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Chapter 1

Group Actions

1.1 Groups acting on sets

Definition 1.1.1. An action of a groups G on set 2 is a function

o: OxG — Q
(w,g) = wf
such that
(i) w' =w for all w € Q.
(ii) (W)Y =w™ foralweQ, z,y € G.
A G-set is a set Q together with an action of G on €.

Example 1.1.2. Let G be a group, H a subgroup of G and €} a set. Each of the following
are actions.

(a)
RM: GxG — G . ) o
( action by right multiplication)
(a,b) +— ab
(b)
LM: GxG — G
) ( action by left multiplication)
(a,b)) — b 'a
(c)

Conj: GxG —» G

(@) i ( action by left conjugation)
a, — a
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(d)
RM: G/HxG — G
(Ha,b) +— Hab

( action by right multiplication)

(e)

Nat: Q x Sym(Q2) — Q
( natural action )
(w, ) =W

Definition 1.1.3. Let e be an action of the group G on the set Q). Let g € G, w € §,
HCG and A C H.

(a) AY:={wI |we A}.
(b) wi ={w" | h e H}.
(c) C3(A) :=={h € H | w" = wfor allw € A}.

(d) Cy(w) = {h € H|wh =w. (So Cf(w) = Cu(*({w}. We will often write HS for
C(w).

(e) Ny(A):={h e H|A"=A}.
(f) A is called H-invariant if A = A" for all h € H.
(9) H is called transitive on Q if for all a,b € Q there exists h € H with a = b.

Note that map (A, g) — AY defines an action for G on the set of subsets of Q. If H < G
and A is an H-invariant subgroup of G, then H acts in A via (w,h) — w" for all w € A,
h € H. If there is no doubt about the action e, we will often omit the superscript e in
C}(w), N} (A) and so on.

Lemma 1.1.4. Let o be an action of the group G on the set Q, g € G, H C G and A C Q.
(a) If H < G, then Cyg(A) < Ny(A) < H.

(b) Cr(A)9 = Che(A9).

(c) Define ¢y : @ — Qw — w9 and G** = {¢, | g € G}. Then the map ¢ : G —

Sym(Q),9 — ¢4 is a well-defined homomorphism of groups with ker ¢ = C&(§2) and

Im¢ = G*. In particular, Ce(€) is a normal subgroup of G, G*® is a subgroup of
Sym(Q) and G/C&(Q) = G*.
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Proof. Readily verified. As an example we prove . Let h € H and w € A. Then

h e CH((U)
wh=w
whd = w9

w99 thg — 9
()" = w8

h9 € Cro(w?)

111t

Hence Cy(w)? = Cps(w?). Intersecting over all w € A gives (b). O

Definition 1.1.5. Let G be a group and let 1 and Qo be G-sets. Let o : Q1 — §s be a
function.

(a) « is called G-equivariant if

wa = wa?
for allw e QY and g € G.
(b) « is called a G-isomorphism if o is G-equivariant bijection.
(¢c) Q1 and Qg are called G-isomorphic if there exists a G-isomorphism from Qq to Qo.
Definition 1.1.6. Let G be a group acting on a set §2.
(a) We say that G acts transitively on Q if for all a,b € Q there exists g € G with a9 = b.

(b) We say that G acts regularly on Q if for all a,b € G there exists exactly one g € G with
ad =b.

(c) We say that G acts semi-regularly on Q if for all a,b € G there exists at most one g € G
with a9 = b.

Lemma 1.1.7. Suppose that the group G acts transitively on the set Q and let w € Q). View
G/G, as a G-set via right multiplication. Then the map

o: G/G, — Q

G,g +— w9

is a well defined G-isomorphism. In particular, |Q] = |G/Gy|.
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Proof. Let g,h € G. Then the following statements are equivalent:

wI = wh
wIh T =
gh™t e G,
Gog = Gyh
The forward direction shows that ¢ is 1-1 and the backward direction shows that ¢ is
well-defined. Since G is transitive on €2, ¢ is onto. Note that

(Gug)h)d = (Gulgh)d = w = (w9)" = ((Gug)9)’

and so ¢ is G-equivariant. O

Proposition 1.1.8 (Frattini Argument). Let G be a group acting on a set Q, H a subgroup
of G and w € Q.

(a) If H acts transitively on Q, then G = G, H.
(b) If H acts semi-regularly on Q, then G, N H = 1.

(¢c) If H acts reqularly on Q, then H is a complement to G, in G, that is G = G,H and
G,NH=1.

Proof. @) Let g € G. Since H acts transitively on Q, w9 = w” for some h € G. Hence
gh™ € G, and g = (gh~')h € G, H.
(]EI) Let h € G, N H. Then w" = w = w' and so h = 1 by definition of semi-regular.
Since H acts transitively and semi-regularly on €2, this follows from @ and (]ED O

Definition 1.1.9. Let G be group acting on a set )

(a) w€Q and H C G. Then wf := {wh | h € H}. W% is called an orbit for G in Q. Q)G
denotes the set of orbits of G on Q.

(b) Let a,b € G. We say that a is G-equivalent to b if b = a9 for some g € G, that is if
beal.

Lemma 1.1.10. Let G be a group acting on set €.

(a) G — equivalence is an equivalence relation. The equivalence classes are the orbits of G
on €.

(b) Let A be a set of representatives for the orbits of G on Q, (that is |ANO| =1 for each
orbit O of G on Q. Then Q and JyenG/G,, are isomorphic G-sets. In particular,

|Q| = Z |G /Gy, (Orbit equation)
weA
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Proof. @ Since w = w!, the relation is reflexive. If a,b € Q with a9 = b, then b = and
the relation is symmetric. If a9 = b and b* = ¢, then a9" = ¢ and the relation is transitive.
w® is the set of elements if G in relation with w and so is an equivalence class.

(]E[) Since each elements of w lies in exactly on orbits of G on 2 and since each orbit
contains exactly one element of A we have

Q= UweAwG

Observe that G acts transitively on w® and so by w =2 G/G,, as a G-set. So (]EI)
holds. O

Lemma 1.1.11. Let G be a group acting on a set non-empty set €.
(a) G acts reqularly on Q if and only if it acts transitively and semi-regularly.
(b) G acts semi-regularly on Q if and only if G, =1 for all a € .

(c) G acts transitively on Q if and only if there exists a € Q such that for all b € Q) there
exists g € G with a9 = b.

(d) G acts transitively on G if and only if there exists a € Q such that for all b € Q there
exists a unique g € G with a9 = b.

Proof. @: Follows immediately from the definitions.

(]E[) Note that G, = 1 if and only if and only if the exists a unique element g € G with
ad =1 (namely g = 1). So if G acts semiregularly on 2, then G, =1 for all a € Q.

Suppose now that G, = 1 for all a € Q. Let a,b € G and g,h € G with a9 = b = a".
Then a9 = a, gh~!' € G, and g = h. So G acts regularly on €.

The forward direction is obvious. If a© = €, then Q is an orbit for G on Q. Thus
any two elements of €2 are ~-equivalent and so G act transitively on €. @ The forward
direction is obvious. Suppose now a € ) and for each b there exists a unique g € G with
a9 = b. For b = a we see that G, = 1. Thus Gy = Ggo = GJ = 1. and @ now show
that G acts transitively and semiregularly on 2. So by @, G acts regularly on €. O

Lemma 1.1.12. Let G be a group acting on a set Q). Then the map
AxG/Ce(Q) = Q, (w,Ca(N)g) — w?
is a well-defined, faithful action of G/Cg(2) on Q.
Proof. Readily verified. O
Lemma 1.1.13. Let G be a group. The the following are equivalent:
(a) All subgroups of G are normal in G.

(b) Whenever G acts transitively on a set Q,then G/Cq(Q2) acts regularly on Q.
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Proof. Let Q be a set on which G acts transitively and put G = G/Cg(2). Note that
G, =G, for all w € Q. Then G acts regularly on Q iff G, = & and so iff G, = Cg(Q) for
all w in €.

@) = (]ED: Suppose all subgroups of G are normal in G. Then G, = G, = Gs.
Since G acts transitively on G this gives G, = G, for all 1 € Q and so G, = C(€2). Thus
G act regualrly on G.

(]E[) = @: Suppose G/Cq(R2) acts regularly on 2 for all transitive G-sets €. Let
H < Gandput Q=G/H. Let w= H and note that w € Q and G, = H. Thus H = C(Q2)
and since Cg(2) is a normal subgroup of G, H is normal in G. O

Definition 1.1.14. Let G and H be groups. An actions of G on H is an action - of G on
the set H such that

(ab)? = ab?
for all a,b € H and g € G.

If G acts on the group H and g € G, then the map ¢, : H — H,h +— h9 is an
automorphism of H. Hence we obtain an homomorphism ¢ : G — Aut(H),g — ¢, and
G is isomorphic to a subgroup of Aut(H). Conversely every homomorphism from G to
Aut(QG) gives rise to an action of G on H.

Example 1.1.15. Let G be a group and N a normal subgroup of G.
(a) N x G — N,(n,g) = g~ 'ng is an action of G on the group N.
(b) G x G — G, (h,g) = hg is not an action of G on the group G (unless G =1).

(c) G x Aut(G) — G, (g,a) = ga is an action of
Aut(G) on the group G.

Lemma 1.1.16 (Modular Law). Let G be a group and A, B, and U subsets of G. If
UB ' CU, then UNAB = (ANU)B.

Proof. Let w € U N AB. Then u = ab for some a € A and b € B. Since UB™! C U,
a=ub"teU. Thusa€ ANU and so UNAB = (ANU)B. O

Definition 1.1.17. Let K be a groups and G and H subgroups of G.
(a) G is called a complement to H in K if K =GH and GNH = 1.

(b) K is called the internal semidirect product of H by G if H is normal in G and G is a
complement of H in G.

Lemma 1.1.18. Let G be a group, H < G and Ky and Ko complements to H in G.

(a) G:HKl
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(b) Ile § Kz, then K1 = KQ.
(¢) K1 and Ko are conjugate under G if and only if they are conjugate under H.

Proof. @ Let g € G. Then g=! = kh for some k € K and h € H. Thus g = (¢7})7! =
(kh)~' =h7 k! € HK;.

() Since K1 < K> and G = K H, Dedekind implies Ky = K1(Ka N H). As
Ko N H =1 we infer that K7 = Ks.

Let g € G with K{ = K. Then g = kih with k1 € K7 and so Ky = K{ = Kt =
Kh. O

Suppose that K is the internal direct product of H be G. Then G acts on H by
conjugation and every element in K can be uniquely written as gh with ¢ € G and h in H.
Moreover

(91h1)(92h2) = 919295 "h1gaha = (g192) (h*)ha
This leads to the following definition.

Definition 1.1.19. Let G be a group acting on the group H. Then G x H is the set G x H
together with the binary operation

(GxH)x(GxH)— (GxH)
(91, h1), (g2, ho — (9192, W ha)

Lemma 1.1.20. Let G be a group acting on the group H and put G* = {(g9,1) | g € G}
and H* ={(1,h) | h € H}.

(a) G x H is a group.

(b) The map G — G x H,g — (g,1) is an injective homomorphism with image G*.
(¢) The map H — G x H,h — (1,h) is an injective homomorphism with image H*.
(d) (1,h)9D = (1,h9) forallge G, he H.

(e) G x H is the internal semidirect product of H* by G*.

Proof. () Clearly (1,1) is an identity. We have

((g1,h1)(g2, h2)) (g3, ha) = (9192, h{*P1) (93, h3) = (919293, (h{*h2))% h3) =
(919293, (h?)h§hs) = (19293, h{*** R’ h1) = (91, h1) (9293, B3> hs) = (h1, 91)((h2, g2)(h3, g3))
and so the multiplication is associative.

We have (g, h)(z,y) = (1,1)iff gr =1 and h*y =1 iff s = gt and y = (h*) "' = A~ 1)®
and so iff # = g1 and y = (h=1)g~!. Thus the inverse of (g,h) is (¢~ !, hil)g_l.
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Since for any g € G, the map H — H,h — hY is a homomorphism, we have 19 = 1.
Thus (g1,1)(g2,1) = (9192,1%1) = (9192, 1).

(c) (1,71)(1, ha) = (1, hih2) = (1, hihs).

(d) (1)@ = (g7, 1)(1,k)(9,1) = (g7, h)(g, 1) = (979, A1) = (1, h9).

Clearly G* " H* = 1. Since (g,1)(1,h) = (9,h), G x H = G*H* and so G* is a
complement to H* in G x H. By @, G* normalizes H* and so H* is normal in G*H* =
Gx H.

U
As an example consider H = Cy x Cy and G = Aut(H). Note that G = Sym(3). We
claim that Gx H is isomorphic to Sym(4). Sym(4) has H* := {1, (12)(34), (13)(24), (14)(23)}
has a normal subgroup and H* = (5 x (3. Observe that H* acts regularly on Q =
{1,2,3,4} and so by G* := Sym(4), is a complement to H* in Sym(4). Also
G* = Sym(3) = Aut(H*) and C5L(H*) = 1. It is now not to difficult to verify that
G x H = G* x H* = Sym(4).

Lemma 1.1.21. Let G be a group, and K, H < G with G = KH. G. Let U < G with
K <U. Then

(a) U = K(HNU). In particular, if H is a complement to K in G, then (HNU) is a
complement to K in U.

(b) The map o : G/U — H/HNU,X — X N H is a well defined bijection with inverse
B:H/HNU — GJUY — KY.

(¢) Let T'C H. Then T is a transversal to HNU in H if and only if T is a transversal to
UinG.

Proof. (g)) By since UK™! = K, U =UNG =UNKH = K(UNH). Also if
KnNH=1weget UNH)NK=Un(HNK)=1.

@ Let X be a coset of U in G. Then K~'X C UX = X and so by X=XnN
KH = K(XNH). In particular, there exists h € XNH andso XNH = UhNH = (UNH)h.
Hence X N H is indeed a coset of X N H and « is well defined. Moreover, X = K(X N H)
means that ao ( is the identity on G/U.

Now let Y = (UNH)y € H/UNH. Then KY = K(UN H)u = Uy and so KY
is a coset of U in G and B is well defined. Moreover, since Hy ' = H, [1.1.16| gives
KYNH=UyNnH=(UNH)y=Y and so o« is the identity on H/H NU.

T is a transversal to U in G if and only if [TNX| = 1for all X € G/U. Since T C H,
this holds if and only if TN (X N H) =1 for all X € G/U. By (b)), the latter is equivalent
to|T'NY|=1forallY € H/HNU and so equivalent to 7" being a transversal to H NU in
U. O

1.2 Complements

Lemma 1.2.1. Let G be a group, K < G and U < K such that K/U is Abelian and G/K
is finite. Let S be the set of transversals to K in G. (A transversal to K in G is a subset
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T of G such [TNC| =1 forallC € G/K.). For R,S € S define

R|S:= H rs U

(r,s)ERxS
Kr=Ks

Then for all R,S,T € S,
(a) R| S is an elements of K/U and independent of the order of multiplication.

(b) (R|S)"t=S|R.

(c) RIS)(S|T)=R|T.

(d) The relation ~ on S defined by R~ S if R| S =U = 1k is an equivalence relation.
(e) G acts on S be right multiplication.

(f) Na(K)°P acts on S by left multiplication.

(g9) Let € Ng(K)N Ng(U). Then xR | S = z(R | S)z~t. In particular, ~ is Ng(K) N
N¢(U)-invariant with respect to the action by left multiplication.

(h) Putm =G/K. Then kR| S = k™(R | S).

Proof. @ If Kr = Ks, then rs7! € K and so R | S € K/U. Since K/U is abelian, the
product is independent of the order of multiplication. (]EI) Follows from (rs=1)~1 = sr—1.
(c) Follows from (rs~!)(st™1) = rt=1.
@) Since rr~! =1, R| R=1U = U and so ~ is reflexive. If R | S = lg v, then by @,

S|R=(R|S)™ =1y, = lgu- So ~ is symmetric. If R~ S and S ~ T, then by ,

RIT=(R|S)S|T)=1kw 1kw = 1w

and so ~ is transitive.

(e) Let g € G and C € G/K. Then |SgNC|=|SNCg~'|=1andso Sg € S.

(f) Let g € Ng(K) and C = Kh € G/K. Then |gSNKh| = |SNg 'Kh| = |SNKg~'h| =
1 and so gS € S.

Let r € R, s € S and € Ng(K)N Ng(U). Then Kr = Ks iff e Kr = 2K S and iff
K(zr) = K(xr). Thus

zR | xS = H (zr)(xzs)'U =« H rs~t | 27U

(r,s)ERXS (r,s)eRxS
Kzr=Kzs Kr=Ks
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Let k € K. Then Kkr = Kr and so Kr = Ks if and only if K(kr) = Ks. Thus

ER| S = H (kr)s™'U = H krs™' | U
(r,s)€RXS (r,s)ERXS
Kkr=Ks Kr=Ks

= k™ [ »'|{v="®l9
(r,s)eRxS
Kr=Ks

O]

Theorem 1.2.2 (Schur-Zassenhaus). Let G be a group and K an Abelian normal subgroup
of G. Suppose that m := |G/K]| is finite and that one of the following holds:

2 K is finite and ged |K||G/K| = 1.
2 The map a: K — K,k — k™ 1is a bijection.

Then there exists a complement to K in G and any two such complements are conjugate
under K.

Proof. Suppose that holds. Observe that « is a homomorphism. Also if & € K with
k™ =1, then |k| divides |K| and m and so |k| =1 and k = 1. Thus « is injective. Since K
is finite we conclude that « is a bijection.

So implies and we may assume that holds.

We know apply[L.2.1|with U = 1. Since K < G, we have G = Ng(K) = Ng(K)NNg(U).
Thus by @) G°P acts on §/ ~ via left multiplication. Let R, S € S and k € K. Then

[kR] =S <= (kR) | S=1<=k"(R|S)=1<—= k"= (R|S)}

Since « is a bijection, for any R,S € S there exists a unique such k € K. Thus K acts
regularly on S/~ and so by the Frattini argument, G|g) is a complement to K.

Now let H be any complements of K in G. Then H is a transversal in K in G and so
H € §. Since hH = H for all h € H we conclude that H < G|y;. Now both H and Gp) are
complements to K in G and @ implies that H = G[z). Thus the map [S] — G[g) is
a G-isomorphism from S/~ to the set of complements to K in G. Since K acts transitively
on S/~ it also acts transitively on the set of complements to K in G. O

Theorem 1.2.3 (Gaschiitz). Let G be a group, K an Abelian normal subgroup of G and
K <U < G. Suppose that m :=|G/U| is finite and that one of the following holds:

2 K is finite and ged |K||G/U| = 1.

2 The map a: K — K,k — k™ 1is a bijection.
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Then

(a) There exists a complement to K in G if and only if there exists a complement to K in

G.

(b) Let Hy and Hy be complements of K in G. Then Hy and Hsy are conjugate in G of and
only if HHNU and Ho NU are conjugate in U.

Proof. @) '=—:" Let H be a complement to K in G. Then by HNU is a complement
to K inU

(b) '=: Suppose H; and Hy are conjugate in G. Then by , Hy; = H{’“ for
some k € K. Since k € U we get (HlﬁU)k = HfﬂU”C = HyNU and so H1NU and HoNU
are conjugate in U.

@ '«<—:" Let B be the set of left transversals to U in G and fix Sy in B

Suppose that there exists a complement A to K in U. Let g € G. We claim that

1°. There exists uniquely determined sq € So, ky, € K and ay € A with g = sgkgqaq.

Indeed since Sy is a left transversal to U there exists uniquely determined s, € Sp and
ug € U with g = syuy. Since A is a complement to K in U, there exists uniquely determined
ky € K and a4 € A with uy = kgag.

2°. Put gy = sgky. Then go is the unique element of SoK with gA = goA.

If g1 € SoK with gA = g1 A, then g1 = s1k1 and g = giay for some s; € Sy, k1 € K and

a1 € A. Then g = g1k1a1 and so g1 = go by .
Define S ={T' € B|T C SoK}. For T C G put Tp :={to |t € T}

3°. If L € B, then Ly is the unique element of S with LA = LgA.

Since lgpA = [A we have [U = [U and so Lg is a left transversal to U. Moreover,
LoA =LA and so Ly € S. Now suppose L1 € S with LA = L1 A. Then for each | € L there
exists I; € Ly with [A = [ A. Since l; € L1 C SyK we conclude that I = lg. Thus Ly C L,
and since Ly and Ly are both transversals to U we conclude that Ly = L.

Let x € G and T' C G define z * T := (2T)o.

4°, Let Le B. Thenx*xL €S and xx L = x * Ly.

Since zL is a left transversal to U in G, implies that x x L € S. Now

(x+ L)A = (zL)oA = LA = 2(LA) = 2(LoA) = (vLo)A = (zLo)oA = (x x Lp) A

Since both zx and z * Ly are contained in S, the uniqueness statement in shows
that x « L = x * Ly.

5°. SxG—S,(L,z) = xxL is an action of GP on S.
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By ,a:*LGS. Since L = Ly for all L € § we have 1 * L = (1L)g = Ly = L. Let
z,y € G. Then

v (yrL) =% (yL)o D axyL = (2(yL))o = ((ay)L)o = wy + L

and so * is indeed an action.

For R, S € S define

R|S:= H rst

(r,s)eERxS
rU=sU

Since RK = SoK = SK for each r € R there exists s € S with rK = sK. Then also
rU = sU. Since K is normal in H, Kr = Ks and rs~! € K. Hence R | S € K and since K

is Abelian, the definition of R | S does not depend on the chosen order of multiplication.
Define the relation ~in S by R~ Sif R|S=1. Asin

6°. ~ 15 an equivalence relation on S.
Next we show

7°. kxS=kS forallke K, S€S.
Indeed

ESK = kSoK = kK Sy = KSy = SoK

and so kS € S. As kSA = kSA, the definition of (kS)y implies (kS)g = kS and so
holds.

8. zxR|x+xS=x(R|S)x! forallz € G and R,S € S.

Let r € R. Since R, S € § we have RK = SyK = SK and so r = sk for some s € S and
K. Then s is the unique element of S with 7U = sU/ Note that zr = zsk and xrU = zsU.
We have zs = zsk = (syskpsarsk = sks(kmkal;sl)aks and so a,s = aps.

Also (21)g = Surker = (7)ayt = (zr)ayl, (25)o = (xs)azd and (1)U = orU = xsU =
(xs)oU. Thus

zxR|zxS = [leoe@rpesn™ - = Iesens@rles)y’
rU=sU rU=sU
= H(T,S)E(R,S)(xra;sl)(xsa;sl)il = H(T,S)E(R,S) xra:?slamssilxil
rU=sU rU=sU
= =z H(r,s)e(R,S)TS_l)fl = z(R|S)a~"
rU=sU

9°. ~ is G-invariant and K acts regularly on S/modsim.
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In view of and this follows as in the proof of
From and we conclude that there exists a complement to K in G.

