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Chapter 1

Basic Concepts for Infinite Groups

1.1 Classes of Groups and Operators
Definition 1.1.1. [class of groups] A class of groups is class X such that
(i) [i] Each member of X is a group.
(ii) [ii] If G € X and H = G then H € X.
(ii) [iii] All trivial groups are in X.
For example each of the following are classes of groups:

e [a] F, the class of finite groups.

[b] Fr, the class of finite m-groups (here 7 is a set of primes, and a finite group G is a
m-group if all prime divisors of |G| are in 7.

e [c] C, the class of cyclic groups.
e [d] A, the class of abelian groups.
e [e] G, the class of finitely generated groups.

e [f] T, the class of trivial groups.

Definition 1.1.2. [extensions| Let X and ) be classes of groups.
(a) [a] The members of X are called X -groups.
(b) [c] We say that X is a subclass of Y and write X <Y if A€ forall Ac X.

(c) [b] XY denotes the class of all groups G such that there exists A < G with A € X and
G/Ae Y. A XY-group is also called a X-by-) group.
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Consider the subnormal series

19((12)(34)) < ((12)(34), (13)(24)) < Alt(4) < Sym(4)
The factors of this series are isomorphic to

C3,05,C3,C

Thus Sym(4) is a member of ((CC),C)C.

Note that Sym(4) has no non-trivial cyclic subgroup. It follows that Sym(4) is not a
member of C((C(CC))). hence the associate law does not hold for products of classes og
groups. To save parentheses we use the following convention for products. Let a1, as,...ay,
in a set with a binary operation. Then

aj - ag - az = aj(agas)
and inductively
ay-az-as-...-an=ay(ag-ag-...-ap)
Lemma 1.1.3. [char ext]| Let X}, Ao, X, be classes of groups and G a group.

(a) [a] G € X1Xy... X, if and only if there exists a subnormal series

14G1 4G22 9...Gr—1 1Gy,
of G such that G;/Giy1 € X; for all1 < i <n.

(b) b] Ge Xy-Xy-...- X, if and only if there exists a normal series

194G194G24...Gp1 4Gy

of G such that G;/Git1 € X; for all 1 <i <mn. (Recall here that “normal series” means
that each G; is normal in G.

(C) [C] XlXQXn§X1X2Xn

Proof. (a) and (b) follows easily from the definitions. Since every normal series is a sub-
normal series, (c) follows from (a) and (b). O

Definition 1.1.4. [operation] An operation A on the classes of groups is a rule which
assigns to each class of group X a class of group AX such that

(i) [a] AT =T.
(ii) [b] X < AX for each class of groups X.

(iii) [c] AX < A)Y for each classes of groups X,Y with X < ).
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For a class of group X let SX the class of all groups which are isomorphic to a subgroup
of X-group.

For a class of group X let HX the class of all groups which are isomorphic to a homo-
morphic image of a X-group.

Then both S and H are operations.

Define X0 := T and inductively, X"*! := x°X. Also put PX := [J22, ™. Then P is
an operation. Then members of PX" are called poly-X-groups.

Lemma 1.1.5. [char solvable] Let G be a group and n € N. Then the following are
equivalent.

(a) [a] G e A™.
(b) [b] G™ =1.

(c)fc] GEA-A-...-A

n—times

Here G™ is inductively defined as G©) := G and G**1 = [G™,G"]. Also we often use G’
for GV, @ for G? and so on.

Proof. (a) == (b):  Suppose G € A". Since A" = A" ' A there exists H < G with
H € A" ! and G/H € A. Hence G/H is abelian and so G’ < H. By induction on n,
H™ 1) =1 and so

G — (G/)(nfl) < Hm=1 —1q

(b) = (c¢):  Suppose G(™ =1 and consider the normal series

1=GWac Vg . . gW<c" =G
Since G0~V /G0 is abelian, 1.1.3(b) shows that G € A- A-...- A.
—

n—times
(¢c) = (a): Suppose that Ge A-A-...- A Then by 1.1.3(c), G € A". O
n—times

Definition 1.1.6. [def:solvable| A group G is called in solvable if and only if its is polya-
belian, that is if G € PA.

Combining 1.1.5 and 1.1.3 we see G is solvable iff G has a subnormal series with abelian
quotients, iff G =1 for some n € N and iff G has a normal series with abelian factors.

Definition 1.1.7. [A-closed]| Let A and B be operations.
(a) [a] A class of groups X is called A-closed if AX = X.

(b) [b] The operation AB is defined by (AB)X = A(BX for all classes of groups X.
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(c) [c] A is called an closure operation if for all classes of groups X, AX is A-closed.

X is S closed if and only if every subgroup of an X-group is a X-group.
The classes of groups F,G, A, Fy, all are S and H closed.
A is a closure operator iff A(AX) = AX for all classes of groups X and so iff A = A2

Definition 1.1.8. [def: subdirect product]

(a) [a] Let (Gi,i € I) be a family of groups and H a subgroup of X,.; G; such that for
all i € I the projection of H onto G; is onto. Then H is called a subdirect product of
(G;,i € I). More generally we will also call any group isomorphic to a subdirect product
a subdirect product.

(b) [b] Let X be a class of groups. Then RX is the class of all groups which are isomorphic
to subdirect product of a family of X -groups. The members of RX are called residually
X -groups.

Lemma 1.1.9. [subdirect product] let G be a group.

(a) [a] Let (Gi,i € I) be a family of normal subgroups of G. Then G/ (\;c; Gy is a subdirect
product of (G/Gi,i € I).

(b) [b] Let (H;,i € I) be a family of groups Then G is isomorphic to a subdirect product
of (Gy,1 € I) iff there exists a family of (G;,i € I) of normal subgroups of G such that
Nic; Gi =1 and G/G; = G for allic 1.

(c) [c] G is a residually X group iff for all 1 # a € G there exists a normal subgroup G,
of G such that a ¢ G, and G/G, € X.

Proof. (a) Define a : G — X,.; G/Gi,h — (aGy,i € I). Then kera = (,c; Gi = 1. Also
the image of « is clearly of subdirect product of (G/G;,i € I). So G/(\;c; Gi = G/ ker v =
Im « is a subdirect product of (H;,i € I).

(b) Suppose there exists a family of (G;,7 € I) of normal subgroups of G such that
Nie;Gi = 1 and G/G; = G; for all i € I. Then by (a) G = G/(),c; Gi is a subdirect
product of (G/G;,i € I). Since X,.;G/G; = X,;; H;, G is also a subdirect product of
(HZ', 1€ I)

Suppose next that G is a subdirect product of (H;,i € I). Let G; be the kernel of the
project of H onto G;. Then clearly (,c; G; = 1 and G/G; = H;.

(c) Suppose G is a residually X' groups. G is a subdirect product of a family (H;,i € I)
of X groups. By (b) there exists a family (G;,i € I) of normal subgroups of G with
Nic; Gi = 1 and G/G; = H;. Thus G/G; is an X groups. Let 1 # a € G. Since [);c; G; = 1
there exists i € I with a ¢ G;. So the second statement in (c) holds with G, = G;.

Suppose next that for each 1 # a € G there exists a normal subgroup G, of G such that
a ¢ Gq and G/G, € X. Then (¢t Go = 1 and so by (b), G is a subdirect product of the
family of X-groups, (G4, a € G¥). Thus G is residually X. O
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1.2 Varieties

We will consider classes of groups which are R and H closed. It will turn out that these
are exactly the so called varieties of groups:

Let I be a set. Recall that a free group on I is a groups generated by a family x = (z;,7 €
I) of elements such that for each group G and each family of elements y = (y;,4 € I) € G/,
there exists a unique homomorphism «ay, : F' — G with ay(x;) = y; for all i € I. The call
the elements of F' words in (x;,7 € I). Note that each word # € F' can be uniquely written
as

— i1 Mg
O0=xp, .. .o

where k is a non-negative integer, i; € I,4; # 4;11 and my; is a non-zero integer. Also

ay(0) = ?J%l . yzn,zk

We will also write §(y) for ay,(0).
If 0 is a word and G is group define

0(G) = {ay(9) |y € G") = (6(y) |y € G'

For example 1p(G) = 1, 21(G) = G, [x1,22)(G) = G', and [[x1, z2], [x3, 23](G) = G”
More generally if W C F'is a set of words we define

W(G)=(GY |0 W = (a,0) |y € G0 € W)

The variety V() defined by 6 is the class of all groups G such that 0(G) = 1, so G € V(0)
if and only if

y?fl...y;:kzlforallyeG[

For example V(1) is the class D of all groups, V(z1) is the class T of trivial groups and
V([z1,x2]) is the class A of abelian groups.

More generally if W is a set of words the variety V(W) defined by W is the class of all
groups G such that W(G) = 1. And a variety of groups is the variety defined by some sets
of words.

Lemma 1.2.1. [onto hom| Let I be a set, J C I, F a free group on I, H a groups and
y € H’. Suppose that |I\ J| > |H|. Then there exists an onto homomorphism 3 : F — H
with B(xj) =y, forall j € J.

Proof. Since |I'\ J| > |H| there exists an onto function 7 : I\ J — J. Define z € H! by
zi=7(i) of i ¢ J and z; = y; if i € J. Then the lemma holds with 5 = «,. O
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Definition 1.2.2. [defiwx]| Let X be a class of groups and F a free group of infinite rank
on (x;,i € Z7).

W(X)={we F|w(@) =1 forall G € X}

Proposition 1.2.3. [char variety]| Let X' be class of groups. The the following are equiv-
alent:

(a) [a] X is H and R closed.
(b) [b] X =V(W(X))
(c) [c] X is a variety of groups.

Proof. 1t is easy to verify that a variety of groups is H and R closed (see Homework 1).
Also (b) implies (c). So we just need to show that (a) implies (b). Assume X is H and
R closed and put W = W(X). Clearly X < V(W). So we just need to show that any
G € V(W) is an X-group. Note that for any # € F'\ W there exists a X-group Hy with
0(Hy) # 1. Let I be an infinite set with cardinality larger that |G| and any |Hy|, 0 € F\ W
(For example J = {ycr HoW N W G.) Let F; be a free group on (2,4 € I). By 1.2.1 there
exists an onto homomorphism « : F; — G. Put M = ker . We will now show

1°. [1] Let a € Fr \ M, then there exists K, < Fy with Fi/K, € X and a ¢ K,.

mg

Indeed let a = zZ“ ooz, " owith 4 € T and my, € Z%. Since Z7 is infinite, there exists

Iy -5 gk € I with ig = 44 if and only if js = j;. Put
9:2:6271‘1...93;]:’“ eEF

u; = z; M € F]/M and u = (Uz')iel € (F[/M)I.

Then

O(u) =ujl* .. .ouj® = 2" 20 "M = aM # lpy
Hence O(F;/M) # 1 and since Fy/M = G also 0(G) # 1. As p(G) = 1 for all pinW this
implies that § € F\ W. Since 0(Hy) # 1 there exists y € HJ with 6(y) # 1. Since I is
infinite
I\ { [1<T <k} = I = [Hy|

Thus 1.2.1 there exists an onto homomorphism (3 : F; — Hy with ((z;) = y; for all

le {il, .. Zk} Then

Bla)=yi" ... y;* =0(y) # 1
and so a ¢ ker 5. Also Fr/ker f =2 Im 3 = Hyp € X and so (1°) holds with K, := ker .

Put K :=(,cp\n Ko Ifa € Fi \ M, then a ¢ K, and so also a ¢ K. Thus K < M.
By 1.1.9(a), Fr/K is a subdirect product of the family of Xgroups (Fr/K,,a € Fr\ M).
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Since X is R-closed this means that F7/K is a X-group. Since X is H-closed, any quotient
of Fi/K is also a X -group. As

G F;/M=F/K/M/K
we conclude that G € X and so X = V(W). O
Definition 1.2.4. [defthom| Let H and G be groups.
(a) [a] Hom(H,G) is the set of homomorphism from H to G.
(b) [b] End(G) is the set of endomorphism of G, that is End(G) = Hom(G, G).
(c) [c] A subgroup A of G is called fully invariant in G, if a(A) < A for all o € End(G).
(d) [d] A subgroup A of G is called characteristic in G if a(A) < A for all o € Aut(G).
See Homework 1 for example if subgroups which are characteristic but not fully invariant.
Lemma 1.2.5. [hom fg] Let F' be a free group on the set I, W C F and G a group.
(a) [a] Hom(F,G) = {ay |y € G'}.
() [b] End(F) = {ay |y € G'}.
(c) [c] W(G) = (B8(W)|f € Hom(F,G)).
(d) [d] W(F) = (B(W)|B =End(F)}).
Proof. (a) follows immediately from a definition a free group. (b) is the special case F' = G

in (a). (c) follows from (a) and the definition of W(G). (d) is the special case F' = G in
(c). O

Lemma 1.2.6. [full invariant| Let F be a free group and W < F. Then the following are
equivalent.

() [a] W =W(F).
(b) [b] W is fully invariant in F.
Proof. By definition, W is full invariant in F iff §(W) < W for all 5 € End(F) and so if

and only if (B(W) | B € End(F)) < W. Since W = idp(W) < (B(W) | 8 € End(F)), this
holds iff W = (B(W) | 8 € End(F)) and so by 1.2.5(d), iff W = W (F). O
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1.3 Series

Definition 1.3.1. [def:action]

(a) [a] An actions (of groups) is a triple (A,G,«a), where A and G are groups and « :
A — Aut(Q) is a homomorphism. We usually will write g* for g.aa and call (A, G) an
action. We also will say that say that A acts on G and that G is an A-group.

(b) [b] Suppose A acts on G. A subgroup H of G is called A-invariant if H* = H for all
a € A. We also will say that H is an A-subgroup

(c) [c] We say that an action of A on G is simple, if there exists no proper normal A-
subgroup of G. In this case we call G a simple A-group.

(d) [d] An action is called faithful if o is 1-1.

(e) le] If G is an A-group, S C G and T C A, then Cs(T) ={s € S|s' =s forallt € T}
and Cp(S) = {t € T | s* = s for all s}. Ca(G) is called the kernel of the action. Note
here that C4(G) = ker .

Definition 1.3.2. [def:series| Let G be a group, A a group acting on G, H an A-invariant
subgroup of G and H am A-invariant subgroup of G. An A-series from H to G is set N
such that

(i) [i] If D € N then D is an A- subgroup of G containing H.
(ii) [ii] He N and GeN.

(i11) [iii] N s totally ordered with respect to inclusion, that is if D,E € N then D < E
or E<D.

() [iv] N is closed under intersections and unions, that is if ) # M C N, then fM € N
and | JM e N.

(v) [v] For D € N\ H define D~ : | J{E € N | E < D}. Then D~ < D.

A A-series of G is a A-series from 1 to G.
A series from H to G is a 1-series from H to G.

Observe that a finite series of G is such a set of subgroups {Ny, N1, Na, ... Ni} of G
such

1=NodIN; dNo Q... N1 AN, =G

Let K be a field, 2 a set and V' a K-space with basis (v;,i € ), Observe that Sym(€2)
acts on V via v = v, for all i € Q, g € Sym(Q). Let Vo = {3 ,cqAivi | Dojeq Xi = 0}
Then
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0<VH<V

is a normal Sym(2)-series on V. Let p be a prime, then

0..prt'z<pfz<.. pP2<pz<7
is a normal series of Z.

Definition 1.3.3. [def:basic series| Let G be a group, A a group acting on G, H an
A-subgroup of G, and N an A-series from H to G

(i) [a] If D e N\{H} with D # D~ then D/D~ s called a factor of N and (D~, D) is
called a jump of N

(it) [b] N is called a normal if D < in G for all D € N

(iii) [c] N is called an A-composition series from H to G if each factor of N is a simple
A-group,

(iv) [d] N is called an A-chief series from H to G if N is a normal and no proper subgroup
of a factor of N is invariant under A and G.

(v) [e] N is called ascending if N is well-ordered with respect to inclusion, that is every
non empty subset of N has a minimal element.

(vi) [f] N is called descending if N is well-ordered with respect to reverse inclusion, that
is every non empty subset of N has maximal element.

The series
0..p"z<prz <. p?2<pz<7Z

is a descending compositions series for Z. We claim that Z does not have an ascending
compositions series. Indeed, let A/ be any ascending series of Z and let D be the minimal
element of N'\ {1}. Then D~ = 1 and so D = D/D~ is isomorphic to a factor of N.
Since D is a non-trivial subgroup of Z, D = Z and so D is not simple. Thus N is not a
composition series.

