplication with identity element R. A fractional ideal is called invertible
if its invertible in the monoid FI(R). FI*(R) is the group of invertible elements in FLZ(R).

Lemma 6.2.19 [basic monoid] Let H be a monoid.

(a) [a] Every h has at most one inverse.

(b) [b] Let a,b € H. If H is abelian and ab is invertible, then a and b are invertible.
invertible.

Proof: () If ah =1 and hb = 1, then b = (ah)b = a(hb) = a.
([0) Let h be an inverse of a. Then 1 = h(ab) = (ha)b and so since H is abelian, ha is
an inverse of b. By symmetry hb is an inverse for a. O

Lemma 6.2.20 [basic invertible] Let R be a integral domain with field of fraction K and
let J be a fractional ideal of R.

(a) [a] IfT # 0 is an R-submodule of J, then T is a fraction ideal of R and R+gJ C R+xT.
(b) [b] R-xJ is a fractional ideal of I.
(c) [c] J is invertible iff and only if (R-+x J)J = R. In this case its inverse is (R+x J)J.

Proof: By defintion of a fractiona ideal there exists & € K§ with kJ C R.
@ Note that k7" C R and so T is a fractional ideal. If [K C R then also [T C R and

@ is proved.
(b) Since k € R+x J, R+g J #0. Let t € J*. Then by (a)) applied to T = Rt,
1
R%KJQR+KRTt:R2

and so t(R+g J) C R and R +g J is a fractional ideal.
If (R+x J)J = R, then R+ J is an inverse for J in FZ(R). Suppose now that
T € FI(R) with TJ = R. Then clearly T C R <+ J. Thus

R=TJC(R+pJ)JCR
Thus both T" and R +k F' are inverse of J and so T'= R+ F. ]
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Lemma 6.2.21 [partial inverse| Let R be an Dedekind domain with field of fraction K
and J proper ideal in R. Then R < R +x J.

Proof: Let P be a maximal ideal in R with J < P. Let a € J* By there exists
non-zero prime ideals Py, P», ... P, with H;;l P; < Ra. We also assume that n is minimal
with with property. Since Ra < P and P is a prime ideal we must have P; < P for some i.
By definition of a Dekind domain, P; is a maximal ideal and so P, = P. Let Q = H;;j:l P;.
Then PQ < Ra and by minimality of n, @ £ Ra. Thus Ja™'Q < PQa' < R and and
a'Q £ R. Soa™'Q < R+g J and hence R+ J £ R. Clearly R < R+ J and the lemma
is proved.

Proposition 6.2.22 [fi for dekind] et R be an Dedekind domain with field of fraction K.
Let P be a nonzero prime ideal in the Dedekind domain R and J a non-zero ideal with
J C P. Then P invertible and J < JP~' < R.

Proof: Put @ := R+g. Then R < @ and J C JQ C R. Suppose that J = J@Q. Since
R is Noetherian, J is finitely R-generated. Since K is an integral domain and J # 0, J is
a faithful @Q-module. Thus implies that ) is integral over R. By defintition of a
Dekind domain, R is integrally closed in K and so ) < R. But this contradicts
Thus J < JQ~! and inparticular P < PQ < R. By definition of a Dekind Domain P is
a maximal ideal in R and so PQ = P. Thus Q = P~! and the proposition is proved. O

Theorem 6.2.23 [structure of dedekind| Let R be a Dedekind domain and let P be the
set of non-zero prime ideals in R. Then the map

T:®pL — FI(R) | (zp) = [ P**
pPeP

is an isomorphism of monoids. In particular, FZ(R) is a group. Moreover 7(z) < R if and
only if z € &pN.

Proof: Clearly 7 is an homomorphism. Suppose there exists 0 # z € ker7. Let X =
{PeP|lzp<O0andY ={P € P |zp>00. Then XNY =0 and X UY # (). Moreover,
7(%2) = R implies

[1 7= 17

pPeX Pey
In particular both X and not empty. Let Q € X. Then

[[7r<e

PeYy

a contrdiction since P £ @ for all P € Y and sinceR/Q is a prime ideal.
Thus 7is 1 — 1.
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Next let J be a proper ideal in R and P a maximal ideal in R with J < P. By
J < JP~! < R. By Noetherian induction JP~! = P, ... P, for some prime ideals P, ... P,
and so J = PPy ... P,, that is J = 7(z) for some z € &pN.

Finally let J be an arbitray fraction ideal in K. Then by definition ther exists kJ C R
for some k € K#. Then k = L with r, s € R* and so rJ = skJ C R. Let u,v € @p N with
7(u) = Rr and 7(v) = rJ. Then

7(v—u) = (Rr)~Y(rJ) = Rr—1rJ = J and so 7 is onto. O

The next proposition shows that Dedekind domains are not far away from being principal
domains.

Proposition 6.2.24 [nearly principal| Let R be a Dedekind domain.
(a) [a] Let A and B be a fractional ideals of R with B < A. Then A/B is a cyclic R-module.

(b) [b] Let A be a fractional ideal of R. Then there exists a,b € A with A = Ra + Rb.

Proof: @ Replacing A and B by kA and kB for a suitable k € R we may assume that B <
A < R, Let Q be a finite set of prime ideals in R with A = HPeQ P and B = HPEQ pbr
for some a,,bp € N. Choose zp € P% \ P%*l  Observe that P%»T! + Q*! = R for
disctinct P,@Q € Q. So by the Chinese Remainder Theorem @ the exists x € R with
x4+ Pl = g, + Pt for all P € Q. Thus € (\peo P = A and z ¢ P?*!. Since
B<Rr+B,Rxr+ B= HPGQPCP for some cp € N. Since Rz + B < A, cp > ap. Since
r ¢ Pt cp < ap. Thus ap = cp for all P € Q and so A = Rx + B.

(o) Let 0 # b € A and put B = Ra. By (a) A/B = Ra + B/B for some a € A. Thus
A = Ra+ Rb. O

6.3 The Jacobson Radical 11

Lemma 6.3.1 (Nakayama) [nakayama] Let R be a ring and M a non zero finitely gen-
erated R-module then J(R)M # 0.

Let B C M be minimal with RB = M. Let b € B, then M # R(B\ {b} and repplacing M
be M/R(B\ {b} we mau assume that M = Rb. Then M = R/ Ag(b). Let J be maximal
left ideal of R with Ar(b) < J. Then J(R) + Ar(b) < J < R and so also J(R) < M. O

Lemma 6.3.2 [jr and inverses| Let R be a ring and x € R.

(a) [a] =€ J(R) iff re — 1 has a left inverse for all x € R.

(b) [b] = is left invertible in R iff x + J(R) is left invertible in R/J(R).
(c) [c] The J(R) is equal to the right Jacobson radical J(R°P.
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(d) [d] x is invertible in R iff x + J(R) is invertible in R/J(R).

Proof: @ Let z € R and let M be the set of maximal left ideals in R. The the follwing
are equivalent

x ¢ J(R)
x ¢ M for someM € M
Rx+ M =R for someM € M
re+m=1 for someM € M,m e M,r € R
re—1eM for some r € R,M € M
R(re —1)# R for somer € R
(rxz — 1) is not left invertible for somer € R

(O] If z is left invertible, then x + J(R) is left invertible. Suppose now that x + J(R) is
left invertible. Then 1 — yz € J(R) for some y € R. By (d) yz = 1 — (1 — yz) has a left
inverse. Hence also x as a left inverse.

As a step towards and @ we prove next:

1° 1] Ifx—1€ J(R). Then x is invertible.

By (b)) there exists k € R with kx = 1. Thus k — 1 =k — ka = k(1 — z) € J(R) and so
by (]ED again k has a left inverse [. So by x =1 and k is an inverse of x.

Let j € J(R) and r € J(R). Since J(R) is an ideal, jr € J(R). Thus by 14 jr
is invertible. So by @ applied to R°P, j € J(R°P. Hence J(R) < J(R°P. By symmetry
J(R) < J(R°P.

@ Follows from (]ED applied to R and R°P. O

Lemma 6.3.3 [jr cap za] Let A be a ring, R a subring and suppose that A is finite gen-
erated as an R-module. Then J(R)NZ(A) < J(A).