(]E[) '«<=": Let Hy and H; be complements to K in G such that Hy N U is conjugate to
HiNUinU. Then HyNU = (HyNU)* = Hf NU for some v € U. If Hy is conjugate
to Hy in G, then H; is also conjugate to Hy in G. So it suffices to show that H; and H
are conjugate in G and replacing Hy by H; we may assume that Hy NU = HyNU. Put
A=HyNU. Then A is a complement to K in U.

10°. Let T C H;. Then T is a left transversal to A in H; if and only if T is a left
transversal to U in G.

This follows from 1.1.21.
Let Sy be a left transversal to A in Hy. Then by (10°)), Sy is left transversal to U in

G and we can use it to define the set S. Let s € Sp. Since G = H1 K, s = hk for some
h e H and k € K. Then sk~! = h € H;. Put Iy = k= ! and note that sk, € H;. Put
S1 = {sks | s € Sp. Since ks € U and Sy is a left transversal to U in G, also S is a left
transversal to U in G. So by , S1 is a left transversal to A in Hy. Moreover, 51 C SoK
and so 51 € S.

11°. Let L; be a left transversal to A in H;. Then (L;)o = S;

We have LZA == Hl = SZA and so Sl = (Ll)g by .

Let x € H;. Then xz.5; is a left transversal to A in H; and so by , xxS; = (xS;)0 = S;.
Thus H; < G|g; and hence by , H; = G|g,. Since K acts transitively on S//~
there exists k € K with [k So] = [S1]. Then H§ = Gy . = Gjjs,] = Gs,) = Hi and so Hy

[So]
and H; are conjugate in G. O

In the proof of the Gaschiitz Theorem we used a complement A to K in U to find a
complement H to K in G. Then of course H NU is a complement to U in K. But these
operation are not inverse to each other, that is H N U can be different from A and might
not even be conjugate to A in U. In fact, there are examples where there does not exist
any complement H to K in G with A =U N H.

Suppose now that we start with a complement H to K in GG, then the proof of ’(]ED =’
shows that the complement to U in G constructed from the complement H NU to K in U,
is conjugate to H, as long as one choose the left transversal Sy to be contained in H.

1.3 Frobenius Groups

Lemma 1.3.1. Let G be a group acting on a set  and N a normal subgroup of G acting
reqularly on Q. Fiz a € Q and for b € ), let ny be the unique element of N with a™ = b.
Then for all b € Q) and g € G,

(15)? = o

Thus the action of G, on ) is isomorphic to the action of G, on N, and the action of
Gq on Q\ {a} is isomorphic to the action of G, on N¥.
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Proof. Since g € Gq, also g7' € G, and so a9 = a. Thus

g —1
ah — q9 M9 — g — pg

and so 1y = nps. O

Definition 1.3.2. Let G be a group acting on a set Q). We say that G is a Frobenius group
on Q if

(a) G acts faithfully and transitively on ).
(b) G does no act regularly on ).
(c) For all a € Q, G, acts semi-reqularly on Q\ {a}.
Kta(Q) consists of all the g € G such that (g) acts semi-regularly on €.

Lemma 1.3.3. Let G be a group, H < G and put Q@ = G/H. Then the following are
equivalent:

(a) G is a Frobenius group on Q.
(b)) 14 H#G and HNHY=1 forallge G\ H.
In this case Ké(ﬂ) ={geG¥|Cqalg) =0} =G\ UH® =

Proof. @ — (]E[): If H =1, then G acts regularly on 2, contrary to the definition of a
Frobenius group on 2. So H # 1 and in particular, G # 1. If G = H, then G acts trivially
and so not faithfully on Q. Thus H # G. Let g € G\ H. Then H # Hg. Since H = Gy
acts semiregularly on Q \ {H} we conclude that HNHY =Gy NGuy = 1.

@ = (]E[): H # 1, G does not act regularly on Q. Since H # G, there exists
g € G\ H. Hence Cg(?) < GuNGuy = HN HY =1 and G acts faithfully on Q. Let
Ha, Hb € Q with Ha # Hb. Then ab~! ¢ H and so

GraNGp = H*NH = (H“lf1 NH)? = 1% = 1. Thus Gp, acts semiregulary on Q\ Ha
and so G is a Frobenius group on G.

Suppose now that (a) and let 1 # g € Kq(G). Since (g) acts semiregulary on £,
(9) NGy, =1for all w € Q and so g ¢ G, and w ¢ Cq(g). Thus Ké(Q)subseteq{g € G|
Cal(g) = 0}.

Let g € G with Cq(g) =0 and let [ € G. Then HI ¢ Cq(g) and so g ¢ Gy = H'. Thus
{g€G*| Ca(g) =0} =G\UHC.

Let g€ G\ |JH®. Since 1 € H, g # 1. Let w € Q. Since G, € H® we have g ¢ G,,.
Hence w # w9 and so G, N G, = 1. Since g normalizes every subgroup of {(g).

(9) NGw = ((9) NGw)? < Gus
and so (g) NG, = 1. Thus (g) acts semiregularly on Q and g € Ké(Q) O
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Definition 1.3.4. Let G be group and H a subgroup of G. Put Kg(H) = G\ |JH!*. We
say that G is a Frobenius group with Frobenius complement H and Frobenius kernel Kq(H)

if
(a) 1+ H #QG.
(b)) HNHY =1 for all g € G.

Theorem 1.3.5 (Frobenius). Let G be a finite Frobenius group with complement H and
kernel K. Then G is the internal semidirect product of K by H.

We will proof this theorem only in the case that |H| has even order. Currently all the
proves available for Frobenius Theorem use character theory.

Lemma 1.3.6. Let G be a finite Frobenius group with complement H and kernel K. Put
Q=|G/H]|.

(a) Let g € G\ K. Then g has a unique fized point on
(b) =|G/H|=|K| and |K| =1 mod |H].

G Gt
() GI/\ K| = 15> 151,

Proof. @) Since g ¢ K, g # 1 and g € H' for some [ € G. Thus g fixes HI. Since G acts
semiregulary on Q \ (HI), Hl is the only fix-point of g on €.

() Clearly Q@ = |G/H|. Since H acts semiregularly on Q \ {H}, all orbits of H on
O\ {H} are regular and so have length |H|. Thus || =1 mod |H|.

From HN HY = 1 for all g € G\ H we conclude that Ng(H) = H and so |[HY| =
|G/Ng(H)| = |G/H|. Moreover,HI N H' = 1 for all g,1 € G with HI # H' and so |J H*“
is the disjoint union of H*, g € G. There are |G/ H| such conjugates and each conjugate as
|H| — 1 elements.

Thus ||JH*| = |G/H|)|H| — 1 = |G| — |G/H|. Since K = G\ |JH*“ this gives
K| = |G/H.

Since H # 1, |H| > 2 and so |K| = |G/H| < @ This implies . O

Lemma 1.3.7. Let G be a finite Frobenius group with complement H and kernel K.
(a) Let U < G. Then one of the following holds:

1. HnU = 1.
2. U<H.
3. U is Frobenius groups with complement U N H and kernel U N K.

b) Let Hy be any Frobenius complement of G. Then there exists g € G with H < HY or
(b) y p g 5
Hy < HY.



20 CHAPTER 1. GROUP ACTIONS

Proof. @ We may assume that HNU # 1and H £ U. Then HNU # U. It g € U\(UNH),
then g ¢ H andso (UNH)N(UNH)? < HNHY =1. Thus U is a Frobenius group with
complement U N H and kernel (say) K. Note that (UNK)N(UNH)? < KN HY =1 for
allge Uandso UNK C K. Let u € U\ (UNK). Then u € HY for some g € U. Since
u # 1 we have U N HY # 1. Suppose that U < HY9, then 1 # U NH < HY and so H = HY
and U < H, a contradiction. Hence U # HY and as seen above U N HY is a Frobenius
complement of U. From applied to the Frobenius complements U N H and U N HY
of U,

(WY |+ || JU* nH)Y| > |£+M |U¥|

Thus the two subsets ((U* N H)Y and "(U* N H9)Y of U cannot be disjoint and there
exists ui,up € U with (U N H)“1 N(UNHI)"2 £ (). Thus H"* N H9"2 #£ 1. It follows that
H" = H9 and so HY = H"42' € HY. Thus u € Ut and u ¢ K. We proved that
UNK\K and (U\K)CU\K. Thus UNK = K and (EB holds.

(]ED We may assume that Hy ¢ HY for all g € G. If HyN HY # 1 for some g € G then
@ shows that Hy N K is a Frobenius kernel for Hy and so HyN K 75 1. f HyNnHY =1
for all g € G, then Hy C K. So in any case Hy N K # 1. Put m = \HOOK] Then m is a
positive integer.

Let g € G. If g € Ho, then (HoNK )Y = HyNK and if g ¢ Ho, then (H)NK)N(HoNK)J <
HoNH§ = 1. Thus ﬂ(HgﬁK)G is the disjoint union of |G/ Hy| sets, each of size |H§DK] =
Thus

|((H N K)C| = m|G/Hol

and

G/H| = K| > || J(Ho N K)®| = m|G/Ho| + 1> |G/Ho|

Hence |H| < |Ho|. So if Hy £ HY for all g € G, then |H| < |Hp|. By symmetry, if
H & HY for all g € G, then |Hp| < |H|. This proves (b). O

Theorem 1.3.8. Let G be a finite Frobenius group with complement H and kernel K. If
|H| is even, G is the internal semidirect product of K by H.

Proof. Since H has even order there exists t € H with |¢t| = 2. We will first show that
1°. tt9 € K* for all g € G.

Since g ¢ H. HNHY = 1 and so t9 # t~1. Thus a := tt9 # 1. Observe that both ¢ and t9
invert a. Suppose for a contradiction that a € H” for some z € G. Then a = (a’)~! € H*
and similarly a € H**. Thus a € H* N H® N H** and so H* = H** and both ¢ and t¢
are contained in H*. Sot € HN H* and t9 € HI9 N H*. It follows that H = H* = HY, a
contradiction to g ¢ H. This completes the proof of .
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Let S be a transversal to H in G with 1 € S. Let r,s € S with t¢t" = tt°, then
t°* =t" € H' N H®. Thus H" = H?, Hrs' = H,rs™' € H and Hr = Hs. Since S is
a tranversal, 7 = s. It follows that |tt°| = |S| = |G/H| = |K|. Since tt! = 1 € K and
s ¢ H forall s € S\ 1, shows that tt C K. Hence tt° = K. Since K = K~ we get
K = (tt%)7! = t5t. Let ky, ko € K. Then ky = t°'t and ky = tt*2 for some sy, so € S. Thus

fiks = (£5144152 = 91452 = (45251 )"

Note that either sy = 57 or 3231_1 ¢ H. Thus by , tt”‘(”l_1 € K. Since K is invariant
under conjugation, we conclude that k1ky € K. Thus K is closed under multiplication.
Clearly K is closed under inverses and under conjugation by elements of G. Hence K is a
normal subgroup of G. Since K N H =1 and |K||H| = |G/H||H| = |G| we get G = HK
and so G is the internal semidirect product of K by H. O

Lemma 1.3.9. Let G be the internal semidirect products of K by H. Suppose that K # 1
and H #1. Put Q= G/H. Then

(a) K acts reqularly in .

(b) Kg(H) ={hk | h € Hk € K\{[hI] |l € K}. In particular, K C Kg(H) and
K = Kg(H) if and only if for all h € HY, K = {[h,1] |l € K}.

(¢) h € H acts fixred-point freely on Q\ {H} if and only if Cx(h) = 1. In particular, H is
a Frobenius complement in G if and only if Cx(h) =1 for all h € HE.

(d) If G is finite, H is a Frobenius complement if and only if K = Kg(H).
(e) Kg(H) is a subgroup of G if and only if K = Kg(H).

Proof. () Since K is normal in G and K N H = 1 we have K N HY =1 for all g € G and so
K acts regularly on €. Since G = HK, K acts transitively on 2 and so @ holds. (]ED Let
g € G!. Then g € Kg(H) if and only if g # a” for all « € H* and r € G. Since G = HK
and H N K = 1 there exists uniquely determined k,l € K and h,b € H with ¢ = hk and
r = bl. Then

a" = abl — (ab)l — ab(ab)_ll — ab[ab,l]

Thus g = a” if and only if h = a® and k = [a%,1] = [h,[]. So hk ¢ Kg(H) if and only if
k = [h,1] for some | € K. Hence (] holds.

By (&) K acts regularly on Q. So by the action of H on Q\ {H} is isomorphic
to the action of H on K*. This implies .

(d) Let h € H. Then the map K/Ck(h) — {[h,l |l € L}, Cx(h)l — [k,1] is a well-
defined bijection. Hence Ck(h) = 1 if and only if |K/Ck(h)| = |K| and if and only if
{h,1]|1€ L} = K. So (d) holds.

(€) Suppose that K¢(H) is a subgroup of G. Since K < Kg(H) and G = HK we have
Ko(H) = (Ka(H)NH)K = 1K = K. O
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Example 1.3.10. (a) Let K be a non-trivial Abelian group with no elements of order 2. Let
t € Aut(A) defined by a' = a=! for alla € A. Let H = (t) and let G be the semidirect
product of K by H. Then G is a Frobenius group with complement H. Kg(H) is a
subgroup of G if and only if K = {k?® | k € K}. In particular, the infinte dihedral group
is an example of a Frobenius group, where the kernel is not a subgroup.

(b) LetK be a field, K = (K,+) and H = (K¥,.). Then H acts on K via right multiplication
and H x K is a Frobenius group with complement H.

Proof. () We have a' = a iff a™! = a iff a?> = 1 iff a = 1. Thus C(t) = 1 and so H is a
Frobenius complement in G. Since [t,I] = (") Y =1l = I2, K = Kg(H) if and only if
K={?|l€elL.

If K = (Z,+), then G is the infinite dihedral group. Since 2Z # 7Z we conclude that
Kq(H) is not a subgroup of G.

dEI)IthHti and k € Kt, then 0 # k and 0 # h # 1. Thus hk # h and so Ck(h) = 0.
Moreover [h, k] = (—=k)(h™%) + k = k(1 — h~!). Since 1 — h~! # 0, we conclude that every
element of K is of the form [h, k| with k € K and so K = Kg(H). O

1.4 Imprimitive action
Definition 1.4.1. Let G be a group acting on set €.

(a) A system of imprimitivity for G on Q is a G-invariant set B of non-empty subsets of
Q with A = UB.

(b) A set of imprimitivity for G on  is a subset B of ) such that B = B9 or BN BI =)
forallg € G.

(c) . A system of imprimitivity B for G on Q is called proper if B # {Q} and B # {{w} |
w e N}

(d) A set of imprimitivity B is called proper if |B| > 2 and B # Q.
(e) G acts primitively on G if there does not exit a proper set of imprimitivity for G on )
Lemma 1.4.2. Let G be a group acting on a set €.

(a) Let B be a set of imprimitivity for G on Q and B € B. Then B is a set of imprimitivity.
B is proper if and only of B contains a proper set of imprimitivity.

(b) Let B be set of imprimitivity for G on Q. Define B = B if JBY = Q and B =
BYn{Q\ B otherwise. Then B is system of imprimitivity for G on Q. B is proper
if and only if either B is proper or |\ |J BY| > 2..

(¢) G acts primitively on Q if and only if there does not exit a proper set of imprimitivity
for G on €,
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Proof. @ Let ¢ € G. Then B, BY both are contained in B and so either B = BY or
BN BY =1(. Thus B is a set of imprimitivity. Observe B # Q iff an only if B # Q for all
B € B and iff B # Q for some B € B. Also B # {{w} | w € Q if and only if B contains
an element B with |B| > 1. Thus B is prober if and only if it contains an element B with
|B| > 2 and B # (.

(o) Clearly B is G invariant. Since B = BY or BNBY = () for all g € G we have Q = UB.
B is proper iff if contains a proper set of imprimitivity, iff B is proper or Q\ |J B is proper
and iff B is proper or |Q\ J BY| > 2.

Suppose G is not imprimitive on € iff there exists a proper system of imprimitivity for

G on Q). By @ and (]ED this is the case if and only if the exists a proper set of imprimitivity
for G on €. 0

Lemma 1.4.3. Suppose G acts primitively on a set Q. Then either G acts transitively on
Q or|Q =2 and G acts trivially on Q.

Proof. Suppose that G does not act transitively on €. Let O be an orbit for G on 2. Then
{0, 0\ O} is system of imprimitivity for G on . Since G acts primitively, |O] =1 = |Q\O.
Thus |©2] = 2 and G acts trivially on €. O

Lemma 1.4.4. Let G be a group acting transitively on Q and let w € Q. Then the map
H — wH

is a bijection between the subgroups of G containing G, and the sets of imprimitivity con-
taining w. The inverse of this bijection is given by

A — Ng(A)
Moreover, w™ is a proper, if and only if G, < H < G.

Proof. Let G, < H < G. We will first show that w is indeed a set of imprimitivity.
For this let ¢ € G with w” NwH9 # (). Then wh = wWh29 for some hi,hy € Q. Hence
hgghl_1 € G, < H and so wH9 = .

Now let A be a set of imprimitivity with w € A. Since w = w9 < AN AY for all g € G,,
we get A = AY and so G, < Ng(A).

We showed that both of our maps are well-defined. Next we show that they are inverse
to each other.

Clearly H < Ng(w™). Since Ng(w') acts on w and H acts transitively on w?, the
Frattini argument gives Ng(w!') < G, ,H = H.

Clearly w¥e(®) C A. Let p € A. Since G acts transitively on G, 1 = w? for some g € G.
Then p = wEANAY and so A = A9 and g € Ng(A) and p € wNo(®), Hence wNo(®) = A,

We proved that the two maps are inverse to each other and so are bijection. The
non-proper sets of imprimitivity containing w are {w} and Q. Since Ng({w}) = G, and
Ng(9) = G we conclude that w? is proper if and only if H # G, and H # G. O
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Corollary 1.4.5. Suppose G acts transitively on Q and let w € Q). Then G cats primitively
on Q iff G, is a maximal subgroup of G.

Proof. Since G acts transitively on 2 there exists a proper set of imprimitivity for G on
Q iff ther exists a proper set of imprimitivity containing w. Thus G acts primitively on G
if and only if {w} and Q are the only sets of imprimitivity containing w. By this
holds iff G, and G are the only subgroups of G containing G, and so iff G,, is a maximal
subgroup of G. O

Lemma 1.4.6. Let G be a group and N a normal subgroup of G. The the orbits of N on G
form a system of imprimitivity for G on Q. This system is proper unless N acts transitively
on ) or trivially on €.

Proof. Let w" be an orbit for N on G and g € G. Then

omega™9 = w9V is also an orbit for N on Q. Thus the set of orbits of N on G is G-
invariant. €2 is the disjoint union of these orbits and so the orbits indeed form a system of
imprimitivity. The system is proper unless one of the orbits is equal to €2 or all orbits have
size 1. So unless N acts transitively on €2 or acts trivially on €. O

Corollary 1.4.7. Let G be a group acting faithfully and primitively on a set Q. Then all
non-trivial normal subgroups of G act transitively on €.

Proof. Since G acts faithfully on G, a non-trivial subgroup cannot act transitively on 2.
Thus the Corollary follows from [I.4.6] O

1.5 Wreath products

Lemma 1.5.1. Let G be a group acting on set  and H a group. Then G acts on the group
H? via f9(w) = f(w9 ") for all f € H?, w € Q.

Proof. Readily verified. O

Definition 1.5.2. Let G be a group acting on set ) and H a group. The G lq H denotes
the semidirect product of H® by G with respect to the action defined in

Lemma 1.5.3. Let G be a group and H a subgroups of G. Let S be a transversal to H in
G and for a € G/H let T(a) be the unique element of aNS. Put Q = G/H. Then the map
ps: G — GuH

g — (9,/y)

where f, € H is defined by fo(a) = 1(ag™V)gr(a)™t is a well defined monomorphism.
Moreover, if T is a another transversal to H in G, then there exists b € G 1o H with
p(T)(9) = ps(g)® for all g € G.
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Proof. Observe first that G o H is a subgroup of Gl G. For g € G, define cyw : G —
G% w — g. Then & = ¢, for all a,b € G and so the map ¢ : G — G g G,g — (g,¢,) is a
monomorphism. Note that the function 7 : a — 7(g) is an element of G and so (1,7) is
an element of Gl G. Let g € G. Then

(1,7)(g,¢)(1,7) 7" = (g, 7%¢)(1,771) = (g, 797"

and 19¢,7 1) (a) = 7(ag1g7(g)" = fy(a). Thus pg is the composition of the monomor-
phism ¢ and the inner automorphism of G g G induced by 77!'. So pg is a monomor-
phism. Note that Hr(ag™')g = H(ag™')g = Ha = Hr(a). Hence fy(a) € H and so
ps(G) < Gy H.

Now let T be another transversal. Write 7¢ and 7p for the function from € to G
corresponding to S and T, respectively. Since Hrg(a) = Ha = Hrr(a), 7977 " is an element

of H:. Choosing b = (1,757;') € G 1o H we see that the lemma holds. O

Lemma 1.5.4. Let G be a group acting on a group H and let Q be a set such that G and
H act on Q2. Suppose that for all g € G, h € H and w in (2,

(w9

Then G x H acts on Q via w9 = (w9)".

)7 =t

Proof. Let w € Q, g,§ € G and h,h € H. We will write w® for (((w®)?)¢)".
We have

WD = (Wl = w
and
oM @h) _ ghah _ 953G DR _ ,95hh _ (95:h%h) _ ,((9:h)(3.h)

and so the lemma is proved. O
Lemma 1.5.5. Let G be a group acting on set A and H a group acting on a set B. Then
(a) G H acts on A x B via (a,b)@f) = (a9, /().
(b) {a x B|aec A} is a system of imprimitivity for Gl +AH and for G on A x B.
Proof. @ Clearly G acts on A x B via (a,b)9 = (a9,b) and H? acts on Q via (a,b)! =
(a,bf(a)). Also

(a, )99 = (a9, b)/9 = (a9, bf(ag_l))y = (a, bf(a-"_l)) = (a,b°*®)) = (a,b)”’

Hence by [1.5.4 Gy H = G x H? acts on A x B via
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(a,0)1) = (a,0)" = (a%,b) = (a?, b))

Clearly A x B = Ugeaa x B Moreover for g € G, (a x B)Y = a9 x B and for f € H?,
(a,B)f =ax B. So {a x B|a¢€ A} is G4 H-invariant. O

Lemma 1.5.6. Let G be a group and H a subgroup of G. Suppose H acts on set B and
put A= G/H. Let S be transversal to H in G and let ps and f, be as in .

(a) G acts in A x B via (a,b)? = (a,b)?s(g) = (ag, bfs(29)).
(b) {a x B|a€c A} is a system of imprimitivity for G on A x B.

(¢c) B:={(H,b) | be B} is an set of imprimitivity for G on A x B, Ng(B) = H and B is
H-isomorphic to B.