Lemma 1.3.4. [easy jumps]| Let N be a series from H to G.

(a) [a] Let B,T € N with B < T, then (B,T) is a jump of N if and only if C = B or
C+T for any C € N with with B< C <T.

(b) [b] Let X C G with X € H. Put Bx .= {DeN |X D} and T, =({E € N |
X C E}. Then Bx UX C Tx and one of the following holds:

1. 1] X € Bx =Tx and X is infinite.
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2. 2] X € Bx < Tx and (Bx,Tx) is the unique jump of N with X C Tx and
X ¢ By.

Proof. (a) Let (B,T) is a jump and suppose C' € N with B < C < T. Since (B,T) is a
jump, B=T". If C # T then C < T~ = B by definition of T~. Thus C' = B.

Suppose now that C = Bor C = T for all C € N with B< C <T. Let D ¢ N/
with D < T. The B < D or D < B. In the former case we have B < D < T and so
the assumption of (B.T') implies B = D. So in any case D < B and thus 7~ < B. Since
B < T, we also have B< T~ and so B=T" and (B,T) = (T~,T) is a jump of N.

(b) Let D € N with X ¢ D and F € N with X C E. Then E ¢ D and so D C E.
Thus Bx C Tx. Clearly X C Tx.

Suppose that X € Bx. Then Tx C By and so Tx = Bx. Moreover for each z € X
there exists D, € N with « € D, but X ¢ D,. Let D = |J,cx Dz Then X C D and so
D # D, for all x € X. Since N is totally ordered this implies that X is infinite.

Suppose next that X ¢ Bx. Then Bx C Tx. Let D € N with Bx < D < Tx. If
XCD,thenTy <DandsoD=Tx. If X Q D, then D < Bx and so D = Bx. Hence by
(a), (Bx,Tx) is a jump.

Now let (B,T) be any jump with X C T and X ¢ B. Then by definition of Bx and
TX7

B<Bx<Tx<T

Since (B,T) is a jump, (a) implies B = Bx and T = T¥. O

Lemma 1.3.5. [completion] Let S be a set and N a chain of subsets of § (That is every
member of N is a subset of S and if D,E € N then D C E or E C D). Let N* =
{NMM,UM |0 #MCN}. Then N* complete chain of subsets of S, that is N* is a chain

of subsets of N and is closed under unions and intersections.

Proof. Let D € N*. Then there exists D C N with D = (D or D = [JD. In the
first case put D = {A € N' | D C A} and note that D = ()D. In second case put
D ={A e N |AC D} and notet that D = (\D. D is either the intersection of a subset
of N which is closed under supersets or the unions of subset of ANV which is closed under
subsets.

We will first show that

1°. 1]  N* is a chain.

For this let D, E € N*. Suppose first that D = (D, E = (€ with D, £ subsets of N.
Suppose D ¢ £. Then there exists B € £ with D ¢ B. Since D C A for all A € D, we get
A,@BandsoBgAforallAeD. Thus B C (D and so also E C D.

Suppose next that D = (D and E = |J& with D, & subsets of N. Suppose D ¢ E.
Then D ¢ B for all B€ &. Thus A ¢ B for all A € D and so B C A. Since this holds for
al Ae Dandall BeE, E=JECD=D.
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Suppose next that D = |JD and E = [J& with D, € subsets of N'. Suppose D ¢ E.
Then A ¢ E for some A € €. It follows that A ¢ B for all B € B and so B C A. Thus
E =R C Aandsoalso EC D. Thus (1°) holds.

Next let M be a nonempty chain in N*. Let M = {D; | i € I} U{E; | j € J} such
that D; = (| D;, where D; C N is closed under supersets, and E; = [J&;, where £ C N is
closed under subsets.

2. 2] NMeN™

Put D = ey Di and E = (\;c; Ej. Then (\M = DN E. Observe that D =
N (Uier Di) and so D € N*. If E € N'*, the since N* is a chain DNE =D or DNE = E.
In either case D N E € N*. So to complete the proof of (2°) to show that F € N*.

Put & = (¢, €. We claim that

(%) Ue<E<NV\E)

Indeed let A€ €. Then A €& forall j € Jandso A< (& =Ej and A< (), Ej =
E. Thus Y& < E.

Alsoif B € N\E, the B ¢ &, for some k € J. Since & is closed under subsets, this means
B ¢ X and X C B for all X € &. Thus By = J& < Band E =(;; B < Ex < B.
Since thus holds for all Be N\ &, E <N\ ). So (*¥) is proved.

If YN\ € C E we conclude that E = N\ £ € N*.

So suppose that YA\ & € E. Since E = ;. ; Ej; this means that (YA '\ & C Ej, for
some k € J. Let A € N C &. It follows that A ¢ Ej and hence A € B for B € ;. In
particular, A ¢ &. We proved that N\ & C N\ & and so & C E. As € C &, we have
&, = E&. Thus

E=()E <E.=J&=J¢
jeJ
and (*) gives £ =J& € N*.
3°. [3] UM eN*.

Put D = J;c; Di and E = {J;c; Ej. Then JM = DU E. Observe that E = {JU,c, &
and so E € N*. If D € N'*, then since N* is a chain DUE = D or DUFE = E. In either
case DU FE € N*. So to complete the proof of (3°) to remains show that D € N'*.

Put D = (,c; D;. We claim that

(%) UwN\D)<D<D

Indeed let A € D. Then A € D; for alli € I and so D;|JD; < A. Thus D=JD < A
and so D < D.
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Also if B € N'\D, then B ¢ Dy, for some k € I. Since Dy, is closed under supersets, this
means X ¢ B and B C X for all X € Dy. Thus B < (D = Dy, and B < Dy, < {J,c; Di =
D. Since thus holds for all Be N\ &, UWN \ D) < D. So (**) holds.

If D <J(WN \ D) we conclude that D = JN \ D € N'*.

So suppose that D £ [JN \ D. Since D = |J;c; D; this means that Dy £ [JN \ D for
some k € I. Let A € N C D. It follows that Dy, ¢ A. Since Dy, =Dy, B ¢ A for B € Dy,
In particular, A ¢ Dy. We proved that N'\ D C N\ Dy and so Dy C D. As DsubseteqDy,
we have D;, = D. Thus

D:UDksz:ﬂDk:ﬂD

i€l
and (**) gives D = (D € N*. O

Lemma 1.3.6. [char comp]| Let G be an A-group and N an A-series from H to G. Order
the set of A-series from H to G by inclusion.

(a) [a] If N is a mazimal A-series from H to G, then N is an A-composition series from
H to G.

(b) [b] Suppose N is normal. Then N is a mazimal normal series from H to G if and
only if N is a chief-series from H to G.

(c) [¢] There exists a mazimal A-series from H to G containing N'. In particular, there
exists a A-composition series from H to G containing N .

(d) [d] Suppose N is normal. There exists a mazimal normal A-series from H to G
containing N'. In particular, there exists a A-series from H to G containing N .

Proof. (a) Suppose ¢N is a maximal A-series from H to G. Let (B,T) be a jump of N and
let D be a A-invariant normal subgroup of T/B. Then D = D/B for normal A-subgroup
of G with B < D <T. It is readily verified that AU {D} is an A-series from H to G. So
the maximality of A shows that D € N and so D = B or D = T. Thus T/B is a simple
A-group and N is an A-composition series.

(b) If /' is a maximal normal series from H to G, then the argument in (a) shows that
N a chief-series. (Alternatively let A G be the free product of A and G. Then AxG acts on
G and a normal A-series from H to G is the same as A *G series. Also an A *G-composition
series is the same an A-chiefseries.)

Now let NV be a A-chief series from H to Gb and M a normal A-series from H to G with
NCM. Let Me M\{H}. Pt T=({EeN|M<E}and B=J{DeN|M«£D}.
Since N is totally order M £ D for E € N implies D < M. Thus B< M <T.If M =T,
then M € N. So suppose M # T. Then also B # T and by ??7(??), (B, T) is a jump of NV.
Since M is normal, M /B is G and A-invariant subgroup of 7'/ B. Since Nis a A-chiefseries,
this implies M/B =1 and so M = Be N.

Thus M = N.
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(¢) By (a) it suffices to proof that N is contained in a maximal A-series from H to G.
Let (M;,i € I) be a chain of A-series from H to G. Let M = (J,.; M; and observe that
M is a chain of A subgroups of G containing H and G. Let M* be the set of intersection
and unions of non-subsets of M. Using 1.3.5 we conclude that M* is a set of A-invariant
subgroups of G which is closed under intersection and unions. We claim that M* is an
A-series. 1.3.2(i)-iv are obvious. So let (B,T') be a jump of M*. We need to show that
B<T. Fori € I define B :=J{D € N; | T £ D} and T; = U{E € N; | T £ E}. Since M*
is a chain, B; = |J{D € N; | D < T}. Thus B; < B < T < T;. Thus by 1.3.4(b), (B;,T;)
is a jump of NV; and so B; 4 T;. In particular, B; < T. By definition of M*, B = (JB or
B = (B for non-empty subset B of M. Suppose first that B = | JB. Let D € B, then
D € N for some i € I. Since D < B < T we get B < B;. It follows that

B = U B< U B; <D
el
and so B = UZ-e ; Bi. Since each B; is normal in T" we conclude that B < T'.
Suppose next that B = (B. Since T' £ B, there exists D € B with T' £ D. Since M*
is chain this gives D < T'and so D < B. Thus D < B=(\B< D and B=D. So Bis a
union of members of M and so we are done by the previous case.
(d) Either use the same argument as in (c) or apply (c) to A x G. O

Definition 1.3.7. [def:class of action]

(a) [b] Two actions (A,G) and (A*,G*) are called isomorphic and we write (A,G) =
(A*,G*) if there exist isomorphisms  : A — A* and v :— G* with g%y = (97)* for
all g € G and a € A.

(b) [c] A class of actions is class X such that

(a) [a] The members of X are faithful actions
(b) [b] If D € X and D* = D then D* € X.
(c) [c] (1,1) € X.

(c) [d] If X and Y are classes of groups, then [X,Y] denotes of class of all faithful actions
(A,G) with Ae X and H e )Y

Definition 1.3.8. [def:xa series| Let X' be a class of actions.

(a) [z] We say that A acts X on a group G, or that G is a X — A group, if (A/Ca(G),G) €
X.

(b) [a] An A-series N from H to G is called called X-A-series if each factor of N is an
X — A-group.

(c) [b] We say that A acts poly-X on G, or that G is poly X — Agroup, if there exists G
is exists a finite normal X — A-series on G.
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(d) [c] We say that A acts hyper-X on G, or that G is hyper X — A-group, if there exists
an ascending normal X — A-series on G.

(e) [d] We say that A acts hypo-X on G, or that G is hypo X-group, if there exists G is
exists descending normal X — A-series on G.

(f) le] If A= G acting by conjugation on G we drop the prefix A in (b) to (c).

We usually write [X, %] in place of [X, D] and [X, 1] in place of [X, T]. Recall here that
T denotes the calls of trivial groups and D the class of all groups.

If X is the calls of simple actions, then an X — A-series is just an A-composition series.

If X is a class of groups, then a poly [, X'] — 1-group is just a poly-X-group. So a poly
[, A] — 1-group, is a poly abelian group, that is a solvable group. A hyper [, X]-group, is
called an hyper X-group and a hypo [, X] — 1-group, is called an hypo X-group. Note that
a hyper X-group is a group with normal ascending series all of whose factors are X'-groups.

A poly [1, x]-groups is called nilpotent. So a group is nilpotent if and only if there exists
a finite normal ascending series

No=1< N <Ny <...< N1 <Ny =G

such that (G/Cq(E) € [1, %] for all factors E of the series. Note that thus just means
that G/Cq(E) = 1, that is G centralizes E. In other words, [N;, G] < N;_ forall 1 <i < k.

A hyper [1, *]-groups is called a hypercentral group and a hypo [1, x]-group is called a
hypocentral group. So a hypercentral group is a group G with a normal series all of whose
factors are centralized by G.

Consider the chief-series

1 < Alt(3) < Sym(3)

of Sym(3). The factors of this series are E; = Alt(3)/1 = Cz and E2 = Sym(3)/Alt(3) = Ca.
N[OI‘EOVE)I“7 CSym(3)(E1) = Alt(?)), Sym(B)/CSym(g)(El) = CQ, CSym(3)(E2) = Sym(S) and
Sym(3)/Cgym(3)(E£2) = 1. So the group induced on each of the factors is abelian and so
Sym(3) is an poly-[A, *]-group.

Consider the chief-series

19K = ((12)(34), (13)(23)) < Alt(4) < Sym(4)

of Sym(4). The factors of this series are E; := K/1 = Cy x Cy, E; = Alt(4)/K
C3 and Ey = Sym(4)/Alt(4) = Ca. Moreover, Cgym4)(E1) = K,Sym(4)/Cgyma)(E1)
Sym(3), CSym(4)(E2) = Alt(4), Sym(4)/CSym(4)(E2) = Gy, CSym(4)(E3) = Sym(4) and
Sym(4)/Cgym(4)(£3) = 1. Since the group induced on F; is not abelian, we conclude that
Sym(4) is not poly-[A, *]-group.

We will later see that every poly-[A,*] group is solvable. So the class of poly-[A, %]
groups is a proper subclass of S.

[l 112
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Lemma 1.3.9. [factors of an ascending series]. Let N be an A-series from H to G,
and M an A-subgroup of G.

(a) [a] Define NANM :={DNM|DeN}. Then N is an A-series from HNM to M.
If (B,T) is a jump of NN M then there a jump (B,T) of M such that B = BN M,
T=TNM andT/B = (TNM)B/B as an A-group. In particular, any factor of N'A M
is 1somorphic to an A-subgroup of a factor of N.

(b) [b] Suppose M < G and N is ascending. Then N :== NM/M = {DM/M | D € N}
is an ascending A-series from HM/M to G/M. Moreover, if (B,T) is a jump of N,
then there exists a jump (B,T) of N with B = BM/M,T = TM/M and T/B
T/(TNM)B. In particular, each factor of N is isomorphic to an A-quotient of a factor
of N

Proof. (a) Readily verified.
(b) The first three axioms of an A series are obvious. Let M be an non-empty subset
of N and define M = {D € N'| DN/N € M.

1°. 1]  Put B=JM. Then UM = BM/M.

Let x € BM/M, then © = eM for some e € B. Pick D € M with e € D. Then
r=eM € DM/M € M. and so BM/M C |JM.

Conversely if € € [JM, the € € D for some D € M. Note that D = DM/M for
some D € M and then € = eM for some e € D. Thus e € B and € € BM /M. Hence
UM C BM/M and (1°) holds.

2°. [2]  Let T be the minimal element M (which exists since N is well ordered). Then
AM=TM/M.

Let D € M. Then D = DM /M for some D < M. Since T is the minimal element of
M we get T < D and so TM/M < DM/M = D and TM/M < (M.
Conversely, T € M and so TM/M < M. Hence (YM < TM/M and (2°) is proved.

By (1°) and (2°), M is closed under unions and intersection.

Noe let (B,T) be a jump of eéM. Let B =J{D € N'| DM/M = B. Then (for example
by (1°) applied with M = {B}, BM/M = B. Let T be minimal in N with TM/M =T.
Since BM/M = ¢B < T = TM/M we have BM < TM and so T £ B. Since N is totally
ordered, B < T. We claim that (B,T) is a jump of ' solet D € N with B < D <T. Then
B =BM/M < DM/M <TM/M =T and since (B,T) is a jump of N we conclude that
DM/M = B or DM/M = T. In the first case the definition of B shows that D < B and so
D = B. In the second case the minimality of T" gives, T' < D and so D = T'. Hence (B, T) is
a jump. Since A is a series this implies that B <T. Hence also B = BM/M ITM/M =T
and so N is a series.

We compute

B/T = TM/M/BM/M =~ TM/BM = T(BM)/BM
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2T/TNBM =T/(TNB)M = T/B/(TQM)B/B
and so also the remaining statements in (b) are proved. O
Definition 1.3.10. [def:s for action]| Let X’ be a class of actions.

(a) [a] [id, S]X denotes the class of all actions isomorphic to an action (A/Cux(H), H),
where (A,G) < X and H is an A-subgroup of G.

(b) [c] [S,id]X denotes the class of all actions isomorphic to an action (B,G), where
(A,G) < X and B is a A-subgroup of G.