Proof: Let M be a simple A-module. Then M is cylcic as an A-module and so finitely
generated as an R-module. Thus by J(R)M # M. Hence also (J(R) NZ(A)M < M
and since (J(R) NZ(A))M is an A-submodule we conclude that J(R) NZ(A) < Ax(M).
Thus J(R) NZ(A) < J(A). O

Proposition 6.3.4 [jza] Let A be a ring.
(a) [a] If K is a nilpotent left ideal in A, then K < J(A)

(b) [b] If A is artian, J(A) is the largest nilpotent ideal in A.
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(c) [c] If A is artian and finitely Z(A)-generated then J(A) NZ(A) = J(Z(A)).

Proof:

@ Let k € K. Then rk is nilpotent and so 1 4 rk is invertible in in R. So by @,
ke J(A).

(o) Since A is Artinian we can choose n € N with J(A)" minimal. Then J(A)J(A)" =
J(A)™. Suppose J(A)" # 0 and choose a left ideal K in A minimal with J(A)"K # 0. Let
k € K with J(A)"k # 0 . Then J(A)"J(A)k = J(A)"k # 0 and so by mimimality of K,
K = J(A)k. Thus k = jk for some j € J(A). Thus (1 —j)k = 0. By[6.3.2]1 — j is invertible
and so k = 0, a contradiction.

By (b) J(A)NZ(A) is a nilpotent ideal in Z(A) and so by (a) J(4)NZ(A4) < Z(J(A)).
By J(Z(A)) < J(A)NZ(A) and (d) is proved. O

Lemma 6.3.5 [invertible in ere| Let R be a ring, S < Z(R) and suppose that R is a
finitely generated S-module. Let e € R be an idempotent and x € eRe with x + J(S)R =
e+ J(S)R. Then there exists a unique y € eRe with xy = yx = e.

Proof: Since (ere)(ete) = e(eter)e, eRe is a ring with identity e. We need to show that
x is invertible in eRe. If R = ST for a finite subset T of R then also eRe = eS(eTe)
and so eRe is a finitely geneerated eS-module. Also eS = eSe < Z(eRe) and so by
J(eS) < J(eRe). Since e : S — €S is an onto ring homomorphism, eJ(S) < J(eS) < J(eRe).
Since = € eRe and x — e € J(S)R

r—e=c¢e(x—e)ecel(S)Re =elJ(s)eRe < J(eRe)eRe < J(eRe)
Thus = — e € J(eRe) and by x has an inverse in eRe. O

6.4 A basis for CG

Lemma 6.4.1 [from oq to f] Let X be non-empty finite subset of @ﬁ. Then there exists
beQ(X) withbX CA and bX ¢ I.

Proof: By|6.2.22| applied with K = Q(X) we have I~1T = A. So there exists b € -1 with
bX ¢ I. O

Corollary 6.4.2 [f linearly independent| Let V be an Q-space and (v;)"_; € V™. Let
W =A <wv; | 1<i<n. and suppose that (v;+IW)?_, is F-linearly independent in W/IW .
Then (v;)?_y is linearly idenpendet over Q.

Proof: Suppose there exists a; € Q not all zero with o aiv; = 0. By there exists
b € Q with ba; € A anf ba;j ¢ I for some 1 < j <n. Then Y " ;(ba; + I)(v; +IW) = 0 but
ba; + I # I, a contradcition. 0
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Lemma 6.4.3 [linear independence of characters]
(a) [a] (xm | M €Sp) is F-linear independent in FG.

(b) [b] (éar | M € S,) is C-linearly independent in CG.

Proof: @ Let far € F with > farxamr = 0. Pick ey € Endp(M) with tras(ep) = 1.
2.5.18| there exists aps € FG such that ap; acts as ey on N and trivially on N for all
M # N € S,. Then

0= Y fnxnlen) = fu
NeS,
and so @ holds.

@ Since all coefficents of ¢y are in A, ¢y | M € Sp) is C-linearly independent iff
(pm | M € Sp) is Q-linearly independent and iff (¢ar | M € Sp) is Q-linearly independent.
By 6.1.5] (27)* = xas and so by @ (dr)* | M € S,) is F-linearly independent. So (]EI)
follows from 0

Lemma 6.4.4 [existence of a lattice| Let V' be an xQ-space and W a finitely generated
A1 submodule of V with V.= QW . Then W is an Aj-lattice in V.

Proof: Note that W/I;W is a finite dimensional vector space over A;/I; = F and so has
a basis u; + I;W,1 < i < n. By (u;)™_; is linearly independent over Q and so also
over Ar. Let U = Aj(ujodl <i<n. Then W = U + I;W. Since I is the unique maximal
ideal in Ay, It = (Ay). Thus by the Nakayama Lemma applied to W/U gives W = U.
Hence also V =QW =QV(u; | 1 <i < n) O

Lemma 6.4.5 [existence of oq lattice| Let E : K be a field extension and M a simple
KG-module. If K is algebraicly closed then there exists an G-invarinant K lattice L is M.
For any such L, L is a simple KG-module and M = E Qk L.

Proof: Since G is finite there exists a simple KG-submodule L in M. Moreover there is a
non-zero EG-linear map a: E®g L — M,e ® [ — el. Since K is algebraicly closed, E @ L
is a simple EG-module. The same is true for M and so « is an isomorphism. In particular,
any K basis for L is also a E-basis for M and so L is a K-lattice in M.

Now let L is any K-lattice in G. If ) # N < L is a KG-submodule then EN is a
EG-submodule of M. Thus EN = M and dimg N = dimg EN = dimg M = dimg L and so
N =L and L is a simple KG-module. ([l

Lemma 6.4.6 [existence of ai lattice| Let M be an CG-module. Then there exists a
G-invariant Ag-lattice L in M.



Section 6.4. A basis for CG 147

Proof: By there exists a G-invariant Q-lattice V in M. Let X be a Q-basis for V
and put L = A;GX. Since G and X are finite, L is finitely A;-generated. Thus by L
is an Aj-lattice in V' and so also in M. ]

Lemma 6.4.7 [characters are brauer characters| Let M be an CG-module and L a
G-invariant Ar-lattice in M. Let M° be the FG-module, L/I;L. Then x}3; = xme and

XM = Qpre

Proof: Let B be an A; basis for L, g € G and D the marix for g with respect to B.
Then D* is the matrix for g with respect to the basis (b+ I, L)yep for M°. Since ny(g) =
det(zld,, — D) we conclude that ny(g)* = nare(g). In particular xar(g9)* = xame(g) and if

nu(g) =TT (@ — &) then nae(g) = [[7L,(z = &). Soif g € G°, then xum(9) = dare(g). O

Definition 6.4.8 [def:Irr G]

(a) [a] Irr(G) ={xm | M € S} is the set of simple characters of G.

(b) [b] IBr(G) = {opm | M € Sy} is the set of simple Brauer characters of G.
(c) [c] ZCG := CG N Z(CQ) is the set of complex valued class function on G.

(d) [d] If M be an CG-module and L an G invariant C : Ay lattice in M, then M° = L/I;L
is called a reduction modulo p of M.

Theorem 6.4.9 [ibr basis|

(a) [a] ZC(G) is the C-span of the Brauer characters.

(b) [b] IBr(G) is a C-basis forZC(G)

(c) [c] |S|p = [IBr(G) is the number of p’-conjugacy classes.

Proof: @ Observe that the map ~: Z(CG) — ZC(G) is an orthogonal projection and so

onto. On the otherhand since Z(CG) is an C -span of the G-characters we conclude from

6.4.7 that the image of "is conatained in C-span of the Brauer characters. So @ holds.

(]:[) By -@ every Brauer chacter is a sum of simple Brauet charcters. So by @

IBr(G) spans ZC(G) By [6.4.3(b) IBr(G) is linearly independent over C and so (]EI) holds.
Both IBr(G) and (ac | Cap’ conjugacy class} are bases for ZC(G) O

Definition 6.4.10 [def:decomposition matrix|

(a) [a] D = D(G) = (dpniy) is the matriz of : ZCG — ZCG with respect to Trr(G) and
IBr(G). D is called the decompositon matrix of G.
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(b) [b] C = C(G) = (cgy) is the inverse of Gram matriz of (- | -) with respect to IBr(G).
C is called the Cartan matrix of G.

(c) [e] For ¢ € IBr(G), ®p = 3. crm(q)doxX is called the projective indecomposable
character associated to ¢. For M € S, put @y = Py, .