Proof. Since pg is a homomorphism, @ and @ follow from m
Note that BY = B iff Hg = H and so iff g € H. Thus @ holds. O

Lemma 1.5.7. Let G be a group acting on a set Q, B a set of imprimitivity for G on 2,
H = N¢g(B), A= G/H and let S be a transversal to H in G. Define 7 and p = ps as in

[1.5-3 Also define an action of Gla H on A x B as[1.5.5 Define
e: Ax B—Q, (a,b) — b7
Then e is injective G-equivariant map with image \J B¢ and ¢({(H,b),b € B}) = B.

Proof. Suppose that b7(® = p™@ Note that this element of 2 lies in B™@ and B™@ and
since B is set of imprimitivity, B™® = B™®). Thus 7(a)7(a@)~! € H and so a = Hr(a) =
Hr(a) = a. Hence also b = b and € is injective. If g € G, then BY = B9 = B7(H9) and so
the image of e is | J BC.

Let fq be as Thenf,(ag) = T(agg—')g7r(ag) ' = 7(a)gr(ag)~'. We compute

e((a,0)9)) = e((a, b)p(g)) = ¢((a, b)(g,fg)) = ¢((ay, bfg(ag)) — bT(a)gT(ag)”T(ag)) =b"(a)g = e(a,b)?

O]

1.6 Multi-transitive action

Definition 1.6.1. (a) Let Q be a set and n € N. Then Q7 = {(w1,w2,...,wn) € Q" | w; #
wj for all1 <i<j<mn}.

(b) Let G be a group acting on a set Q and n € N with n < Q. We say that G acts
n-transitive on Q) if G acts transitively on Q’;& (Note here that G acts on Q" via
(Wi, way .. ywn)? = (WY, ... ,wh) and QO is an G-invariant subset of Q.
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(c) Let Q2 be a set, n € N and w = (w1, ...,wy) € Q". Then w = {w1,wa, ..., Wy }.

Lemma 1.6.2. Let G be a group acting on a finite set Q. Then G acts |Q|-transitive on
if and only of G+ = Sym(Q).

Proof. Let w,u € Q’; Then there exists exactly one element 7 € Sym(2) with wr = pu.
So Sym(€2) acts |Q|-transitive. Conversely suppose G acts |Q|-transitive on Q and let 7w €
Sym(€2). Then there exists ¢ € G with w9 = wm and so the image of g in Sym(Q2) is 7.
Thus G- = Sym(Q). O

Example 1.6.3. Let K be a field and V' a non-zero vector space over K. Let GLg(V') be
the group of K-linear automorphism of V.

(a) GLg (V) acts transitively on V.

(b) If |K| = 2 and dimg V > 2, then GLg (V) acts 2-transitive on V*.
(c) If |K| =2 and dimg V = 2 then GLg(V) acts 3-transitive on VF.
(d) If K| =3 and dimg V = 3, then GLg (V) acts 3-transitive on V*.

(e) If dimg (V) > 2, then GLg (V') acts 2-transitive on the set of 1-dimensional subspace of
V.

Lemma 1.6.4. Let G group acting n-transitive on a set €.
(a) G acts m-transitively on Q for all1 < m < n.

(b) Let m € ZT withn+m < |Q| and w € Q. Then G acts n + m-transitive on € if and
only if Gy, acts m-transitively on Q\ w

Proof. @) is obvious.

(b)) =: Suppose that G acts n + m-transitive on  and let o, 8 € (2 \w)"}. The (w, @)
and (w, #) both are contained in ngm. Thus there exists g € G. With w9 = w and o9 = .
So g € G, and G, acts m-transitive on Q \ w.

<=:. Suppose that G, acts m-transitive on 2\ w and let «, 5 € ngm. Let v € {«, 8}.
Pick y1 € €, and v, € (@ \ 1) with v = (71,72). Since G acts n-transitive on { there

m

exists g, € G with 7{” = w and so 73" € (2 g);ﬁ. Since G, acts m-transitive on Q \ w
there exists h € Gy, with (af*)" = 83°. Put g = gahgﬁ_l. Then

hg7t -1 -1
O[% = ala - whgﬁ = wgﬁ = Bl
and )
hg,
9 __ g
= a, = [y

Thus o = § and G acts n + m-transitive on €. O
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Lemma 1.6.5. Let G be the internal semidirect product of K by H. Put Q = G/H.
(a) K acts regularly on €.

(b) Let n € Z* with n < |Q|. Then G acts n + 1 transitive on Q if and only if H acts
n-transitive on K.

1

Proof. @) Since KNHY = (K9 NH)Y=1forall g € G, K acts semiregularly on Q. Since
G = HK, K acts transitively on €.

(b) By G acts n + 1-transitive on € if and only if H acts n-transitive on Q \ {H }.
By the action of H on Q\ {H} is isomorphic to the action of H on K* So @

holds. O

Example 1.6.6. Let K be a field and V' a non-zero vector space over K. Let G be the
external semidirect product of V. by GLx (V') and let Q@ = G/H x {1}. Then

(a) G acts 2-transitive on §).

(b) If |K| = 2, then G acts 3-transitive on €.

(c) If K| =2 and dimg V = 2, then G acts 4-transitive on €.
(d) If |K| =3 and dimg V =1, then G acts 3-transitive on §Q.

Proof. This follows from and ]

Note that in [1.6.6ld), |©2] = |V| = 4. Since G acts 4-transitive on 2 we conclude from
that G = Sym(4). So Sym(4) is isomorphic to the external semidirect product of F3

Lemma 1.6.7. Let n € Z* and G a group acting n-transitive on a finite set . Suppose
there exists a normal subgroup N of G acting regularly on Q. Then n < 4 and one of the
following holds.

1. n=1.

2. n=2 and N is an elementary abelian p-group for some prime p.

3. n = 3 and either N is an elementary abelian 2-group or [N| = 3 = |Q and G = Sym(Q).
4. n =3, N is elementary abelian of order 4, |Q| = 4 and G = Sym(Q).

Proof. We may assume that n > 2. Let w € ). Then G is the internal semidirect product
of N by G, and so by G, acts n— l-transitive on N*. Let p be a prime divisor of | N|.
Since G,, acts transitively on N¥ and N has an element of order p, all non-trivial elements
of N have order p. Thus N is a p-group and so Z(N) # 1. Since Z(N)* is invariant under
Gy, we conclude that N = Z(N) and so N is an elementary abelian p-group.

If n = 2 we conclude that holds and if n = 3 and p = 2, holds. So it remains to
consider the cases n > 3 and p is odd and n > 4 and p is even.
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Suppose n > 3 and p is odd. Then Cg_(z) acts transitively on N*\ {z}. Since 27! €
N\ {z} and Cg_ () fixes 27 we get N¥\{z} = {z™'}. Thus N = {1,z,27'},|Q| = |[N| = 3
and n = 3. By G = Sym(Q) and (3) holds.

Suppose next that n > 4 and p = 2. Let y € N\ (z). Then zy € N*\ {z,y} and
Cao,({z,y}) acts transitively on N*\ {z,y}. Since Cq,({z,y}) fixes xy, this implies that
N\ {z,y} = {2zy}. Thus || = |N| = 4. So also n = 4 and by G = Sym(Q). Hence
holds in this case. O

1.7 Hypercentral Groups

Lemma 1.7.1. Let G be a group and a,b,c in G. Then
(a) la,b] = a"'ab, a® = ala,b] and ab = ba[a, b]

(b) [a,bc] = |a,c][a,b]c.

(¢) lab,c] = [a,]"[b, ]

(d) [b,a] = [a,0] 7" = [a",0]* = [a,07"]".

(e) [a,b~ 1, c®b, ¢t al[c, a1, b]* =1

Proof. @) follows immediately from [a,b] = a~'b~'ab and a® = b~ ab.
(b)) [a,c][a,b]¢ = (a e tac)c H(a b~ ab)e = a=te b~ tabe = [a, be
(c) [a,c]b[b, ] = b~ a e tac)b(b~ e tbe) = b~ ra~ e Labe = [ab, d].

a 10 =a Hab ta7)a = b ta " ha = [b, d]

[b,a) = b ta " ba = (a7 b7 ab) ™t = [a,b] 7,

and

[a,b71)° = (¢ tbab™1)? = b~La"tba = [b, d]
[a, b, ¢’ = [a bab™t, ]’ = (ba*btacta bab  e)? = (a7t racra ) (babieb) = (acaba) ! (bab~'cb)

Put & = aca"'ba, y = bab~'cb and z = bab~'cb. Then

[a, b7t P =271y

Cyclicly permuting a, b and ¢ gives

[b, ch a=y "z
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and

[c,a™ b2 =27t

Since (z71y)(y~12) (27 t) = 1, @ holds. O
Lemma 1.7.2. Let G be a group and A and B subsets of G.
(a) [A,B] = [B, A].
(b) If 1 € B, then (AB) = (A, [A, B]).
(c) If A is a subgroup of G and 1 € B, then [A, B] < (AP) and (AP) = A[A, B]
(d) If A and B are subgroups of G, then B normalizes A if and only if [A, B] < A.
(¢) [(4), B] = (4, B]<Y).
(f) [(A),(B)] = ([A, B|*Y5).
(9) If A and B are A-invariant, then [(A), B] = [A, B].
(h) If a € G with B* = B, then [a, B] = [(a), B].
(i) [A,G] = [(A9),G].

Proof. Let a € A and b,c € B. @) Follows from [a,b]~! = [b, a).

(]EI) Then a® = ala,b] € ((A,[A, B]). So (AB) < (A,[A,B]). Since 1 € B we have
a=a' € (AP) and so also [a,b] = a"'a® E <AB) Thus (A4, [A, B] < (A, B) and @) holds.

(d) Let d € A. By-@ [ad, b] = [a,b]%[d,b] and s [a b = [ad, b][d,b] " € [A, B].
Thus A normalizes [A, B]. Smce also [A B] normalizes [A, B], (b) implies that [4, B] <
(AB). Hence (AP) = (A,[A, B]) = A[A, B].

(d) B normalizes A iff A = (AB) iff A= (A, [A, B]) and iff [A, B] < A.

(e) Put H = ([A, B]<"). Since [A, B] < [(A), B] and (A) normalizes [(A), B] we con-
clude that H < [(A), B]. Define D := {d € (A) | [d,B] < H}. We will show that D is a
subgroup of G. Let d,e € D and b in D. Observe that H is an (A) invariant subgroup of
G. Thus

[de,b] = [d,b]°[e,b] € H and [d~",b] = ([d,b] )% € H

Hence de € D and d~! € D. Thus D is a subgroup of G. Since A C D < (A), this gives
D = (A) and so [(A),B] < H.

® By (@
[(4),(B)] = ([(4), BI*®)) = (|4, BI4))(®) = ({4, B]D®)
(g) If A and B are A-invariant, then A, B and [A, B] are (A)-invariant. Thus follows

from @
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(h)) Follows from applied to A = {a}.
(f) By @, G normalizes [A, G]. Thus [4,G] = [A%, G]. Since G and A“ are A-invariant,
gives [AY, G] = [(A%), G]. O

Definition 1.7.3. Let G be a group and A < G. Then Z(G,A) ={g € G| |[G,g] < A.
Note that by [1.7.2] -@ (G, A) is a normal subgroup of G.
Lemma 1.7.4. Let G be a group and A < G. Put B =|J A®. Then

Z(G,A) ={g € G| Agh = Ahg for allh € G}
and
Z(G,A)/B = Z(G/B)
Proof. By [L.7.2[1), [G,g] = [G,{(g)] = [G,g7']. Hence g € Z(G,A) iff [G,g] < A, iff
[G,g71] < Aiff [h™ 1 g '] € Aforall h € G, iff hgh='g~! € A for all h € G, and iff
Ahg = Agh for all h E G.
Since [G, ¢] is a normal subgroup of G, [G,¢g] < A iff [G,g] < B and iff Bg < Z(G/B).
O

Lemma 1.7.5. Let G be a group and A < B < G.
(a) Z(G, A) < Z(G, B).

(b) Z(G,A) < Na(A).

(c) If A< G, then Z(G, B)/A = Z(G/A, B/A)

Proof. (d): [Z(G,A),G) < A< B.
@[(Q ) Al <[2(G,A),G] < A.
c) [g,h] € A if and only if [¢gN,hRN]N € A/N. O

Definition 1.7.6. Let G be a group and o an ordinal. Define the groups Z,(G) and L*(G)
inductively via

1 ifa=0
Zo(G) = Z(G,Zs(Q)) if a =B+ 1 for some ordinal B
Up<a 28(G)  if B is a limit ordinal
and
G ifa=0
Lo(G) = { [Lg(G),G] if o =+ 1 for some ordinal 3
MNp<a La(G)  if B is a limit ordinal
Let zg be the smallest ordinal a with Zo(G) = Zat+1(G) and lg be smallest ordinal o
with Lo(G) = La41(G). Put Z,(G) = Z.,(G) and L.(G) = L;,(G).
G s called hypercentral of class zg if G = Z.(G) and G is called hypocentral of class lg
if G = L.(G). Z.(G) is called the hypercenter of G and L.(G) the hypocenter of G.
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Example 1.7.7. The hypercenter and hypocenter of Dacs.

Let Cpx be a cyclic group of order p* and view Cpr has a subgroup of Cpe1. Put
Cpeo = UpZg Cpr- (Cpee is called the Priifer group for the prime p. Let ¢t € Aut(Cpe) be
defined by 2! = 27! for all & € Cpee. Let Dpoo = (t) X Cpoo.

Observe that for k € N U {infty}, Cpr is a normal subgroup of Dpy~. If k is finite,
Dy [Cpie = Diyos. Also Diyos [Cpeo 22 Cs.

We will now compute Z,(Da). Since Cos is Abelian and ¢ does not centralize Ca
we have Cp,.. (Co) = Cyeo. Thus Z(Dax) < Coe and Z(Da=) = Ceye (t). © € Co is
centralized by ¢ if and only if 2 = 7! = x and so iff 2 = 1. Thus Z(Cax) = Cy. Let
k € N and suppose inductively that Z;(Cae) = Coyr. Since Daoo /Cor = Do we get

Z(DQOO/C2I<:) == C2k+1 /CQk:

and so Zj4+1(Cax) = Cok+1. Let w be the first infinite ordinal. Then

Zuy(Dy) = | ] Zi(Dax) = | Cor = Co

k<w k<w

Since Dgeo /Coso is isomorphic to Co and so is Abelian, we conclude that Z,,1(Das =
Dy and so Do is hypercentral of class w + 1.

Since Daco /Cos is abelian, Li(D?™) < Cgs. Let 2 € Coyx. Then [z,t] = 27t = 272,
Since each element if Coyr is the square of an element in Cyri1 we conclude that Coco =
[Cgoo,t] = [CQOO,DQOO] < Ll(Dgoo). Thus

L1 (Dgoo) = Cgoo and

Lo(Dae) = [Caoe, Dasc] = Cooo = L1 (Do)
So Ca00 is the hypocenter of Do and Dy is not hypocentral.

Lemma 1.7.8. Let G be a group and H a subgroup of G with H £ Z.(G). Let « be the
first ordinal with Zo(G) £ H. Then Zo(G) < Z(G, H). In particular, Z(G,H) < H and
H < Na(H).

Proof. Since Zy(G) =1 < H, a # 0. If ais alimit ordinal, then Zo(G) = Ug., Z3(G) < H,
a contradiction. Thus a = 8 + 1 for some ordinal 8. Then Zg(G) < H by minimality of o
and so
[%a(G) = Z(G, Z5(G)) < Z(G, H)
O

Lemma 1.7.9. Let G be a group and N a non-trivial normal subgroup of G with N < Z,.(G).
Then NN Z(G) # 1.
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Proof. Since N N Z,(G) = N # 1 there exists an ordinal o minimal with N N Z,(G) # 1.
Since Zo(G)NN = 1NN =1, a # 0. If av is a limit ordinal, then Zo(G)NN = Uz, Z5(G)N
N =1, a contradiction. Thus o = 8 + 1 for some ordinal 5. Then

[Zo(G)NN,G] < ZgNN =1
and so Z,(G) NN < Z(G). O
Lemma 1.7.10. Let G be a group. Then the following are equivalent:
(a) G is hypercentral.
(b) Z(G,H) £ H for all H < G.
(¢) Z(G/N) #1 for all N < G.

Proof. ED — (b): Suppose G is hypercental and H £ G. Then Z,(G) = G « H and so

by [1.7.8, Z(G,H) £ H.

() = (d): Follows from Z(G/N) = Z(G,N)/N.

= (@): Let a = z¢. Then Z(G/Zo(G)) = Za41(G)/Za(G) = 1 and so (b)) implies
Zo(G) = G. O

Lemma 1.7.11. Let G be a group and o an ordinal.

(a) Let H<G. Then Z,(G)NH < Z,(H).

(b) Let N < G. then Zo(G)N/N < Z,(G/N).

(c) Let 3 be an ordinal. Then Zo(G/Z3(G)) = Zg+a(G)/Z5(G).

Proof. In each case we assume that the statement holds for all ordinals less than a.
@ For o = 0 the group on each side of the equation is trivial group. Suppose a = 5+ 1
for some ordinal 3. Then

[Zo(G)NH,H| < [Z,(G),GINH < Z3(G)NH < Zg(H)
and so Z,(G)NH < Z,(H).

Suppose « is limit ordinal.

Zo(G)NH = () Zs)nH =] 2s(G)nH < | Zs(H) = Zo(H)
B<a B<a B<a

@ For a = 0 the group on each side of the equation is trivial group. Suppose a« = 8+1
for some ordinal 5. Then

Za(G)N/N, G]] = [Zay GIN/N < Zs(G)N/N < Z5(G/N)
and so Zo(G)N/N < Z,(G/N).
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Suppose « is limit ordinal. Then

Zo(G)N/N = (| Zo)N/N = | Zs(G)N/N < | Z5(G/N) = Za(G/N)

B<a B<a B<a

(]E[) For a = 0 the group on each side of the equation is trivial group. Suppose a = v+ 1
for some ordinal . Then

Zs+a(G)/25(G) = Zg+(v+1)/Z8(G) = Z(p44)+1(G)/Z5(G)
= Z(G,Z81~(G))/Zs(G) = Z(G/Zs(G), Zp+~(G)/Zs(G)
= Z(G/Z5(G), Z,(G/Z3)(G) = Zy+1(G/Zs(G))
= = Za(G/Z5(G))

Suppose « is a limit ordinal. Then

2a(GZ5(G)) = U,caZ2(G/25(G) = U, ca Z64+(G)/25(G) = Up<pepra 2o(G)/25(G)

Up<pra 20(G)/Z3(G) = Zp1a(G)/Z5(G)
O

Corollary 1.7.12. Let G be a hypercentral group of class a. The all subgroups and all
quotients of G are hypercentral of class at most a.

Proof. Let H < G. Then H=HNG = HNZ,(G) < Zy(H) and so H is hypercentral of
class at most a. Let N < G. Then G/N = Z,(G)/N = Zo(G/N) and G/N is hypercentral
of class at most «. O

Lemma 1.7.13. Let G be a hypercentral group and M a maximal subgroup of G. Then
M <G and G/M = C), for some prime p.

Proof. By M < Ng(M). Since M is a maximal subgroups, Ng(M) = G. So M < G.
Since M is a maximal subgroups of G, G/M has no proper subgroups. Thus G/M = C,
for some prime p. O

Lemma 1.7.14. Let G be a hypercentral group and A a mazimal abelian normal subgroup
of G. Then Cg(A) = A.

Proof. Since A is Abelian, A < Cg(A). Suppose that A < Cg(A). Then Cg(A)/A is a
non-trivial normal subgroup of the hypercentral group G/A. Thus by

Z(G/A)NCa(A)/A#1
Hence there exists b € Cg(A) \ A with bA € Z(G/Z). Then [b,G] < A and it follows
that A(b) is an abelian normal subgroup of G, a contradiction to maximality of A. O]
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Definition 1.7.15. Let A and B be subsets of a group G and o an ordinal. Define [A, B; o]
inductively via

<AB> ifa=0
[A, B; o] = { [[4, B; 8], 4] if a =B+ 1 for some ordinal 3
ﬂ5<a[A, B; 3] if B is a limit ordinal

Observe that |G, G;a] = L,(G). Morever, if « is finite [A4, B;a + 1] = [[A, B], B, a].

Lemma 1.7.16. Let n € N, G a group and H < G. Then H < Z,(G) if and only if
[H,G;n] =1.

Proof. If n = 0 both statements say that H = 1. Suppose inductively that for all A < G,
A < Z,(G) if and only if [A,G;n] = 1. Then
H<Z,1(G) ift [H,G] < Z,(G) iff [[H,G],G;n]] =1 and iff [H,G;n+ 1] = 1. O

Corollary 1.7.17. Let G be a groups andn € N. Then G = Z,(G) if and only if L,(G) = 1.
Proof. We have G = Z,,(G) iff [G,G;n] =1iff L,(G) = 1. O

Definition 1.7.18. Let G be a group. Then G is called nilpotent if G = Z,(G) for some
n € N. The smallest such n is called the nilpotency class of G.

Let n € N. Observe that G is nilpotent of class n if and only if G is hypercentral of
class n and if and only if G is hypocentral of class n. In particular if G is nilpotent of class
n the all subgroups and all quotient of G are nilpotent of class at most n.

Definition 1.7.19. Let w be a set of prime and G a group.

(a) 7(G) is the set or prime divisors of the elements of finite order in G.
(b) G is called a w-group for all g € G, |g| is finite and 7(G) C 7.

(c) Ox(G) is the largest normal w-subgroup of G.

(d) © is the set of all the primes not contained in .

Lemma 1.7.20. Let G be group and N normal in G.

(a) Let o and 8 be ordinals such that N < Z,(G) and G/N is hypercentral of class 3. Then
G is hypercentral of class at most o + .

(b) G is hypercentral if and only of N < Z,(G) and G/N is hypercentral.

(c) G is nilpotent if and only if N < Z,,(G) for some n € N and G/N s nilpotent.
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Proof. (i) Note that G/Z,(G) is isomorphic to a quotient of G/N and so is hypercentral of
class at most 8. Thus G/Z(G) = Z(G/Zo(G)) = Za15(G)/Zs(G). Hence G = Z,45(G)
and @ holds, (]E[) If G is hypercentral, then N < G = Z,(G) and G/N is hypercentral. Now
suppose that N < Z,(G) and G/N is hypercentral. Then by @, F is hypercentral. If
G is nilpotent, then G = Z,(G) for some n € N. Thus N < Z,,(G) and G/N is nilpotent.
If N < Z,(G) and G/N is nilpotent of class m, then by (f]), G is hypercentral of class
at most n + m. Thus G is nilpotent. O

Lemma 1.7.21. Let Gy,i € I be a family of groups and put G = X ,.; G;.
(a) Let a be an ordinal. Then Zo(G) = X o1 Za(Gi).

(b) G is hypercentral if and only if each G; is hypercentral.

(c) G is nilpotent if and only if each G; is nilpotent and sup;c; za, is finite.