(c) [d] SX denotes the class of all actions isomorphic to an action (B/Cp(H), H), where
(A,G) < X, B< A and H is an B-subgroup of G.

(d) [b] HX denotes the class of all actions isomorphic to an action (A/Ca(H),G/H),
where (A,G) < H and H is a normal A-subgroup of G.

Note that SX = [id, S|[S,id]X’, but in general SX # [S,id][id, S]X.

Corollary 1.3.11. [s h a hyp] Let X be a class of actions, A a group, G a hyper X — A-
group and M an A-subgroup of G.

(a) [a] If X is [id, S] closed, then M is a hyper X — A-group.

(b) [b] If X is H-closed and M < G, then G/M is a hyper X — A-group.

Proof. This follows immediately from 1.3.9. O
Corollary 1.3.12. [s hyp| Let X be class of groups, G a hyper X -group and M < G.

(a) [a] If X is S-closed, then Hyp(X') is S-closed.

(b) [b] If X is H-closed, then Hyp(X') is H-closed.

Proof. (a) Since S is [S,id] closed, M acts hyper X on G. So (a) follows from 1.3.11(a).
(b) By ??(??), G acts hyper X on G/M. Since M acts trivially on G/M, also G/M
acts hyper X' in G/M. O

Corollary 1.3.13. [zg cap n]
(a) [a] Subgroups and quotients of hypercentral groups are hypercentral.

(b) [b] Let M be a normal subgroup of the hypercentral group G, then G acts hyper centrally
on G. In particular, M NZ(G) # 1.

Proof. Since [1,x] is S and H closed, we can apply the previous two corollaries. O
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1.4 Hyper Sequences

Definition 1.4.1. [def:ascending sequence| Let G be an A-group, H an A-subgroup of
G. Then an A-sequence from H to G is a a sequence (Go)acord of A-subgroups of G such
that

(a) [a] Go = H and there exists 6 € Ord with Gg = G for all 5 > 6.
(b) [b] Ga<LGayi

(c) [c] If a is limit ordinal, then Go =, o5 G3-

a<f

Lemma 1.4.2. [ascending ord] Let N be an ascending A-series from H to G. Then there
exists an A-sequence (Go)acord from H to G with N = {Gy | a € Ord}.

Proof. Since N is well ordered with respect to inclusion we conclude from Homework 3,
that there exists an ordinal § and an isomorphism of ordered sets, F' : § — N,a — G,.
Define ® : Ord — N by ®(a) = H, if @ < § and ®(8) = G if § < . Since 0 is the element
of 6 and H the minimal element of N' we have Gy = F(0) = H. Since F preserved the
order we have o < 8 if and only if G, < Gg. Since either 8 < o or a+ < 3 we conclude
that either G4 = Goy1 or (G, Gat1) is a jump of N. In both cases G < Gyq1.

Now let a be a limit ordinal and put M := (Jz_, Gg. Then M € N and M < G, and
so M = G for some v in v € §. Since Gy < G, we have v < a. If v = o we are done. So
suppose v < . Then also 7+ 1 < a and so Gy41 < M < Gy < Gyq1. Thus Gy = Gy41.
Since F' is a bijection, this gives v+ 1 ¢ 6. Thus G = Gy41 = M < G, < G. So again
M = G = G, and all parts of the definition of a A-sequence from H to G are verified. [

Lemma 1.4.3. [ord ascending] Let G be an A-group, H an A-subgroup of G and and
(Ga)acord @ sequence of A-sequence from A to G. Then N := {G4 | « € Ord} is an
ascending A-series from H to G. Moreover, the jumps of N are exactly the pairs (G, Ga+1),
where « is an ordinal with G # Gat1-

Proof. Note that N = {G, | « < 4}, so NV is the image of a set under function and thus a
set. From (??) and (??) we have G, < G for all @ <  and so N is totally ordered with
respect to inclusion. So (??) gives H € N, G € N and H < G,, for all a € Ord.

Let M be a non empty subset A and let M = {a € Ord | & € M. Then M has minimal
element m and so JM =G, e N

Suppose that 6 < 8 for some 8 € Ord. Then JM =G e N.

Suppose that 8 < d for all 5 € Ord. Then M has a least upper bound ~. If v € M,
then (JM =G, € N. If v ¢ M the for all § < ¢ there exists £* € § with § < f* < 4. In
particular 4 is limit ordinal and

G’Y:UGﬁS UGﬁ*SUMS UG,B:G'Y
B<6 B<s 8<6

Hence again | J g<s =Gy € N. We show that A is closed under intersections.
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Noe let D € N with D # H and let @ € Ord be minimal with G,. The Gg < D if and
only if 8 < a. Thus

D =([{EeN|E<D}= ] Gs
B<a
If « is a limit ordinal, the latter unions is G, and if « is a successor it is (Gq-1.
So if (D7, D) is a jump then « is a successor, (D,D7) = (G4-1,Gq), Ga—1 # G4 and
D™ =G4 1 <G, = D. In particular, N is an ascending series.
If o is an ordinal with G, # Gay1 the clearly (G, Gay1) is a jump of N. So also the
second statement of the lemma holds. ]

Note that we allow G = Gp for distinct «, 3 € Ord. So a given ascending A-series
corresponds to more than then one A-sequence. We will use all the notation introduces
from ascending A -series. For example an hyper A-sequence is a normal A-sequence, that
is a A-sequence with G, < G for all « € Ord.

Definition 1.4.4. [def:strongly hyper| Let X' be class of groups and G an A-group. We
say that A acts strongly hyper-X on G or that G is a strongly-hyper X — A group, if for all
normal A-subgroups, M of G with M # G there exists an normal A-subgroup M* of G with
(A/Ca(M*/M),M*/M) € X.

Lemma 1.4.5. [strong hyper]| Let X be a class of actions and G an A-group.
(a) [a] If A acts strongly hyper-X on G, then A acts hyper-X on G.

(b) [b] If X is H-closed that A acts strongly hyper-X on G iff A act hyper X on G.

Proof. (a) By the definition of strongly-hyper and the axiom of choice we can choose a
function M — M™* on the normal subgroups of G such that M* = G if M = G and
M < M* with (A/Ca(M*/M),M*/M) € X if M # G. If f is any function which is a set,
define 7(f) = J{f(M)x) | M € Dom(f)) provided that all members of Dom(f) are normal
A-subgroups A and 7(f) = 0 otherwise.

By the 'Recursion’ Theorem 77 for each ordinal « there exists function F' such that
7(F' | (Ordy)) = F(«) for all ordinals a. Put N, = F(«). Then a moments thought reveals
that

Ny =1 ifa=0
N3 fa=0+1
Up<a N if @ is a limit ordinal
Let « be an ordinal with |a| > |G|. If G # Mp for all B < o we get |G| < |a, a contradiction.
Thus G, = G and it follows that N' = {G, | a} is an hyper A-series on G with factors
Na+1/No = N2 /N,. Thus A acts X in each factor of N and so NV is hyper X — A-series.
(b) Suppose A acts hyper X on G and let M be a normal A-subgroup of G. By ?? G/M

is a hyper X — A-group. In particular, G/M has a non-trivial normal X — A-subgroup,
M*/M. Thus A acts strongly X on G. Together with (a) this gives (b). O
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Notation 1.4.6. [not:f] F' denotes the free group on (x;);g,. The elements of F' are called
words.

Definition 1.4.7. [almost decreasing] Let W = (W;)32, € W™ be a sequence of sets of
words.

(a) [a] W is decreasing if Wit1(F) < Wi(F) for all i.

(b) [b] W is almost decreasing if for alli,j € Zt there exists k > j with Wi(F) < W;(F).
(c) [e] VW) =UZ, VIW).

Lemma 1.4.8. [trivial dec| Let G be group.

(a) [a] Let V,W be sets of words with V(F) < W(F)). Then V(G) < V(W).

(b) [b] Let W = (W;)I = 1% be almost decreasing sequence of sets words. Then (W;(G))2,
is almost decreasing, that is for i,7 € Z" there exists k > j with Wi(G) < W;i(G).

Proof. (a) Let g € V(G). Then g € V(H) for some finitely generated subgroup H of G.
Since H is countable, there exists an onto homomorphism « : F' — H. Then

geV(H) =aV(F))) <a(W(V)) =W(H) e W(G)

(b) follows from (a) O

Lemma 1.4.9. [sdp] Let G be an A-group then there exists a group H such that A < H,
G<H, H=GA, AnNG =1 and the actions of G on A is the same as the action of G on A
by conjugation in H. Moreover, H is unique up to an isomorphism centralizing A and G.

Proof. Suppose first that H is such a group. Let z,y € H. Then there exists a,b € A and
g,h € H with = ga and y = bh. Then zy = (ga)(hb) = gaha™'ab = gh‘flab and so the
multiplication on H is unique determined.

Conversely, let H = G x A as a set and define the multiplication on H x A by

(9.a)(h,b) = (gh® ", ab)

Identify g with (g,1) and a with (1,a). Then is readily verified that H has all the
required properties. ]

Lemma 1.4.10. [largest normal] Let V be an variety and G an A-group. Then there
exists unique largest normal A-subgroups M of G such that A/Ca(M) € V.

Proof. Let H = GA be the semidirect product of A and G. Let W = W(V) and put
M = (Co((W(A)1)). :

Definition 1.4.11. [def:h class] Let G be an A-group and W = (W;),c,+ a sequence of
sets of words.
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(a) [a] Define H, = HypY (A, G) inductively as follows:
H, = 1 ifa=0
H, U5<a Hpg if 0 # « is a limit ordinal
Ha/Hafl = CHa/Haf1(<Wk(A)G>) ZfOé = B + k with
a = Oor limit ordinal and k € Z.

(b) [b] & = SW(A,G) is the least ordinal such that Hs = Hg for all 3 > §. Moreover,
Hyp" (A, G) == Hs

Note that if « = B8+ k, (8 = 0 or a limit ordinal and k € Z™1), then H,/H,—1 is the
largest normal (V(W}), *)-A-subgroup of G/Hq,—1

Define Hyp!” (G) = Hyp)' (G, G), where G is acting on G by conjugation and Hyp" (G) =
Hyp" (G, G). As above if there is no doubt about the group action (A4, G) and the sequence
W in question we write H,, for Hyp) (A, G).

Proposition 1.4.12. [g=s| Let (AG) be a group action and W = (W;),;cz+ a sequence of
sets of words.

(a) [a] (Hy)a is a hyper-(X (W), x) — A sequence for G on Hyp" (G).

(b) [b] Let M be a normal-A-subgroup and (M) be a hyper-(X (W), x) — A-sequence on
M such that each M, is normal in G.

(a) [a] For every ordinal o there exists an ordinal o with My, < Hy=. In particular,
M < Hyp"(4,G).

(b) [b] If W is almost decreasing we can choose o such that o = o + ng for some
ne € N and n, = 0 if a is a non-successor.

(c) [c] G is a hyper-(X (W), x)-A-group if and only if G = Hyp" (A, G).

Proof. (a) Let a = B+k for some non-successor 3 and some k € Z*. Then Wy, (A) centralizes
H,/Hy—1. Hence A/Ca(Hoy/Ho—1) € V(Wy) C X(W) and (a) holds.

(b) By induction we may assume that for all § < « there exists §* with Mz < Hpg-.
Moreover if W is almost decreasing we assume that 3* = 8+ng for some n € N with ng = 0
if 8 is a non-successor.

Suppose first that « is a limit ordinal. Put o* = g<a B Then o* is an ordinal and

Mo = | Ms C | Hp < Ha-.
B<a B<a
Moreover, if for all 8 < a, * = 4+ ng for some ng € N then b* < a* and so o = a.
So (b:a) and (b:b) hold for .
Suppose next that a = 3 + k for some non-successor 3 and some k € Z*. Since (My)q
is hyper-(X (W), %), A/Ca(Mqy/My—1) € X(W) and so A/Ca(My/Mqy—1) € V(W;) for some
i € ZT. Thus [My, Wi(A)] < Ma — 1.
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Assume that W is almost decreasing. By induction we may assume My_1 < Hy—14p,
for some n,_1 € ZT. Since W is almost decreasing there exists n € Z* with n > k 4+ no_1
and W, (A) < W;(G). Then

[Maa Wn(A)] < [Maa VV'L(A)] <My < Ha71+na,1 = H5+k—1+na_1 < H5+n—1-

Since M, and Hgy, 1 are normal in G, this gives [My, (W, (A)%)] < Hgin1 and so
M, < Hgyy, = Hyypn—. Hence (b:b) holds with n, =n — k.

Assume next that W is not almost decreasing. Let v be the smallest limit ordinal with
(e —1)* <+. Then

[MOHWZ(G)] < Mg-1 < H(afl)* < H’y < H’y—l—i—l

and so M, < H,4;. Thus (b:a) holds.
(c) Follows from (a) and (b). O

If W; = {z1} for all ¢, then X(W) =T and so (Ha)a is a hypercentral series for A on
Hyp" (G, A). If A = G acting by conjugation we write Z(Gg) for Hy. (Z(Ga)a is called
the hypercentral series for G and Zo.q(G) = Hyp" (G, A)) is called the hypercenter of
G. If G = Z0owa(G), then G is called hypercentral. Note that Z1(G) = Z(G), Z2/Z(G) =
Z2(G/Z3(G)) and Zy(G) = U, Zi(G)).

For a prime p let Cpo = {z € C | a?" =1 for some k € N}. The set C,r of elements
of order dividing p* is a cyclic group of order p¥. So Cp~ can is union of the countable
sequence

1§CPSCP2SCP3§...

From Cpit1/Cp = Cpre we conclude that Cpec /Cp = Cpeo. So Cpeo is isomorphic to a
proper quotient of itself.

Let 7 € Aut(Cpee) with 27 = 27! = 7 for all € Cpee and let Doy be the semidirect
product of Cpee with (tau). Note that Dy,r := Cp i (7) is a dihedral group of order 2p*. So

So Dy can be viewed as union of the countable sequence

1<D,<Dp<Dy<...

If p is odd, then Z(Dgp~) = 1 and so also Zoyd(Dap~) = 1.
If p =2, then Z(Dgpe) = Cq. Also Dgpee /Co =2 Dgpee and inductively we conclude that

Z(Dapee) = C

pk

for all ¢ > w. Thus
Z.s(Dapoe) | Cpr = Cpee
1EW

Since Dapeo /Cpee =2 (1) = Cy we have
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Zw—i—l (DQpOO) - D2p°°
So Dapeo is hypercentral with hypercentral length w + 1.

Define ¢1 = x1, ¢2 = [z1,22], ¢3 = [[x1,22], [r3,24]] and so on. Also let W; = {¢;}.
Then W;(G) = GU=Y, the i — 1'th commutator group of W;. So X(W) is the class of
solvable groups. The series (Hy ), is called the hyper (solvable,*)-series for G.

Suppose p is odd. Then Wi(Dgpeo) = Dgpoo, Wo(Dgpeo = Dlzpoo = Cpee and W3(Dgpeo) =
Dy, = 1. So

H1 = Z(DQpOO) = 1, H2 = <CD2poo (Cpoo) = Cpoo and H3 = Dgpoo.

So Dy, is a hyper-(solvable,*) group.

Lemma 1.4.13. [direct sums| Let X' be a class of groups and G an A- group. Suppose
that there exists a hyper A-series N' on G such that for each factor E of N there exists a
G-invariant hyper-X — A series on E. Then A acts hyper-X on G.

Proof. Let N be a hyper A-series on F. By assumption and the axiom of choice, the exists
a function F — Ng which associates to each factor E of N a G-invariant hyper X — A-series
on of E. If E is factor of N then E = T'/B for a unique jump (B,T) of N. Put

g={D|B<D<T,D/BecNg}

and M = N U(J{MEg | E a factor of N.
Note that M is a set.

1°. [0]  Let (B,T) be a jump of cN and E = T/B. Then Mg is a G-invariant hyper
X — A series from B to T.

Since Ng is G-invariant hyper X — A series from 1 to E, this follows from the homo-
morphism theorems.

Recall that for N € N, N~ = | {E € N | E < N}. For each D € M pick DeM
minimal with D < D.

2°. [(1]  Let(B,T) be ajump of N and D € M with B < D <T. then either D = B = D
or B# D and (B,T)=(D",D,).

If D= B, then B = D. So suppose B < D < T. Since D < T, the minimality of D
glvesD<T So B < D < T and since (B,T) 1saJump,D T. Hence B=T"=D".

3°. [.2] D= <D<DandeitherD=D=D" orD-<D<D andDGMD/D,.

