1. Let $G = \text{Sym}(3)$ and \mathbb{K} an algebraically closed field.
 (a) Determine all the simple $\mathbb{K}[G]$-modules (up to isomorphism).
 (b) Compute $J(\mathbb{K}[G])$.
 (c) Let $R = \mathbb{K}[G]/J(\mathbb{K}[G])$. Explicitly find minimal ideals $R_1, R_2, \ldots R_k$ in R with
 $$ R = R_1 \oplus R_2 \oplus \ldots \oplus R_k. $$
 (As before the answers to (1:a) to (1:c) depend on char \mathbb{K}.)

2. Let \mathbb{D} be a division ring and V a \mathbb{D}-space. Put
 $$ I := \text{FEnd}_\mathbb{D}(V) := \{ f \in \text{End}_\mathbb{D}(V) \mid \dim_\mathbb{D} \text{Im } f < \infty \} $$
 and $R = \mathbb{Z} \text{id}_V + I$. Show that
 (a) I is an ideal in $\text{End}_\mathbb{D}(V)$.
 (b) R is dense on V with respect to \mathbb{D}.

3. Let \mathbb{K} be a field and $(V_i, i \in I)$ a family of non-zero finite dimensional \mathbb{K}-spaces. Let $J \subseteq I$. Put $V_J = \bigotimes_{j \in J} V_j$. For disjoint subsets J, K of I we can canonically identify $V_J \otimes V_K$ with $V_{J \cup K}$. Let $\overline{J} = I \setminus J$. For each $i \in I$ fix $0 \neq w_i \in V_i$ and put $w_J = \bigotimes_{j \in J} w_j$. Put $W_J = V_J \otimes w_J \leq V_I$. Show that:
 (a) There exists a unique ring monomorphism $\phi_J : \text{End}_\mathbb{K}(V_J) \to \text{End}_\mathbb{K}(V_I)$ with $\phi_J(f)(v \otimes \overline{v}) = f(v) \otimes \overline{v}$ for all $f \in \text{End}_\mathbb{K}(V_J)$, $v \in V_J$ and $\overline{v} \in V_{\overline{J}}$.
 (b) Put $R_J = \text{Im } \phi_J$. Then W_J is a simple R_J-submodule of V_I.
 (c) If J is finite, then R_J is a simple ring.
 (d) If $J \subseteq K \subseteq I$, then $R_J \subseteq R_K$.
 (e) If $J \subseteq K \subseteq I$, then $W_J \subseteq W_K$.
 (f) Let $R = \bigcup\{R_J \mid J \subseteq I, |J| < \infty\}$. Then R is a simple subring of $\text{End}_\mathbb{K}(V_I)$.
 (g) Let $W = \bigcup\{W_J \mid J \subseteq I, |J| < \infty\}$. Then W is a simple R-submodule of V_I.
 (h) R is dense on W with respect to \mathbb{K}.
 (i) If $|I|$ is infinite, then $R^W \neq \text{End}_\mathbb{K}(W)$ and $R^W \cap \text{FEnd}_\mathbb{K}(W) = 0$.