Proof. @ Follows from Z(G) = X ,.; Z(G;) and induction on .
and follow from (@al). O

Lemma 1.7.22. Let p be a prime and G a finite p-group. Then G is nilpotent.

Proof. Let N < G with N # G. Then G/N is a non-trivial p-group and so Z(G/N) # 1.
Thus by G is hypercentral. Since G is finite, z¢ is finite and so G is nilpotent. [

Lemma 1.7.23. Let G be a finite group. Then the following are equivalent:
(a) G is nilpotent.

(b) H< Ng(H) for all H < G.

(c) S <G for all Sylow subgroups S of G.

(d) G =X perc) Op(G), where m(G) is the set of prime divisors of G.

(e) G = Xi_, Gi, where G; is a p;-subgroup for a prime p;.

Proof. () = (b):  Since G is nilpotent, then G = Z,(G) and so H < Ng(H) by [1.7.§

@ = : Let S be a Sylow p-subgroups of G and put H = Ng(S). Then S is
the only Sylow p-subgroups of H and so S is a characteristic subgroup of G. In particular,
S < Ng(H) and so Ng(H) = H. Hence H =G and S < G.

= @): Let p € 7(G) and S, € Syl,(G). Since S, I G we get S, < Op(G) and
so Op(G) = Sp. Put K, = (O,(G) | p # r € n(GQ)) and K = (Op(G) | p € ©(G)).
Note that [Op(G),0p(G)] < Op(G) N Oy = 1 and since Observe that K, < Oy (G)
also [0,(G),Kp] < Op(G) N K, = 1. Thus K = X, Op(G). Moreover, |K| =
[peric) 10p(G)] = I,en(c) 15p] = |G| and so G = K. So @) holds.

@ = (¢): Obvious.

@ == @: By [1.7.22| each G; is nilpotent. So by [1.7.21] G is nilpotent. O
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Lemma 1.7.24. Let G be a group, p a prime and A and B finite p-subgroups of G with
[4, B < p. Then |A/Ca(B)| = |B/Cs(A)).

Proof. Put Z = [A,B] and let |A/C4(B)| = p™. Then there exist a;,1 < i < nin A
with A = (a1,az...a,)Ca(B). Let z € a;Z and b € B. Then 2° = z[x,b] € xZ. Thus
a;Z is B invariant. Since |a;Z| = |Z| < p and B is a p-group, all orbits of B on a;B
have size 1 or p. Thus |B/Cg(a;)| < p and so |[B/(; Cp(a;)| < p™. Since (), C(a;)
centralizes (ai,...an)Ca(B) = A we get |B/Cp(A)| < p™ = |A/Ca(B). By symmetry,
B/Cp(A)| < |A/Cp(A) and the lemma is proved. O

Lemma 1.7.25. Let p be a prime, P a finite p-group with |P'| = p and A a maximal
abelian subgroup of P. Then A < P, P' < Z(P) < A, |A/Z(P)| = |P/A| and |P/Z(P)| =
|A/Z(P).

Proof. Since |P'| = p and P’ < P, P’ < Z(P). Since A is a maximal abelian subgroup of
P and A(z) is abelian for all z € Cp(A), Cp(A) = A. In particular, Z(P) < A and so
Ca(P) = Z(P). By|[L.7.24] applied to A and B = P, we have

[P/Cp(A)| = [A/Ca(P)]

and so

|P/A] = |A/Z(P)| and |P/Z(P)| = |P/A||A/Z(P)| = |A/Z(P)|”

1.8 The Frattini subgroup

Definition 1.8.1. Let G be a group, then ®(G) is the intersection of the mazimal subgroups
of G, with ®(G) = G if G has no mazimal subgroups. ®(G) is called the Frattini subgroup
of G.

Definition 1.8.2. Let G be a group. Then a generating set for G is a subset H of G with
G=(H).

Lemma 1.8.3. Let G be a finite group and H < G. If G = H®(G), then H = G.

Proof. Otherwise H < M for some maximal subgroup M of G. But then also ®(G) < M
and G = H®(G) < M, a contradiction. O

Lemma 1.8.4. Let G be a finite group and H C G. Then H is a generating set for G if
and only if {®(G)h | h € H} is a generating set for G/®(G).

Proof. By [1.8.3)we have G = (H) iff G = (H)®(G) and so iff G = (B(G)h | h € H) O

Lemma 1.8.5. Let G be a group and N <G. Then ®(G)N/N < &(G/N).
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Proof. Let A be the set of maximal subgroups of G and B the set of maximal subgroups
of G containing N. Then {M/N | M € B} is the set of maximal subgroups of G/N. Since
BCA NACB. Thus

®(G)N/N = (| JAN/N <(\B/N = (| B/N =®(G/N)

MeB

Lemma 1.8.6. Let G be a finite group.

(a) Let H < G. Then H is nilpotent if and only if H®(G)/®(G) is nilpotent.
(b) ®(G) is nilpotent.

(c) G is nilpotent if and only if G/®(G) is nilpotent.

Proof. (a)) If H is nilpotent then also H/H N ®(G) = H®(G)/®(G) is nilpotent. Put
G = G/®(G) and suppose that H is nilpotent. Let p be a prime and S be a Sylow p-
subgroup of H®(G). The S is a Sylow p-subgroup of G. Since H is nilpotent, S is the only
Sylow p-subgroup of oH and so is a characteristic subgroup of H. Since H < G, H < oG
and so also S < G and S®(G) < G. The Frattini argument shows that

G = Na(5)5®(G) = Ng(5)2(G)

Hence by G = Ng(S) and S <G. So by [1.7.23] H®(G) is nilpotent. Thus also H
is nilpotent.

() Since ®(G)/®(G) = 1 is nilpotent, this follows from () applied to H = ®(G).

This is the special case H = G of @ O

Lemma 1.8.7. Let A be an elementary Abelian p-group for some prime p. Then ®(A) = 1.

Proof. Let 1 # b € A and put B = (b). By Zorn’s Lemma there exists a subgroup D of
A maximal with b ¢ D. Then BN D < B and since |B| = |b| = p, BN D = 1. Let
a € A\ D and Put F = (a > B. Note that |E/B| = p. By maximality of D, b € FE and so

= (b>D = BD. Thus a € DB and so A = BD. It follows that |A/D| = p and so D is
a maximal subgroup of A. Since b ¢ D this gives a ¢ ®(A). This hold for any 1 # b € A
and so ®(A) = 1. O

Lemma 1.8.8. Let p be a prime and P a p-group. Put
D = ([x,y], " | x,y,z € P).
Then

(a) Let H < P. Then P/H is elementary Abelian if and only if D < H. So D is the unique
minimal normal subgroup with elementary Abelian quotient.
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(b) ®(G) = D if and only if all mazimal subgroups of G are normal.

Proof. (a]) P/H is elementary Abelian iff P/H is Abelian and v” = 1 for all u € P/H. Thus
iff [x,y] € H and 2P € H for all z,y,z € P and iff D < H.

([0) Suppose ®(D) = D and let M be maximal subgroup of P. Then D = ®(D) < M.
Since P/D is Abelian, M/D < P/D and so M < P.

Suppose next that all maximal subgroups of P are normal and let M be a maximal
subgroup of P. Then P/M = C,. Thus P/M is elementary Abelian and so D < M. This
proves that D < <I>( ). Since P/D is elementary Abelian, shows that ®(P/D) = 1.
Hence by [1.8.5| ®(P)D/D < ®(P/D) =1 and so ®(P) < D. Hence ®(D) = D. O

Lemma 1.8.9. Let P be a finite p-groups and k the minimal size of a generating set of P.
Then P/®(P) = CF.

Proof. By P/®(P) is elementary Abelian and so P/®(P) = C}} for some n. Thus the
minimal size of a generating set for P/®(P) is n. implies that k = n. O

1.9 Finite p-groups with cyclic maximal subgroups

Lemma 1.9.1. Let p be a prime, H = (h) be a cyclic group of order p" and B < Aut(H)
with |B| = p. Then there exists 1 # b € B such that one of the following holds:

n—1

1. n>2 and h® = p1 1P
2.p=2,n>3 and h® =h~1.
3. p=2,n>3 and h’ = h~ (" b,

Proof. Let h® = h® for some 1 < s < p™ and put [ = s — 1. Then h® = r'*! = hh! and
0<Il<p®—1. Let | =p"m with r € Nym € Z* and p{m. Note that H/(h") has order p
and so B centralizes H/(hP}. This [h,b] = h' € (hP), p |l and r > 1. In particular, n > 2.

1°. Ifr=n—1 for allb € B, then holds for some b € BY.

Note that 1 < m < p and there are p — 1 choices for b. It follows that m = 1 for some
choice of b and so holds in this case.

So we may assume from now on that » < n — 1 for some b € Bf. Then 4+ 2 < n and
n > 3.

We claim that h? = h*" for all i € N. This clearly holds for ¢ = 0 and if it holds for 7,
then hY" = (h)Y = (B*)Y" = (W¥")(s) = (K®")s = ps'™".

Since b has order p, h = h* = h*" and so h*"~! =1 and p" | s? — 1. Thus p" divides

A S I

i=1 i=1
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Since r+2 < n, also p7"+1 divides this number. If ¢ > 3, then sincer > 1, ¢ > r+r+7r >
7+ 2 and so p"*? divides (Y)p"'m’. If i = 1, then (¥)p"m’ = pp"m = p""'m and so r + 2
does not divide (¥)p™. It follows that p"*? does not divide (§)p*'m? and so p® does not
divide (5)p". Thus r = 1 and p does not divide (5). The latter implies that p = 2. We
proved that p = 2. r = 2 implies that [ = 2m with m odd. We proved that for any B which
does not fulfill , we have p = 2 and h® = A1+2™ for some odd m with 0 < 2m < 2" — 1

Define b in Aut(H) by h® = (A*)~L. Then 5% = 1. If b = 1, then h* = A~ and (2) holds
in this case. So suppose b # 1. We have

hB — (hb)fl _ h7(1+2m) — h2"7172m — h1+(2"7272m) — h1+2(2n_1717m)

Put 7 = 2"~' —1—m. Since n > 1 and m is odd, 7 is even. Since m is even whenever
the assumptions of are not fulfilled, we can apply 1) to B = (b). Since |B| =p =2,
this gives h® = h1+P" ™" and so kb = A=(14P""))_ Thus (3)) holds. O

Lemma 1.9.2. Let G be a group, x,y € G, n,m € Z and p a prime. Put z = [z,y]| and
suppose that z commutes with x and with y. Then

(a) [&",y™] = [z, y]"™ = 2"

() (ya)" =y"a"=05).

(c) |z| divides |z| and |y|.

(d) If |z| = p and p is odd, then (yz)P = yPzP.

(e) If |z| = 2, then (yz)? = y?2z and (yz)* = y*a?.
(f) If a? = yP =1 and p is odd, then (yx)P = 1.

(9) If 22 = y* =1, then (yx)* = z and (yz)* = 1.

Proof. @ If n =0 o0r n=m =1, this is obvious. Suppose @) holds for n = 1 and some
m. Then

m m+1

] = [z, 9™y = [z, Y]z, Y™ = 2 (2 =22 =2

[z, y

Moreover,

2y ™ = o (™) 7 = (™Y = Y =

So @ holds for n = 1 and m + 1, and for n = 1 and —m. It follows that @) holds for
n =1 and all integers m.

Putg=2,m=mn 2 =9y"and Z = [Z,9] = [y
commutes with £ and y and so

,z] = [z,y™]"' = z~™. Then Z

"y = 77,8 = (@577 = ()= = ()T =
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Thus is proved for all integers n, m.
(]E[) This is obvious for n = 0 and n = 1. Suppose true for n. Then

n+1 n n n n

(yo)™™! = (yo)"ye = y"a"2Bya =y (@"y)ez() =y (yano”, y)ez(d) = yryanaraz() =y

and

(y2) " = (g2)") ' = (") =2y () =y e ey e () =y e

So (]ED holds for n + 1 and —n and so for all integers n.
Let k = |z|. Then by (&)

1=[1,y] = [xkay} = 2*

and so |z| divides k. Since 27! = [y, ], |2| also divides |y|.
@) Since p is odd, p | (5) and so 2(8) = 1. Thus @) follows from (EI)

@) Note that (3) =1 and so z(g) = z. Also (;1) is even and so 2(3) = 1. Hence (EI)
follows from (]ED

@ and By , zP = 1. Thus @ follows from @ and from . O

Definition 1.9.3. (a) Let n € ZT. Then Do, := (z,y | 2" = y?> = 1,2Y = 271). Dy, is
called the dihedral group of order 2n.

(b) Let n € Z with n > 1. Then QD4 = {(z,y | 2*" = y? = 1,2Y = 27 '2"). QDyy, is
called the quasi-dihedral group of order 4n.

(c) Let n € ZT. Then Qun = {x,y | v* = 1,2" = y*, 0¥ = 271). Qu, is called the
quasi-quaternion group of order 4n.

(d) Let n € N and p a prime. Then QEyn+2 = (z,y | P W = 1,29 = 227", QEyns
is called the quasi-extraspecial group of order p"*2.

Note that D2 = CQ, D4 = QD4 = CQ X Cg, Dg = QE.CEt(8), QDg = 04 X 02, Q4 = 04,
and QExt(p?) = Cp x Cp.

Theorem 1.9.4. Let p be a prime, P a finite p-group and H a maximal subgroup of G.
Suppose that H = (h) is cyclic of order p™. Then exactly one of the following holds:

(a) There exists b € P\ H with |b| =p and h? = h. So P = Cyn x C).
(b) There exists b€ P\ H with |b| = p and h? = k7" "' So P = QExt(p™*).

(c) p=2,n >3 and there exists b€ P\ H with |b| = p and h® = h™'. So P~ Dyn1.
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(d) p =2, n >3 and there exists b € P\ H with |b| = p and h® = h=0+"7) 5o
P = QD2n+l.

(e) There exists b€ P\ H with b” = h. So P = Cpni1.

n—1

(f) p=2,n>2 and there exists b € P\ H with b> = h?"~ and h® = h™'. So P = Qqnt1.

Proof. Let b € P\ H with |b| minimal. By we may choose b such that one of the
following holds:

n—1

)

b) n > 2 and h = h!tP
) p=2,n>3and h® = h~L.
) p

=2,n>3and ht = p—(4pm Tt

Suppose first that |b| = p. Then one of @,@, and @ holds. So we may assume
|b| > p and so

1°.  |z|>p forallze P\ H.

Note that a? € H. If 2P ¢ (h?), then H = (zP) and so P = (b) and holds. So we
may assume that b € (hP) and so

2°. hEbP =1 for some hg € H
Put z = [ho,b]. If z =1 we get (hob)? = hbP = 1, contrary to . Thus
3°. z#1

In particular, @ does not hold.

Suppose (]EI) holds. Then z € (h?" ') < Z(P). If p is odd we conclude that (hgb)? =
hbbP = 1, contrary to (1°). Thus p = 2 and ((hob)* = hgb* = 1. Thus |hob| = 4 and by
minimal choice of |b], also |[b| = 4. Since hf = b=2 we have |ho| = |b| = 4. Observe that
[P, b] = 1 and since [ho,b] # 1, H = (hg). It follow that h® = h~! and @) holds.

Suppose that and (EI) holds. Put ¢t = h2"'. Then |t| = 2 and t € Z(P). Note
that h* = h~'u with w = 1 or u = t. In either case u> = 1 and u € Z(P). Hence
(h?)? = (h~'u)? = (h?)~! and so b inverts (h2). Since b?> € (h%) and b centralizes b?, this
implies [b?| = 2. Thus b? =t and |b| = 4. In case (i) we conclude that @) holds. In case (c)
we compute

(hb)? = hbhb = hb*h? = hth ™'t =12 =1
a contradiction to . O

Lemma 1.9.5. Let P be a finite 2-group, H a mazimal abelian normal subgroups of G and
put Hy = {x € h | 2* = 1}. Suppose that
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(i) H is cyclic.
(ii) If v € P\ H with 2% € H, then x inverts Hy.
Then |G/H| <2 and G is a cyclic, dihedral, quasi-dihedral or quaternion group.

Proof. Since H is maximal abelian normal subgroup of P, Cp(H) = H. If |H| < 2 we
conclude that P = Cp(H) = H and the lemma holds in this case. So suppose |[H| > 4 and
H, = C4. Hence |[Aut(Cy4)| =2 and P/Cp(Hy)| < 2.

Let x € Cg(Hy4). Then x does not invert Hy and so implies that either x € H
or #2 ¢ H. In either case xCg(G4) does not have order 2 in Cp(Hy)/H. Tt follows that
Cp(Hy)/H has no elements of order 2 and so |Cp(Hy)/H| = 1 and H = Cp(H,). Thus
|P/H| < 2. If P= H, P is cyclic and the lemma holds. So suppose H # P. Then H is a
maximal subgroup of P and P is not abelian. now shows that either P is a dihedral,
quasi-dihedral or quaternion group or there exists h € H and b € P\ H with H = (h),
|h| = 27, |b] = 2 and h® = A'*2""" In the latter case b centralizes (h2). Thus Hy & (h2),
Hy=H,n=2and PZ Ds. ]

Lemma 1.9.6. Let G be a finite group.

(a) Suppose that G has a unique mazximal subgroup M and put p = |G/M|. Then p is a
prime and G is a cyclic p-group.

(b) Suppose that G has a unique minimal subgroup M and put p = |M|. Then p is a prime
and either G is a cyclic p-group or p =2 and G is a quaternion group.

Proof. @ Let z € G\ M. Then (z) ¢« M and so (z) is not contained in any maximal
subgroup of G. Since G is finite this gives (x) = G and G is cyclic. Let ¢ be a prime with
q||G|. Then |G/(z9)| = q. Thus (z79) is a maximal subgroup of G and so M = (x?) and
p =¢q. So G is a p-group.

() Let ¢ be a prime dividing the order |G| and = € G with |z| = ¢q. Then M = ()
and so p = ¢ and G is a p-group. Let H be a maximal normal abelian subgroups of G.
Since M is the unique minimal subgroup of G, H is not the direct product of two proper
subgroups and so H is cyclic. If G = H, G is cyclic and we are done. So suppose G # H
and let a € G\ H with o® € H. Put Q = H(a). Note that |Q/H| = p and so H is a
maximal subgroup of . Since M < H, (a) # M and so |a| # p. Since Cq(H) = H, Q is
not abelian and shows a inverts H and () is a quaternion group. By |G/H| <2
and so G = @ and G is a quaternion group. O

Lemma 1.9.7. Let p be a prime and P a finite p-group all of whose abelian subgroups are
cyclic. Then P is cyclic, or p =2 and P is a quaternion group.

Proof. If P = 1, P is cyclic. So suppose P # 1. Then also Z(P) # 1 and there exists
A < Z(P) with |A| = p. Let B be any minimal subgroups of P. Then |B| = p and since
[A, B] = 1, AB is an abelian subgroup of P. So AB is cyclic and thus has a unique subgroup
of order p. Hence A = B and so A is the unique minimal subgroup of P. The lemma now

follows from [1.9.6 ]
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Lemma 1.9.8. Let p be a prime and P a finite p-group all of whose abelian normal sub-
groups are cyclic. Then P is cyclic, orp = 2 and P s a dihedral, quasidihedral or quaternion
group.

Proof. Let H be a maximal abelian normal subgroups of P. Then H is cyclic and Cp(H) =
1. If P = H we are done. So we may assume that H # P. We will show that

1°. p=2andifbe P\ H with b* € H, then b inverts Hy := {z € H | 2* = 1}.
Observe that the lemma will follow from once we proved (1°).
Let be P\ H with b? € H. Put Q = H(b). Let h € H with H = (h) and put |h| = p".
Since P # H = Cp(H) we have n > 2 and b does not centralize h. Note that H is cyclic

maximal subgroups of @) and so we can apply Since [h,b] # 1, neither case [a] nor [¢
hold. In case @ nor andlﬂ, b inverts H and so (1°)) holds. In case @ b inverts (h?) and since

n >3, Hy < (h?) and again holds.

So suppose that hb = piP" ! If p=2and n =2, h inverts H and holds. So we
may assume that n > 3 if p = 2. We will derive a contradiction in this remaining case.
Observe that we may choose b such that b» = 1. Put z = [h,b] = h?" . Then |z| = p and
(z) is the only subgroup of order p in H. Since H < P, this gives (z) < P and so z € Z(P).
Let 0 <i < p". Then by [h%,b] = 2* and

(bhiy? — {bphfp =K ifpis odd
PRz = WPzt if p =2

Suppose p does not divide i. If p # 2, |h| > p? and so P # 1. If p = 2, then |h| > p?,
|nPt] > p? and AP #£ 27 In either case (bhi)P # 1. Thus Q(Q) :=={z € Q |2? =1} < (b >
(hP). Since [hP,b] = zP =1, (b > (hP) is Abelian and so also ©(Q) is Abelian. Since | < z)
and (b) are distinct cyclic subgroups of order p in Q(Q), 2(Q) is not cyclic.

Since Cp(H) = H, P/H is isomorphic to a subgroups of Aut(H). Since H is cyclic,
Aut(H) is Abelian and so P/H is Abelian. Hence Q/H < P/H, @ < P and so also
Q2(Q) < P, a contradiction since also Abelian normal subgroups of P are cyclic. O

1.10 Hypoabelian groups
Definition 1.10.1. Let G be a group.
(a) G' =G,G|, G" =(G")). G is called the derived subgroup of G.
(b) G is called perfect if G = G'.
(¢) Let a be an ordinal. Define G'* inductively as follows
G ifa=0

9@ =GBy ifa=8+1
Np<a G®  if o is a limit ordinal
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(d) dg is the least ordinal with G\9¢) = Glda+) g = Glda),

(¢) (G y<a, is called the derived series of G.

(f) If G =1, then G is called hypoabelian of derived length dg.

(9) If G® =1 and dg is finite, then G is called solvable of derived length dg.

Lemma 1.10.2. Let G be a group. Then G is perfect and G® contains all perfect
subgroups of G.

Proof. We have G*) = Glde) = Gldat+l) — (Glde)) = (GM)Y. So G is perfect.

Let H be a perfect subgroup of G and « be an ordinal. We will show that H < G(©).
We may assume inductively that H < G for all 8 < a. If & = 0, then G(® = G and so
H <G, If a« =3+ 1 then

H=H=[H H)] <[GW, G =agh+h) =gl

and if « is a limit ordinal, then

H< U a8 = gl
B<a

Corollary 1.10.3. Let G be a group. Then the following are equivalent
(a) G is hypoabelian.

(b) G is no non-trivial perfect subgroup.

(¢) G has no non-trivial normal perfect subgroup.

(d) G has non non-trivial characteristic perfect subgroup.

Proof. @ = (]EI): If G is hypoabelian, then G®) = 1. Then by H =1 for all
perfect subgroup oG*), 1@ — H and — @: are obvious.

@) = @): By G™ is a characteristic perfect subgroup of G. So G® =1 and
G is hypoabelian. O

Lemma 1.10.4. Let G be a group, H < G and o and B ordinals. Then
(a) H® < G,
(b) If H <G, then G H/H < (G/H)®™ with equality if o is finite.