If D € N, then clearly D = D and (2°) holds. So suppose D ¢ N. Then D € M/
for some jump (B,T) € 7. Then B < D < T and since D ¢ N, B # D. So by (3°),
(B,T) = (D'D) and (3°) holds.

4°. [1] M is totally ordered.
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Let D, E € M. Suppose first that D = E. Then D~ < E < D. If D~ = D this gives
D = E and if D~ # D, then by ?? both D and E are in Mpp-- So by (1°), D < E or
E<D.

Now suppose that D #* E and without loss D < E. Then D < D < E- < FE and so
D<E.

Let D be a non-empty subsets of M.

5°. [2] D has a minimal element D*. In particular, | JD = D* € M.

Let M be the minimal element of {D | D € D} and pick E € D with M = E. If D € D,
then M < D and since D~ <D M~<D.IfM~=M,then E = M~ and F is the minimal
element of D. If M~ # M, then by (1°) the non empty set {E € D| M~ < E < M} has a
minimal element D*. But then D* is also a minimal element of D.

6°. 3] UDeM

Put M = Jpep D. Then M € N. Let E € N with E < M. The there exists D € D
with D & E. So E < D < D. Tt follows that M~ < |JD. If M~ = |JD we are done. If
M~ =D. Then £ :={E €D | E £ M~} is not empty. Observe that M~ < E < M for
all £ € £ Thus UE = UD and € € My By (1°), My - is closed under unions
and so D =€ € Myp/n- € M. Thus (6°) holds.

7°. [4]  Let (B,T) be a jump of M. Then (B, T) is jump of some Mg, E a factor of N.
In particular, B<T and T/B is an X — A-group.

_ Suppose first that T~ #T. Then T~ < T and since (B, T) is a jump of T~ < B< T <
T. Thus by (3°) both B and T are in M - and so (B,T) is a jump of M-

Suppose next that B # B. Then B < B and since (B,T) is a jump T < B. Thus
B~ < T < B and so by (3°) both B and T are in MB/B* and so (B,T) is a jump of
ME/B, . } 3

Suppose finally that T— = T and B = B. Then both B and T are in N and so (B, T)
is a jump of NV, but then T~ = B # T, a contradiction.

The lemma is now a direct consequence of (4°)-(7°). O

Lemma 1.4.14. [direct hyp|Let X be a class of actions, A a group and G an A-group.
Let (G;,i € I) a non empty family normal hyper-X — A groups of G with G = (G; | i € I).
Suppose that either X is H closed or G = @,.; G;. Then G is a hyper-X — A-group.
Proof. Without loss G; # 1 for all i+ € I. Pick m € I and choose some well ordering on
I\ 'm. Well order I such that I has a maximal element. For i € I define G = (G, | j < i)
and G; = (G} | j <1i). We claim that N' = {G;,G; | i € I} is hyper A-series on @,.; G;
with factors all the GT/G; ~ G;/G; NG, where i € I with G; £ G .

Let i < j € I. Then G; < G;L < Gj_ < G; and so N is totally ordered. Let M be
non-empty subset of A/. Let ¢ be minimal in I with G§ € D for some € € {+}. If G; € N
choose € = —. Then G is the minimal element of M and G;c = |JD.
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Next let k& be minimal with |JD < G;. Let i < k. Then |JD £ G; and so the exists
jEIand5€{i}withG?EDandG?ij. ThusigjandsoGi_SG?gUD.

Suppose first that {{ € I | I < k} has no maximal element. Let g = [[,c; 9; € G}, (where
gi € G; and only finitely many g¢; are non trivia. Let £ be maximal with g # 1. Then t < [
and so there exists [ € I with ¢t <! < k. Then g € G; < |JD. Hence G, < Up < Gj. If
Gr €D weget UD =G and if G ¢ D we get UD =G,

Suppose {l € I |l < k} has maximal element j. Since |JD £ Gj we must have G, € D
or G} € D. In either case we again have |JD = G} and D = G, .

Thus N is closed under unions. Let D € N with D # D~ := {UE € N | E < D}.
Pick k € I minimal with D = G, for some € € {pm}, where we choose e = — if D = G for
some € € {£}. By minimality of k, G; < D for all j < k. Thus

L =(Gij<k)<(G]|j<k)<D™

In particular, G; < D and so G;, = D™, D =G, G, £ G, and

D/D~ =G} /K, = GyGy /Gy = Gr/Gpy NGy
Conversely if k € I with G, £ G}, then (G, G},) is clearly a jump of V.
This proves the claim. If A’ is H closed then by ??(??), G\/Gi NG, is an hyper X — A
group. If G = @,.; G, then Gy, /G NG} = Gi. So again G /G NG, is an hyper X — A
group. In either case 1.4.13 completes the proof. ]

Proposition 1.4.15. [residually g] Let X be any class of groups.

(a) [a] Suppose X is closed under quotients. Then hypercentral-by-X groups are hyper-
(X, %) and nilpotent-by-X groups are poly-(X, *).

(b) [b] Hyper-(X,x) groups are hypercentral-by- RX ). If X is closed under finite subdirect
products then poly-(X,*)-groups are nilpotent-by-X.

(c) [c] If X is closed under quotients and finite subdirect products, then the nilpotent-by-
X -groups are exactly the finitely hyper-(CG,*) groups.

Proof. (a) Let H <G such that H is hypercentral and G/H € X. Let Z be the hypercentral
series for H. Then Z is G-invariant. If Z is a factor of Z, then [Z, H] =1 and so G/Cg(Z)
is a quotient of G/H. Thus G/Cq(Z) € X. Also G/Cq(G/H) is a quotient of G/H and so
Z U{G} is a hyper-(X, x) series for G. If H is nilpotent, Z is finite and (a) is proved.

(b) Let M = (M,)q be a hyper-(X, *)-sequence for G and put

H = ﬂ{Cg(E) | E a factor of M}.

Since G/Cg(E) € X for all factors E of M, G/H is subdirect product of X-groups
and so an RX-group. Moreover (M, N H), is a hypercentral series for H and so H is
hypercentral. If M is finite and X is closed under finite subdirect products, then G/H € X
and H polycentral, that is nilpotent. So (b) holds.

(c) Follows from (a) and (b). O
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Proposition 1.4.16. [hyper gw| Let V be a variety and W a set of words with' V = V(W).
Let G be a group. Then the following are equivalent

(a) [a] G is hyper-(V),*) group.
(b) [b] G is hypercentral by V.
(c) [c] W(G) is a hypercentral group.

Proof. (a) = (b):  Suppose G is hyper-(V), ). Then by 1.4.15 G is hypercentral by RV.
Since varieties are R-closed, G is hypercentral by V.

(b) = (¢):  Suppose M is a normal subgroup of G such that M is hypercentral and
G/M € V. Then W(G/M) =1 and so W(G) < M. Since subgroups of hypercentral groups
are hypercentral, W(G) is hypercentral.

(¢) = (b): Note that G/W(G) € V. So if W(G) is hypercentral G is hypercentral
by V.

(b) = (a): If G is hypercentral by V, then by 1.4.15 G is hyper-(V, *). O

Definition 1.4.17. [almost decreasing] Let W = (W;)2, € P(F)* be a sequence of sets
of words.

(a) [a] W is decreasing if Wip1(F) < Wi(F) for all i.

(b) [b] W is almost decreasing if for alli,j € Z* there exists k > j with Wi (F) < W;(F).
(¢) [e] X(W) =UZ, V(W)

Lemma 1.4.18. [trivial dec] Let G be group.

(a) [a] Let V,W € P(W) with V(F) < W(V). Then V(G) < W(G).

(b) [b] Let W € P(W)> be almost decreasing. Then (W;(G))$2, is almost decreasing, that
is fori,j € ZT there exists k > j with Wi(G) < W;i(G).

Proof. (a) Let g € V(G). Then g € V(H) for some finitely generated subgroup H of G.
Let a: FF — H be an onto homomorphism. Then

geV(H) =V((F)) = a(V(F) < a(W(F))) = W(a(F)) = W(H) < W(G)

and so V(G) < W(G).
(b) follows from (a). O

Definition 1.4.19. [def:outer]

(a) [a] Fori=1,2 let w; be a word and m; = m(w;). Put

[wi, wa] i= [wi((2:);2) ), w2 (Tmy+i)i2 )] € F(ma + ma)

[wy,wa] is called the outer commutator of wi and wa.



30 CHAPTER 1. BASIC CONCEPTS FOR INFINITE GROUPS

(b) [c] Let w € F", n € NU {oc}. Then w € F"*! is inductively defined as follows:
’lDl =T and wi-{-l = [Uv)i,wi—‘.

(c) [d] Let W € PW)", n € NU{oo}. Then W € P(W)"t! is inductively defined as
follows: ~ Wi = {1} and Wiy = {[v,w] | v € W;,w € W;}.

For example, [z123, v123] = [v123, 7323]. Note that m([wy,w2]) = my + ma. Also
Wis1 = {1 |w € X;Zl W;}. To improve readability we sometimes write w for w.

Lemma 1.4.20. [basic check] Let G be a group, w € F*®, g€ G® and i € Z*.
(a) [c] Putn=m(w;) and m = m(w;). Then
Wi+1(9) = [Wi(g), wi( (gn+5)T=1)]-
(b) [b] Let N <G. Ifwi(g) € N then also w;(g) € N for all j > i.
(c) la] Let W € P(W)>®. Then Wi11(G) = W;(G), Wi(G)] < Wi(G) N Wi(G).
In particular, W is decreasing.

Proof. (a) By definition w;+; = [w;,w;]. So (a) follows from the definition of the outer

commutator.
(b) and (c) follow from (a). O

Definition 1.4.21. [def:h words]

(a) [a] Let W € P(F)>°. Then Hyp(W) is the class of groups G such that for all g € G™
and all w € X ;2| W; there exists n € Z with 1, (g) = 1.

(b) [b] Let X be a class of actions. Then HypX is the class of hyper-X D-groups. PolyX
is the class of Poly-X -groups.

Lemma 1.4.22. [cX check] Let W € P(F)>®. Then for alli € ZT, V(W;) < V(Wiy1). In

particular, X(W) C X(W).
Proof. Let G € V(W;). Then W;(G) = 1. Hence by 72(??) W;11(G) = [Wi(G), W;(G)] =1

and so G € V(W;=1). It follows

xw)=Jvw) < |JVvWin) € x(W)
i=1

i=1

Theorem 1.4.23. [h and check] Let W € P(F)*®. Then

(a) [a] X (W) C Poly(X(W),x*) with equality if W is almost decreasing.
(b) [b] Hyp(W) C Hyp(X (W), x) with equality if W is almost decreasing.
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Proof. (a) Suppose G € X(W). Then G € V(W,,) for some n € Z*. Thus W,(G) = 1.
Then by 1.4.20(c) we obtain a finite series

(%) 1=Wo(G) < W, 1(G) < ... <Wo(G) < Wi(G) =G

there the last equality holds since (W1) = {z1}.
Observe that [W;(G), W;(G)] < Wiz1(G) and so W;i(G) < Cq(W;y1(G)/Wi(G). Hence

G/Ca(Wir1(G)/Wi(G) € V(Wi) € X(W)
and (*) is a poly (X (W), x)-series. Thus the first statement in (a) holds.
To prove the first statement in (b), let G be a group which is not hyper-(X (W), x). We

will show that G is also not contained in Hyp(W). Since every strongly hyper (X (W), *)
group is hyper (X (W), *) (see ??) we conclude that there there exists N <<G such N*/N =1,

whenever N < N* <G with (G/Cg(N*/N),N*/N) € (X(W),*). This implies

(%) ConWi(G)) =1 for all n € Z7.

Let g1 € G\ N. Note that x1(g1) = g1 ¢ N. Suppose inductively that we already found
(gi)i*, € G™ and w; € Wi, 1 < i < k with wy((g:)1*,) ¢ N, where (@)% ) = (w;)F=}"
Then by (*) [wk( (9:)1%, ), Wk(G)] £ N and there exist wy, € Wy, and (gnkﬂ)?:(ll“k) € Gmwe)
with [y (gi)ik, wi( (gnkﬂ)?@:(qivk) )] ¢ N. Put ngy1 = ng + m(wy). Then by 1.4.20(a),

W1 ((9:)i21") & N.
where wy41 = [Wg, wi]. Put g = (¢:)52; and w = (w;)72,. Then wy(g) # 1 for all k and
so G ¢ Hyp(W). Thus Hyp(W) C Hyp(X (W), ).

Suppose next that W is almost decreasing. We will prove the second assertions in (a)
and (b) simultaneously. Let G be hyper-(X (W), ) and and let (My)a<, be any hyper-
(X (W), %) sequence on G, with p finite in proof of (a). For the proof of (a) p let V; = W;
and H; = G for all i € ZT. For the proof of (b) let g € G*, w € Xioil W; infinite pick
w; € Wi and g; € G and put H; = {g;} and V; = {w;}

Let g € X2y H; and w € X;_; nftyV;. Then wi(91) = g1 € G = A,. So we can choose
an ordinal o minimal such that there exists n € Z* with w,(g) € G, for all w € ¥;°, V;
and g € X2, H;.

We will show that o = 0. Suppose for a = 341 for some ordinal 8. Since G/Cg(Aa/Ag) €
X (W), there exists m € ZT with [My, W, (G)] < Mg. Since W is almost decreasing we
may assume m > n. Let w € X2, V;. Then w,(g) € M, and m > n. So by 1.4.20(b),
Wm(g) € M,. Hence

Win+1(9) € [Wim(g), Win(G)] < [Ma, Win(G)] < Ap

for all w € X72, Vi and g € X;°, H;, a contradiction to the minimal choice of o. Thus « is a
limit ordinal.
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Suppose that « # 0. Then p is infinite and so by our choice of V;, |V;| = 1 and there
exists a unique w € ¥Z, Vi. Since My = g, Mp there exists 3 < a with w,(g) € Ag, a
contradiction to the choice of a.

Thus o = 0 and so wy(g) =1 for all w € X2, V.

If p is finite, V; = W; and H; = G;. Thus W,(G) =1 and G € X(W). So (a) is proved.

In any case, w,(g) = 1 shows that G € Hyp(W) and (b) holds. O

The following example shows that the inclusions in 1.4.23 may be proper if W is not
almost decreasing:

Let G = Sym(3), x = x1, Wi = {22} and W; = {z} for i > 2. Then w = (2%, 2,z,7,...)
is the unique element in X;°, W;. Also 1 < Alt(3) < Sym(3) is a finite hyper-(X (W), %)
series. Thus Sym(3) € Poly(X (W), x) C Hyp(X (W), *).

Put g = ((12), (123), (12), (12), (12), ..). Then in1(g) = g1 = (12), n(g) = [(12), (123)?] =
(123), w3(g) = [(123), (12)] = (123) and so for all n > 2, w,(g) = (123). Thus w,(g) # 1 for
all n and Sym(3) ¢ Hyp(W). Since X (W) C Hyp(W) we see that X (W) # Poly(X (W), *)
and Hyp(W) # Hyp(X (W, *).

Lemma 1.4.24. [char hyp] Let W € P(F)*°. Then there exists V € P(F* such that
(a) [a] X(W)=X(V).
(b) [b] V is almost decreasing
(¢) [c] Poly(X(W),x) = X(V).
(d) [d] Hyp(X(W),*) =Hyp(V).
Proof. Define
V = (Wh, Wy, Wo, Wy, Wo, W3, Wy, Wo, Wy, Wy, W1,...).

Then clearly V is almost decreasing. For any W X (W) only depends on {W; | i € Z*} and
so X(W) =X (V). Thus by 1.4.23

X (V) = Poly(X (W), *) and Hyp(V) = Hyp(X (W), *).
O

Next we will give an example of a sequence W € P(F)*>, a group G € Hyp(X (W), %),
g € G® and v € X ;o W; such that v,(g) # 1 for all n € Z*. (Note that this does not
contradict ?? since our v will not be of the form v = w for some w € X:; Wi;.