Lemma 6.4.11 [basic decomposition]

(a) [a] Let x € Irr(G). Then X = 3 serpe(c) dox -

(b) [z] Let M € S(G), M° a p-reduction of M, N € S,(G) and F a FG-composition series
on M. Then dgyy,, is the number of factors of |caF isomorphic to N.

(c) [b] Let ¢,v» € IBr(G). Then &5 € ZCG and (B4 | ) = Spy. S0 (®y | ¢ € Irr(G)) is
the dual basis for ZCG.

(d) ] C7'=((¢]¥))gw

(e) [d] C = ((®y | Py)) is Gram matriz of (cot | -) with respect to (Py | ¢ € IBr(G).

(f) le] Let ¢ € . Then &y = <:T_>¢ = Zd)elBr(G) Cop.
(9) lff C=DDT.

Proof: @ Immediate from the definition of D.
(]ED For N € S,(G) Let ay be the number of compostion factors of G isomorphic to N.

Then by @7 Mo =D Nes,(G) INON-
By ¢ne = Xm- So (b)) and the linearly independence of IBr(G) implies dgyy,, =
an.

Follows from |4.1.14

@ Immediate from the definition of C.

and @ follows from [4.1.16
From @ and the definition of ®:

Cop=( Y dox| Y dpX)= D doydyy

x€lrr(G) x€lrr(G) X€Irr(G)

and so holds.

Corollary 6.4.12 [dphichi not zero| For each ¢ € IBr(G), there exists x € Irr(G) with
dgr+0- In otherwords, for each M € S, there exists a M € S such that M is isomorphic to
a composition factor of nay p-reduction of M.

Proof: Follows from the fact that ™: Z(CG) — ZCG is onto. O
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Corollary 6.4.13 [projective is regular| Let M € S, and P € Syl,,(M). Then dim @y,

is divisiple |P|. Moreover, ® s restricted to P is an integral multiple of the regular character
for P.

Proof: Since ®,;, = ®,;; we have ®r(g) = 0 for all g € P8 Thus (®yr |p| 1p)p =
L ®,,(1) and so | P| divides ®,;(1). Therefore

[P]
®p(1
( )xig
P

(1) =

Theorem 6.4.14 [pprime=0] Suppose G is a p! group.
(a) [a] Irr(G) =IBr(G) and D = (d4y).

(b) [b] For M € S let M° be a reduction modulo p. Then M° is a simple FG-module and
the map & — Sp, M — M° 1is bijection.

Proof: By -' ’G‘ Zzz)GIBr(G (1)2 - EXeIrr(G) X(1)2 Thus

G| = > x(1)? = ) > dgye(1)

x€Irr(G) x€lrr(G) \¢€IBr(G)
> D D Al = Y | D0 dey)® | e(1)
x€lrr(G) ¢€IBr(G) ¢€IBr(G) \ x€lrr(G)
> > o) = Gl
¢€IBr(G)

Hence equality holds everythere. In particular erhr(G) dgy)? = 1 for all ¢ € IBr(G).
So there exists a unique xg4 € Irr(G) with dy,, # 0. Moreover dg,, = 1.
2
Also (Z¢61Br d¢x> = Z¢61Br(G)(d¢X)2 and so for each x € IBr(G) there exists

unique ¢, € IBr(G) with dg,  # 0. Hence x = X4, dg,. = 1, X = X = ¢ = Xy and @
holds.

@ follows from @ and (]ED OJ

Proposition 6.4.15 [fong] Suppose that p = 2 and ¢ € IBr(G). If ¢ is real valued and
#(1) is odd, then ¢ = 15.

Proof: Let M € S, with ¢ = ¢pr. Then ¢ = ¢y = ®ar and some M = M*. Thus the
proposition follows from [4.1.22] and [4.1.21] O
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Lemma 6.4.16 [opg trivial] Let M € S,. Then O,(G) < Cq(M).

Proof: Let W be a simple FO,(G) submodule in M. The number of p’ conjugacy classes
of Op(G) = 1. So up to isomorphism Op(G) has a unique simple module, namely Fp(q).
Thus 0 # W < Cp(Op(G)). Since Cpr(Op(G)) is an FG-submodule we conclude M =
Cm(Op(G)) and O,(G) < Cg(M). O

6.5 Blocks

Lemma 6.5.1 [omegam)| Let K be an algebraicly closed field and M a simple &G-moudle.
(a) [a] a € Z(KQG) there ezists a unique wyr € K with ppr(a) = wpr(a)idyy.

(b) [b] wu: Z(KG) — K is a ring homomorphism.

(c) [e] xm(a) =dimg M -wp(a) = xm (1w (a).

(d) [d] If K=C then and a € Z(AG), then wyr(a) € A.

Proof: (f) follows from Schurs Lemma

(]E[) and are obvious.
(d) By B-2.13|war(ac) € A for all C € C. Since (ac | C € C) is a A-basis for Z(AG), (d)
follows from @ O

Definition 6.5.2 [def:lambdaphi]
(a) [a] Let M €S and x = xm. Then wy = wyy.

(b) [b] Let M €S and x = xpm- Then Ay : Z(FG) — F is define by A\ (a*) = wy(a)* for
all a € Z(A1G).

(c) [c] Let M €Sy, and ¢ = ¢ar. Then Ay = wiy.

(d) [d] Define the relation ~, on Irr(G) UIBr(G) by a ~p, B if A\a = Ag. A block (or

p-block) of G is an equivalence class of ~y.
(e) [e] BI(G) is the set of blocks of G.
(f) [f| If B is a block of G then Trr(B) = BN Irr(G) and IBr(B) = B N 1Br(G).
(9) g] For ACIrr(G), put AT = {¢ € IBr(G) | dgy0 for some x € A}.
(h) [h] For B CIBr(G), put Bt = {x € Irr(G) | dgy0 for some ¢ € B}.

Proposition 6.5.3 [d and lambda]
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(a) [a] Let x € Irr(G) and ¢ € IBr(G). If dgy # 0 then Ay = Ay.

(b) [b] Let B be a block of G then IBr(B) = Irr(B)' and Irr(B) = IBr(B)1.

Proof: @ Let M € § with x = xar and N € §, with ¢ = ¢n. Let L be an G-invariant
Aj-lattice in M. Since dgy-0, N is isomorphic to FG' composition factor of M° = L/IL.
Let a € Z(AG). Then a acts as the scalar wy(a) on M and on L. Thus a acts as the scalar
wy(a)* = Ay (a*) on M° and on N. Thus Ay (a*) = Ay(a*) and (@) holds.

(b) ¢ € IBr(G) with dy, for some y € Irr(B) then by (a) ¢ € B. Thus Irr(B)" C IBr(B).
Conversely if phi € IBr(B) we can choose (by x € IBr(G) with dg, # 0. Then by
(a) x € B and so IBr(B) C Irr(B)f. Thus IBr(B) = Irr(B)!. Similary Trr(B) = IBr(B)!. O

Let x € Irr(G) and ¢ € IBr(G). Then A, is defined by ??(??) and Ay by ?7(??). If
A = ¢ then @ shows that A\, = Ag.

Definition 6.5.4 [brauer graph| Let x,1 € Irr(G). We say that ¢ and i are linked if
there exists ¢ € IBr(G) with dg,, # 0 # dgy. The graph on I1Br(G) with edges the linked
pairs is called the Brauer graph of G. We say x and v are connected if ¢ and ¢ lie in the
same connected component of the Brauer graph.

Corollary 6.5.5 [blocks and connected component]

(a) [a] Let A C Irr(G). Then AT consist of all simple characters linked to some element
of A.

(b) [b] Let AC Irr(G). Then A is union of connected components of the Brauer graph iff
and only if A= AfT.

(c) [c] If B is a block then Irr(B) is a union of connected components of the Brauer Graph.