(c) Gleth) = (G(@)B),
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Proof. () Since H' = [H, H] < [G,G] = G’ this follows by induction on a.
(]E[) By induction on a. If & = 0, then both sides are equal to G/H. If « = 4+ 1, then
using the induction assumption

GYH/H =GP, ¢ H/H =GP H/H,GPH/H] < [(G/H)P) (G)G)P] = (G/H))

with equality if a and so also f is finite.
If « is a limit ordinal, then

GOH/H = (Mo GOV HIH < (Ngeo GOH) JH = oo GOH/H
Noca G/ = (G/H)®

IN

By induction on . If 8 = 0 both sides are equal to G(®. If 3 =~ + 1, then

G(a+6) _ G(a+(’y+1)) _ G((a+'y)+1) _ (G(a+7))/ _ ((G(a))(’y))/ _ ((Ga)(’7+1) — (Ga)(ﬁ)

If 8 is a limit ordinal then

(G))B) = m (G = m Gletr) — ﬂ G — ﬂ G = qlath)

v<B <8 a<p<atf p<a+p

Lemma 1.10.5. Let G be group

(a) If G is hypoabelian of derived length «. Then all subgroups of G are hypoabelian of
derived length at most a.

(b) If G is solvable of derived length « then all quotients of G are solvable of derived length
at most a.

(¢) Let H be a normal subgroups of G. If G/H is hypoabelian of derived length o and H is
hypoabelian of derived length 3, then G is hypoabelian of derived length at most o + 5.

(d) Let H be a normal subgroups of G. Then G/H is solvable if and only of both H and
G/H are solvable.

Proof. @ If G =1, then by H@® <Gl =1,

(]EI) Suppose G(® = 1 for a finite ordinal a. Then by , (G/H)® = GWH/H =
H/H = 1.

We have GWH/H < (G/H)® =1 and so G(® < H. Thus

GOB) = (G (g)y < HB) =1
@ Follows from (]ED and . O



1.10. HYPOABELIAN GROUPS 47

Example 1.10.6. (a) All free groups are hypoabelian.
(b) Every group is the quotient of a hypoabelian group.
(c) Quotients of hypoabelian groups are not necessarily hypoabelian.

Proof. @) Let F be a free group on set I. Then F/F’ is the free abelian group on I. So for
I # () we have F/F' # 1 and so F' # F’. Hence non-trivial free groups are not perfect. Since
subgroups of free groups are free groups, F' does not have any non-trivial perfect subgroups.

Thus by [1.10.3| " is hypoabelian.
@ Since every groups is the quotient of a free group, this follows from @
Since non-trivial perfect groups exist, this follows from (]E[) O

Definition 1.10.7. Let G be a group and H < G. A series from H to G is a set S of
subgroups of G such that

(i) GeS.
(i) He S and H < S for all S € S.
(iwi) If S, T € S, then S <T orT < S.
(iv) If D is non-empty subset of S, then both \|JD and (D are in S.

(v) Let T € S. Define T~ =\ {BeS|BLT}ifT#H andT~ =H if T = H. Then
T T forallT €8S.

Definition 1.10.8. Let G be a group, H < G and S a series from H to G.

(a) A factor of S is a group T/T~ where T € S with T # T~ .

(b) S is called ascending, if each non-empty subset of S has a minimal element.

(c) S is called descending, if each non-empty subset of S has a minimal element.

(d) S is called normal if T < G for all T € S.

(e) S is called subnormal if |S| is finite.

(f) S is called a composition series from H to G if each factor of S is a simple group.

(9) S is a chief series from H to G if its a normal and for each factor F of S, 1 and F are
the only G-invariant subgroups of F.

If § is a subnormal series from H to G, then § = {Gy, G1,...G,} with

H:G0<IG1<IG2<I...Gn71<]Gn:G
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Definition 1.10.9. A subgroups H of G is called a serial (ascending, descending, subnor-
mal) subgroup of G if there exists a (ascending, descending, subnormal) series from H to

G.

Example 1.10.10. (a) Let G be a group and H < G. Then any subnormal series from H
to G is of the form G;,0 << n with

H=Gy<G1<G2<...9Gy, <G, =G
The factors are G;/Gi—1, 1 <i < n.

(b) Let G = (Z,+) and H = 0. Fori € Z* let n; be a positive integer. Put Gy = Z and
inductively Gy = n;Gi—1 = nina...nZ. Then S = {G; | i € N} U{0} is a descending
series with factors Gi—1/G; = C,,. If each n; is a prime, S is a composition series. If
p s a prime with n; = p for all i, then all factors of S are isomorphic to C,. Choosing
different primes we see that distinct composition series can have non-isomorphic factors.

(¢) Let p be a prime. Then

1<Cp<Cp <. < Cp < Cpit < ... Cpoe

is a composition series for Cpee with factors isomorphic to Cy. Note here that Cpe =
Ugew Cpt = Cpre.

(d) 1< Alt(n) < Sym(n), is a normal and subnormal series for Sym(n). If n # 4, this is
also composition series and a chiefseries for Sym(n).

(e)
1 < ((12)(34), (13)(24)) < Alt(4) < Sym(4)

is a chiefseries but not a compositions series for Sym(4). The factors are isomorphic
to Cy x Cy, C3 and Cs.

(f)
1< ((12)(34), (13)(24)) <1 Alt(4) <t Sym(4)

is a compositions series for for Sym(4). Since ((12)(34)) is not normal in Sym(4), this
is mot a normal series and so also not a chiefseries. The factors are isomorphic to Co,
CQ, 03 and CQ.

(9) Let G be a groups. Then {1,G} is a series for G, called the trivial series.

(h) Let G be a simple group. Then the trivial series is a composition series and a chiefseries
for G. It is the only chiefseries for G, but there are example of simple groups which
have non-trivial series (and even non-trivial ascending series) Note here that only G~
is guaranteed to be normal in G, but G~ might be equal to G. But this shows that a
stmple groups cannot have a non-trivial descending series.
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(i) Let I be a totally ordered set such that every non-empty subset of I has least upper
bound and a greatest lower bound. Fori € I let i~ ={ke |k <i} and let

J={j€el|j< has marimal element}

Suppose that for all i,1 € I with i <1 there exists j € J with i < j <.
For j € J let G be a nontrivial group. Put G =@..;G;. Fori € I define

Tz’:@Gj

jeJ
J<i

jeJ

Then {T; | i € I} is a normal series for G with factors T; /Ty = G, where j € J and

j* is the mazimal element of j<.

Let us prove the assertion in . Clearly each T; is a normal subgroup of G. T in
particular, T~ < T for all T € S. Let 4,1l € I with ¢ < [. Then T; < T} and so S is totally
ordered with respect to inclusion. Moreover, there exists j € J with ¢ < 5 < [. Then
ngTl,buthﬁTi. SOTing.

Let k € I. It follow that Ty < T; if and only if k < i. Suppose that ¢ € J. Then k < ¢*
and so Tj, < Tj«. Thus T, =T+ and T;/T; = G;.

Suppose that ¢ ¢ J and let j € J with j <. Then j #i.j < i and G; <Tj < T;. Thus
Gj<T; andsoT;=(G;|jeJ,j<i)<T;. Hence T; =T .

So the factors of S are the groups, T;/T=, j € J.

Let D be a non-empty subset of S and put D = {i € I | T; € D}. By assumption D
has a least upper bound v and a greatest lower bound w. We will show that | JD = T, and
(D =T, Sincew<i<vforallie D, T, <T;<T,andsoT, <(\Dand | JD <T,.

Let j € J with j <w. If j # v, then j < v and since v is the least upper bound of D,
J is not an upper bound. Hence there exists i € D with j < ¢ and so G; < T; < Unp. 1If
7 = v, then v* < v and so v* < ¢ for some ¢ € D. Then v* < i <w,andv =17 € D. So
G;j <T,=T; <|JD. We proved G; < JD for all j € J with j <wv. Thus T}, < |JD and
T, =UD.

Let g € UD. Let j € J with g; # 1 and i € D. Since g € Tj, j < i. Since w is the
greatest lower bound of D, this gives, j <wv and so g =[] jes € T\. Hence (D < T, and

i#1
ND = To. 7

Let x be the greatest lower bound of I. Then 2~ =0,z ¢ Jand {j € J | j <z} =0.
So T, = 1. Let y be the least upper bound of I. Then {j € J | j <z} =J and so T, = G.
This completes the proof of .

Lemma 1.10.11. Let G be a group, H a subgroup of G and S a set of subgroups of G.
Then the following are equivalent:

(a) S is ascending series from H to G.
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(b) There exists an ordinal 6 and subgroups G, < 0 of G such that S = {G,, | o < 0}
and

(a) Go=H and G5 =G.
(b) Go <Gy for all o < 0.
(¢) Ga =Ugcn Gp for all limit ordinals o < 6.

(c) There exists an ordinal § and subgroups G, < § of G such that S = {Gq | o < §}
and

(a) Go = H and Gs =G.
(b) Go < Goy1 for all a < 4.
(¢) Ga =Upco Gp for all limit ordinals o < 6.

In @, the factors of S are the groups Go41/Gq, o < 0 and in @ the factors are the groups,
Got1/Ga, a <9, Go # Gay1-

A similar statement holds for descending series: Replace and by Go = G and
Gs =H, by Gar1 < Gy, by Gar1 < Gy and and by Go = ﬂ6<aG5'
The factors are now of the form Gu/Gay1.

Proof. @ = (]ED: Since S is a well ordered set there exists an ordinal ¢ and an isomor-
phism of order sets f : ¢ — S. Since § has a maximal element, o has a maximal element
dandsoo ={a|a <o} ={a|a<d}. For a <0 define G, = f(a). Go is the minimal
element of S and so Gy = H. Gy is the maximal element of S and so G5 = G. Observe
that 8 < o+ 1if and only if 8 < a and so G_ | = Go and Go < Gay1. Since f is 1-1,
Go # Gy

Let a be a limit ordinal. Then G = G for some 8 < §. Since Gg = G, < Gq, B < .
Also Gy < Gg for all v < o and so v < 8. Since « is a limit ordinal this gives 3 = o and so

Go =G =] G,
<o

Thus (]ED holds. Moreover, G, # G, if and only if @ = 8+ 1 for an ordinal 5. So the
factors are as claimed.

(]E[) = : Obvious.

:>@: By,HESandGES. FromandwehaveGagGg
whenever o < 3 and so H < G for all § <.

Let D be non-empty subset of S. Let A = {a < § | G, € D. Let p be the minimal
element if A. Then D =G, € S. Let p = supA. If § < p, then 8 < a for some o € A
and so Gg < G < G,. Thus G; <UD < G,. If pis a limit ordinal, then by ,
G, =Gy and so UD = Gy. If p =0, then |JD = H. So suppose u = 3 + 1 for some
ordinal a. Then < a for some o € A and so = a € A. Thus again [JD < G.

Let H # S € S and pick o < 6§ minimal with S = G,. Then for § < § we have S < G
if and only of @ < 8 and so Gg < S if and only of 3 < a. Thus
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s =JGs

[B<a
If 8=a+1,then S™ = Gg < Ggy1 = Gg. If ais a limit ordinal we get S~ = G. So
in any case S~ <.5 and the factors are as claimed. O

Lemma 1.10.12. Let G be a group. H a subgroup of G, A a subset of G and (G )a<s an
ascending or descending series from H to K. Suppose that one of the follwing holds

1. HC A# G, (Ga)a<s is ascending and 3 is the ordinal minimal with respect to Gg ¢ A.

2. HZ A, (Gq)a<s is ascending, A is finite and f8 is the ordinal minimal with respect to
A C Gg.

3. HZ A, (Ga)a<s is descending, and 8 is the ordinal minimal with respect to A € Gp.
Then [ is well-defined and there exists a ordinal v with § = v+ 1.

Proof. Suppose ([1) holds. Since A ¢ G = Gy, 3 is well-defined. Since H = Gy C A, 3 # 0.
Suppose for a contradiction, that 3 is a limit ordinal. Since G., C A for all 7 < 3, we get
Gg = U7 <8 G, C A, a contradiction. Thus 3 is not a limit ordinal and the lemma holds in
this case.

Suppose ([2)) holds. Since A < G = G, S is well-defined. Since Go = H € A, § # 0.
Suppose that § is a limit ordinal. Then A C Gg = U7</3 G and so for each a € A there
exists vy, < B with a € G,,. Since A is finite, v := max,e4 7, exists and v < 8. But then
A C G5, contrary to the minimal choice of 3.

Suppose (3) holds. Since Gs = H ¢ A, j is well defined. Since A C G = Gy, 8 # 0.
Suppose f3 is a limit ordinal. Then A C G, for all v < beta and so A C ﬂv<6 G, =Gg, a
contradiction. O

Lemma 1.10.13. Let G be a group, H K < G and S a series from H to K.

(a) Put T ={KNS|S €S} ThenT is a series from K N H to K. Then factors of R
are the groups
KNnS/KNS™ = (KN&S)S™ /S~

for S € S with KNS # KNS™. In particular, every factor of T is isomorphic to a
subgroup of a factor of S.

(b) Suppose K < G and S is ascending. Put R = {SK/S | K € §}. Then R is series from
HK/K to G/K with factors

SK/K/S K/K=S/(SNK)S™=5/S"/(SNK)S™ /S~

where S € § with SK # STK. In particular, every factor of R is isomorphic to a
quotient of a factor of S.
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Proof. @SinceHGS,HﬂKGTandsineeGGS,K:KQGET. Since H < S for
Al HeS, HNKeHNSforal HNS e T.

Let D be a non-empty subset of 7 and put £ = {S € S| KNS € D}. Then D =
{KNS|Sec&}.

Thus

P=(\EnS=Kn()éeTand | JD=|JEnS=Kn|JEeT

Se& Se&

Let T € Tandlet S=({ReS|KNR=T}. Then KNS=T.Let Re€ S. If S <R,
then T=KNS<KNR IfKNR<T,then KN(SNR)=(KNS)dR=TNR=T
and so S < SN R be definition of S. Thus S < R. We shows that S < R if and only if
T<KNRandso R< S ifandonly if K N R <T. Hence

T~ = fENRIReS, KNR<T}=|( {KNR|Re€S,R<S}=KNS~

Since ST IS, T~ =KnNS™ < KNS=T. AlsoT/T™ = (KNS)/(KNS™) =
(KNS)/(KNS)NS™ 2 (KNS)S~™/S7).

Give any Rin S with T = KNRand KNR™ # KNR. Then S < R by definition of
S. Since Tk NS £ KNR™, S £ R™. Thus S £ R and so R = S. So the factors are exactly
as claimed.

(b) G = G/K andlet S = {G, | @ < 6} as in[1.10.11} Then T = {G,, | @ < 6}, Gy = H,
Gs =G, Gy < Goyq and if o is a limit ordinal, then

Go=JGs=(JGpE/K =] GsK)/K =] Gs

B<a B<a B<a B<a

B So by [1.10.11| S is an ascending series with factors G11/Go Where o < § with Gy #
G, that is Go41 K # G, K. Since

GOH_lK/GaK = Ga+1GaK/GaK = Ga+1/Ga+1 NG K
= Ga+1/(Ga+1 N K)Ga = Ga+1/Ga/(Ga+1 n K)Ga/Ga
the factors are as claimed. ]

Lemma 1.10.14. Let G be a group and (Gy)a<s a descending series from H to G with
Abelian factors. Then G\ < Gg for all a < 6. In particular, G® < GO < H.

Proof. By induction on «, Gy = G = G, Suppose o = 3 + 1. Since Gpg/Gq is Abelian,

G = (@B < Gy < Ga



1.10. HYPOABELIAN GROUPS 93

If « is a limit ordinal, then

G — ﬂ G < m G = G

B<a B<a

Corollary 1.10.15. Let G be a group.
(a) G is hyboabelian if and only there exists a descending series with abelian factors for G.

(b) dg is the smallest length of a descending series with Abelian factors from G™ to G.

Proof. Note that G(®)/G+) = G(®) /(G*) is Abelian and so the derived series is a de-
scending series of length d¢ with abelian factors from G™*) to G. So there exists a descending
series with Abelian factors of length dg from G*) to G. Also if G is hyper abelian, there
exists a descending series with abelian factors for G.

Now let Let (G4 )a<s be a descending series from H to G. Then G*) < H. If H = 1 we
conclude that G is hypoabelian. If H = G*) we get G5 = H = G® and so dg < 4. O

Lemma 1.10.16. Let G be a group and A and B subgroups of G such that A normalizes B
Suppose that A is solvable of derived length o and B hypoabelian of derived length 5. Then

AB is hypoabelian of derived length at most a+ 3. In particular, if A and B are solvable,
so is AB.

Proof. Note that AB/B = A/AN B and so AB/B is solvable of derived length at most c.
Thus by 1.10.5, AB is hypoabelian of derived length at most a + 3. O

Definition 1.10.17. Let G be a group. Then F(G) is the subgroup generated by the nilpo-
tent normal subgroups of G and Sol(G) is the groups generated by the solvable normal
subgroups of G. F(Q) is called the Fitting subgroup of G.

Corollary 1.10.18. Let G be a finite group. Then Sol(G) is solvable and so Sol(G) is t
has unique maximal solvable normal subgroup of G.

Proof. Since G has only finitely many solvable normal subgroups, [1.10.16] implies that
Sol(G) is solvable. O

Lemma 1.10.19. Let G be group and A and B be hypercentral normal subgroups of G.
Then AB is hypercentral of class at most (zp + 1)z4 + zB.

Proof. Put « = z4, y = zp. Define X, = Z,(A) for o < z and X411 = G. Put Y3 = Z3(B)
for all 8 <y. Then

[Xat1,4] < X, forall a <z and [Yy41,B] <Y, forall y <y

For a <z and B <y define Z, 3 = Xo(Xay1 N Zg(A)). Note that X, = A, Xo11 =G
and Y, = B so Z,, = A(GN B) = AB. We claim that
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Zap < Ziyr1)arp(AB) for all a <z,8 <y

The proof of the claim is by induction on «a and then by induction on 8. If a = 5 =0,
both sides are equal to 1.
Suppose a =~ + 1 and f = 0. Then Z, ¢ = X,, [Xq, 4] < X, < Z,, and

[Xa, Bl < XaNB=X,1NY, <2,

and so

[Za,0, AB] < Zyy < Ziys1)74y(AB)
So

Za0 < Z((y+1)y+y)+1(AB) = Zy 1)1 (y4+1) (AB) = Z(y11)ar0(AB)

and the claim holds in this case.
Suppose « is a limit ordinal and 8 = 0. Then

Zao =Xa = U Xy = U Zy0 < U Ziy1)y(AB) < Ziyi1)ato

<o <o y<a
Suppose 8 =y + 1. Then
[Za,BaA] < [Xa+1,A] < Xa < Za,’y

and

[Za,8: Bl < Xa(Xat1 N Zy) = Zay:

Thus
[Za,ﬁaAB] < Za,'y < Z(y+1)a+7(A)

and so

Zap < Z(y+1)a+'y+1(A) < Z(y+1)a+g(A).
Suppose B is a limit ordinal. Then

Zop = Xa(Xor1 N |J Y)) = | Xa(Xas1 NY3) < U Zsvair(4) < Ziyinars(A).
~< B ~<B ¥<B

This proves the claim. Hence AB = Z, , < Z( 1 1)p4(AB ) and the lemma is proved. [

Corollary 1.10.20. (a) Let A and B be normal nilpotent subgroups of a group G. Then
AB is nilpotent.
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(b) Let G be a finite group, then F(QG) is nilpotent and so F(G) is unique mazimal nilpotent
normal subgroup of G.

Proof. @) Note that (zp + 1)z4 + Zp is finite. So @ follows from [1.10.19 (]ED follow from
) O

Remark 1.10.21. There exist a group G with a normal ascending series

1=Gy<Gi1<...Gy...G, =G
such that for all k < w, G is nilpotent for each finite k and

() 2(G) =1
k<i<w
It follows that Z(G) = 1 and so G is not hypercentral. Since G is the union of its normal
nilpotent subgroups, G = F(G). It follows that F(QG) is neither nilpotent nor hypercentral.
So G has neither a maximal nilpotent normal subgroup, not a maximal hypercentral normal
subgroup.

1.11 The Theorem of Schur-Zassenhaus

Theorem 1.11.1 (Schur-Zassenhaus). Let G be a finite group and K a normal subgroup
of G such that ged(|K|,|G/K|) = 1. Then there exists a complement to K in G. If in
addition, K or G/K s solvablfﬂ then all such complements are conjugate.

Proof. We will first prove the existence of a complement. Let H be a subgroup of G
minimal with respect to G = HK. Put A= HNK. If H = UA for some U < H, then
G = HK = UAK = UK and so U = H. Let S be a Sylow p-subgroup of A. Then
H = Ng(S)A and so S < H. Hence A is nilpotent. Put H = H/A’. Note that |A| divides
|K| and |[H/A| = |H/A|=|H/HNK|=|HK/K|=|G/K. So gcd(|H/A|,|A]) = 1. Hence
by Gaschiitz’ Theorem, there exist complement U to A in H. Let U be the inverse image
of Uin H. Then H=UAand UNA= A" Thus H=U and A = A’. Thus l4 = 0 and
since A is nilpotent, A = 1. Hence H is a complement to K in H.

Let Hy and Hy be complements to K in G.

Suppose that K is solvable. Let G = G/K’. Then H; is a complement to K in G and
so by Gaschiitz’ Theorem Hj = Hy for some g € G. Then K'H{ = K'Hy and HY and Hy
are complement to K’ in K’Hjy. By induction on the derived length of K, H{ and H, are
conjugate in K’'Hy. Hence Hy and Hs are conjugate in G.

Suppose next that G/K is solvable. If G = K, H; = Ha = 1. So suppose G # K. Then
G/K # (G/K)" and there exists a M maximal subgroup M of G with KG' < M. Then
M <G and so |G/M| = p, p a prime. Note that M N H; is a complement to K in M and so

1Since K or G /K have odd order, the Feit-Thompson odd order theorem asserts that this assumption is
always fulfilled
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by induction on |G|, (M N Hy)Y = M N Hy for some g € M. Replacing Hy by H{ we may
assume that M N Hy = M N Hy. Put D = (Hy, Hy) and not that M N H; is normal in D.
Also |H;| = p and since |D/H,| divides |G/H;| = |K|, p does not divide D/H)i. Thus H;

is a Sylow p-subgroup of D. Hence Ed = Hj for some d € D and then H{l = H,. O

1.12 Varieties

Definition 1.12.1. A class of groups is a class D such that
(i) All members of D are groups.
(i) D contains a trivial group.
(i1i) If G € D and H is a groups isomorphic to G, then H € D.

Examples: The class of all groups, the class of finite groups, the class of abelian groups
and the class of solvable groups.

A D-group is a member of D, a D subgroup of a group G is a D-group H with H < G.
A D-quotient of a group G is group G/H where H < G and G/H € D.