Put Wy = {z; | i € Z" and for i > 2 put W; = {x1}. The for alli € Z*, V(W)i) = T, the
class of trivial groups. Hence also X (W) = T and Hyp(X (W), %) is the class of hypercentral
groups. Put G = Dggee = Cae (7). As seen before GG is hypercentral group. Let h; € Caso
with |h;| = 2¢ and put g; = h;T.
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Note that Wy = {1}, Wo = {[z1,25] | i € ZT} = {[z1, 2] | 2 < k € ZT} and for any
i>2,
VT/’L’ = {[xlamkaxk-‘rla . 'xk-‘ri—Q] | 2 < ke Z+}

Define vy := 21 and for ¢ > 0:

v; = [xl, L%y L2415« - - ,xgi_g]
and v; € W; for all i € ZT.
Define g; o := [g1, ;] and inductively ij = [9i,j—1, Gi+;]. Then v;(g) = gii—2. We will
show by induction in j, that g; ; has order 2°7/ -1
For j =0,
9i0 = g1, 9] = 97 97 g19i = 7 hy e R  haThoyT = hahy thihi 1 = b

and g, has oder 2°~1. Suppose inductively that g; ; has order 279~1 and g¢; ; € Cae.
Then g;4j4+1 inverts g; j via conjugation and so

-1 _—1 —2
gij+1 = [gi,jagi+j+1] =9;9; = Y9,

Thus g; j4+1 € Co~ and g; j4+1 has order 2i=5=2 = 9i=(j+1)~1,
In particular v;(g) = g;;_2 has order 2/=(=2=1 = 2. Thus v;(g) # 1 for all i > 2. Also
v1(g) =g1 =Th1 # 1 and so v;(g) # 1 all i € Z™.

Definition 1.4.25. [def:phi]
(a) [a] 7(0) = (21)2, and inductively (i + 1) = 7(i)"

(b) [d] ¢ is the unique sequence of words with ¢ = ¢. So ¢1 = x1 and inductively ¢;y1 =

It might be worthwhile to list the first few terms of the above sequence of words:

7(0) : 1 T 1
(1) w1 [z, 3] [[z1, 2], 3] ([[#1, w2], 3], 24]
T(2): @ (w1, 3] [[r1, @), (23, 24]] ([[21, ®2], [23, 4], [[5, z6], 27]]]

¢: w1 [w1,@o] [[wy, w2l [ws,x4]] [y, w2], [w3, wa]l, [[25, 6], [27, 25]]]

Lemma 1.4.26. [gw]

(a) [a] Let T(0) be the class of trivial groups and inductively let T (n + 1) be the class of
nilpotent-by-T (n) groups. Then X(7(n)) = N(n). In particular, X(7(1)) the class of
nilpotent groups.
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(b) [b] V(¢i) the class of solvable groups of derived length less than i. X () is the class of
solvable groups.

(c) [c] Hyp(r(i)) is the class of hyper (T (i),*)-groups. In particular, Hyp(7(0)) is the
class of hypercentral groups, and T (1) is the class of hyper-(nilpotent,*) groups.

(d) [d] Hyp(¢) is the class of hyper (solvable,*) groups.

Proof. (a) Let w € F'*° be almost decreasing. By 1.4.23(a), X'(w) = Poly (X (w), %) and so
by 1.4.15(c):

(%) X (w) is the class of nilpotent-by-X (w)groups.

Clearly X(7(0))) is the class of trivial groups. Since 7(1) = 7(0)", (*) says that X' (7(1))
is the class of nilpotent-by-trivial groups and X(7(1)) = 7(1). Inductively suppose that
X(7(n)) = T(n). Then (*) implies that X(7(n+1)) is the class of nilpotent-by-7 (n) groups.
Thus X(7(n+ 1)) = T(n+ 1) and (a) holds.

(b) We have G = z1(G) = $(G) = “0 and so inductively

$i+1(G) = [6i(G), 6i(@)] = [F1 = 1,% — 1] = .
Hence X (¢;) is the class of solvable groups of derived length less than ¢ and (b) holds.
By ?7?(??), Hyp(7(n)) = Hyp(X(7(n), *). So rf c follows from (a).
By ??7(?7), Hyp(¢) = Hyp(X(¢), x). So rf d follows from (b). O

We will now construct various examples of groups which are hyper-(X, %) for some class
of groups X. By 1.4.15 we know that any such group is hypercentral-by-(residually X).
The next proposition gives a partial converse:

Example 1.4.27. [main construction| Let X be a class of groups, (H;,i € I) a family
of X-groups and H a subdirect product of (H;,i € I). Fori € I let A; be an H;-group.
Suppose that

(i) [a] H is hyper-(X,x).
(ii) [b] For each i € I, A; is abelian and H; acts faithfully on A;.

(i1i) [c] For each 1 # N < H, there exists i € I such that N does not act hypercentrally on
A;.

Put A =& A;. Note that H acts on A; via its projection onto H; and so also acts on A.Let
G = AH be the semidirect product of A and G Then G is hyper-(X,x)-group. Moreover,
any hypercentral normal subgroup of G is contained in A.

Proof. Since G/Cq(A;) = H; € X, G acts hyper-(X, %) on A;. So by 1.4.13, G is acts hyper-
(X,%) on A. Also G/A = H is hyper-(X, *) group and hence by 1.4.13 G is a hyper-(X, x)
group.



1.4. HYPER SEQUENCES 35

Let M <G with M £ A. Then AM = AN for some 1 # N < H. By (iii) there exists
i € I such that N does not act hypercentrally on A;. So N also does not act hypercentrally
on [A;, N]. Since A is abelian, [4;, N] = [A;, M] < M and M does not act hypercentrally
on [A;, M]. Thus M is not hypercentral. O

Lemma 1.4.28. [hypercentral extension| Let X be a class of groups and H a group.
Suppose H is a residually X-group and a hyper-(X,x)-group. Then there exists a hyper-
(X, %) group G and an abelian normal subgroup A of G such that G/A = H and such that
every hypercentral normal subgroup of G is contained in A.

Proof. Put M ={M < H | G/M € X}. Since H is residually-X', ()M = 1. In particular,
H is a subdirect product of (G/M)pyem. For M € M put Ay = Z[G/M]. Then Aps is an
abelian group with G/M acting faithfully on Ay by right multiplication. Let 1 # N < H
and choose M € MM with N £ M. Then N does not act hypercentrally on Aj; (indeed if
NM/M is infinite, C4,,(N) = 0 and if NM /M is finite, choose a prime p with p { |[NM /M|
and observe that N does not act hypercentrally on Ay /pAas.)

So 1.4.27 completes the proof. O

Corollary 1.4.29. [not hypercentral x| Let X be a class of groups which is closed under
homomorphic images but not under direct sums. Then there exists a hyper (X,x) groups
which is not hypercentral by X .

Proof. Let (H;,i € I be a family of X groups such that H = @;°, H; is not an X-group.
Then H is a subdirect product of X groups and so a residually X-group. Each H; is a
X-groups it also is a hyper (X, x) group. Hence by 1.4.14, H is hyper (X,,*). By ?? there
exists a hyper (X,x)-group G and an abelian normal subgroup A of G with G/A = H
and such that every hypercentral normal subgroup of G is contained in A. Suppose for a
contradiction that G is hypercentral by A and let M be a hypercentral normal subgroup of
G such that G/M € X. Then M < A and H = G/A =~ G/M/A/M. Since X is H-closed,
we conclude that H € X', a contradiction. ]

Corollary 1.4.30. [more hypercental x| Let W € P(F)* and suppose X (W) # V(W;)
for all i € Zt. Then there exists a hyper (X (W), *)-group which is not hypercentral by
X(W).

Proof. For i € Z* pick H; € X(W) \ V(W;) and put @®erH;. Since W;(H;) # 1 we have
Wi(H) # 1. Thus H ¢ X(W). H is a direct sum of X(W)-group and so a residual X' (W)-
group. Since H; is a X'(W)-group and so a (X(W), x)-group we conclude that from 1.4.14
that H is hyper (X(W), x). The corollary now follows from 1.4.29 O

Since there are solvable groups of arbitrary derived length and nilpotent groups of arbi-
trary class, the preceding corollary shows that there exists hyper (solvable,*) groups which
are not hypercentral by solvable and hyper (nilpotent, *) groups which are not hypercentral
by nilpotent.
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Definition 1.4.31. [def:locally cx] Let X be a class of groups and G a group. We say
that G is locally X, if for each finite subset I of G there exists H < H with I C H and
H e X. The class of all locally X groups is denoted by LX.

Observe that if X is closed under subgroups, then G is locally X if and only every finitely
generated subgroup of G is an X-group.

Proposition 1.4.32. [schreier-reidemeister| Let G be finite generated subgroup and H
a subgroup of finite index in G. Then H is finitely generated.

Proof. Let X be a finite generating set for G with 27! € X forall z € X. For T € G/H
pick 7 € T such that rg = 1. Then T = Hrp. Let T € G/H and z € X. Then
rrx € (Hrp)r = Tax = Hrp, and so there exists h(T,z) € H by

rex = h(T, x)rry

Define K = (h(T,z) | T € G/H,x € X). We claim that

(%) g€ Krpgforallge G

For this let ¢ = x122...2, with ; € X and n € N. If n = 0, then ¢ = 1 and so
ge K =K1=K,,,.

Suppose n > 0 and let d = x122...2,—1. Then ¢ = dx, and by induction on n,
de Krygq.

Thus

g=dx, € Krgqe, = Kh(Hd, )" Hdz, = KTHg

So (*) holds. If ¢ € H we conclude g € Krpg = Kryg = K1 = K. So H < K. Since
K < H, this gives K = H and so H is finitely generated. O

Let n be minimal number of generators of G and i = |G/H|. The preceding proof shows
that H can be generated by 2ni elements. It can be shown that G is generated by (n—1)i+1
elements (Reidemeister-Schreier Theorem).

Corollary 1.4.33. [If by lf] The class LF of locally finite groups is closed under subgroups,
quotients and extensions.

Proof. The first two assertions are obvious. Let G be a group and M a normal subgroup
of G such that M and G/M are locally finite. Let S be a finite subset of G and F = (S).
Then FM/M = (sM | s € S) is finite generated and since G/M is finite, F'M /M is finite.
Hence also F'//F N M is finite and 1.4.32 implies that F'N M is finitely generated. Since M
is locally finite, F'N M is finite. Hence F' is finite and M is locally finite. O

Definition 1.4.34. [def:p-group] Let G be a group and p a prime. Then G is called a
p-group, if all elements of G have order a power of p.
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Note that by Cauchy’s Theorem, a finite group if a p-group if and only if it has order a
power of p.

Lemma 1.4.35. [rg| Let R be a non-zero ring, G a group and H a non-trivial subgroup of
G. Let R[G] be the group of G over R and note that G acts on the abelian group R[G] via

(rea™hR)g = 2rea Tokg. Put RolG] = {2 jcar9g € RIG] | 2gerg =0}/

(a) [a] Suppose H is infinite. Then Cgg(H) = 0. In particular, H does not act hyper-
centrally on R[G].

(b) [b] Suppose that |H|r # 0 for all 0 # r € RY. Then Croia)(H) =0 . In particular, H
does not act hypercentrally on R[G].

Proof. Let a =) ry9 € Crig(H). Then ry =1y, for all g € G,h € H.

(a) If H is infinite, we get that conclude that ry = rj, for infinitely many k£ € G. Since
rg = 0 for all but finitely many g, this implies 7, = 0 and so a = 0.

(b) Suppose H is finite and [H|r # 0 for all r € Ro[H]. Let a = > ryh € Crym)(H)
Then 7y, = ry for all h € H. Since r € Ro[H] this gives 0 = >, _;; 7, = |[H|r1 and so 71 = 0.
Hence a = 0. O

Lemma 1.4.36. [easy zp=1| Let p be a prime and P a p-group with Z(P) = 1. Then P
has no non-trivial, finite normal subgroup. In particular, if P # 1, P is infinite.

Proof. Suppose M is a non-trivial finite subgroup of P. Then P/Cp(M) is also finite and
acts on P. Since both P/Cp(M) and M are p-groups, this gives Cp(M) # 1, a contradiction
to Z(M) = 1. O

Example 1.4.37. [zp=1]| Let p be a prime and k an integer with k > 1. Then there ezists
a locally finite, solvable p-group of derived length k with trivial center.

Proof. If k = 2 let B be any infinite abelian p-group ( for example @, . Cp. If k& > 2 let
B be any infinite, locally finite, solvable p-group of derived length k& — 1, which exists by
induction (since by 1.4.36 a non-trivial p-group with trivial center is necessarily infinite).
Put A = F,[B]. Then A is elementary abelian p group and B acts faithfully on A be
right multiplication. Put G = AB, the semidirect product. Since B acts faithfully on A,
Ca(A) = A and so Z(G) = Ca(G) = C4(B). Since B is infinite, 1.4.35(a) gives C4(B) =1
and so Z(G) = 1. Since B*~Y =1 we have G*~1) < A and so G(k) < A’ = 1.

Suppose that G~ = 1. Since B*2) < G¥=2) and G*~2) is a normal subgroup
of G, we have [A, B*=2|B¢:=2) < G(=2) Thus [A4, B*~2 B2 < g¢-D = 1 and
B®#=2) acts hyper-centrally on A. But by 1.4.36, B%*~2) is infinite, and so 1.4.35(a) gives a
contradiction.

Thus G*#~1) £ 1 and G is solvable of derived length k.

Since both A and B = G/A are locally finite p-groups, (??) implies that G is a locally
finite p-group. O
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Example 1.4.38. [example| For each prime p there exists a locally finite, hyper (solv-
able, *) p-group which is not hypercentral-by-solvable.

Proof. For 1 < k € N let Hy be a solvable p-group of derived length k with Z(Hy) =1 (see
1.4.37). Let Ay = F,Hy, and H = @, Hi. Let 1 # N < H and choose k such that the
projection Ny of N in Hy is not trivial. By ?? Ny is infinite. Hence by 1.4.35(a), N does
not act hypercentrally on A;. Put A = @ Ay and G = AH. 1.4.27 now completes the
proof. ]

1.5 Radical Classes

Definition 1.5.1. [def:delta asc] Let ¢ be a well ordered class, G a group and H a subgroup
of G. We say that H is d-ascending in G if the exists § € § and an ascending sequence
(Hpg)p<s from H to G. If H is an Ord-ascending subgroup of G, we write HascG and
say that H is an ascending subgroup of G. H is an w-ascending subgroup of G, we write
H << G and say that H is an subnormal subgroup of G.

Definition 1.5.2. [defiradical] Let X' be a class of groups and G a group.
(a) [a] px(G) is group generated by all the normal X -subgroups of G.

(b) [b] X is called Ng closed if any group generated by finitely many normal X -subgroups
is a X subgroup.

(c) [c] X is called N closed if any group generated by normal X -subgroups is a X subgroup.

(d) [d] X is called N closed if any group generated by ascending X -subgroups is a X
subgroup.

(e) [e] X is called S,,-closed if every normal subgroup of an X -group is a X -group.

Observe that X is N-closed if and only if px(G) is X-group for all groups G.

Lemma 1.5.3. [asc and rho] Let X be an N-closed class of groups, § a well-ordered class
and G a group. Suppose that whenever € § is a limit ordinal, KascLascG and (Mg)a<s
is an ascending sequence from K to L such that My € X for all o < 6, then L € X. Then
px(G) contains all §-ascending X -subgroups of G. In particular, if in addition, § > 1, then
px(G) is the group generated by all the §-ascending subgroups of G.

Proof. Let H be an § ascending subgroup of G and let (Hy)a<pg, 8 € 0 be an ascending
sequence from H to G. For a < 3, define H, = (HH}.

We claim that (H,)a<p is a ascending series from H to (HY). Since H < Hy < Hoq1,
Hoi1 < H,. So Hy < Hyy 1. Also if a is a limit ordinal, then

Ho = (H) = (H=e o) = | J i) = | H,

<o <o
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So (Ha)a<p is a ascending series from H = (HH) to (HY).

Next we will use induction on « to show that H, € X for all a < 4.

Suppose first that o = 0, then H, = H € X.

Suppose next that « = v + 1 for some ordinal ~, then by induction, Fv is a normal X
subgroup of H,. Let g € H,. Then g normalizes H, and so Fz is a normal X-subgroup of
H,. Thus

—H,

Ho = (H") = (H;") = (H] | g € Ha)

is generated by normal X-subgroups. Since X is N-closed, H, € X.

Suppose that « v is a limit ordinal. Then (ﬁ)yga is an ascending sequence from H to
. By induction H is an X groups for all v < a and so by the assumption of the lemma,
eX.

We proved that H, € X for all a < 8. In particular, (H®) = Hg € X. Thus (HY) is a
normal X’ subgroups of G and so (H®) < px(G). Hence also H < px(G). O

H,
H,

Corollary 1.5.4. [rho and subnormal]Let X' be an N closed class of groups. Then px(G)
is the group generated by all the subnormal X -subgroups of G.