Proof: () Let ¢ € Irr(G). Then

1) is linked to some element of A
iff
there exists x € A and ¢ € IBr(G) with dg, # 0 # dgy
iff
there exists ¢ € A with dg, # 0
iff
w c ATT

So (@) holds.
follows immediately from @

(c) By Irr(B)'T = IBr(B)f = Irr(B).
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Proposition 6.5.6 [osima] Let A C Irr(G) with A= AT, Let z € G and y € G. Then

D> x@x) = ) b(@)Ps(y)

XEA Pe AT

Proof: We compute

> x(@)x(y) = Z( > d¢x¢(w)) X ()

XEA xcA \ ¢€IBr(G)
= > (Z d¢x¢(aﬁ)> Xw) = > (Zd¢>xx(y)) ¢()
XEA \pecAt xeAT \ oA
= Z ( Z d¢xx(y)) o(x) = Z Dy (y)9(x)
YEAt \ @€l (G) XEAT

O

Corollary 6.5.7 (Weak Block Orthogonality) [weak block orthogonality] Let B be
block of G, v € G andy € G\ G. Then

> x@)x(y) =0

x€lrr(B)

Since Irr(G)'T = Irr(G) we can apply

Yo ox@x@ = Y x@xy = o@)s(y™)

X€Elrr(B) X€Elrr(B) pe Al
Since y~! G 6.4.11 implies ®,(y~! = 0 and so the Corollary is proved. 0

Definition 6.5.8 [def:ea]

(a) [a] For M € S and x = xn put ey = enr( see[3.1.5(d).
(b) [b] For AC Irr(G), put ea =3, caex-

Corollary 6.5.9 [ea in ai(tilde g)] Let A C Irr(G) with A= A, Then eq € ZA;G.

Proof: Let x € Aand g € G. By 3.2.12@, g coefficents of e, is ‘—ax(l)y(x) Let f, be
6.5.6

the g-coefficent of e 4. Then by [6.5.6]

| L1 )
fa= 1@ > x(W)x(z™) = @l > s()y(g7 ")

xXE€A P AT
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If g ¢ G we conclude that f, = 0 and so

(*) eq € CG

Suppose now that g € G. Then using [6.5.6| one more time:

9|c:\Z )= i1 X s = X o™

pe At pe At

By [6.4.13 q)fcg‘l) € As. Also ¢(g7r € A € Ar and so f, € A;. Thus e4 € AG. Together
with (*) and the fact that e, is class function we see that the Corollary holds. 0

Lemma 6.5.10 [unions of blocks| Let A C Irr(G) with eq € Z(A;(G)). Then A =
Ule Irr(B;) for some blocks By, ... By.

Proof: Let x,7 € Irr(G). Then wy(ey) = d,y and so wy(eq) = 1if x € Aand wy(eq) =0
otherwise. By assumption e4 € Z(A7(G)) and so A\y(€%) = wy(e4) and so

(%) x € Aiff A\ (efy) =1

Let B be the block containg x and ¢ € Irr(B). Then A, (e%) = Ay(e’y) and so by (*),
xeAiff ¢y € A O

Theorem 6.5.11 [block=connected components| If B is block, then Irr(B) is con-

nected in the Brauer Graph. So the connected components of the Brauer graph are exactly
the Irr(B), B a block.

Proof: If B is a block then by [6.5.5d), Irr(B) is the union of connected components.
Connversely if A is a connected component then by es € Z(ArG) and so by [6.5.10[.A
is a union of blocks. O

Definition 6.5.12 [def:fb]

(a) [a] Let B be a block. Then eg = ei‘rr(B) and fg = €he(B)-

(b) [b] Let A be set of blocks. Then eq =) gc e and fa = g5 [B
(c¢) [c] Let B be block, then FB := FGep.

(d) [d] If A is a set of blocks, then FA=TFGe 4.

(e) [e] Let B be a block then A\p = Ay for any ¢ € IBr(G).
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(f) [f] Let B be a block, then S,(B) ={M € S, | ¢p; € B} and S(B) ={M € S| xm € B}

Lemma 6.5.13 [omega chi fy] Let X,Y be blocks and x € X. Then wy(fy) =0XY and
Ax(ey) =dxy

Proof: This follows from wy(ey) = 0y for all xy € Irr(G). O

Theorem 6.5.14 [structure of fg]

(a) [a] ZBEBI(G) ep = 1.
(b) [b] ep € Z(FG) for all blocks B

(c) [c] exey =0 for any distinct blocks X and Y .

(d) [d] e% = ep for all blocks b

(e) le] FG =@PppFB.

(1) 1) Z(FG) = Byep Z(FB).

(9) [8] I(FG) = D peyI(FB).

(h) h] Let X,Y be blocks. Then \x(ey) = dxy.

(1) [i] Let X andY be distincts blocks. Then FX annihilates all M € Sy(Y').

(j) 1i] Let B be a block. Then §,(B) is set of representativves for the isomorphism classes
classes of simple FB-modules.

Proof: @) erlrr(G) ey = 1 and so also ZBeBl(G enr(B) = 1. Applying * gives @

@ Since ey € Z(CG), errg € Z(A[G) and so holds.
(c) eyey = 0 for distinct simple characters. So ef,.,(x)er(y) = 0 and so holds.
@) follows from e%rr( B) = €u(B)-
() [ﬁ) implies FG = 3" pcp))FB. Let B € B and B = BI(G) \ {B}. Then by
FB -FB = 0. Moreover if x € FB then egx = x and if x € FB then egx = 0. Thus
FBNFB =0 and so @ holds.

@ follows from @

follows from @ and @

" Let x € Irr(X). Then Ax(ey) = AX(eikrr(Y)) = wx((ehr(y))* =0y = 0xy.

(i) Let M € S,(Y). Then ex acts as the scalar A\g(ex) = Ay(ex) on M. So by ex
annhilates M. Thus also FX = FGex annihilates M.

(ED Any simple FB-module is also a simple FG-module. So (ED follows from . O
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Theorem 6.5.15 [zfb is local] Z(FB) is a local ring with unique mazimal ideal J(Z(FB)) =
ker \p N Z(FB).

Proof: Let M € S,(B) and z € Z(F(B)). Then z acts as the scalar Ag(z) on M. So z
annihilates M if and only if z € ker A\g. Thus Z(IF(B)) N App(M) = Z(FB) Nker Ap and so

)R Z(FB) NIF(B) 22D Z(FB)N () Ass(M) = Z(FB) Nker Ag

J(Z(FB
65140 Mes,(B)

So J(Z(FB)) = ker \pNZ(FB). Since Z(FB)/kerApNZ(FB) = Im Ap = F we conclude
that J(Z(FB)) is a maximal ideal in Z(F(B)). This clearly implies that J(Z(FB)) is the
unique maximal ideal in F(B). O

Corollary 6.5.16 [blocks indecomposable| Let B be a block.
(a) [a] Then FB is indecompsable as a ring.

(b) [b] Let e be an idempotent in ZF(G) then ep for some T C BI(G).

Proof: @ Suppose FB = X @Y for some proper ideals X and Y. Then both X and Y
have an identity. Thus Z(X) # 0, Z(Y) # 0 and Z(F(B) = Z(X) ® Z(Y), a contradiction
to

Since e = ) BEBI(B) €€B and each non-zero eep is an idempotent we may assume
that e = eep € FB for some block B. Then FB = ¢FB & (e — eg)FB and @ implies
e—ep =0and soe=eg. O

Lemma 6.5.17 [phi fb] Let B be a block then

gep= Y, x(DX= Y ®4(1)¢

x€Ilrr(B) ¢€lBr
Proof: By m' xca = errr( ) x(1)x. So by applied to the Aj-lattice A;G in
Ca,
(1) ¢reG=xXca = Y, x(Wx= > > x(
x€lrr(G) BeBI(G) xeB

Observe that

(2) SxWx= D x| D deve | = D 2(1)e

XEB Xx€Elrr(B) ¢€lr(B) ¢€IBr(B)
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and so by (1)

(3) dra= Y, > P

BeBI(G) ¢€IBr(B)

Now let B a block. If M is composition factor for FG of FB then ep acts identity on
M. So by [6.5.14] ¢pr € B. It follows that

(4) ¢r= Y dgo

$€IBr(G)

for some dy € N. Since FG = ZBeBl(G) FB we conclude

(5) dra= Y., > dgo

BeBI(G) ¢€IBr(B)

From (3) and (5) and the linear independence of IBr(G) we get dy = ®4(1) for all
¢ € IBr(G). The lemma now follows from (4) and (2). O

6.6 Brauer’s Frist Main Theorem

Definition 6.6.1 [def:defect group c| Let C be a conjugacy class of G.
(a) [z] A defect group of C' is a Sylow p-subgroup of Cg(x) for some x € C.
(b) [a] Syl(C) is the set of all defect groups of G.