Definition 1.12.2. Let (G;)icr be a family of groups. Then a subdirect product of (G;)icr
is subgroups G' of X ,;.; Gy such that the projection of G onto each G; is onto.

Lemma 1.12.3. Let H be a subdirect product of (G;)icr- If G is finite, there exists a finite
subset J of I such that H is isomorphic a subdirect product of (G;)je.

Proof. For J C I, let Hjy be the projection of H on Xer G; and let K; be the kernel of
this projection. Observe that H; is a subdirect product of (Gj);cs. Choose J C I such
that J is finite and K; is minimal. Let h € H with h # 1 and pick ¢ € I with h; # [I.
Put R = JU{i}. Note that Kr < K; and so by minimality of K;, Hr = H;. Note that
h¢ Kg. Thus h ¢ Kj and so Ky =1. Hence H = Hj. d

Definition 1.12.4. Let D and £ be a classes of group with D C &.

(a) We say that D is S-closed in &, if all E-subgroups of D-groups are D-groups. (That is,
ifGeD and H <G with H € &, then He D.)

(b) We say that D is Q-closed in &, if all E-quotients of D-groups are D-groups.

(c) We say that D is R-closed in &, if each G € £ which is a subdirect produc of D groups,
18 a D-group.

(d) Let A C {S,Q,R}. Then D is called A-closed in € if D is T-closed in € for all T € 2.
D is called A-closed if D is A-closed in the class of all groups.

Example 1.12.5. (a) The class of abelian groups is {S, Q, R}-closed.
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(b) The classes of finite groups is {S, Q}-closed but not R-closed.

(¢) The class of solvable groups is {S, Q}-closed but not R-closed.

(d) The class of nilpotent groups is {S, Q}-closed but not R-closed

(e) The classes of finite solvable groups is {S, Q,R} closed in the class of finite groups.
(f) The class of finite nilpotent groups is {S, Q, R} closed in the class of finite groups.

(9) For a fixed prime p, the class of finite p-groups is {S, Q, R} -closed in the class of finite
groups.

For i € Z* let G; be a finite solvable group of order 4, a solvable group of derived length
¢ and nilpotent groups of class i, respectively. Then X, ;G; is not finite, solvable and
nilpotent respectively. This shows the classe of finite groups, the class of solvable groups
and the class of nilpotent groups are not R-closed.

Let D be the class of finite solvable groups, or the class of finite nilpotent groups or
the class of finite p-groups. Let H be a subdirect product of D-groups. Suppose that H is
finite. Then by H is the subdirect products of finitely many D-groups. Observe that
the direct product of finitely many D-groups is a D-groups and so H is a D-group. Thus D
is a R-closed in the class of finite groups.

Definition 1.12.6. A wvariety is a pair (D,E) of classes of groups such that
(a) DCE.

(b) &€ is SQ-closed.

(c) D is SQR-closed in E.

We remark that our use of term ’'variety’ is non-standard. Usually a variety is class of
groups defined in terms of vanishing of a set of words. Birkhoff’s theorem asserts that class
D of groups is a variety if and only if D is {S, Q,R}-closed. Note that this holds if and
only if (D, class of all groups) is a variety in our sense.

Example 1.12.7. The following pairs of classes of groups are variety:
(a) (class of abelian groups, class of all groups).
(b) (class of finite nilpotent groups, class of all finite groups).
(c) (class of finite solvable groups, class of all finite groups).
(d) For a fized prime p, (class of finite p-groups, class of all finite groups).
Definition 1.12.8. Let G be a group and D a class of groups. Then

GP =({H 4G |G/H € D}

G is called D-perfect, if G = GP, that is no-nontrivial quotient of G is a D-group.
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Lemma 1.12.9. Let D be class of groups, G a group and H I G. Then
GPH/H < (G/H)P.

Proof. Put G = G/H and let R < G such that G/R € D. Let R be the inverse image of R
in G. Then G/R= G/R and so G/R € D. Thus GP < R and GP < R. Since this holds
for all such R, G? < (G)P. O

Lemma 1.12.10. Let D and &€ be classes of groups with D C E£. Suppose that £ is Q-
closed. Then D is R-closed in & if and only if G/ (M € D whenever G € £ and M s set
of normal subgroups of G with G/M € D for all M € M.

Proof. =>: Let M be a set of normal subgroups of G with G/M € D for all M € M.
Put H = () M. The the map

Hg —  (Mg)mem

is a well defined monomorphism. Thus Im « is a subdirect product of D-groups. Since £ is
closed under quotients, G/H € £ and so Im« is a E-group. Since D is R-closed in & we
conclude that Im « and G/ H-are D-groups.

<=: Suppose G € & and G is a subdirect product of a family (G;);es of D-groups.
Let M; be the kernel of the projection of G on G;. Then G/M; = G; and so G/M; is a
D-group. Put M = {M; | i € I} and observe that (Y M = (\,c; M; = 1. Thus G = G/ M
is D-group. [

Lemma 1.12.11. Let (D,&) be variety.
(a) D is {S,Q}-closed.

(b) Let G € £ and H I G. Then G/H € D if and only GP < H. In particular, G is the
smallest normal subgroup of G whose quotient is a D-group.

(c) Let G € €& and H < G. Then GPH/H = (G/H)P.

Proof. @ Let G € £ and H is a subgroups of G or a quotient of G. Since £ is {S, Q}-closed,
H € &. Since D is {S,Q}-closed in £, H € D.
(]ED Let M ={M <G | G/M € D}. Then M = GP. Since D is R-closed in £ and &£

is Q-closed, [1.12.10| shows that
1°. G/GP is a D-group.

Now let H be a normal subgroup of G. We have

G/H/GPH/H = G/GPH = G/GP /HGP |GP.
The group on the right side is a quotient of a D-group and so a D-group. So also
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2°. G/H/GDH/H is a D-group.

If G/H is a D group, GP < H by definition of GP. If GP < H. shows that G/H
is a D-group. Thus (]ED is proved.
From (2°) and the definition (G/H)? we have

(G/H)P < GPH/H.
By [1.12.9) GPH/H < (G/H)P and so (d) holds. O
Definition 1.12.12. Let D be a class of groups and G a group.
(a) For an ordinal o define GT inductively via
G ifa=0
G =< (Gp)P ifa=p+1
Np<a Gg if « is a limit ordinal
(GP),, is called the lower D-series for G.
15 the smallest ordinal o wit = .
b) dZ is th 1l dinal hGE =GP,
(c) GP .= deg‘

(d) G is called a hypo D-group, if there exists a normal descending series (Gqo)a<s for G
all of whose factors are D-groups.

(e) G is called a hyper D-group, if there exists a normal ascending series (Go)a<s for G
all of whose factors are D-groups.

Lemma 1.12.13. Let (D, &) be a variety and G € £. Then (GF), is normal descending
series form GP to G with factors in D.

Proof. By [1.10.11} (GE), is descending series form G? to G with factors in G} /G%, . By
LI2.11]

Gr/Gey = G3/(Gp,)?
is a D-group. ]

Lemma 1.12.14. Let (D,€&) be a variety, G € £ and H,K and L subgroups of G with
K < L. Let (La)a<s be a descending series from K to L with factors in D. Let o, B and
be ordinals with HY < Lg. Then

D
HP. < Ly,
(where we define L, = K for all p>4.)
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Proof. Observe that (Lg;~), is descending series from K to Lg with factors in D. So
replacing L be Lg and (L,), by (Lg4y)y we may assume that 5 = 0. Put H, = HPD. Then
H, < L and we need to show that H,,, < L,. Since Lo = L this is true for v = 0.

Suppose that v = p+ 1. The Hoyy = Higqp)s1 = (Hotp)P. By induction Hyqp < L.
Hence

Hotp/Hatp N Ly = HoypLly/Ly < Ly/Ly

Since L,/L is a D-group, also Ha4p/Ha+p N Ly is a D-group. Hence
HaJr'y = (Haer)D < Ha+p N L'y < L'y
Suppose + is a limit ordinal. Then also « 4 « is limit ordinal. So

Hopy= () Hy< ()| Hasp < () Lu=1L,
p<oa+y p<y p<y

and the lemma is proved. O
Lemma 1.12.15. Let (D,€) be a variety, G € € and «, 5 ordinals.
(a) If a > dE, then GE = GP.
(b) Let H< G HP <GP.
(c) HP < GP.
D _ ((xD\D
(d) GaJrﬁ - (Ga )IB .
(e) Let H<UG. Then GEH/H < (G/H)T with equality if « is finite.

Proof. Put G, = GE and § = dZ.

@) We have GP = G5 = G541 = (Gs)P. In particular, (@) holds for a« = §. So suppose
« > § and that @ holds for all 8 with d < 8 < a. If « = 8+ 1, then G, = (Gﬁ)D =
(Gs)P = Gs and if § is a limit ordinal, G, = U5<B<a Gg = U5<6<a Gs = Gs.

() Since (Ga) is series from G to G with factors in D this follows follows from
applied with a =0=3,y=a and L =G.

(c) This is the special case « =1 in

(b).
(d) We have (G,)F < G, and so by [1.12.14] (applied with H = G, and L = G

(Ga)frp < Gatp.
D : : — — -
Also G, < (Ga)y and so by |1.12.14] (applied with H = G and L = G:

Gars < (Ga)fis
@ If « = 0, both sides are equal to G/H. If « = §+ 1 then
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GoHl/H = GFH/H = (GgH/H)? < ((G/H)E)” = (G/H);

with equality if 3 is finite.
Suppose that « is limit ordinal. Then

GoH/H = | (\Gs | H/H < () (GsH/H) < (| (G/H)E = (G/H)Z

B<a B<a B<a

Lemma 1.12.16. Let (D,E) be a variety. Let G € £. The the following are equivalent
(a) GP =1.

(b) G is a hypo-D-group.

(c) There exists a descending series for G all of whose are D-groups.

Proof. @ — (]ED:

Suppose that G = 1. Then (GY), is a normal descending series from 1 to G all of
whose factors are in D.

¢ Obvious.

a Suppose that (Gqo)q<s is descending series from 1 to G with factors in D. Then by [1.12.14
(applied with H = L = G),

GP <GP <Gs=1

O]

Definition 1.12.17. Let C and D be classes of groups. Then CD denotes the class of all
groups G such that there exists a normal subgroups H of G with

G/HeC and He D

Lemma 1.12.18. Let (C,€) and (D, &) be varieties. Let G € £. Then G € CD if and only
if (GE)P = 1.

Proof. Suppose first that G € CD. Then there exists H < G with G/H € C and H € D.
Thus the definition of G¢ and HP implies G¢ < H and HP < 1. So using [1.12.15
(GHP < HP =1

Suppose next that (G€)P = 1. Then by|1.12.11, G/GC€ is a C-group and G€ is a D-groups.
Hence G € CD. O
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Lemma 1.12.19. Let D and £ be classes of groups. Suppose £ is Q-closed. Then GP =
GP€ for all G € €.

Proof. Let G € £ and H < G. Since € is Q-closed, G/H € £. Thus G/H € D if and only
if G/H € DN E. The lemma now follows from the definition of GP. O

Lemma 1.12.20. Let (C,&) and (D,E) be varieties. Then C = D if and only if G = GP
forallG € &.

Proof. Suppose G¢ = GP for all G € £. Let G be a group. Then by [1.12.11] G € C if and
only if G € £ and G¢ = 1 and so if and only if G € D. O

Lemma 1.12.21. Let (C,&) and (D,€) be varieties. Then (CD N E,E) is a variety and
GCP = (GO)P for all G € £.

Proof. Let G e CDNE. If H <G,

(HC)D < (GC)D =1

and so H € CDNE and thus CD N € is S-closed.
Now let G € £ and H < G. Note that

(G/H)°)P = (G°H/H)P = (G)PH/H
and so by [[.12.18|
1°. G/H € CD if and only if (G)P < H.

In particular, if G € CD, then G’P? = 1 < H and so G/H € CD. Thus CDNE is
Q-closed.

Let M be a set of normal subgroups of G such that G/M € CD for all M € M. Then
by (GE)P < M for M € M and so (G°)P <M and G/ M € D. Hence bym
CDNE is R-closed in &.

Thus (CD N &,E) sis a variety. It follows that G/H € CD N & if and only if G’P =
GCPT€ < H. Together with this shows GCP = (GC)P. O

Definition 1.12.22. Let D and & be classes of groups with D C £. We say that D is
P-closed in £ if G € D whenever G is an E-group with a normal subgroups H such that H
and G/H are D-groups.

In the following (D, €) is T closed for means that D is T-closed in £.
Lemma 1.12.23. Let (D,€) be a variety. Then the following are equivalent:
(a) D is P-closed in .

(b) DDNE =D.
(¢c) GP is D-perfect for all G € £.
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Proof. @ = :

Since D contains the trivial groups, D C DD N E. By definition, D is P-closed in & if
and only if DDNE CD.

(B) <= () : By[L.12200 DD NE = D if and only if GPP = GPPE = GP for all
G € €. By|L.12.21] GPP = (GP)P and so DD N E = D if and only if (GP)P = GP for all
Gefl. O

Definition 1.12.24. Let D, be a class of group with D C &€

(a) Let G be a group. Then Gp is subgroup of G generated by all the normal D-subgroup
of G.

(b) We say that D is N-closed in € if G € D whenever G is an E-subgroup generated by
normal D-subgroups of G.

(c¢) We say that D is Ny closed in € if G € D, whenever G is an E-subgroup generated by
finitely many normal D-subgroups of G.

(d) We say that D is Rgy closed in £ if every E-group which is the subdirect product of
finitely many D-groups, is an D-group.

Lemma 1.12.25. Let D, & be a classes of group with D C £. Suppose that Eis Sy-closed
and D is N-closed in €. Let G € £.

(a) Let H be a subnormal D-subgroup of G. Then (HY) € D.

(b) Let H be a subgroup of G generated by subnormal D-subgroups of G. Then H € D.
(¢) Gp <D.

(d) Gp is the subgroup of G generate by all the subnormal D subgroups of G.

(e) Let H be subnormal in G. Then Hp < Gp.

Proof. @ Let (G4)a<s be a subnormal series from H to G. Put H, = (H%). We will
show by induction on «, that H, is a D-group. For o = 0, Hy = H is a D-group. So
suppose o > 0. Since « is finite, « = § + 1. By induction Hp is a normal D-subgroup of
Gg. Let g € G. Since Gg 4 G, Hg is a normal D-subgroup of Hg. Since D is N closed
in &, Hy = (Hj | g € Gq) is a normal D-subgroup of G.

(o) Let H = (H) where H is a set of subnormal D-subgroups of G. Then H is subnormal
in Gandso H € &. Let FF € H. By @, (F) is a normal D-subgroup of H and since D is
N-closed in £, H = ((FH) | F € H) is a D-group.

and @: Let D be the subgroup of G generated by the subnormal D-subgroups of
G. Then Gp < D. By@,DGDandsoGp:DandeeD.

@ Since H is subnormal in G, H € £. So by Hp is a D-group. Note that Hp is
subnormal in G and so by @, Hp < Gp. O
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Definition 1.12.26. Let 7w be a set of primes and G a group.

(a) G is the class of all groups and F the class of finite groups.

(b) G is called periodic if all elements of G have finite order.

(c) g € G is called a w-element if g is finite and all prime divisors of |g|. are in .
(d) G is called a w group if all elements of g are w-elements.

(e) O™(G) := G9 and O,(G) := Gg. .

(f) Gx is the class of all ™ groups, Gl is the class of nilpotent groups and Gse is the class
of solvable groups.

(9) For any symbol T, Fpr = Gr N F is the class of finite Gp-groups,
(h) F(G) := Ggy, and Sol(G) = Gg,, -

Lemma 1.12.27. Let D be a class of finite groups.

(a) D is R-closed in F if and only if D is Ro closed.

(b) D is N-closed in F if and only of D is Ny closed.

(¢c) (D,F) is a variety of and only if D is {S, Q,Ro}-closed.

Proof. @) Suppose D is N-closed and let G be a subdirect product of finitely D-groups.
Then G is finite and since D is M -closed in F, G € D. So D is Ny-closed.

Suppose that D is Ny-closed and let G be a finite subdirect product of D-groups. By
G is isomorphic to a subdirect product of finitely many D-groups and so G € D.
Thus D is N-closed in F. (b)) Very similar to (a)).

Since F is {S, Q}-closed, D is a {S, Q}-closed in F if and only of D is a {S, Q}-closed.
Thus follows from @ and the definition of a variety. O

Lemma 1.12.28. Let w be a set of primes.

(a) The class of w-groups is {S, Q,P,N,Rg}-closed.
(b) (Gx,Gper) is a {P,N} closed variety.

(¢) (Fr,F) is a {P,N}-closed variety.

(d) (Fnit, F) is a N-closed variety.

(e) (Fso, F) is a {P,N}-closed variety.
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Proof. Let G be group and H a normal subgroup of G such that G/H and H are m-groups.
Let G = G/H, g € G and n = [g| and m = |¢g"|. Then |g| = nm and so G is a m-group.
Thus G, is P-closed.

Since G, is {Q,P}-closed, G, is Ny-closed. Let G be a group generated by normal
m-subgroups. Let g € G. Then g is contained in the product of finitely many normal =
m-groups and so g is a m-element. So G is w-group and G, is N-closed.

Let G be a periodic group and suppose G is the subdirect product of mw-groups. Let
g € G. Then (g) is finite and so (g) is the subdirect product of finitely many m-groups.
Thus (g) is a m-group and so also G is a mw-group.

The remaining assertion are readily verified. O

Lemma 1.12.29. Let G be a group, H < G and S a series from H to G. For F = A/B
a factor of S, let Sp be a series for F. Let Tp = {X | B < X < A/ X/B € S} and
T =U{Tr | F a factor of S} US. Then

(a) Tr is a series from B to A with factors isomorphic to the factors of Sp.

(b) T is a series from H to G, with factors isomorphic to the factors of Sp, F' a factor of
S.

Proof. () Let Y = {X | B < X < A}. The map X — X/B is bijection from U to the
subgroups of A/B. We have X <Y if and only if X/B <Y/B. Also X <Y if and only
if X/B<Y/B. VCU, then (JV)/B = Uxep X/B and (NV)/B = Nyep X/B. It now
follows easily that Tp is a series from B to A. Also if X/Y is a factor of Tp, then X/B/Y/B
is a factor of Sp isomorphic to X/Y.

(o) Since H,G € S we have H,G € T. Let X € T. f X € S, put X_ = X, = X. If
X ¢ S pick a factor FF = X /X_ of S with X/X_ € Sp; note here that X_ < X < X
and X and X_ are uniquely determined.

Let X,Y € S and choose notation such that X, < Y,. If X; <Y_ then X < X, <
Y. <Y andso X <Y. Sosuppose Y_ < X;. Then Y_ < X; <Y, andsoY ¢ S,
F =Y,/Y_is a factor of S and X, = Y*. Note that either X = X, =Y, or X # X,
and X_ = Y_. In either case both X and Y are contained in 7. Hence either X <Y or
Y < X.

Let D be a non-empty subset of 7. Put Cy = NpepDy. If JD = C, we have
UD e S CT. Sosuppose |JD # C4. Since D < C4, there exists D € D with C £ D
and so D < (. By definition of D, D, < Cy and by definition of C, C+ < D,. Thus
D ¢S, F=C,/(Cy) is the factor associated to D. Thus D € Tp for all D € D with
Cy £ D. From D < Cy < E for all E € D with C < E we conclude that

P=(\PNTr)eTr CT

Similarly put C- = Upep D-. IfUD = C_ we have |JD € § C T. So suppose
(D # C_. Since C_ < (D, there there exists D € D with D « C_ and so C_ < D.
By definition of D_, C_ < D_ and by definition of C_, Dy < Cy. Thus D ¢ S and
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F = (C_)"/C_ is the factor associated to D. Thus D € Tp for all D € D with D £ C_.
From F < C_ < D for all E € D with E < C_ we conclude that

Up=onTr)eTrcT

Now let T € T and put D ={X € T | X < T} and B = |JD. Suppose that B # T.
Observe that T~ < B and so T~ # B. Put F = T/T— and let D € D. Then either
D<T-eDnNnTrporT_<D<Tand D & Tr. Thus

B=Jp=JonTr =D eTr|D<T}
and so by @), B T, T/Bis afactor of Tp and T/ B is isomorphic to a factor of Sp. [

Lemma 1.12.30. (a) Let D be an {Syn, Q}-closed class of finite groups and G a finite
group. Then G is a hypo-D-group if and only if there exists a chief-series for G all of
whose factors are in D.

(b) Let (D, F) be a variety and G a finite group. Then G is a hypo-D-group if and only if
there exists a composition-series for G all of whose factors are in D.

Proof. @ Suppose S is chief-series for G all of whose factors are in §. Since G is finite S
is a normal descending series and so G is a hypo-D-group.

Suppose that G is a hypo-D-group and let S be a normal descending series for G with
factors in D. Let F be a factor of G and choose a maximal G-invariant series Sg. If T is
a factor of S, then T'= X/Y where X and Y are normal subgroups of F'. Since F' € D
and D is Sp-closed, X € D. Since D is Q-closed, X/Y € D. So all factors of Sp are
D-groups. Thus by there exists a series 7 for G whose factors are D-groups. Since
Sr is G-invariant, 7 is a normal series. Since G is finite, 7 is descending. the maximality
of Sp shows that T is a chief-series.

@ By G is a hypo-D-groups if and only if there exists some descending series
for G all of whose factor are in D. So the same argument as in probes @ (Just replace
"chief-series’ by ’composition series’ and remove 'normal’ and ’G-invariant’) 0

Lemma 1.12.31. Let D be a class of groups and G a subdirect product of family of D-groups
(Giier-

(a) There exists a normal descending series for G with factors (F;,i € I), where F; is
isomorphic to a normal subgroups of G;.

(b) If D is Sp-closed, G is a hypo D-group.

Proof. @ By the well-ordering axiom the exists some well ordering < on I. Fix m € I.
Define a ordering < on I by ¢ < j if either i,j € I\ {m} with i < j, or i € I\ {m} and
j =m. Then < is a well ordering on I with maximal element m. So we may assume that
I ={a|a < ¢} for some ordinal 4.
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Let v < 20 + 1. Define the normal subgroup T as follow: By v = 2a + p for
some uniquely determined ordinals «, p with p < 2. Then p =0 or p = 1. Moreover, since
v < 26 we have a < 4.

If p = 0 define

Ty =T ={g]gi=1forall i <a};
and if p = 1 define

Ty =Toar1 ={g]gi=1forall i <a}.