Proof. Note that w does not contain a limit ordinal. So the condition in 1.5.3 holds vacuously
for 6 = w. O

Corollary 1.5.5. [ncx] Let X be class of groups, and let NX be the class of groups which
are generated by subnormal X groups. Then NX is the smallest N'-closed class of groups
containing X, that is NX is N-closed and every N-closed class of groups containing X also
contains NX .

Proof. Let G be a group generated by a family M of normal NX-groups. Then each
M € M is generated by a family AVjy; of subnormal X-subgroups of M. Note that each
N € Ny is subnormal in G and so (Jye N is a family of subnormal subgroups of G
generating G. Thus G € NX and NX is N-closed.

Now let ) be any N-closed class of groups with X C ). Let G € N). Then G is generate
by subnormal X groups, and so also by subnormal Y-subgroups. Thus 1.5.4, G < py(G).
Hence G = py(G) and so G € ). O

Corollary 1.5.6. [cap subnormal] Let X be an N- and S,,-closed class of groups. Let G
be a group and H << G. Then
px(H) = px(G)NH.

Proof. Note that px(G) N H is subnormal subgroup of the X group px(G). Since X is S,,-
closed, px(G)N H is an X’ group. Since px(G) N H is normal in H this gives px(G) N H <
px(H).

Conversely, px(H) is a subnormal X subgroup of G and so by 1.5.4 px(H) < px(G).
Thus px(H) < px(G) N H and the corollary holds. O



40 CHAPTER 1. BASIC CONCEPTS FOR INFINITE GROUPS

Definition 1.5.7. [def:radical class| A class X' of groups is called radical if it is N and
H closed, and if for every group G

px(G/px(G)) =1

Lemma 1.5.8. [char radical] A class of group is radical if and only if its N, H and P
closed.

Proof. Let X be class of groups which is N and H-closed.
Suppose first that X is radical and let G be a group which is X-by-X. Then there exists
M < G such that M and G/M are X-group. Then M € px(G) and

G/px(G) = G/M /px(G)/M

Since G/M is an X-group and X is H-closed we conclude that G/p.x (G) is an X groups.
Thus

G/px(G) < px(G/px(G)) =1
and so G = p.x(G) € X. Thus X is closed under extension, that is P-closed.

Suppose next that X is closed under extensions and let G be any group. Let M be the
inverse image of px(G/px(G)) in G. Then M is a normal subgroups of G and both px(G)
and M/px(G) are X groups. Thus M is a normal X subgroup of G and so M < px(G).
Thus M = px(G) and px(G/px(G)) = M/px(G) = 1. Thus X is a radical class. O

Definition 1.5.9. [def rad cx] Let X be a class of groups. Then radX = Hyp(HX)).
So radX is the class of all groups with ascending normal series all of whose factors are
homomorphic images of an X group.

Lemma 1.5.10. [char rad cx| Let X be a class of groups. Then radX is the smallest
radical class containing X, that is radX is a radical class and contains all radical classes
containing X .

Proof. By 7?(??), radX is H-closed. By 1.4.14, radX is N-closed and by 1.4.13, radX" is P
closed. So by 1.5.8, radX is a radical class.

Now let ) be radical class with X C ). Let G € radX and choose a hyper-(*, HX)-
sequence (Gqo)a<p for G.So each We will show by induction that G, € Y for all ordinals
a < B. If a = 0, this is obvious. Suppose a = § + 1 is a successor. Then by induction
Gs € Y. Since X C Y and Y is H-closed, HH C Y. Thus G/Gs € Y. Since ) is P closed
this gives G, € V.

Suppose « is limit ordinal. Then G, = (s, Gs = (G5 | 0 < a). By induction G5 € Y
and since ) is N-closed, G, € ).

We proved that each G, € Y. In particular G = Gg € Y and so radX C ). O
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Definition 1.5.11. [def:central extension| Let G be a group and H be group. We say
that G is a central extension of H if there exists Z < Z(G) with G/Z = H. If X is a class
of groups, then CX is class of central extensions of X -groups.

Proposition 1.5.12. [cgrho| Let X be a H-, S,,- and C-closed class of groups. Let G €
radX and put H = px(G). Then Cq(H) < H.

Proof. Since X is H-closed and G € rad&’, there exists a hyper X-sequence (Gq)a<p for G.
We claim that Cq(H) NG, < H for all o < . This is obvious for & = 0. So suppose a > 0
and Cq(H)NGs € X for all § < a. If o is limit ordinal, then

Ca(H)NGa = Ca(H)N (] = [(Ca(H)NG;) <

o<a <a

So suppose o = § + 1 for some ordinal delta. Put D = Cq(H) NGy = Ca(H) N Gsy1.
Then DGs/Gs is an normal subgroup of the X-group Gsi1/Gs. Since X is S,-closed,
DGs/Gs is X group. Hence also D/DnGy is an X-group. Note the

[D, DnGs] < [Ca(H),Ca(H)NGs] < [Cq(H), H] =1

and so DN Gs < Z(D). Thus D is a central extension of an X group. Since X is a
C-closed, D € X. Thus D is a normal X subgroup of G and so D < H.
Thus the claim holds. In particular, Cq(H) = Cq(H)NG =Cg(H)NGz < H. O

1.6 Finitely generated groups

Definition 1.6.1. [defirang]| Let G be an A-group.

(a) [a] Let ¢ be a cardinal. Then G is ¢ — A-generated if the exists a subset I of G with
G = (I and |I| < c¢. We will also say that G is an c-generated A-group. Such an I is
called ¢ — A-generating set for G.

(b) [b] r4(Q) is the least cardinal ¢ such that G is ¢ — A-generated.
(c) [c] If G is called finitely A-generated r4(G) € N.

(d) [d] rank?(H) = sup{r*(H) | H < G,r4(G) € N}.

(e) e] If A=1, we drop A in the previous notations.

Lemma 1.6.2. [factor and r| Let G be an A-group, H an A-subgroups and M a normal
A-subgroup of G with HM.

(a) [a] There exists an r(G)-generated A-subgroup K of G with G = (H, K).

(b) [b] rHAM) < rA(G) +rHAH N M).
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Proof. (a): Let I C G with |I| = r4(G) and G = (I). For i € I pick h; € H and m; € M
with 4 = hym;. Put K = (m# | i € I). Then K is an r4(G)-generated A-subgroup of M.
Also

G=UYN=(hm?|icl)<(Hm!|iel=>=(HK)<G

and so (a) holds.

(b): Let K be as in (a). Then G = (H,K) = H{(K). Since (K") < M this gives
M = (H N M)(KH). Observe that (K) is an 74(G)-generated H A-group and so M is an
rA(G) + rHA((H N M) generated H A-group. O

Lemma 1.6.3. [simple rank| Let A be a group, G an A-group and H an A-subgroup of
G.

(a) [a] rank®(H) < rank?(G).
(b) [b] If H is normal in G then rank”(G/H) < rank?(G).
(¢) [¢] If H is normal in G then rank”(G) < rank”(H) + rank(G/H).

Proof. (a) and (b) are obvious. For (c) let L be a finitely A-generated A-subgroup of G.
LH/H is an rank(G/H) — A-subgroup of G/H and so there exists a finite subset I of L
with LH/H = (I*YH/H and |I| < rank(G/H). Then L = (I*)(L N H). By 1.6.2(a),
there exists a |I| — A-generated subgroup K of L N H with L = (I*, K). Since K < H, K
is rank” ( H)-generated and so r4(L) < rank”(G/H) + rank” (H). O

Definition 1.6.4. [presentation]| Let G be a group and ¢ a cardinal.

(a) [a] A presentation of rank ¢ for G is an onto homomorphism ¢ : F — G, where F is
a free group of rank c.

(b) [b] A presentation ¢ : F — G is called finite F' has finite rank and ker ¢ is finitely F
generated.

(c) [c] A group is called finitely presented if its has a finite presentation.
Example 1.6.5. [finite groups are finitely presented]
Proof. G = (xy | xpan = 2gn,9,h € G). O

Lemma 1.6.6. [finitely presented quotient| Let H be a finitely generated group and
M < H. if H/M is finitely presented, then M is finitely M generated.

Proof. Put G = H/M and define 8 : H — M,h — hM. Also let « : F — G be a
finite presentation of G. Let (x;,i € I be basis for F' and pick h; € I with G(h;) =
a(x;). Then there exists a unique homomorphism v : F — H with v(x;) = h;. then
B(y(z;)) = B(hi) = a(x;) and so a = S o~y. Note that M = ker f and K = Im~. Since
B(K)=pB(v(H)) =a(H) =G we have H = KM. We compute
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KnM={(f) 1 feFp0(N) =1} ={v() [ f € Fla(f) =1} = Bkera)

Since « is a finite presentation , ker « is finitely H generated and so K N M is finitely
K-generated. Also H is finitely generated and so by 1.6.2(b), M is finitely H-generated. [

Proposition 1.6.7. [all presentation finite] Let G be a finitely presented group. Then
all presentation of finite rank for G are finite.

Proof. Let B : H — G be a finite presentation and put M = ker 3. Then H is finite
generated and H/M = @G is finitely presented. By 1.6.6, M is finitely H generated and so
0 is a finite presentation. O

Proposition 1.6.8. [extensions of finitely presented groups| The class of finitely pre-
sented groups is closed under extensions.

Proof. Let G be a group and N a normal subgroups of G such that both G/N and N are
finitely presented. Let ao: F — G/N and 8 : H — N be finite presentation of G/N and N,
respectively. Let I be a basis for F', J a basis for H, K a finite F-generating set for ker «
and L a finite H-generating set for ker 5. For i € I pick g; € G with «(i) = ¢;N.Since F is
free there exists a homomorphism o* : F' — G with a*(i) = ¢;. Then o*(f)N = «a(f) for all
f € F.In particular a(f) = 1 if and only if o*(f) € N. If k € K,i € [ and ! € L, then o*(k),
B(1)% and B(1)% = all are in N and so a*(k) = B(hy), B(1)% = B(hy) and B1)% = B(hw:)
for some hy, hy;, ﬁkl € H. Let T be the free product of F' and H, that is the free group with
basis IlHJ. Note that F' and H are subgroups of T'. Let M be the normal subgroup of T'
generated by the elements

l lelL
kh' keK
jht jediel
jUhG jediel
Let v : T — G be the homomorphism defined by (i) = ¢; = «a*(i) for i € I and
v(7) = B(j) for j € J. We will show that v is onto and kery = M. Observe that this
implies that « is a finite presentation for G.
Note that v | FF = a* and v | K = 3. Thus N = 8(K) = v(K) < Im+~. Since « is onto,
a*(F)N =G and so v(F)N = G and Imy = G.
Also v(I) = B(l) = 1 for all I € L, v(kh;') = a*(k)B(hy)"! = 1, ’y(jih,:il) =
1.

. . — oy — ~7 . 71 ~—
BGY B = 1, A" Rt = B B =
kerv and so M < ker~.

So all the generators of M are in
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Since j'M = hj;M € HM and jrlM = EjiM € HM for all j € I and ¢ € M we see
that HM is normalized by (I,J) = T. It follows that T'= (F, H) = FHM. For k € K we
have k € hy M € HM and so kera < HM.

Let t € ker~y, then t = fhm for some f € F,h € H and m € M. Then 1 = ~(t) =
Y(H)v(h)y(m) = o*(f)B(h) € a*(f)N. Thus o*(f) € N and so a(f) =1 and f € kera €
HM. Hence t = fhm € HM and we may assume that f = 1. Thus 1 = 5(h) and h € ker 3.
Since | € M for all | € L we see that ker 5 < M and thus t = hm € M. O

Corollary 1.6.9. [polycyclic are finitely presented] All polycyclic groups are finitely
presented. More generally all poly-(cyclic or finite) groups are finitely presented.

Proof. O

1.7 Locally X-groups
Definition 1.7.1. [def:directed set]

(a) [a] A partially ordered set (I, <) is called direct if for alli,j € I there exists k € I with
1 <kandj<k.

(b) [b] A local system for a group G is a set L of subgroups such that G =|J L and (L, C)
15 directed.

Note that a partially ordered set is directed if and only if every non-empty subset has
an upper bound.

Lemma 1.7.2. [local system|]

(a) [a] Let G be a group with a local system L. Then each finitely generated subgroup of G
is contained in member of L.

(b) [b] Let X be a class of groups. Then every group with a local system of X-groups is a
local X -group. In particular a union of a chain of X-groups is a local X -group.

(c) [c] L is a closure operation.

Proof. (a) Let S be a finite subset of G. Since G = |J £, for each s € S there exists Ls € L
with s € £. Since L is directed , there exists an upper bound L for {Ls | s € S} in £. Thus
s€ Ls C Land (S) < L.

(b) follows immediately from (a).

(c) Let X be a class of groups. Let G be a group which is locally LX. Let S be a finite
subset of G. Then there exists a LX-subgroup H of G with S C H. Since H is locally X,
there exists a subgroup K of H with S C K. Thus G € LX. O

Proposition 1.7.3. [n and 1] An L-closed class of groups is Ng if and only if its is N-
closed
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Proof. The one direction is obvious. So suppose X is an L and Ny closed class of group.
We will first show that it is bN closed. For this let G be a group which is generated by
normal N subgroups. Let £ be the set of subgroups of G which are generated by finitely
many normal X-subgroups. Note that £ is a local system for G. Since X is Ny-closed,
L C X. So by 1.7.2(b), G is locally X. Since X is L closed, G € X and so X" is B-closed.
Now let G be group which is generated by ascending X-subgroups. By 1.7.2(b), the
unions of any chain of A subgroups of G is LX-group and so an X-group. Thus the
assumptions of 1.5.3 are fulfilled for 6 = Ord. Hence all ascending X-subgroups of G are
contained in px(G). So G = px(G) € X. O

Lemma 1.7.4. [easy locally] Let X be an S-closed class of groups and G a group.Then
the following are equivalent.

(a) [a] G is locally X.
(b) [b] Ewvery finitely generated subgroup of G is an X -group.

(c) [c] G is locally X N F (recall here that F is the class of finitely generated groups.

Proof. (a) = (b): Let S C G be finite. Since G is locally X, S < H for some X
subgroup of G. Since X is S-closed, (S) is an X-group.
(b) = (¢): and (c) = (?7?): are obvious. O
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CHAPTER 1.

BASIC CONCEPTS FOR INFINITE GROUPS



Chapter 2

Locally nilpotent and locally
solvable groups

2.1 Commutators
Lemma 2.1.1. [commutator formulas] Let G be a group and z,y,z in G. Then
1xy — yf:ry

(b) [b] [z, yz] = [z, 2] [z, 2]

Y
Proof. Readily verified.
Definition 2.1.2. [defi:comm groups| Let G be a group.
(a) [a] Let X,Y CG. The [X,Y] = ([z,y] | x € X,y € U).

(b) [b] Let X1, Xo,...X,, be subsets of G inductively define,

[Xl] = <X1> (md [Xl,XQ ..... Xn] = [[Xl,XQ, . ‘Xn—l]’Xn]
Lemma 2.1.3. [comm 1] Let X and Y be subsets of a groups G.
(a) [a] If1 €Y, then (XV) = (X,[X,Y]).

(b) [b] IfY is a subgroup of G, then [X,Y] is Y -invariant.

47
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Proof. (a)

(XVY=(@Y|reX,ycY)=(z[z,y] |z € X,y cY) <(X,[X,Y])
={(z,[z,y]|z€mzeX,ycY)=(z,x 12V |2,z € X,y € V) < (XY)

where, in the last inequality we used that X C (XY) since 1 € Y.
(b) Let x € X and y,z € Y. Then

z,2y] = [2,y)7[z, 2]
and so
[z, 9] = [z, 29][z, 2] 7" € [X, Y]
where in the last assertion we used that Y and [X, Y] are subgroups of G. O

Lemma 2.1.4. [comm 2] Let X and Y be subsets of a group G and put H = (X) and
K =(Y). Then

[H,Y] = (X, Y]")

and

[H, K] = (X, Y]'F)

Proof. Put L = ([X,Y]"). By ?2(??), [H,Y] is H-invariant. Since [X,Y] < [H,Y], this
gives L < [H,Y]. Since L is H acts on the cosets of L in G by conjugation, indeed
(Lg)" = Lg". Also Ly is fixed-point of h € H iff Lg = lg" and iff [h,g] = g7 € L. So all
elements of X fix all Ly, y € Y. Hence also H = (X) fixes all Ly,y € Y and so [h,y] € L
forallh € Hyy €Y. Thus [H,Y| <L and L = [H,Y].