(c) [b] We fix gc € C and D¢ € Syl,(Ca(gc))-

(d) [d] Let A and B be set of subgroups of G. We write A < B if for all A € A there exists
B e B with A < B.

(e) [e] Let A be a set subgroups of G. Then C4 = {C € C | Syl(C) < A}} and ZA(FG) =
Flac | C € Ca).

(f) f] For ACZ(FG) set C4 = {C € C(G) | a(gc) # 0 for some a € A}.

(9) [g] For A,B,C €C put Kapc = {(a,b) € Ax B|ab=gc}.

Lemma 6.6.2 [trivial zdfg] Let z € Z(FG) and D a set of subgroups of G. Then z €
Zp(FG) iff ac € Zp(FQ) for all C € C, and iff Syl(C) < D for all C € C,.
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Proof: Since z = } ccc() 2(9c)ac and (ac | C € C(G)) is linearly independent this
follows immediately from the definition of Zp(FG). O

Lemma 6.6.3 [syl c prec syl a] Let A,B,C €C
(a) [a] |Kapc|=|{(a,b) € AXxB|a,be Cq(Dc),ab= gc}| (mod p).
(b) b] If pt|Kapcl| then Syl(C) < Syl(A).

Proof: () Observe that Ce(gc) acts on K apc by coordinate wise conjugation. All non-
trivial orbits of Do on K 4pc have length divisble by p and so @ holds.

@ By @) there exists a € A with D¢ € Cg(a) and so Do < D for some D € Syl,(Cg(a).
Since G acts transitively on Syl(C'), Syl(C) < Syl(A). O

Proposition 6.6.4 [zdfg ideal] Let D be set of subgroups of G. Then Zp(FQG) is an ideal
in G.

Proof: Let A, B € C with Syl(A) < D. Then in FG:

asap =Y |Kapclac= > |Kapcac
ceC CeC,pt|Kapcl
By Syl(C) < Syl(A) < D whenever p t |Kapc|. Then ac € Zp(FG) and so
apap € ZD(FG). O

Definition 6.6.5 [def:fa]

(a) [a] & be the set of sets of of subgroups of G. B, consist of all A € & such that A, B € A
with A C B implies A = B.

(b) [b] If A€ &, then max(A) is the set mazimal elements of A with respect to inclusion.
(c) [c] Let A,Be€ ®. Then ANB:=max({ANB|Ac A BEeB}).

(d) [d] Let A,aB € &. The AV B = max(AU B).

Lemma 6.6.6 [basis fa| Let A,B,D € &.

(a) [a] =< is reflexive and transitive.

(b) [b] A< max.A and max A < A.

(c) [c] max(A) € &, and if A is G-invariant so is max A.

(d) [d] A=< B iff max(A) < max(B).
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(e) [e] If all elements in A have the same size, A € B,.

(f) If] If A is conjugacy class of subgroups of G, then A € &,.
(9) 8] Ca = Crmax(a) and ZA(FG) = Zpax(a)(FG).

(h) [h] Restricted to &, < is a partial ordering.

(i) [i] (AVB)=<Diff A<D and B<D.

G) [i] D<(AAB) iff D<A and D < B.

Proof:

@ Obvious.

(o) Clearly max.A < A. Let A € A since G is finite we can choose B € A of maxial size
with A C B. Then B € max(.A0 and so A < max A.

If A, B € max(A) with A C B, then A = B by maximalty of A.

@ Follows from @ and @

(@ is obvious.

@ follows from @

The first statement follows from @ and the second from the first.

Let A, B € A(G) with A < B. Let A € A and choose B € B with A < B. Then
choose D € A with B < D. Then A < D and so A =D and A = B. Thus A C B. By
symmetry B C A. So A =B. now follows from @

@ By (d) (AvB) <D iff (AUB) <D and so iff A <D and B < D

() By () D < (AAB)if D<{ANB| A€ A, BeB}andsoif D<Aand D < B. O

Lemma 6.6.7 [basic zdfg] Let D,€ € D,.

(a) [a] IfD <&, then Cp C Ce and Zp(FG) < Ze(FG).

(b) [b] (DAE)<D.

(c) [c] CpNCe =Cppe and Zp(FG) NZe(FG) = Zppe(FG)

(d) [d] Let A C Z(F(GQ)). Let ,(A) :={A € & | Zp(FG). Then there exists a unique
E € B,(A) with € <D for all D € B,(A). We denote this £ by Syl(A).

(e) [e] If AC B C Z(F(G)), then Syl(A) < Syl(B).

(f) [f] For all C € C, Syl(ac) = Syl(C)

(9) 8] SYIZ(FG)) = SYI(G)

(h) [h] For all A C Z(F(G)), Syl(A) < Syl(G), that is Syl(A) is a set of p subgroups of G.
(i) [i] Let A, B C Z(FG). Then Syl(AU B) = Syl(A) v Syl(B).
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() ] Let A C Z(FG) then Syl(A) = Syl({ac | C € A}) = Ve, SYUO).

Proof: @ and @ are obvious.

Let C € C. Then C € Cp NC¢ iff Syl(C) < D and Syl(C) < &. Thus by 77 iff
Syl(C) < DAE and iff C € Cpag. So the first statement in (b)) holds.

Since {ac | C € C} is F-linearly independent

ZD(FG) N Zg(]FG) = F{ac | Celpn Cg}

So the second statement in follows from the first.

@) Put £ = Apeg,(a)D- By , A < Zg(FG) and by (]E[) £ < D for all D € 2. Since
< is antisymmetric on &,, £ is unique.

Observe that Syl(B) € &, and so (g) follows from (d).

@ Since Syl(C) < Syl(C), C € Csyic and so ac € Zgyc)(FG). Since ac € Zgy(qp)(FG)
we conclude frommthat C € Csyi(a,) and so Syl(C') < Syl(ac). Since < is anti-symmetric
@ holds.

Let S € Syl(G), 1 # = € Z(S) and C = %. Then clearly Syl(C) = Syl(G) and so
by @ and @, SYIZ(FG)) < Syl(G). Clearly Syl(C) < Syl(G) for all C € C. So Csyyqy =C
and Zgy(q)(FG) = Z(FG). (d) implies Syl(Z(FG)) € Syl(G) and so (g) holds.

follows from @ and.

We have Zgy1(ayvsyi(8)(FG) = Zsyiayusyi(8) (FG) = Zgyi(4)(FG) + Zgy () (FG) and so
AUB Q ZSyl(A)\/Syl(B) (FG) Thus Sy1(A U B) < Syl(A) V Syl(B) Since A S ZSyl(AUB) (FG,
Syl(4) < Syl(A U B) and by symmetry Syl(B) < Syl(A U B). Thus Syl(A) Vv Syl(B) <
Syl(AU B) and (i) holds.

@) By Syl(A) = Syl({ac | C € Ca}. By and () Syl({ac | C € Ca}
Veee, Syllac). O

Lemma 6.6.8 [eb in sum k]| Let B be a block and K a set of ideals in Z(FG) with ep €
Y. K. Then Z(FB) < K for some K € K.

Proof: Since ep = €% € Y xic €K there exists K € K with egK & J(Z(FB)). Since by
all elements in Z(FB)) \ J(Z(FB)) are invertible, Z(FB) = epK < K. O

Definition 6.6.9 [sylb] Let B be a block. Then Syl(B) := Syl(eg). The members of
Syl(B) are called the defect groups of B.

Proposition 6.6.10 [sylow theorem for blocks| Let B be block of G. Then G acts tran-
sitively on Syl(B).

Proof: Let ® be the set of orbits for G on Syl(B). Then clearly Csyi(p) = Upecp Cp and
SO
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ep € Zsyp)(FG) = > Zp(FG)

De®
So by ep € Zp(FG) for some D € ®. Thus by[6.6.7|(d) implies Syl(B) = Syl(ep) <
D. Since D C Syl(ep) we get Syl(eg) = D. O

Definition 6.6.11 [def:defect class] Let B be a block and C € C(G). Then C' is called a
defect class of B provided that Ag(ac) # 0 # es(gc)-

Lemma 6.6.12 [existence of defect class| Fvery block has at least one defect class.