Observe that T, is a normal subgroups of G. We have Ty = G and T3s541 = 1. Define
T : G = Gayg = go- Then 7, is an epimorphism. Since Th, < G,

Wa(TQQ) g 7Toz(GY) = Goz

Observe that That1 = Toq Nker my, and so Toa4+1 < Toy and Fy, := Th/Toq+1 is isomorphic
WQ(TQQ).
By|A.1.13) 2a+1)4+1=2a+2=2(a+1). Alsoi < a+1if and only if i < o. Thus

Toatr1)+1 = T2a+1-

Suppose that v is a limit ordinal. Then p = 0 and « is a limit ordinal. Let 4 be an
ordinal and let 4 = 2& + p with p = {0,1}. By ¥ < v =2« if and only if & < a.
Since Tog < Tha+1 We get

ﬂ T5 = ﬂ Togr1 =To0 =T,
F<y a<a
Thus (T%),<25+1 is a normal descending series with factors Fi,, o < 4.
(]E[) If D is Sy, closed, each F|, is a D-group. So (]ED holds. 0

1.13 mw-separable groups

Definition 1.13.1. Let w be a set of primes and G a group.
7' is the set of primes not in .

Let n be an integer. Then mw(n) is the set of prime divisors of n. ny is supremum of all the
divisor m of n with m(m) C 7. n is coprime to 7 if ny = 1, (that is pi(n) C 7.

G s called w-separable if G is a periodic hypo-(Gr U Gr)-group.
G is called w-solvable if G is a periodic hypo-((Gr N Gso1) U G )-group.

Lemma 1.13.2. Let G be a periodic group and m a set of primes.
(a) G is mw-separable if and only if G is hypo-GrG. -group.

(b) G is w-solvable if and only if only if G is hypo-(Gr N Gso1) G -group.
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Proof. @ Since every 7 and every 7’-group is a G,G./-group, the forward direct holds.
Now let S be a descending series for G with factors in G,;G,. Let I be a one of the
factors. Then 1 < O™(F) < F'is a series for F' with two factors, one is a m-group and the
other a 7’-group. Thus shows that G is w-separable.
(]E[) Use a similar argument as in @ O

Lemma 1.13.3. Let m be a set of primes and G a group. Then Or(G) is a w-group and
contains all subnormal w-subgroups of G.

Proof. Since G, is N-closed, this follows from [1.12.25 O

Lemma 1.13.4. Let 7 be a set of primes and G a finite w-separable group with O (G) = 1.

Proof. Put D = Cg(Ox(G)) and C = Ox(D). Then C < O(G) and so [C,D] = 1 and
C < Z(D). Put D = D/C and let E be the inverse image of O,/(D) in D. Then E/C is
a m'-group and C is normal abelian 7’-subgroup of E. By Gaschiitz Theorem, there exists
a complement K to C' in K. Note that K = E/C is a 7'-group. Since C' < Z(E), K is
normalized by CK = E. Since E < G we get K I<4 G and so K < O (G) = 1. Hence
E = C and so O,/ (D) = 1. Since C' = O(D), also O.(D) = 1. Since D is m-separable this
gives D = 1. Thus D = C < O4(G). O

Definition 1.13.5. Let G be a group and m a set of prime. of G.

(a) A Sylow m-subgroup of G is a mazimal w-subgroup of G. Syl .(G) is the set of Sylow
w-subgroups of G.

(b) A m-subgroup H of G is called a Hall w-subgroup of G if, for all p € w, H contains a
Sylow p-subgroup of G.

(¢) We say that the Sylow w-Theorem holds for G if any two Sylow mw-subgroups of G are
conjugate in G.

Lemma 1.13.6. Let G be a group and 7w a set of primes. Then every mw-subgroups of G is
contained in a Sylow w-subgroup of G. In particular, G has a Sylow m-subgroup.

Proof. Let S be a set of m-subgroups of G which is totaly ordered with respect to inclusion.
Then |JD is a m-subgroup of G. So the lemma follows from Zorn’s lemma. 0

Lemma 1.13.7. Let G be a finite group, m a set of primes and H a subgroup of G. Then
G is a Hall w-subgroup of G if and only if H is w-group and |G/H| is coprime to .

Proof. Let p € m and S a Sylow p-subgroup of H. Then |S| = |H|, and so S € Syl,(G) if
and only if |H|, = |G|p, that is if and only if p does not divide |G/H|. O

Lemma 1.13.8. Let G be a group and m a set of primes.

(a) If the Sylow m-theorem holds in G, then all Sylow 7w-subgroups of G are Hall w-subgroups.
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(b) If G is finite, then all Hall w-subgroups of G are Sylow mw-subgroups.

Proof. @ Let H be Sylow m-subgroups of G, p € m and S a Sylow p-subgroup of G. Then
S is contained in a Sylow m-subgroup R of G. By assumption RY = H for some g € G and
so 99 is a Sylow p-subgroups of G contained in H. Thus H is a Hall m-subgroup of G. @
This follows since |G/H]| is coprime to 7 for all Hall m-subgroups H of G. O

Example 1.13.9. Sylow p'-subgroups of Sym(p).

Let p be a prime, G = Sym(p) and I = {1,2...,p}. Let H < G. H acts transitively on
I'if and only if p | |[H|. Thus H is a p’ group if and only if H normalizes a proper subset .J
if I. If H is a Sylow p’-subgroups we get H = Ng(J) = Sym(J) x Sym(I'\ J). Such an H is
Hall p/-subgroup if and only if p = |G/H| = (\gl) and so if and only if |J| =1 or [T\ J| = 1.
So the Sylow p’ subgroups of Sym(p) are Sym(k) x Sym(p — k) and the Hall p’-subgroups
are Sym(p — 1).

Example 1.13.10. Sylow and Hall subgroups of Sym(5)

The Sylow {2, 3}-subgroups of Sym(5) are Sym(3) x Sym(2) and Sym(4), with the latter
being a Hall-{2, 3}-subgroup.

Let ¢ € {2,3} and H a Sylow {q,5} subgroup of G = Sym(5). Suppose 5 | |H|. G has
six Sylow 5-subgroups, H has at most six Sylow 5-subgroups. Since 6 1 |H|. H has a unique
Sylow 5-subgroup S. Thus H < Ng(S) = Frobgy. If ¢ = 2 we get G = Ng(S) = Frobyg
and if ¢ = 3 we have G = § = (5.

Suppose 51 |H|. Then H is a g-groups and so H is a Sylow g-subgroups. For ¢ = 2 we
get H = Dg and for ¢ = 3, H = (5.

Example 1.13.11. Hall subgroups in GL3(2).

Let V be a 3-dimensional vector-space over Fy and G = GLp, (V). Let i € {1,2} and
P;i the set of i-dimensional subspace of V. Let V; € P; and put H; = Ng(V;). Then
|P;| = 223%11 =7and |H;|=3-2-4=24=23.3. So Hy and H, are Hall 7"-subgroups of G.
But H; and Hj are not-conjugate to in G' and so the Sylow 7-Theorem does not hold.

Let H be {3,7} subgroup of G. Then |H| =1,3,7 or 21. Suppose the latter. By Sylow
Theorem, G has 8 Sylow 7-subgroups and H has a unique Sylow 7-subgroups S. Hence
INc(S)| = 21 and H = Ng(S). Hence H is a Hall {3,7} subgroups and all Sylow {3,7}

subgroups are conjugate. So the Sylow {3, 7}-theorem holds.

Lemma 1.13.12. Let G be a group and 7 a set of primes. Let S be non-empty G-invariant
subset of Syl.(G). Then Or(G) =S =[Syl (G).

Proof. Clearly (S is a normal 7-subgroup of G and so (1S < Ox(G)). Also ()Syl,(G) <
S. Let H € Syl,(G) and N a normal 7-subgroup of G. Since G is {Q, P}-closed, NH is
a m-group and so N < H by maximality of H. Thus O,(G) < [ Syl.(G). O

Observe that the preceding lemma provides a new proof that O, (G) is a w-group.
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Lemma 1.13.13. Let 7 be a set of primes and G a finite w-separable group. Then G has
a Hall w-subgroup.

Proof. If G = 1, G is a Hall m-subgroup. So suppose G # 1 and let A = O,(G), G = G/A
and B = O,(G)). Since G is m-seperable, B # 1 and so by induction G/B has a Hall
w-subgroup K/B. Since K/B = K/B is a m-group and B is a 7/-group, there exists a
complement H to B in K. Since A and H are m-group, H is a m-groups. Also

|G/H| =|G/K||K/H|=|G/H||K/H| = |G/H||B.
and so |G/H| is coprime to 7. O

Lemma 1.13.14. Let 7 be a set of primes. Then every mw-subgroup of a w-solvable group
1 hypo-abelian.

Proof. Let G be a m-subgroup of a m-solvable group. Then G has a descending series all of
whose factors are in Ggo) UG,/. Since only the trivial group is a - and a 7’-group, all factors
are solvable. So each factor has a finite series with Abelian factors and so by G is
hypo-abelian. O

Lemma 1.13.15. Let 7 be set of primes and G a finite group. Suppose that G is w-solvable
or 7' -solvable. Then the Sylow w-theorem holds in G.

Proof. By G has a Hall w-subgroup H. Let S be Sylow m-subgroup of G. We will
show that S9 < H for some g € G. By[L.13.12] O, (G) < SNH and replacing G by G/Ox(G)
we may assume that O, (G) = 1. Let B = O/(Q)). Since G is m-separable, B # 1. Observe
that HB/B is a Hall-subgroups of G/B and SB/B is contained in a Sylow 7-subgroups
of G/B. So by induction Sh < HB for some h € G and we may assume that S < HB.
Since G is 7- or 7’-solvable, implies that either B or H is solvable. Also both S and
H N BS are complements to B in BS and so by S9 = HN BS for some g € G. So
89 < H and thus S¥" = H by maximality of S. O

Lemma 1.13.16. Let G be a finite group and A and B subgroups of G with G = BA.
(a) If N is an A-invariant subgroup of B, then (N®) < B.
(b) If 7 is set of primes with |G/B|, =1, then (O;(A)%) < B.

Proof. () (NC) = (N4B) = (NP) < B.
(]E[) Observe that
|0x(A)/Ox(A) N B| = [Ox(A)B/B|

is a m-number and a m’-number and so |Or(A)B/B| = 1. Thus Or(A) < B and () follows
from ([b)). O

Lemma 1.13.17. Let G be a finite group, ™ and p sets of primes with ©' Ny’ =0 and A,B
and C' subgroups of G. Let D be {Ngo, P, Q, Sp}-closed class of finite groups. Suppose that
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(a) G=AB = AC.

() 1G/Blx =1 = G/Cl,..

(¢) B and C are D-groups.
(d) A is a hypo-G U G, -group.
Then G is D-group.

Proof. Replacing G by G/Gp we may assume that Gp = 1. By (0:(A)%) < B.
Since B is a D-group, and D is S, closed we conclude that (O,(A)%) is a normal D-
subgroup of G. But Gp =1 and so Or(A) = 1. By symmetry, O,(A) =1 and since A is a
hypo-G. U G,-group, A = 1. Thus G = B is a D-group. O

Lemma 1.13.18. Let G be group m and p sets of primes with © N u' = 0 and suppose A
and B are subgroups of finite index with

|G/Alr =1=[G/B|,

Then G = AB and
|G/AN B| = |G/A|-|G/B]

Proof. Note that |G/AB] divides |G/A| and |G/B, so |G/AB)| is both a 7’ and a y/ number.
Hence |G/AB| =1 and G = AB = BA. Thus

IG/AN B| = |AB/AN B| = |A/AN B||B/AN B| = |AB/B||BA/A| = |G/B||G/A]
O

Corollary 1.13.19. Let G be a finite groups, ™ and p sets of primes with = Ny’ = 1.
Suppose Hr and H, are Hall w- and p subgroups, respectively. Then H.H, = H and
H,NH, is an Hall m N p-subgroup of G.

Proof. By [1.13.18/ G = H.H, and |G/H. N H,| = |G/Hy| - |G/u|. The latter number is
coprime to m N p. Also Hy N H,, is a m N p-groups and so H, N H,, is Hall 7 N p-subgroup
of G. 0

Corollary 1.13.20. Let G be a finite groups, m,1 < i < 3 be sets of primes and H; a
mi-Hall-subgroups of G. Suppose that ;N 7r3 =0 foralll1 <1< j <3 and that Hy, Hy and
Hj are solvable. Then G is solvable.

Proof. By [1.13.19/G = H1H, = H{Hs. Since H; is solvable, all composition factor of Hy
are p-groups. Since mp U 7y is the set of all primes, Hy is a hypo Gr, U Gr,-groups. So by
1.13.17], G is solvable. O
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Definition 1.13.21. Let G be group and P the set of all primes. A Sylow-system of G is
familiy (Sp)pep such that for each p € P, S, is a Sylow p-subgroup of G and for all p,q € P,
SpSy = S¢Sp.

Lemma 1.13.22. Let G be a finite group. Then the following are equivalent:
(a) For each set of primes w, G has a Hall m-subgroup.

(b) For each prime p, G has a Hall p'-subgroups.

(¢) G has a Sylow-system.

Proof. @ = @: Obvious.

@ == : For a prime p pick a Hall p’-subgroup, H, of G. So 7 a set of primes,
put Hy = (e Hy. Then by W, H, is a Hall m-subgroup of G. Let p and g be
primes. Put H, = Hy,,. Then Hy, and H, are Sylow p and g-subgroups of Hy, ;1 and hence
H +pH, = Hp,q} = HyH),. Thus (Hp)pep is a commuting Sylow system.

= @: Let (Sp)pep be a Sylow system. For 7 a set of primes, define H, =
H]ae7T Sp. Suppose inductively that H is a m-subgroup of G and let ¢ be prime. Since S;Sp
for all p € m, H; Sy = SqH . Hence H.S, is a mU{q}-subgroups of G. So H is a m-subgroup
of GG. Since it contains a Sylow p-subgroup for each p € 7, it is a Hall w-subgroup.

O

Lemma 1.13.23. Let G be a finite group with a Sylow-system (Sp)pep. Suppose that S,S,
is solvable for all p,q € P. Then G is solvable.

Proof. If |G| has at most two primes divisor, G = 5,5, for some p,q € P and the lemma
holds. So suppose p1, pe2, ps are three distinct primes dividing |G|. Define H; = qup; Sy
Then H; is Hall p}-subgroups. By induction on the number of primes divisors, each H; is

solvable. So by [1.13.20] G is solvable. O

1.14 Join of Subnormal Subgroups

Lemma 1.14.1. Let G be a groups, A a normal subgroup of G and B a subnormal subgroups
of G. Then AB is subnormal in G.

Proof. Just observe that BA/A is subnormal in G/A. O

Lemma 1.14.2. Let G be a group and M be a G-invariant set of subnormal subgroups of
G. Suppose that

(i) If A,B € M with (A, B) subnormal in G, then (A, B) € M.
(ii) Every non-empty subset of M has a maximal element.

Then
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(a) (A, B) << G for all A € M and all subnormal subgroups B of G.
(b) (N)y € M for all N C M.
Proof. @ Suppose false. By we can choose a counter example, (A, B) with A maximal.
Since A is subnormal in G we can choose a subnormal series
A=Ag< A1 <Ay<... <A,_1<A4, =G

Since (A, B) is not subnormal in G, we can ¢ minimal such that there exists D << A;
such that (A, D) is not subnormal in G. Then i > 0.

Suppose that D does not normalizes A. Then A # AY for some g € D. Since A <
A1 < A;and D < A;, A9 < A;_1 and so by minimal choice of i, (A, A9) is subnormal in
G. By (ii), (A, A9) € M. Then (A, D) = ((A, A9), D) is subnormal in G by maximal choice
of A, a contradiction.

Thus D normalizes A. Hence A<((A;, D) and by[1.14.1] (A4, D) <9< (A4;, D). By maximal
choice of A, (A1, D) is subnormal in G. Thus (A4, D) is subnormal in G, a contradiction.
So () holds.

() By (a), () and induction, (P) € M for all finite subsets P of N'. Hence by we
can choose a finite subset P of N with (P) maximal. But the (¢N) = (P) and the lemma
is proved. O

We remark the preceding lemma is false without the maximal condition.

Definition 1.14.3. Let G be a group. We say that G fulfills maz-subnormal if every non-
empty set of subnormal subgroups of G has a maximal element.

Corollary 1.14.4. If G is a group and fulfills maz-subnormal, then every set of subnormal
subgroups of G generates a subnormal subgroup of G.

Proof. Just apply to the set M of subnormal subgroups of G. O

1.15 Near-components

Definition 1.15.1. Let G be a group.

(a) M(G) is the subgroup of G generated by the proper normal subgroups of G.

(b) G is called nearly-simple if G is perfect and G # M(G).

(c) A near-component of G is a subnormal, nearly-simple subgroup of G.

(d) G is called quasi-simple, if G is a non-trivial perfect group with G/Z(G) simple.
(e) A component of G is a subnormal, quasi-simple subgroup of G.

Lemma 1.15.2. Let G be groups.



74 CHAPTER 1. GROUP ACTIONS

(a) G/M(G) is simple.
(b) Every quasi-simple group is a nearly-simple.
(¢) Every component of G is a near-component of G.

Proof. (g)) Let N/M(G) be normal subgroups of G/M(G)). By definition of M(G) either
N < M(G) or N =G. Thus N/M(G) =1or N/M(G) = G/M(G).

@ Suppose G is quasi-simple and let N < G with N £ Z(G). Since G/Z(QG) is simple,
G=NZ(G)andso G=G =[G,NZ(G)|[G,N] < N. Thus N = G and so M(G) < Z(G).
Since G =G’ # 1, G # Z(G) and so also M(G) # G. Thus G is nearly-simple.

Follows from @ O

Lemma 1.15.3. Let G be a group and H, K and E subgroups of G with E < K. Then E
is a supplement to H in G if and only K is a supplement to H in G and E is a supplement
to HNK in K.

Proof. If E(HNK) = K and KH = G, then G = KH = E(HN K)H = EH. And if
G=FEH,then K=KNEH=EKNH)and G=EH < KH < G. O

Lemma 1.15.4. Let G be a finite group and N < G with G/N perfect.
(a) There exists a unique minimal subnormal supplement R to N in G.
(b) R is perfect.

(¢) Suppose in addition that G/N is simple, then M(R) = RN N and R is the unique
near-component of G with R £ N.

Proof. @ Let S1 and S2 be minimal subnormal supplement to N in G. If 57 = G we get
S1 < 59 and so S; = S2. Thus we may assume that S; # G and so there exists G; <G with
S; < G;. Then G = G;N. Since G/N is perfect,

G = [G,G]N = [G1N,GyN|N =[Gy, Go]N

Thus also Gy = [G1,G2] is a normal supplement to N in G. Note that Gy < G1 N Ga
and that for 0 <i < 2. G;/G; NN 2 G;N/N = G/N is perfect. By induction there exists
a unique minimal subnormal supplement R; to N N G; in G;. Since S; < G; > Ry,
now shows that S = Ry = Ry = Ry = 55. So @ holds.

() As above [R, R] is supplement to N in G and so R = [R, R] by minimality of R.

Let K be any subnormal subgroup of K with K £ N. Then 1 # KN/N << G/N
and since G/N is simple, KN = G.

If K < R, this implies K = R. So any proper normal subgroups of R is contained in
RN N. Thus M(R) = RN N # R. By (b) R is perfect and so R is nearly-simple.

Let K be any near-component of G with K £ N. Then GN = K and so R < K and
thus K = (K N N)R. Since K NN < M(K) < K, R£ M(K) and so R =K. O
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Lemma 1.15.5. Let G be a finite group, K a near-component of G and N a subnormal
subgroup of N. Then one of the following holds:

1. K <N.
2. N normalizes K and [K,N] < M(K).

Proof. If N =G, holds. So suppose N # K and let H be a maximal normal subgroup
of G with N < H. If K < H, then or holds by induction on |G|.

So suppose K £ H. Then by K is the unique minimal subnormal supplement to
Nin Gand KNH = M(K). Thus K <G and so [K,N]| < [K,H| < KNH = M(K) and
holds. O

Lemma 1.15.6. Let K and L be near components of a finite groups G. Then exactly one
of the following holds.

K=L, K<M(L), L<M(K), [K,L<M(L)nMK)

Proof. We will first show that one of the four statements hold. Suppose K < L. By
L is the only near-component of L not contained in M (L) and so K < M (L) or K = L. So
suppose K £ L. By symmetry we may also assume L £ K. Then by [K,L] < M(K)
and by symmetry, [K, L] < M(L).

So one of the four statements hold. If K < L, then K = [K,K] < [K,L] and so
[K,L] £ M(K). It follows that at most one of the four statements can hold. O

Lemma 1.15.7. Let G be a finite group and K a component of G.

(a) Let N A< G. Then K < N or [K,N]=1.

(b) Let L be a component of G. Then K = L or [K,L] = 1.

(c) [K,Sol(G)] = [K,F(G)] = 1.

Proof. () Suppose K £ N. Then by [1.15.5 [K, N] < M(K) = Z(K). Thus
[NK,K|]<[Z(K),K|]=1and [K,N,K|=[N,K,K] = 1.

So by the Three Subgroup Lemma, [K, K, N] = 1. Since K is perfect, K = [K, K| and
so [K,N]=1.

(]E[) Suppose [K, L] # 1. Then by @), K < L. By symmetry, L < K and so L = K.

Since 1 # K = K', K is not solvable. Thus K £ Sol(G) and so by @, [K,Sol(G)] =
1. Since F(G) < Sol(G) also [K,F(G)] = 1. O

Definition 1.15.8. Let G be a group.

(a) G is called nearly-Abelian if H < Z(G) for all proper normal subgroups H of G.



76 CHAPTER 1. GROUP ACTIONS

(b) F*(G) is the subgroup generated by the nearly-Abelian subnormal subgroups. F*(G) is
called the generalized Fitting subgroup of G.

(c) E(G) is the subgroup generated by the components of G.
Lemma 1.15.9. Let G be a finite group.

(a) Ca(F*(G)) < F*(G).

(b) F*(G) = F(G)E(G).

(c) [F(G),E(G)] =1.

Proof. @ follows from Homework 4.

(]ED By Homework 4, a group is nearly-Abelian if and only if it is Abelian or quasi-
simple. The subgroup of G generated by the quasi-simple subnormal subgroups is E(G).
Let F be the group generated by the Abelian subnormal subgroups of G. Since F(G)
contains all nilpotent subnormal subgroups of G, F' < F(G). Since F(G) is nilpotent, each
subgroup of F(G) is subnormal in F(G) and so also in G. Since any group is generated by
its cyclic subgroups, and so also by it Abelian subgroups, F(G) < F. Thus F = F(G) and
F*(G) = F(G)E(G).

By [L.15.7 [F(G), K] =1 for any components K of G. Thus () holds.

O

Lemma 1.15.10. Let G be a finite group and K a totally unordered set of near-components
of G, that is K &« L for all K # L € K. Put E = (K), M = (M(K) | K € K) and
E=E/M. Let K € K and put K+ = (L€ K| L # K)M(K1). Then

(a) E is a perfect subnormal subgroup G.
(b) K QE.
(c) KnM=KnK'=M(K), E=KK" and so K= E/K+ = K/M(K).