This proves the first statement.

For the second, we use the fist statement twice:

[H, K] = ([H,Y]") = (X, Y]')") = (X, Y)ITF)

2.2 Locally nilpotent groups

Definition 2.2.1. [Llet G be a group and « and ordinal. Define subgroups Zq(G) and
Yo (G) inductively a follows:

720(G) = 1,20(G))Za-1 = L(G]Za-1(Q)), if o is a successor and Zy(G) = U 23(G) if o is a limit ordinal

B<a
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7(G) = G,74(G) = [Va—1(G), G, if a is a successor and Zy(G) = ﬂ Zs(Q) if a is a limit ordinal
B<a

(Za)o is called the upper central series of G and (7o(G))a) the lower centrals series of
G.

Lemma 2.2.2. [char nilpotent] Let n € N and G a group. Then the following statements
are equivalent:

(a) [a] G=7Z,(G).
(b) [b] There exists a finite ascending normal series
1=4p< A <...A,1<A, =G
of G with [A;,G] < A;j_y for all 1 <i<n.

(¢) [e] m(G)=1.

Proof. (a) = (b):  Just put 4; = Z;(G).

(b) = (a):  We claim that A; < Z;(G). This is clearly true for i« = 0. Suppose that
A; < Zi(G). Then [A;+1,G] < A; < Zi(G) and so A;11 < Zi+1(G). This proves the claim
and so G = Ay < Z,(G).

(b) = (c¢): We claim that v;(G) < A,_;. Indeed this is true for ¢ = 0. Suppose
7i(G) < Ap—i. Then

%i+1(G) = [7i(G), G < [An—i, G] < Ay(i11)

Thus the claim holds and 7,(G) < 4Ap =1
(¢) = (b):  Just put A; = y,—i(G). O

Definition 2.2.3. [def:nilpotent| Let G be a group. Then G is called nilpotent if v, (G) =
1 for some n € Z,(G). The smallest such n is called the nilpotency class of G. N')J denotes
the class of nilpotent groups.

Lemma 2.2.4. [nilpotent and no| Let K and L be nilpotent normal subgroups of a group
G of nilpotency class k and 1, respectively. Then KL is nilpotent of class at most k+1. In
particular, N')J is No closed.

Proof. If k =00rl =0, then K =1 or L =1 and the lemma holds. Now suppose k& > 0 and
[ > 0. Note that KZ(L)/Z(L) has nilpotency class at most k£ and L/Z(L) has nilpotency
class [ — 1. So by induction K L/Z(L) class at most k + [ — 1. Thus y;—1(KL) < Z(L).
By symmetry, yx+i—1(KL) < Z(K). Since Z(K) NZ(L) < Z(K L) we conclude that

(Ve (KL), KL] < [Z(KL),KL] =1
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Definition 2.2.5. [c generated| Let ¢ be a cardinality. Then a group G is called c-
generated if there exists a subset T of G with G = (T) and |T| < c.

Lemma 2.2.6. [polycyclic] Let G be a group with an ascending sequence (Gu)a<p all of
whose factors are cyclic. Then every subgroups of G can is |5|-generated. In particular, all
polycyclic groups are finitely generated.

Proof. For a < B, Ga41/Ga is cyclic and so there exists g, with Gat1 = (ga)Ga. We
claim that for all v < o, G = (gs | 6 < ). This is obvious of v = 0 Suppose the claim is
true for all ordinal less than v. v = « + 1, then

Gy =(9a)Ga = (ga)(g5 | 0 <) =(gs | 6 <)

If v is a limit ordinal, then

Gy=|JGa=|Jlgsld<a)={(gs |6 <7

a<ly a<y
So the claim holds. In particular, G = G is |5 generated. If H < G, then (HNGqy)a<p
is an ascending series with cyclic factors and so also H is |beta|-generated. O

Proposition 2.2.7. [fg and nil] Let G be a nilpotent n-generated group of class d > 0 and
suppose G can be generated by n elements. Put m := 2?21 nd. Then v4_1(G) is n%-generated

and G is polycyclic of length m. In particular, every subgroup of G is m-generated.

Proof. Suppose d = 1. Then G is abelian and so polycyclic of length at most n. Also
74-1(G) = G and so can be generated by n? = n elements. Thus proposition holds in this
case.

So suppose d > 1 and put D = v4-1(G) and E = v4_2(G). Then D < Z(G) and D =
[E, G]. Moreover by induction, £/D is generated by n?~! elements and G/ D is polycylic of
length at most Y%~ ! n’. So there exists S C E with |S| < n* ! and E/D = (sD | s € S).
Note that £ = (S)D. Let T C G with G = (T") and |T'| = n. Then

D = [E,G] = [(S)D,(T)] = [(S),(T)] = ([S,T) ") = [5,T]

where the last equality holds since [S,7] < [E,G] < D < Z(G). Thus D is generated
by |S||T| < n%'n elements. Since D is abelian, D is polycyclic of length n?. Since G/D is
polycyclic of length 2?;11 n?, G is polycyclic of length

d—1 d
nd + Z n' = Z n
i=1 i=1
The last statement now follows from 2.2.6. O]

Theorem 2.2.8. [hirsch-plotkin| Let X’ be a S- and Nq-closed class of finitely generated
groups. Then LX is N-closed. In particular, for all groups G, pLx(G) is locally X(G) and
contains all ascending locally X -subgroups of G.
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Proof. We will first show that LX is Ny-closed. For this let L and M be normal locally
X-subgroups of a group H. We need to show that LM is locally X.

So let S be a finite subsets of LM and choose finite subsets X and Y of L and M
respectively with S C (H, K), where H = (X) and K = (Y'). Note that [X,Y] is finitely
generated and [X,Y] < [H,K]| < [L,M] < LN M and so < [X,Y],H) =< [X,Y],X) is a
finitely generated subgroup of L. Since L is locally X we conclude that < [X,Y], H) is an
X group. Since X is S-closed also [H,Y] = ([X,Y]#) is an X group. In particular, [H,Y]
is finitely generated. Hence

(K') = [H,K]K = ([H,Y]")K = ([H,Y],Y)

is a finitely generated subgroup of M. Thus (K*) is X-group. By symmetry also (HX)
is X-group. Since X is Ny-closed we conclude from (H, K) = (HX) < K that (H, K) is
an X groups. Since S C (H, K) this completes the proof that LM is locally X.

Hence LX is Ny-closed. Since LX is L-closed, 1.7.3 implies that LX is also N-closed. [

Definition 2.2.9. [def:fitting] let G be groups.

(a) [a] F(G) = pnil(G). So F(G) is is the group generated by the all the nilpotent normal
subgroups of G. F(QG) 1is called the Fitting subgroups of G.

(b) [b] HP(G) = prni(G). So F(G) is is the group generated by the all the locally nilpotent
normal subgroups of G. HP(QG) is called the Hirsch-Plotkin radical of G.

Corollary 2.2.10 (Hirsch-Plotkin). [hp| Let G be a group. HP(G) is the largest ascending
locally nilpotent subgroups of G, that is HP(QG) is locally nilpotent and contains all ascending,
locally nilpotent subgroups of G.

Proof. Let X = Nil N F, the class of finitely generated subgroups. By 2.2.7 and since
subgroups of nilpotent are nilpotent, X is S-closed. Note that Nil and F are Ny-closed and
so also X is Ny-closed. Thus the assumption of ?? are fulfilled and so pr,x(G) is the largest
ascending, locally X subgroup of G. By 1.7.4, LX = LNil and the Corollary is proved. [

Lemma 2.2.11. [cghp| Let G be a group.
(a) [a] If G is hyper abelian, then Cy(F(G)) < F(G).
(b) [b] If G is hyper (locally-nilpotent), then Cq(HG(G) < HP(G).

Proof. (a) Note that G is hyper abelian, if and only if G is hyper nilpotent and if and only
if G € radNil. Let K be a group such that K/Z(K) is nilpotent. Then v, (K) < Z(K) and
yn 4+ 1(G) < [Z(K), K] = 1. Thus Nil is closed under central extension. Clearly Nil is H
and S,-closed and so the lemma follows from 1.5.12.

(b) Observe that G is hyper (locally nilpotent) just means G € radLNil. Since Nil is
closed under central extensions, also LNil is closed under extensions. Clearly LNil is H and
S,.-closed and so the lemma follows from 1.5.12. O
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Let G be a finite group. Then G is locally nilpotent iff G is nilpotent. So F(G) = HP(G)
is the largest normal nilpotent subgroup of G. Also G is hyper abelian iff G is solvable and
iff G is hyper (locally nilpotent). So for finite groups, both parts of the previous lemma say
that Co(F(G)) < F(G) for every finite solvable group.

2.3 The generalized Fitting Subgroup

Definition 2.3.1. [def:f*g] Let G be group.

(a) [a] G is called quasisimple, if G is perfect and G/Z(QG) is simple.

(b) [b] A component of G is a quasi simple ascending subgroup of G.

(c) [c] E(G) is the subgroup of G generated by all the components of G.

(d) [d] F*(G) =HP(G)E(G). F*(G) is called the general Fitting subgroup of G.
Lemma 2.3.2. [basic quasimple| Let K be quasisimple group and M < K.
(a) [a]| M =K or M <Z(K).

(b) [b] If M # K, then Z(K/M) =7 K)/M and K/M is quasisimple.

Proof. (a) We may assume M % Z(K). Since K/Z(K) is simple this gives K/Z(K) =
MZ(K)/Z(K) and K = MZ(K). Since K is perfect K = [K,K| = [MZ(K), MZ(K)] =
[M,M] < M and so K = M. (b) Suppose M # K. Then by (a) M < Z(K). Let D be the
inverse image of Z(K /M) in K. Then Z(K) < D. Also [D, K, K] < [M, K] =1 and so also
[K,D,K] = 1. The Three Subgroups Lemma implies that [K, K, D] = 1. Since K is per-
fect we conclude [D, K] =1, D < Z(K) and D = Z(K). Hence K/Z(M)/Z(K/Z(M)) =
K/Z(M)/]L(K)/Z(M) = K/Z(K). The latter group is simple and so K/Z(M) is qua-
sisimple. O

Lemma 2.3.3. [f* and asc]| Let G be a group and M an ascending subgroup of G.
(a) [a] HP(M)=HP(G)N M.

(b) [b] A subgroup of M is a component of M iff its a component of G. In particular,
E(M) < E(G) and F*(M) < F*(Q).

Proof. (a) Since HP(M) < MascG we conclude from 2.2.10 that HP(M) is an ascending
locally nilpotent subgroup of G and HP(M) < HP(G). Also HP(G) N M is locally nilpotent
normal subgroup of M and so HP(G) N M < HP(M).

(b) If K is a component of M, then K is a quasisimple ascending subgroup of M. Since
MascG we get KascG and so K is a component of G. O

Lemma 2.3.4. [easy cf*] Let G be a group.
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() [a] Crp()(E(G)) = HP(G).
(b) [b] If M is subnormal in G, then F*(M)= M N F*(G).

Proof. Put F = F*(G). (a) By 7?7 [HP(G),E(G)] = 1. Since F' = HP(G)E(G) this gives
Cr(E(G))) = HP(G)Cge)E(G)) = HP(G)Z(E(G)). Since Z(E(G)) is an abelian normal
subgroup of G, Z(E(G)) < HP(G) and (a) holds.

(b) Put E = E(M). By 7? HP(G) and all components of G which are not contained in M
centralizes all the components of M. Thus F' = Cp(E)E and so (FNM) = (Cr(E)NM)E.
Put D = Cp(E)N M. Let K be a component of G with K £ M. Then by ?7, [K,M] = 1.

Thus D centralizes all components of G and so by (a) D < Cr(E(G)) = HP(G). Hence D
is locally nilpotent and thus D < HP(M) < F*(H). So also FN M = DE < F*(M). Since
F*(M) < F, (b) holds. O

Lemma 2.3.5. [f* and factors| Let G be a group.
(a) [a] If M <G then F*(G)M/M < F*(G/M).
(b) [b] If M <Z(G). Then F*(G)/M =F*(G/M).

Proof. (a) HP(G)M /M is locally nilpotent normal subgroup of G/M and so HP(G)M /M <
HP(G/M). Let K be a component of G. If K < M, then definitely KM/M < E(G/M).
K< M, KNM < K and by 2.3.2, KM/M = K/K N M is quasisimple. Thus KM /M is a
component of K. Hence E(G)M/M < E(G/M) and (a) holds.

(b) Let H be the inverse image of HP(G//M) in G. Since H/M is locally nilpotent and
M < Z(H), H is locally nilpotent and so H < HP(G). Thus H = HP(G).

Now let L be the inverse image of a component of G/M in G and put K = L. Since
L/M is perfect, L/M = KM/M and so L = KM. Thus L' = K’ = L and so K is perfect.
Let D/M = Z(L/M). Then D £ K and so using ??, DNK < Z(K) < Z(L)NK < DNK.
Hence DN K = Z(K) and K/Z(K) = K/KND = KD/D = L/D = L/M/Z(L/M).
Therefore K/Z(K) is simple and K is a component of G. Since M < HP(G) we get
L = KM < F*(G). It follows that F*(G/M) < F*(G)/M. Together with (a) this gives
(b). O

Theorem 2.3.6. [cf*g] Let F* be the class of all groups H which are a central product of
quasi-simple and locally nilpotent groups. Let G be group,

(a) [a] G € F* if and only if G =F*(G).
(b) [b] F* isS,-, H-, C- and N-closed.
(c) le] pr(G) =F*(G).

(d) [d] If G € radF*, then Cq(F*(Q)) < F*(G).
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Proof. (a): If G € F* then clearly G = F*(G). Conversely, by 7?7, F*(G) is the central
product of HP(G) and the components of G, so (a) holds.

(b) and (c): By ??(??), F* is S,-closed. By 2.3.5, 7* is H and C closed. Also if N 4G
with N = F*(N), then by ??(??), N = F*(N) < F*(G). This shows that pr«(G) = F*(G)
and that F* is N-closed.

(d) By (b) and 1.5.12, Cq(pr-(G)) < pr+(G). Thus (d) follows from (c). O

Definition 2.3.7. [def:min] We say that a group G fulfills MIN if every non-empty sets
of subgroups of G has a minimal element.

Corollary 2.3.8. [cf*] Let G be a group with MIN, then G € radF*. In particular,
Co(F (@) < FX Q).

Proof. Let M < G with G # M. Then G/M fulfills min and so G/M has a minimal normal
subgroup E. Then F is simple and so either |F| is a prime or F is quasisimple. In the first
case F < HP(G/M) and in the second F < E(G/M). In either case F*(G/M) # 1. So G
is strongly hyper F* and hence by ?7(??7), G is a hyper F*-group. Thus G € radF*. The
second statement now follows from 77. O

2.4 Chieffactors of locally solvable groups

Proposition 2.4.1. [chieffactors in locally nilpotent]| let G be group.
(a) [a] If G locally nilpotent group, then G centralizes all chief-factors of G.
(b) [b] If G locally solvable group, then G all chief-factors of G are abelian.

Proof. Let T'/B be a chieffactor of G. Replacing G be GG/B we may assume that B = 1 and
so T is minimal normal subgroup of G. Let H = G in (a) and H = T in (b). We need to
show that [T, H] = 1. So suppose [T, H| # 1. Since T is a minimal normal subgroup of G,
T =[T,H]. Pick 1 #t € T. Then T = (t%) and so t € [T, H] = [t%, H]. Thus there exists
g1,92,---,9n € G and hq, ho, ... h,, € H with

te [t9090) (hy kg, ... b))l

(a) Suppose G is locally nilpotent and put D = (g1,...9n,h1,h2,...,hy,). Then t €
[(tP), D). Since G is locally nilpotent, D is nilpotent and we can choose k& minimal with
t € Zy(D). Then

t € [(t"), D] < [Z4(D), D] < Z_1(D)

a contradiction to the minimal choice of &.
(b) Suppose G is locally solvable and so H = T = (t“). We we can choose g; € G with

h; € <t<~"j’“""’9ﬂ"fj>). Put D = (gi,gj | 1 <i<n,1<j<m,1<k<t;). Then

te[(t?), {t7)] = (")



2.5. POLYCYCLIC GROUPS 95

Since G is locally solvable, D is solvable and we can choose k maximal with ¢t € G(¥),
Then

te <tD>/ < (G(k))/ _ G(k+1)

a contradiction to the maximality of k. O

2.5 Polycyclic groups

Definition 2.5.1. [def:c-series| Let G be a group. A c-series for G is finite series for G
each of whose factors are isomorphic to Z, or Z. A strong c-series for G is a c-series of
minimal length. A supersolvable series is a finite normal series all whose factors are cyclic.
A group is called supersolvable if its has a supersolvable series.