Proof: We have eg = ZCEC(G) ep(gc)ac and so
1=Xg(eg) = Y enlge)Mac).
Cec(G)
Proposition 6.6.13 [min-max] Let B be a block of G and C a conjuagacy class.
(a) [a] If Ap(ac) # 0, then Syl(B) < Syl(C).
(b) 1b] If enlac) £ 0 then Syl(C) < Syl(B)
(c) [c] If C is a defect class of B, then Syl(C) = Syl(B).

Proof: @ Since Ap(ac) # 0 and ac € Zsy o) (FG) we have Zgyic)(FG) £ ker Ap.
Since A\p has codimension 1 on Z(FG) we conclude

Z(FG) = ker )\B + ZSyl(C) (FG)

Since ep ¢ ker \p implies ep € Zgy)(c)(FG). Thus by @, Syl(B) < Syl(C).
(o) This follows from [6.6.7|(j).
Follows from @ and (]ED (|

Lemma 6.6.14 [ac in jzfg] Let C € C(G) with CNCq(O,(G)) =1, then ac € J(Z(F(G))
and so Ag(ac) =0 for all blocks B.

Proof: Let M € S)(G) and let P be an orbit for O,(G) on C and g € P. By assumption

|P| # 1 and so p | |P|. By [6.4.16| pas(Op(G)) = 1 and so par(%9) = pam(g) for all g € Op(G).
Thus par(ap) = |Plpar(g) = 0 and so also ppr(ac) = 0. Thus ac € J(F(G)). [6.3.4|completes
the proof. O

Lemma 6.6.15 [defect classes| All defect class of G are contained in Cq(Op(G)).
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Proof: Let C be a defect class of the block B. Then Ag(ac) # 0 and so ac ¢ J(Z(FB)).
Thus by C N Ce(0p(G)) # 0. Since G is transitive on C, C C Cg(0,(G)). O

Proposition 6.6.16 [opg in defect group]
(a) [a] Op(G) is contained in any defect group of any block of G.
(b) [b] If P is a defect group of some block of G and P < G then P = O,(G)

@Let B be a block, C' a defect class of B. By [6.6.15|O,(G) < Cg(gc) and so O,(G) < Dc.
(]ED Follows immediateley from @ O

Definition 6.6.17 [def:brauer map| Let P be a p-subgroup. Then Brp : Z(FG) —
Z(FCq(P)),a — a|c,(p) is called the Brauer map of P.

Proposition 6.6.18 [basic brauer map]

(a) [a] Let K C G. Then Brp(ak) = axncy(p)-

(b) [b] Brp is an algebra homomophism.

(c) [c] If Ca(P) < H < Ng(P) then ImBrp < Z(FH) and so we obtain algebra homomor-
phism

Brl : Z(FG) — Z(FH),a € Brp(H)

Proof: @ is obvious.
() Let A,B € C(G). We need to show that Brp(apap) = Brp(aa)Brp(ap). Let
g € Cg(P). Then the coeficient of g in Brp(agap) is the order of the set

{(a,b) e Ax B|ab=g}

The coefficient of g in Brp(asap) is the order of

{(a,b) e Ax B|a€ Cqg(P),be Cq(P),ab= g}

Since P centralizes g, P acts on the first set and the second set consists of the fixedpoints
of P. So the size of the two sets are equal modulo p and (]E[) holds.

Let a : FG — FCg(P) be the restriction map. Since Cg(P) < H, a(hah™!) =
a(hah™!) for all a € G and all h € H. Hence the same is true for all « € FG, h € H. Thus
Im Brp = «(Z(FG)) < Z(FH). O

Lemma 6.6.19 [kernel of brauer map] Let P be a p-subgroup of G.
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(a) [a] Let C € C(G). Then CNCa(P)# 0 iff P < Syl(C).

(b) [b]
ker Brp = F(ac | C € C(G), P £ Syl(C))

Proof: (&) C NCq(P) # 0 iff P < Cg(g) for some g € C and so iff P < D for some
D e Syl(C), that is iff P < Syl(C).

Let z =3 cc2(9)9 = Xcec(q) ?(9c)ac € Z(F(G)). Then Brp(z) = 0 iff 2(g) = 0
for all g € P, iff 2(g.) =0 for all C € C with CNP # () and iff z € Flac | CN P = ). So
O

@ implies (]E[)

Proposition 6.6.20 [defect and brauer map| Let B be a block of G and P be a p-
subgroup of G.

(a) [a] Brp(ep) # 0 iff P < Syl(B).

(b) [b] P € Syl(B) iff P is p-subgroup mazimal with respect to Brp(ep) # 0.

Proof: () By [6.6.19([b), Brp(ep) # 0 iff ep ¢ Flac | C € C(G), P # Syl(C)) and so iff
P < Syl(C) for some C € C(G) with eg(g¢c) # 0.

If P < Syl(B), then by 6.6.137 P < Syl(C) for amy defect class C' of B. Thus

Brp(ep) # 0.
Conversely suppose Brp(ep) # 0 and let C € C(G) with eg(gc) # 0 and P < Syl(C).

By [6.6.13|(b), Syl(C) < Syl(B) and so (@) is proved.

(]ED follows immediately from @ O
Definition 6.6.21 [def:lbg] Let H < G and b a block of H.
(a) [a] S :Z(FG) = F,a — \y(a |u).
(b) [b] If )\bG is an algebra homomorphsim, the bC is the unique block of G with \yc = )\,?.

Lemma 6.6.22 [syl(b) in syl(bg)] Let b be a block of H < G. 1If b¢ is defined then
Syl(b) < Syl(b%).

Proof: Let C be a defect class of B. Then 0 # M\ (ac) = A (ac) = Mp(acnu). Ot follows
that there exists ¢ € C(H) with ¢ C C and M\y(ac) # 0. Hence by [6.6.13|(a), Syl(b) < Syl(c).
Clearly Syl(c) < Syl(C) = Syl(B) and the lemma is proved. O

Proposition 6.6.23 [lbg=Dbrplb| Suppose that P is a p-subgroup of G and PCq(P) <
H < Ng(P).

(a) [a] A = X, 0Brp for all blocks b of H.
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(b) [b] b is defined for all blocks b of H.
(c) [c] Let B be a block if G and b a block of H. Then B = b% iff \y(Brp(ep)) = 1.
(d) [d] Let B be a block. Then Brp(eg) = {ey | b € BI(H),b" = B}.

(e) [e] Let B be a block of G. Then B = bC for some block b of H iff P < Syl(B).

Proof: () Let C' € (G) we have to show that

(%) Mo(acnm) = No(acncg(p))

Since H nomrmalizes CNH and CNCg(P). CNH\ Cg(P) is a union of conjugacy classes
of H. Let ¢ € C(H) with ¢ C C and ¢N Cg(P)0. Since P < O,(H), Cu(Op(H)) < Ci(P)
and thus cNCy(Op(H)) = 1. implies a. € J(Z(FH)) and so Ay(a.) = 0. This implies
(*) and so () holds.

(]E[) Since both Brp and A are homomorphism this follows from @

By @ Ab(BrB(eB) = )\bc(eB> = 5B,bG'

(d) Since Brp is a homomorphism, Brp(ep) is either zero or an idempotent in Z(FH).
Hence by [6.5.16|[b) ( applied to H Br(ep) = ep for some (possible empty) T C BI(H). Let
b e BI(H). The )\b(eT) =1if b € T and 0 otherwise. So by , T = {be BI(G) | B =0b%}.

@ By @ Brp(ep) # 0 iff ther exists b € BI(G) with B = . Thus (EI) follows from

AFL0) g
Definition 6.6.24 [def:G—P)] Let P be a p-sugbroups of G. Then C(G|P) = {C € C(G) |
P e Syl(C)} and BI(G|P) = {B € BI(G)midP € Syl(G)}.

Proposition 6.6.25 [defect opg] Let B be a block of G with defect group Op(G). Then
Syl(C) = {0,(G)} for all C € C(G) with eg(gc) # 0 and so ep € Clac | C € C(G|Op(Q)))

Proof: Let C € C(G) with eg(gc) # 0. Then by m@ Syl(C) < Syl(B

On the otherhand b = B is the unique block of G with B = 5% and so by ﬂ@)
Bro,(a) = ep. It follows that C' < C(0,(G)) and so O,(G) < Syl(C).