(d) K+ = Cg(K/M(K)) and K+ is the unique mazimal normal subgroup of E with K %
K+

(¢) M = EBKGICFg@KeKK/M(K)‘

(f) Let R be a near-component of G. Then either R € KC or R < M and there exists K € K
with R < M(K). In particular, K is the set of maximal near-components of E and it
is also the set of the near-components of & which are not contained in M.

(9) The map K — K= is a bijection between K and the set of mazimal normal subgroups
of G.

(h) M is the intersection of the mazimal normal subgroups of E.
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Proof. By E is subnormal in G. Any group generated by perfect subgroups is perfect
and so @ holds.
Let K,L € K with K # L. Since K is totally unordered neither K < L nor L £ K.

Thus by

[K,L] < M(K)nM(L) < M

In particular, L normalizes K and so @ holds. Moreover, [K, K] < M(K) < M. Since
[K,K] =K %« M(K), K« K+ andso KN K+ < M(K) < M. Thus K N K+ = M(K).
Note that M(K) < M < K+ and so also K N M = M(K). Furthermore, F = KK+ and
thus is proved.

Since [K, K+] < M(K), K+ < Cp(K/M(K)). Since E/K+ = K/M(K) is simple, K+
is a maximal normal subgroups of E. Thus K+ = Cp(K/M(K)). Let N be any normal
subgroup of E with K £ N. By [K,N] < M(K) and N < Cg(K/M(K). Hence @
is proved.

We have KMN K+ =(KNKY)M =M and so E = K x K. Since

(*) K'=(L|Lek,L#K)

we conclude that @ holds.
From (*) and (¢,

() ﬂ Kt=M
Kek

Let R be a near-component of E. If R £« M, then R ¢ K+ for some K € K. Since
E/K* is perfect and simple, K £ K+ we have R = K by [1.15.4, Suppose R < M. Since
R = R' <[R,(K)], there exists K € K with [R, K| £« M(R). Since R < M we have K £ R

and so by [1.15.6| R < M (K). Thus (f) holds.
Let N be a maximal normal subgroups of E. Since E is perfect, E/N is perfect and so

by |1.15.4] there exists a unique near-component R of £ with R £ N. By (f), R < K for
some K € K. Then K £ N and so by [1.15.4| R = K. Thus by (d), N = K+. So the map
N — R, is inverse to the map K — K+ and @ is proved.

follows from (lg)) and (**). O
Remark 1.15.11. Let G be a finite group and H <4 G.
(a) The set of mazimal near-components of H is totally unordered.
(b) The set of minimal near-components of H is totally unordered.
(¢) If K is a near-component of G, then K€ is totally unordered. In particular, K < (KY).

(d) The set of components of G is totally unordered.
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Corollary 1.15.12. Let G be a finite group. Then map K — (K) is a bijection between the
totally-unordered sets of near-components of G and the perfect subnormal subgroups of G.
The inverse is given by H — KC*(H), where K*(H) is the set of maximal near components
of H.

Proof. H be a perfect subnormal subgroup of G and D be the subgroup of H generated by
all the near-components of G which are contained in H. Observe that D = (K*(H)).
Suppose for a contradiction that D # H. Then there exist a maximal normal subgroup
N of H with D < N. By there exists unique near-component K if H with K £ N.
Since H << G, K d< H and so K is near-component of G. Thus K < D < N, a
contradiction.
Hence H = (K*(H)) and the Corollary follows from O

Lemma 1.15.13. Let G be a finite group and S a composition series for G. For a a
near component K, choose S € & minimal with K < Sk. Then K/M(K) = Sk/Sk
and the map K — Sk /Sy is a bijection between the set of near-components of G and the
non-Abelian factors of S.

Proof. Note that K is a near-component of Sk with K ¢« Sy. Since K is perfect, Sk /Sx
is a non-Abelian simple groups and so perfect. It follows that K is the minimal normal
supplement to S in Sk. In particular, K is uniquely determined by Sk, Sk/S; =
K/M(K) and our map is injective.

Let S € S such that S/S™ is non-Abelian. Then the minimal subnormal supplement K
to S in S is a near-component of G with K £ S and K £ S~. It follows that S = Sk and
SO our map is surjective. [

1.16 Subnormal subgroups

Definition 1.16.1. (a) Let M be a set of sets and A a set. Then My ={B e M | B C
A}

(b) Let M be a partial ordered set. Then we say that max —M holds, if every non-empty
subset of M has a mazimal element.

Lemma 1.16.2. Let G be a group and M a G-invariant set of subgroups of G. Let L & M
and suppose that (L) A< G. Then L & My (zy)-

Proof. Since (L) << G there exists a subnormal series

(£y=Go<G1 <G <4...Gp1 4G, =G

from (L) to G. Since L C M = Mg we can choose ¢ minimal with £ C Mg,.

We claim that G; < Ng(Gp). If i = 0, G; = Gog < Ng(Gp). So suppose that i > 0.
By minimality of i, Mg, , = £. Since M and G;_; are Gj-invariant, also Mg, | is G;
invariant. Thus G; normalizes (Mg, ,) = (L) = Gp and the claim is proved.

Hence £ C Mg, € My, (Go) = Mng((c)) and the lemma is proved. O
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Lemma 1.16.3. Let G be a group, A a G invariant set of subgroups of G. For H < G
define
F={AcA| A< H}

Let B be a non-empty set of subgroups of G. Put
D= {(A5 NAZ) | B,B € B}.
Suppose that
(i) B = (A% for all B € B.
(i1) (P) A< B for all B € B and P C Aj.

(i) For all D € D and all Ay, A € Ang(py with A; A< A;D for i = 1,2, there exists a
maximal element B of B with A;D < B fori=1,2.

(iv) max —D-holds.
Then (B) € B.
Proof. Let B € B. Then B = (A$}) = (A% N A%) € D. Hence by {B* € B| B < B*}

has a maximal element. So every element of B is contained in maximal element of B. Hence
(B) € B if and only if B has a unique maximal element.

Suppose the lemma is false. By we can choose maximal elements By, By of B such
that

D := (Ap, NAB,)

is maximal with respect to By # Ba. Let i € {1,2}. By and the definition of D,
D << B;. Thus AP C A% Since By and By are maximal in B, By £ By and By £ By.
Since D < By N By we have By # D # Bo. Note that D = (A3})) and by H B; = <ASBHZ_). So
D < B; implies, A7} C A% . Observe that (A7) = D<J<4B; and so by [1.16.2) there exists
A € A% with 4; < Ng(D) and A; ¢ A3). Then A; £ D and A; << A;D. Thus by
there exists a maximal element B3 € B such that A;D << Bg for ¢ = 1,2. Since both A;
and D are subnormal in A;D we conclude that

{A1, A3} UAF C %13.
< FE. Since Ay is

Put E = (A% N AB). Then (A;,D) = (A1, AH) < E and so <
subnormal in By and Ay £ D, As is not subnormal in By. Since Ay << Bj this implies
By # Bs, a contradiction to the maximality of D. O

Lemma 1.16.4. Let G be a group and A and & non-empty G-invariant sets of subgroups
of G. Suppose that:

(i) Ap = A% for all E € £.
(’&Z) Let Al,AQ e A. Then <A1,A2> e & or Alﬂﬂ<A1,A2>.
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(111) (A3) € € for all H < G.
(iv) max —E-holds.
Then (P) € £ and (P)<<G for all P C E.

Proof. Put B = {(Ag) | E € £} and C = {(A}}) | H < G}. We will show that A and B
fulfill that assumptions of

1°.  C=BCE& and B=(A}) for all B € B.

By CCE.
Let E € £. Then by (i) B = (Ag) = (A}) eC C €.
Let H < G and put E = (A3}}). Then E € £ and
E= (A7) <(AF) =(Ap) < E
So E = (Ag) € B and is proved.
2°, Define D as in[1.16.3 Then D C £ and max —D-holds.

Let D € D. Then for some B,B € B, D = (AFNAY) < (AP) < Dandso D = (A) €
C =B C &. Together with this gives .
3°. Let E €& and P C Ag. Then (P) € B and (P)<<E. In particular, BI<LE for all
B € Bg.

Put M = B}}. Then M C £ and max —M-holds. Let X,Y € M with (X,Y)<<E.
Then (X,Y) € C = B and so (X,Y) € M. So we can apply and conclude that
(Q) € M for all Q C M. Hence (Q) € B and (Q)<<FE. By (i) Ag € M and so holds.

4°, Alﬂﬁ<A1, A2> fOT’ all Al,AQ e A.
If (Ay, Ag) € & this follows from (). now follows from ({if).

5°. Let D € D and Ay, Az € Ay, (py with A;d<A;D fori =1 and 2. Then there exists
a mazimal element B of B with A;D<<B fori=1 and 2.

Put By = <A1,A2>B. By Azﬁﬂ<A1,A2> Thus AzDﬂﬂ<A1,A2>D = By. Since
A;<<A; D this gives A;<I<UBy. Therefore

By = (A1, A, D) = (A1, Az, Ap) < (AB,) < Bo

and so By = (Ag, ) € C = B. Since B C &, (iv]) implies there exists a maximal element B of
B with By < B. By , A;D<<B and so (5°)) holds.

We verified the assumptions of and so (A) = (B) e BC E. Let P C A. Then by
applied with £ = (A), (P) € B and (P)<<(A) < D. So the lemma is proved. O

Lemma 1.16.5. Let G a finite group and A a G-invariant set of subgroups of G. If
A << (A, B) for all A,B € A, then A I G for all A € A.
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Proof. We may assume that G acts transitively on A and A # G for A € A. Let £ be the
set of proper subgroups of G. By induction on |G| we may assume that AJ<E for all E € £
and all A € Awith A< E €& SoAgp = A} forall E € £ Let H < G. If (A}}) ¢ €,
then H = G and A # (). Thus A<<G for some A € A and since G acts transitively on
A, the theorem holds. So we may assume that (Aj}) € € for all H < G. It follows that the
assumptions are fulfilled and again A<<G for all A € A. O

Lemma 1.16.6. Let G be a group.

(a) Suppose maz-normal-nil holds in G, that is every non-empty set normal nilpotent sub-
groups of G has a mazimal element. Then F(G) is nilpotent.

(b) Suppose max-subnormal-nil holds in G. Then every every nilpotent subnormal subgroups
of G is contained in F(G).

Proof. @ Since max-normal-nil holds in G, every nilpotent normal subgroup of G is con-
tained in a maximal normal-nilpotent subgroup of G. The product of any two maximal
normal nilpotent subgroups is a normal nilpotent subgroup and so G has a unique maximal
nilpotent normal subgroup.

(]E[) Let N =Gy <Gy <Gy ... 4G, = G be a subnormal series from N to G. By
induction on n, we may assume that N < F(G,). By () F(G,-1) is a normal nilpotent
subgroup of G and so F(G,,—1) < F(G). O

Lemma 1.16.7. Suppose maz-nil holds in the group G and let A be a G-invariant set of
subgroups of G. If (A, B) is nilpotent for all A, B € A, then (A) is nilpotent.

Proof. Let £ be the set of nilpotent subgroups B of G. Subgroups of nilpotent groups are
subnormal and so Ag = A% for all £ € £. max-nil holds in G and so max —&-hold. By
assumption (A, B) € £ for all A,B € A. Also A = (A, A) is nilpotent for all A € A and
thus by (A3}) is nilpotent for all H < G. Thus the assumption of are fulfilled
and so (A) € &, that is (A) is nilpotent. O
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Appendix A

Set Theory

A.1 Ordinals

Definition A.1.1. A well ordering on set S is a relation < such that
(i) If a,b € S then exactly one of a < b, a=">b and b < a holds.
(ii) If a,b,c € S with a < b and b < ¢, then a < c.

(i1i) If T is a non-empty subset of S, then there exists t € T with t < r for all v € T with
r#t.

Definition A.1.2. An ordinal is a set S such that
(i) Each element of S is a subset of S.
(ii) € is a well-ordering on S.
Example A.1.3. The following sets are ordinals:
0,{0},{0,{03},{0, {0}, {0, {0}}}, ...
Lemma A.1.4. Let a be a ordinal.
(a) Define o +1 =aU{a}. Then a+ 1 is an ordinal.
(b) Every element of ordinal is an ordinal.
(c) Let B be an ordinal, then exactly on of € a,a = B and 8 € « holds.
(d) Let 3,7 be ordinals with o € B € . Then « € 7.
(e) Let B an ordinal. Then o € 8 if and only if « C

(f) Let A be a non-empty set of ordinals, then (| A is an ordinal. Moreover, (1A € A and
so (VA is the minimal element of A.

83
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(9) Let A be a set of ordinals. Then |J A is an ordinal.

Proof. @ Let r € a+1. Thenz € aorx =a. If x C o and so also x C o+ 1. Then
T = «, then again x C a. So every element of o + 1 is a subset of . Now let y by any
non-empty subset of o + 1. If y = {a}, then « is a minimal element of y. If y # {«a}, then
y \ {a} is a subset of o and so has minimal element m with respect to €. Then m € o and
so m is also a minimal element of y. Since z € « for all z € oo + 1 with z # « is readily
verified that '€’ is a total ordering in o + 1.

(]E[) Let B € a and v € B. Since f is subset of a, v is an element and so also a subset of
a. If § € v, we conclude that § € a. Since § € v and v € 8 and ’€’ is a transitive relation
on « have that 6 € 8. Thus ~ is a subset of 5. Since '€’ is a well-ordering on « and ( is a
subset of «, '€’ is also a well-ordering on «.

Let v € a. By induction (on the elements of o + 1) we may assume that v € S,
vy=por B en. If y=p,then f € a. If § € v then § € a, since 7 is a subset of a. So we
may assume that v € 8 for all v € . Thus a C 8. We also may assume that « # 8 and so
there exist 0 minimal in 8 with § ¢ «. Let n € §. Then n € 8 and so n € a by minimality
of 6. Thus § C «. Since 6 ¢ « and = is both and element of o and a subset of a, § # 7 and
d ¢ ~. As both § and ~ are in § and '€’ is an ordering on 8 we conclude that v € . Thus
aCdandsoa=40¢€f.

@ This follows since [ is a subset of

If o € 3, then a C 3. Since € is ordering on A and o = « we have a ¢ « and so
a# fand a C 6.

Suppose now that « C . Then a # 5. If § € a, then § C o andso a = . So f ¢ «
and by , a € B.

() Any subset of a well-ordered set is well-ordered. So (] A is well-ordered with respect
to’e. Let x € (JA. Then = € a for all a € A and so z C a for all @ € A. Hence z C |J A.
Thus [J A is an ordinal. If (VA # a for all a € A, then (VA C a and by (g), A € a for all
a € A. Hence (N A € N4, a contradiction to ().

Let x1, 29,23 € |JA. Then z; € a; for some a; € A. Then x; C a; and so x; C A. By
and @ there exists a € {a1,as, a3} with a; < a for all a. Thus z1,x9, 3 € a. Since '€’
is an ordering on a we conclude that '€’ is also an ordering on |J A. Let d be a non-empty
subset of [JA and define B = {a € A | dNa # 0}t. By (f), B has a minimal element b.
Then b N d has a minimal element m and m is also a minimal element of d. Thus '€ is a
well-ordering in | A. O

Definition A.1.5. Let o and 8 be ordinals. Define the ordinal o + S inductively via
Q@ ifa=0

at+B={(a+7)+1 if B=~v41 for some ordinal
Supycga+7  otherwise

Let ag be the smallest limit ordinal. Then 1+ ap = ag # ag + 1. So the addition on
ordinals is not commutative.
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Lemma A.1.6. Let a, 8 and v be ordinals. Then
(a) B <~ if and only if a + B < a+ .
(b) a+ B =a+~if and only if 5 =r.

Proof. Suppose first that § < v. If v = d + 1 for some ordinal §, then 8 < § and so by
induction a4 < a+4§. Since (a+7) = (a+(d)+1 and a+v < (a+7)+1 we conclude that
a+ 8 < a++. So suppose v is a limit ordinal. Then §+1 <y andsoa+ (f+1) <a+7y
by the definition of addition. Since o + 8 < a + (5 + 1) we again have a + 5 < a + 7.

In general exactly one of

B<~, B=n, and v < f8
In this cases we conclude
a+p<a+, a+ 6 =a+", and a+v < a-+ g,
respectively and so @ and (]E[) holds. O

Lemma A.1.7. (a) Let o and B be ordinals with o < (3, then there exists a unique ordinal
6 with a+ 6 = p.

(b) Let o and B be ordinals. Then

faty[vy<B={pla<p<a+p}

Proof. (fa)) The uniqueness follows from [A.1.6|(b). So it suffices to find an ordinal § with
a+0=p. If B =a, we can choose § = 0. Inductively if a < v < 8 let v* be the unique
ordinal with a +~* = . If § = v+ 1 for some ordinal ~, then

o+ () = (a+7) H 1=+ 1=

and we can choose § = v* + 1.

So suppose f3 is limit ordinal and put § = sup,<~<g7*}. Note that I':= {y | o <~y < g}
has no maximal element and so by [A.1.6|fa)), also {y* | v € I'} has no maximal element.
Thus § is a limit ordinal. Let p be an ordinal with g < §. Then p < ~* for some ordinal
vyeTl. Thus p:=a+pu < a+~v" < . It follows that a + 4 = p = a + p* and so mu = p*.
Thus {p | u < 8%} ={p* | p € T. Hence

a+d=supa+pu=supa+p =supp=_
n<d pel* pel’

where the last inequality holds, since § is a limit ordinal.

() If v < B, then by [A.1.6f a + v < a + S.
Conversely, if « < p < a + 5, then by @, p = a + ~ for some ordinal v. Since

a+y=p<a+p,Al6gives p <. O
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Lemma A.1.8. Let o, 8,7 be ordinals.
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Then

(@+B)+y=a+(B+7)

Proof. If v = 0, both sides are equal to a + 3. So suppose v # 0 and that (a + 3) + =

a+ (B +9) for all ordinals § < ~.

Suppose that 8 = § + 1 for some ordinal §. Then

(a+8)+7

Suppose next that ~ is a limit ordinal.

(a+B)+7

Definition A.1.9. Let « and 8 be ordinals.
follows

0
ay + «

SUp, g @y

af =

a+pB)+(0+1)
(a+pB)+6)+1
+(B+0))+1
(B+6)+1)
B+ (5+1))
(B+7)

(
(

(a

a+
a+
a+

Then

sup(a+ 8) + 6
o<y

supa+ (8 +9)
o<y
sup
B<p<B+v
sup a—+p
p<B+v

a+(B+7)

a+p

O

Then the ordinal af is inductively defined as

ifB=0
ifB=~+1
if B s a limit ordinal

Observe that 0o =0, la=a=al and a2 =a+a. But 2a=a # a+a = la+ la

for any infinite ordinal.
distributative.

Lemma A.1.10. Let o, o, &, p,p be ordinals with o # 0, p < «, and p < «.

So multiplication of ordinals is not commutative and not left

Then

oo +p < ad+pifand only of c <& oro =06 and p < p. Let o, 8 and v be ordinals with

a#0 and B <. Then aff < ary.
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Proof. =>: 1If 8 <~ the definition of the multiplication of ordinals shows that a8 < a~.
Suppose o < 7, then ¢ +1 < & and so

ac+p<act+a=alc+1)<as <as+p.

Suppose 0 = ¢ and p < p. Then

ac+p=aoc+p<ac+p.

<=: Suppose that ao + p < <ad + p. By the forward direction with the roles of (¢, p)
and (&, p) transposed we neither have 6 < o nor 6 = o and p < p. Since (p,0) # (p,5) we
conclude that either ¢ < sigma or 0 — 6 and p < p. O

Lemma A.1.11. Let a and B be ordinals with o # 0. Then there exists unique ordinals
o,p with B = ac + p and p < B. Moreover, if ¢ and ¥ are ordinals with p < «. Then
oo+ p < ad+pifand only of 0 <G oro =06 and p < p.

Proof. Note that the uniqueness assertion follows from So we just need to proof the
existence of o and p. We use induction on . If 8 = 0, choose 0 = p = 0.

f=~v+1lety=ac+pwith p < a. If p+1 < a we can choose 0 =6 and p = p+ 1.
If p+1=«, then

f=y+l=a+p+1l=a0+a=a(6+1)

So we can choose 0 =& + 1 and p = 0.
Suppose now that g is a limit ordinal.
For § < 3, let § = aos + ps with ps < a. Put

6 = supoy.
0<p

Suppose that 6 # o5 for all & < B. Then by [AT1.I0} 6 < afho for all § < 3 and
so B < a6. Also 6 is a limit ordinal and if € < &, then € < o5 for some § < S. Then
ae < aos + ps = 6 <  and so by definition of ad,

a6 =supae < f3
<6

Thus g = a6 and we can choose 0 = ¢ and p = 0.
Suppose that 6 = o5 for some § < f and let A = {0 < 3|05 =05}. Put

p = supos.
dEA

By if 6 < B with o5 < 6, then § = acs < ad < a6 + p. It follows that

B =supd =supd = supad + ps = ad + sup ps = o + ps
0<p ISTAN ISTAN deA
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Since ps < aforall § € A, p < a. If p < a, choose 0 =& and p = p. If p = a choose
c=06+1and p=0. O

Lemma A.1.12. Let o be an ordinal and A a non-empty set of ordinals. Then

Q (sup 5) = sup ad
dEA dEA

Proof. Let B = supgsca 0 and v = supgep ad. Let 6 € A. Then 6 < 3. and so also ad < of5.
Hence v < af.

If o = 0, both v and af are equal to zero. So suppose o # 0. Then by we have
v = ao + p for some ordinals o, p with p < a. Since ad <y we get from [A.T.10] that § < o
and so 8 < o. Thus af < aoc+ p =~ and so v = af. O

Lemma A.1.13. Let «, 8 and v be ordinals. Then
(a) a(B+7)=af +ay.
(b) (aB)y = a(B7).

Proof. @ If v = 0 both sides are equal to af. Suppose v =§ + 1. Then

af+7y) = aB+(6+1) = a(B+0)+1)
= af+(ad+a) = af+a(d+1) = af+ay.

a(f+0)+a = (af+ad)+a

Suppose that v is a limit ordinal. Then also 8 4 ~ is limit ordinal. So

a(f+v) = sup ad =supa(B+e€) =supaf + ae = aff + sup ae = aff + ay
§<B+vy e<y e<y e<y

(]E[) For v = 0 both sides are equal to 0. Suppose v =9 + 1. Then

(@B)y = (aB)(0 +1) = (af)d + af = a(Bd) + af = a(Bd + B) = a(B(0 + 1)) = a(B7)

Suppose 7 is a limit ordinal. Hence using

(aB)y = sup(af)d = sup a(0) = (Sup B5> = a(67)

o<y o<y o<y
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Lemma A.1.14. Let o, 8 be ordinals with o # 0 # 3. Define an ordering on a X 3 by
(p,o) < (p,0) ifo <& oro =0 and p < p. Define
f: axpg — af
(p,o) — aoc+p

Then f is an isomorphism of order sets.

Proof. This follows immediately from [A.1.10[ and [A.1.11] ]
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