Lemma 6.6.26 [first for classes| Let P be a p-subgroup of G. Then the map
C(G|P) = C(Ng(P)|P),C — CNCg(P)

is a well defined bijection.
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Proof: Let C € C(G|P). To show that out map us well defined we have to show that
C N Cg(P) is a conjugacy class for Ng(P). Since Ng(P) normalizes C' and Cg(P) it
normalizes C'N Cg(P). Note that Gacst on the set {(z,Q) | » € C,Q € Syl,(G) = {(z,Q) |
z € C,Q €= GP,[z,Q] = 1}. Let z € C. Then Cg(x) acts tranistively on Syl,(Ca(z))
and so by N¢(P) is tranistive on C N Cg(P). So C N Cq(P) is a conjugacy class of
Ng(P).

Since distinct conjugacy clases are disjoint, our map is injective. Let L € C(Ng(P)|P)
and let C be the unique conjugacy class of G containing L. Let x € L. Since P € Syl(L) and
P <G Ng(P), Syl(L) = {P} and so P € Syl,(Ng(P) N Cg(z)). Let P < Q € Syl (Cg(x)).
Then PleqNg(P) € Ng(P) N Cg(z) and so P = Ng(P). implies P = @ and
so P € Syl(C) and C € C(G | P). Since C N Cq(P) is a conjugacy class of Ng(P),
CNCq(P)= L and so our map is onto. O

Theorem 6.6.27 (Brauer’s First Main Theorem) [first] Let P be a p-subgroup of G.
(a) [a] The map BI(Ng(P)|P) — BI(G|P),b — b% is well defined bijection.
(b) [b] Let B € BI(G|P) and b = BI(Ng(P)|P), then B = b iff Brp(ep) = .

Proof: Let b be a block of Ng(P) with defect group P. Since P < Ng(P), Syl(b) = {P}.
By b is defined and \yc = )\g; = )\, o Brp.To show that our map is well defiend we
need to show P is a defect group of b. Let L be a defect class of b. Then by ,
Syl(L) = Syl(b) = {P} and thus L € C(Ng(P)|P). Let C be the unique conjugacy class of
G containin L. By P € Syl(C) and C N Cq(P) = L. Hence

A (ac) = ABrp(ac)) = M(acncgp) = Mvlar) # 0

Thus by @), Syl(b&) < Syl(C) and so P contains a defect group of Syl(b%). By
{P} = Syl(b) < Syl(b%). Thus P is contained in a defect group of b%. Hence P is a
defect group of b©.

To show that b — b% is onto let B € BI(G|P). Let T be the set of blocks of Ng(P)
with B = b“. Then by By @, ep = er and by (EI), T #0. Let b € T. Since

P < Op(Ng(P)),[6.6.16/implies that P is contained in any defect group of b. By [6.6.22| any
defect groups of b is contained in a defect group of B = b“. Thus P is a defect group of b.

Finally assume that b% = d“ for some b,d € BI(Ng(P)|P). Then \yoBrp = Mo = A\g0
Brp. Thus Ay(acncg(p)) = Ad(acncgp) for all C € C(G). Hence by Mo(ar) = Aalar)
for all L € C(Ng(P) | P). Observe that by [6.6.16{[b), P = Op(Ne(P)) and so by ep
is a C-linear combination of the ay, L € C(Ng(P)|P. Thus

1= Xy(ep) = Aaley) = pa

and b = d. So our map is 1-1. O
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Corollary 6.6.28 [p=opng| Let P be the defect group of some block of G. Then P =
Op(Ne(P)).

Proof: By [6.6.27] P is a defect group of some block of Ng(P). So by [6.6.16([b), P =
Op(Na(P)). O

6.7 Brauer’s Second Main Theorem

Lemma 6.7.1 [x invertible in zag] Let B be block of G and x € Z(ArG) with Ap(x*) =
1. Then there exists y € fpZ(A;G) with yr = fp.

Proof: Since Ap((fpx)*) = Ap(ep)Ap(x) =1 we may replace x by fpz and assume that
x € fpZ(A;G)). Then fpr = x, egpx* = z* and x* € FB. Since Ag(z*) = 1\p(ep)
and ker \p N Z(FB) = J(Z(FB)) we conclude for that x* is invertible in Z(FB)) =
epZ(FG) = (fBZ(ArG))*. So there exists u € fpZ(A;G)) with (ux)* = ep. Observe
that ker(*: AJH — FG) = I;G = J(A4;) - A;G and ux € fp - A;G - fp. Thus
shows that there exists a unique v € fp - A;G - fp with vuz = fp. Let ¢ € G. Then

=~ gv - uxr = Yvuzx) = 9fg = fp and so by uniqueness of v, v = v and v € Z(A;G). So the
lemma holds with y = vu. O

Lemma 6.7.2 [fb on fbprime] Let H < G, b a block of H. Suppose that b€ is define and
put B =0b%. Then there exists w € Ar(G\ H) such that

(a) [a] fofp =wfp.
(b) [b] fow =w=wfp.
(c) [c] H centralizes.

Proof: Let x = fp |g and 2 = fp |g\g. Then fp = a + c. By defintion of B = B,
AB = )\f and so

1=2Xg(es) = Anles | H) = As((fB |#)") = Ap(z").

Hence by applied to H in place of G there exists y € fpZ(ArH) with yz = fp.
Put w = —yz and note that H centralizes w. Since H - (G\ H) CG\ H, w € A;(G\ H).
Since fpy = fp also fyw = w. It remains to prove .

yfp=ylx+z2) =yr+yz=fp—w

Hence

(fo—w)fp =yfefe =0
This @ holds.
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Lemma 6.7.3 [p partition]

(a) [a] Let (h) be a finite cyclic group acting on a set Q. Suppose hy, acts fized-point freely
on Q. Then there erists there exists an < h >-invariant partion of (Q;)icr, of Q with
h&Y = Q1.

(b) [b] Ifh < H < G with Cy(hy,) < H, S a ring and w € S[G \ H|. If h centralizes w,
then there exists w; € S|G \ H),i € F), with hw;h ™' = wiy1 and Zier w; = W.

() Put H = (h) act transitively on Q. Let Qo be an orbit for H? on Q. Suppose that
Qo = Q. Then by the Frattinargument, H = HPCpy(w) and so H/Cg(w) is a p’ group.
Thus h, € Cy(w) contrary to the assumptions. Thus Qy # Q Since H? < H, H/H? = (),
acts tranistively on the set of orbits of HP on ). So @ holds with ; = h'Qy, for i € F).

Since Cg(hp) < H, hy acts fixed-point freely on G\ H via conjuagtion. Let €; be
as in (EP with @ = G\ H and put w; = w |o,. Then clearly w =}, wi. Now

Mg ="(w | Q) =" g, = w |0, = Wit1

and (]ED is proved.

Lemma 6.7.4 [eigenvector for h] Let H < G and b a block for G. Suppose that B = bC
us defined and that h € H with Cg(hy) € H.

(a) [a] Let w € C with wP? = 1. If fp/fy # 0, then the exists a unit t in the ring fp fp -
ArG - fp fy with 't = wt.

(b) [b] If x € Irx(G) with x ¢ B. Then x(hfy) = 0.

Proof: @) Let w be a as inm By m@ theer exists w; € A;G with w = s Eier w;
and "w; = wi;1. By M@, w = fyw fp and so replacing w; by fyw; fr, we may assume that
w; € fp-ArG - fp. Put s = Zz‘er w'w;. Then clearly s = ws and s € f, - A;G - fp. Put
t = fgs. fp € Z(A;G) is a central idempotent, t € fpify - A;G - fp/ fy and "t = wt. To
complete the proof of @ we need to show that ¢ is unit in the ring fp/ fy - A;G - f5/ fp.
Since F has no element of multiplicative order p, w* = 1 and so s* = Zier wi = w

and so by @,

*

fefo)” = (fpw)" = (fps)" =t

So[6.3.5applied with the idempotent f = fp/ fy yields that ¢ is a unit in fp/ fo-A1G- fp fo.

() Let M € S(G) with x = xam. Put V = f,M. Observe that V that CH submodule
of M. Moreover, M = Ap/(fp) @V and fp acts as idy on V. Thus xar(hfs) = xv(fp). Since
X € B, feM =0 and so fpr act as identity on M and on V. So also fg/ f;, acts as indentity
on V. The V = fp/ fyM is a module for the ring fp/ fp - A;G - fp' fp

If V =0 clearly (]ED holds. So suppose V' # 0 and so also fp/f; # 0.
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For L be the set of eigenvalues for h on V and for [ € L let V; be the corresponding
eigenspace. Then V' = @, Vi. Let w be a primitive p-root of unity in U and choose ¢ as
in @ Then t is invertible on V. Moreover, if [ € L and v € Vj, then htv = hth™'hv =
wtlv = (wl)tv. Thus tV; < Vy. In particular PV, = Vi, = V; and since tP is invertible,
tPV; = V; and so also tV; = V. T Inparticular < w) acts an L be left multiplication and
dimV; = dim V,;. Let Lo be a set of representatoves for the orbits of (w) in L. Then

xv (h) = >1er Xvi(h) = > ep ldimy,
ZlGLo Zz 0 wlldlmV = ZZGLQ (ZZ ow ) [dimV, = 0

O

Definition 6.7.5 [def:p-section] Let x € G be a p-element. Then Sg(x) = S(x) = {y €
G | yp € Yz} is called the p-section if z in G.

Lemma 6.7.6 [basic p-section] Let x € G be a p-elemenent andY a set of representatives
for the p'-conjugact classes in Cg(x). Then {xy |y € Y} is a set of representaives for the
conjugacy classes of G in S(x).

Proof: Any s € S(x) is uniquely determined by the pair (sp,s,). So the lemma follows
from [LLI.10I g

Definition 6.7.7 [def:bx]| Let x € G be a p-element and B a block p-block and § € CQG).
(a) [a] Let T a block or a set of blocks. Then 6p : G — C | g — 0(frg).

(b) [b] 0 :G — C, x — 0(xh).

(¢) [e] B*={beBl(Cs(x))} | " = B}.

Lemma 6.7.8 [fchi selfadjoint] Let T C Irr(G). Then

(a) [a] fro=fr

(b) [b] (afr|b)=(al|bfr) foralla,b e CG.

Proof: By linearity we may assume 7' = {x} for some x € Irr(G).
(1)X we have fyo = fx

@i Since x° = ¢hi and f, = €l
implies (afy | b) = (a | bfy).

By [ 7y = £y and pa3fq
Lemma 6.7.9 [dual of a block] Let B be a block.
(a) [a] B = {v¢ |+ € B} is a block.
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() [b] Ag(a) = An(a®).
(c) [e] fz=Tp= I3
(@) [d] eg = e

Proof: @ and @: Let ¢ € B and M the correspoding module. Then 1) corresponse to
M*. By the definition of the action of a group ring on the dual pas+(a) = par(a®)d@. It
follows that Aj(a) = Ay(a®). Thus Aq = Ag iff Az = Ay and so (ED and @ hold.

(c): Clearly f5= fg. By fp = f% and so (c) holds.
(d): Apply * to (d)). O

Lemma 6.7.10 [theta b] Let T' be a block or or a set of blocks and 6 € CG. Then

Proof: Let b € G. Then by

Or(b) = 0(fpb) = |G|(0 | frb) = |G|(0fr | b) = (0.£5)(b)-

Lemma 6.7.11 [theta fb] Let B be a block.

(a) [a] Trr(B) is a basis for CB := CGfp.

(b) [b] Both IB(G) and (y | ¢ € IBx(G) are a basis for CB, where CB := CG N CB.
(c) [e] If x € Irr(B), then x € FB.

(d) [d] For all 6 € Z(CG), 0fp = 6f5 and 65 = 0.

(e) le] Let 6 € Z(CG) and B a block of G. Then 0fp =3 c1nm) (0 | X)x-

Proof: (EI}: Let x € Irr(B). Then x = %fy € CGB and so (H) holds.
() Let ¢ € IBr(B). Then by (&)

(I)IZJ = Z d¢XX € CB
x€lrr(B)
and so (®y | ¢ € IBr(G) is a basis for CB. Moreover,

6= 3 (¢|v)®,cCB

$€IBr(B)
and so (]ED holds.
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‘) X = Z¢elBr(B) dg\@. So follows from @
(d) By linearity we may assume that 6 € Irr(G). If € B then by and (c)
Ofp =0=0fg
and if § ¢ B, then
0fp=0=0=0fg

So the first statement holds. The second now follows from [6.7.10]
@ follows from 6 = 3_, () (0 | x) and (E[) O

Lemma 6.7.12 [decomposing theta x| Let x € G be a p-element, B a block of G.
(a) [a] If x € Irr(B), then X* = X% pga.

(b) [b] Let 6 € Z(CG), then ((05)*) = (6%)p-.

Proof: @) Let b € Bl(Cg(x)) \ B* and y € Cg(x)). Then

-. 6.7.4(b)
X2 (y) = X2 (foy) X (foy) = x(foxzy) —=" 0
Thus ;C\Eb =0 and so x* ZbEIBr(CG @) * b= ZbeIBr Bz ,\5 =\ B
@ By linearity we may assume 6 € Irr(G) and say § € A l(G . ) follows from
]
O

Theorem 6.7.13 [my second] Let X' a set of representatives for the p-element classes.
Define

and

v @ exZCCa(x) — Z(CG), (T)s — 0

where 0(g) = 1,(y) for x € X and y € Cg(x) with xy € %x.

(a) [a] p and v are inverse to each other and so both are C-isomorphism

(b) [b] w(ZCCq(x)) = ZCS(z).
(c) [c] w and v are isometries.

(d) [d] Z(CG) = D ,exZCS(x).
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(e) €] For each block B of G, E(Z(CB)) = @ ,exZCB?

(f) lf] Z(CB) = @ sexv(ZCB"))

Proof: Observe that by v is well defined. Also we view ZCCg(x) has subring of
@ zeX Z(CCG(iU) :

() and (b) are obvious.
(c) Let rmx € X, s € Cg(r) and y € Cg(x). Let C # D € C(G), E € (Cg(x) and
F € Cq(r) with rs € C,zy € D, s € E and y € F. Then u(ac) = ag and p(ap) = F.

—_—

Since C' # D either x # y or E # F and in both cases ag | ar in @ ,exZCCq(x). Note
that also ac L ap in Z(CG). Moreover

@lapje=20= L 1 __ Pl
G~ [Caley) ~ ICo.@] ~ 1Ce(@)

and so holds.

(d) Follows since G is the disjoint union of the opS(z),z € X. Alternaively it folloes
from @ —.

(e) Follows from [6.7.12]

@ follows from E[) and and . O

Lemma 6.7.14 [x decomposition| Let x € G. Define the complex IBr(Cg(z)) x Irr(G)-
matriz D* = (dF, ) by

X" = Z Ogx P
pelr(G)
any x € Irr(G) Then

= X Gl vt ew

Yelr(Ca(x))

Proof:

Let x = xu with M € S(G) an dy € Cg(x). Then as an Cg(x)-module, M =
doNes(H) N for some dy € N. Since z € Z(Cg(z)), = acts as a scalar A% on N. Then
X~ (fery) = Xixn(fBy). Moreover fg annhilates N if N ¢ S(B) and acts as identiity on
N if N € §(B). Hence

(+) X(fsry) = > dvdiw(fsy) = Y. xn(®)

NeS(Cy(x)) NeS(B)

Observe that oy = (x | H | xn), Ay = igg; and XN = D eiBr(Cy(x)) doxn ON-

Substitution into (*) gives the lemma. O
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Theorem 6.7.15 (Brauer’s Second Main Theorem) [second] Let x be a p-element in
G and b € BI(Cg(z)). If x € Irr(G) but x ¢ Irr(b%), then dg, =0 for all ¢ € IBr(G).

Proof: Follows from 6.7.12@.

Corollary 6.7.16 [chixy] Let x be a p-element in G, y € Cg(z) a p'-element, B a block
of B and x € Irx(B). Then

x(zy) =Y {dj, | beBl(Ca(z), B =0

Proof: This just rephrases [6.7.12((a)).

Corollary 6.7.17 [gp in defect group| Let B be a block of G, x € Irr(B) and g € G. If
x(g) # 0 then g, is contained in a defect group of B,

Proof: Let z = g,,y = gy. Since x(g9) = x(zy) # 0, [6.7.16) implies tat there exists
b € IBr(G) with B = b%. Since z € 0,(Cg() is contained in any defect group of b, [6.6.22

implies that x is contained a defect group of B. O
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