Definition 2.5.2. [def:isomorphic set of groups| Let M and N be sets of groups, we
say that M is isomorphic to N if there exists a bijection ¢ : M — N with M = ¢(M) for all
M e M. We say that two series of a group have isomorphic factors, if the sets of factors
of the two series are isomorphic.

Definition 2.5.3. [def:refinement]| Let A be a series for the group G. A refinement of A
is a series B of G with A C B.

Proposition 2.5.4. [refinement| Let A and B be ascending series of the group G. Define
A*={(ANB)A" | A€ A, Be B} and B* ={(BNA)B~ | Be B,A¢ec A}. Then A*
is an ascending refinement of A, B* is an ascending refinement of B and A* and B* have
isomorphic factors. Moreover, the sets of factors of both A* and B* are isomorphic to

{ANB/(A"NB)(ANB™)|Ac A, BeB,ANB# (A NB)(ANnB™)}

Proof. We will first show that A* is totally ordered. Let X1, X5 € A* and pick A; € A, B; €
B with X; = (A;NB;)A; . Without loss A; < As. Note that A7 < X; < A;. Soif Ay < Ay,
then X; < A; < A, < Xs. So suppose A; = Ag and without loss By < By. Then X < X
and so A* is totally ordered.

Note that A= (ANG)A™ € A* for all A € A and so A*.

Let X = (AN B)A™ € A*. Since B is well ordered we may assume that B is minimal
in B with X = (AN B)A~. Since B is well ordered we may assume that B is minimal in B
with We will compute X~ = J{D e A* | D < A}. f A=A (in A) then X = A= J{D €
A|D < A} < X~ and so X = X~. Suppose next that A # A~. Let E € B with E < B.
By the minimal choice of B, (AN E)A™ < (ANB)A™ and so (AN E)A~ < X~. It follows
that (ANB~)A~ < X~. Soif B = B~, then X = X~. So suppose B # B~. Let Ac A
and B € B with (fl N B)A‘ < X. Then either A< A~ or A = A and B < B~. In either
case (ANB)A™) < (ANB7)A~ andso X~ = (ANB )A~. Since A~ < Aand B~ < B
we have X~ = ANB7)A " (ANB)A~ = X and so A*.

Let M be a non-empty subset of A*. Choose A € A minimal with (AN E)A~ € M for
some E € B and then choose B € B minimal with (AN B)A~ € M. Then (AN B)B™ is



56 CHAPTER 2. LOCALLY NILPOTENT AND LOCALLY SOLVABLE GROUPS

the minimal element of M. So A* is well ordered and M = (ANB)B~ € A*. If G € M,
then UM = G € A*. If G ¢ M pick X minimal in A* with M < X, for all M € M.
Then clearly (JM = X~ € A*. Thus A* is a series for G and so an ascending refinement
of A. Also the factors of A* are exactly the groups [(ANB)A~/(ANB~)A™ where A € A,
BeBwith A# A, B# B~ and (ANE)A™ < (AN B)A for all E € B with E < B.
Observe that these are exactly the groups [(ANB)A™/(ANB~)A~ where A€ A, B € B
and (ANB)A~ # (ANB)A™.
Now
(ANB)A"/(ANnB7)A~ = (ANnB)(ANB )A"/(ANB™)A~

~ (AnB)/((AnNB)N(ANB™)A"))

= (AnB)/((AnB7)(ANBNB7))

= (ANB)/((ANB~)(AnB™))

and so the set of factors of A* is isomorphic to the set

{ANB/(A"NB)(ANB™)|Ac A, BeB,ANnB# (A" NB)(ANnB™)}

Observe that the last set is symmetric in A and B and all parts of the propositions are
proved. O

Lemma 2.5.5. [same number of infinite factors|] Any two c-series of a polycyclic group
have the same number of infinite factors.

Proof. Let A and B be the c-series of the group G. By 2.5.4 we may assume that A C B.
Let (X,Y) be a jump of A and consider the series

X=Xo<X1<... X, =Y

where Xo, ..., X, are the members of B with X < X; <Y. If |Y/X]| is cyclic of prime order
then n =1 and X;/Xo =Y/X. If Y/X = Z, then X;/X, = Z while X;/X;_; is finite for
2 <4 < n. So each infinite factor of A gives rise to exactly one infinite factor of B. 0

Lemma 2.5.6. [cag cap kag| Let G be a group acting on the abelian group A. Let g € G
with finite order n. Then Ca(g) N[V, g] has exponent dividing n.

Proof. Let a € Cx(g)N[V,g]. Since A is abelian, [A, g] = {[a,g] | a € A} and so there exists
b eV with a = [b, g]. We claim that a™ = [b,¢g™] for all m € Z*. By definition this is true
for m = 1. Note that a™ € C4(g) and so by 2.1.1(b)
(b, "1 = [b,g™g] = [b, g[b, g™] = aa™ = o™
It follows that a" = [b, ¢"] = [b,1] = 1. O

Proposition 2.5.7. [supersolvabe] Let G be supersolvable group. Then
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(a) [a] There exists a strong c series 1 = Gop < G1 < G2 < G, and 0 <1 < n such that
G;/Gi—1 is has odd prime order for all 1 < i <1 and G;/G;—1 has order 2 or infty for
alll <1 <n.

(b) [b] G has a unique maximal finite subgroup of odd order.
(c) [c] Any two strong c-series have isomorphic factors.

Proof. Let A.1=Hy< Hy < Hy < H, be a strong c series for G and choose a c-series

B:1=Gy< G < G2 <Gy
and a < b € N such that:
(a) A and B have isomorphic factors.
(b) G;/G;—1 has odd order for all 1 <i < a.
(
(

)
)

¢) Gi/Gi-1 has order 2 or co for a < i < b.

d) If b # n, then Gyy1/Gp has odd prime order.
)

(e) a is maximal and then b is minimal.

Suppose that b # n. Then by maximality of a, a # b. Put Put B = Gbef, Gy+1=
Gpt1/B, p = |Gpt1/Gp—1 and m = |Gp/Gp11. Then Gy /Go—1 = Zy,, Gp/Gp—1 is cyclic of
order m, p is an odd prime and m € {2,00}. Note that G} < Gy—1 and since G < Gp1,
G}, < B. Thus G, is abelian.

If m = 2, then G}' < Gy—1 and so G}' < B and G}, is an elementary abelian 2-group.

Suppose m = oo and let © € Gy \ B. Then there exists g € Gpy1 with £ G7_;. Since
Gy/Gy_| = Z, xG}_, has infinite order in G;,/Gj_,. Hence also T has infinite order. So for
either possibility of m, any non-trivial elements of G} has order m.

Suppose for a contradiction the D := [Gy, Gp1]B # B. Let Sp < 51 < ...S5,, = G be
supersolvable series for G and pick k minimal with SN D £ B. Then E := (SyND)B/B =
S, N D/S, N B and since S,_1 N D = Sx_1 N D, E is a quotient of

S N D/Sk_l ND=5S.N D/(Sk N D) NSp_1 = (Sk N D)Sk_l/Sk_l

Thus E is isomorphic to a section of the cyclic group Si/Sk_1. Hence E is non-trivial
cyclic subgroup of Gy. Since non-trivial elements of G, have order m, E is cyclic of order m.
It follows that Aut(E) has order at most two. Observe that Gy, acts on E. G} centralizes
Gy and so also E and Gy 1/Gy = Z, has order coprime to 2. Thus Gpy; centralizes E.
So E < [Gy, Gpy1] N Cg,(Gpt1). Thus by 77 E has exponent dividing p = |Gy.1/Gp| a
contradiction since E is cyclic of order m.

We proved that [Gy, Gpi1] < B < Gp_1. So Gp_1 = B < Gyy1 and Gy < Z(Gpy 1. Since
Gy 1/Gy is cyclic we conclude that Gy is abelian. If Gy is cyclic, then
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Go<...Gy1<Ghy <...Gn

is a c-series for GG, a contradiction since A and so also B is a c-series of minimal length.
Thus Gpy1 is not cyclic and there exist K < Gy with

Gop1 =Gy x K

Let K be the inverse image of K in Gp1. The K < Gy 1, K/Gp_1 = Zp and Gpy1/K
is cyclic of order m.
Consider the series

Go<...Gp1 <K<Gyy<...<Gy

If b—1 = a, we get a contradiction to the maximality of a and if a < b — 1, we get a
contradiction to the minimality of b.

This show that n = b and so (a) holds.

Note that H := Gy is a subgroup of odd order. Let g be any non-trivial element of odd
order in G and pick 1 < ¢ < n minimal with g € Gy. Then ¢G;_; is non-trivial elements
of odd order in G;/Gi—1. So Gy/G—1 cannot by cyclic of order 2 or oo and so ¢t < [ and
g € Gy = H. Thus H is the unique maximal finite subgroup of odd order in G and (b) is
proved.

For any odd prime p let s, the number of factors of A isomorphic to Z,. Then s, is also
the number of factors of B isomorphic to Z, and so |H| = [[{p®” | p an odd prime}. Thus
sp is independent of the choice of the strong c-series A. By 2.5.5 any two strong c-series also
have the same number of factors isomorphic to Z. By defintition, any two strong c-series
have the same number of total factors. It follows that they also have the same number of
factors isomorphic to Zz. So (c) holds. O



Chapter 3

Groups with MIN

3.1 Basic properties of groups with MIN
Recall that a group with MIN is a group such that every non-empty set of subgroups has a

minimal element.

Lemma 3.1.1. [basic min] Let G be a group with MIN.
(a) [a] Every section of G fulfills MIN.
(b) [b] G is periodic, that is every element in G has finite order.

Proof. (a) Let B 4 A < G and M a non-empty set of subgroups of A/B. Let D < G be
minimal with B < D < A and D/B € M. Then D/B is a minimal element of M.
(b) Let g € G. By (a) (g) fulfills MIN and so (g) 2 Z. Thus (g) is finite.
0

Lemma 3.1.2. [min and com| Let G be a group with MIN. Then every series for G is
an ascending series.

Proof. Just recall that by definition a series is ascending if every non-empty subset of the
series has a minimal element. ]

Definition 3.1.3. [def:gcird] Let G be a group. Then G° is the intersection of all the
subgroups of finite index in G.

Lemma 3.1.4. [gcirc and min] Let G be a group with MIN. Then G° is the unique min-
imal subgroups of finite index in G.

Proof. Let A minimal subgroups of finite index in G and B an arbitrary subgroup of index
inG. |AJANB|=|AB/B| << |G/B|, G/ANB| < |G/A||G/B|. So AN B has finite index
in A and so by minimality of A and B. A = AN B < B. So A is the unique minimal
subgroup of finite index and A = G° O

99
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Lemma 3.1.5. [basic gcirc| Let G be a group and H < G. Then H® < G°.

Proof. Let F' < G with |G/F| finite. Then |H/HNF| = |HF/F| < |G/F| and so H° <
HNF < F. Since this holds for all such F', H° < G°. O

3.2 Locally solvable groups with MIN

Definition 3.2.1. [def:divisible] A group A is called divisible of it is abelian and for all
a € A and n € Z where exists b € A with b = a.

Q and Cjpe are divisible. Z is not divisible and all non-trivial divisible groups are infinite.

Lemma 3.2.2. [basis divisible| Let A be an abelian group and D a divisible subgroup of
A. Then A=D & K for some K < A.

Proof. By Zorn’s lemma there exists a subgroup K of A maximal with respect to DNA = 0.
Let a € A and let m € N. Then a™ € DK if and only of a™ = dk for some d € D, k € K
and so iff a™K N D # () and iff @D N K # (). Let n be the order of aDK in A/DK. If
n = oo we conclude that a ¢ K and | < a) K N D = 1, a contradiction to the maximality
of K. Thus n € Z". Then a" = dk for some d € D and k € K. Since D is divisible,
d="b"for some b € D. Put e = ab™!. If e"K N D # ) we get e™D N K # () and since
aD = eD, a™D N K # emptyset and " € DK, n | m and m = nl for some | € Z. Thus
e™ = (ab—1)(nl) = (a"b~")! = (a"d~')! = k¥ € K. It follows that ¢™ < DN K =1 and so
(e)K N D = 1. By maximality of K, this gives e € K and so a = eb € KD. Thus A= DK
and AD @ K. O

3.3 Locally finite groups with finite involution centralizer

Proposition 3.3.1. [brauer fowler| Let H be a finite group, t an involution in H. Then
there exist a non-trivial normal subgroup N of Gwith |G/Cq(N) < (2|Cx(t)|*)! and N <
[t,G].

Proof. Put D = {(x,y) | z,y € t | * # y}. Note that xy # 1 for all (z,y) € D. For
a € HY but D(a) = {x,y) € D | xy = a} and k = {max |D(h) | a € G*. Put h = |H|. Then
lcC| = |H/Cu(t)| = 2 and

h h

~(—-n=lcllel - =IP|= ) D) < (h-1)k

Cc C
a€HY

and so

2
1
%Shk—kﬁ—f-ﬁgh(l*SQh
C C C

and so
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El i~y

< 202

Pick a € H* with |D(a)| = k If (z,y) € D(a) then y = 27 'a = wa, so y uniquely
determined by x. Moreover x inverts a = zy. So if (Z,7) is another element of D(a), then
ry~! € Cg(a). Thus |D(a)| < |Cy(a)|. . It follows that

<

"] = |H/CH(a)| < - <&

Since H/C(H (a') is isomorphic to a subgroup Sym(a?) we conclude that H/Cp(a'?)| <
(2¢2)!. Put N = (a%). Then |H/Cg(N)| < (2¢?)!. Let x =" and y = 2° for some r,s € K.
Then a = vy = v~ 2% = [x,s] = [t", s]. Since [t, K] < K this gives and N < [t,G] and the
lemme is proved. O

Lemma 3.3.2. [brian| Let K be a group, M <K, K = K/M and h € K. Then |C(h)| <
|Ck(h). Moreover if |Cz(h)| = |Ck (h)|, then Mh C h¥.

Proof. Define A < K by M < A and A/M = Cy(h). Note that Cx(h) < A. Consider the

map

T:A— H,a— h*

Since [EE:E for all a € A we have h® € Ma and so Im7 C Mh.
Note that 7(a) = 7(b) iff h* = h? iff A" = h iff ba~! € Ck(h) iff b € a=*Cx(h). Thus
771(d) = |Ck (h)| for all d € Im 7 and

Al = |Cr (h)[[ Tm 7| < |Cr (h)[[MA[|Cr (h)[ M]
and so
|Cx(h)| = |A/M]| < |Ck ()]
If |C(h)| = |Ck (h)| we conlcude that Mh = Im7 = h C hE. Note tat O

Lemma 3.3.3. [h1l bouned| Let H be group acting on an abelian group A. Then A/C4(G)
is bounded in terms of |G/Cg(A) and [A,G].

Proof. Without loss C(A) = 1. For g € G we have A/Ca(g) = [A,g] < [A,G] and so
|A/Ca(g)| < [A,G]. Since G/Ca(G) embeds into X ., A/Ca(G), the lemma is proved. [

Proposition 3.3.4. [g mod zl] Let G be a finite group and t € G with t* = 1. Put
L =1[t,G]. Then |G/Zowa(L)| is bounded in terms of |Cq(t)|
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Proof. The proof is by induction on Cg(t). Replacing G be G/Zorq(L) we may assume
that Z(L) = 1. By 3.3.1 there exiss a non-trvial normal subgroup N of G such that N < L
and G/Cg(N) is |Cg(t)|-bounded. Without loss N is a mininal normal subgroup of G. If
t inverts N, then L centralizes N and so L < Z(L) = 1, a contadiction. Hence there exists
n € N such that ¢ does not invert n. Since n = (nt)t we conclude that (nt) does not have
order two. So nt ¢ t“. Put G = G/N. Then 3.3.2 implies that |Cg(t)| < |Cg(t). Let
Z/N = Zowa(L)). Then by induction G/Z is bounded in terms of |Cg(Z). Put D = Cz(N).
Since |Z/D| < |G/Cq(N) we conclude that Z/D and so also G/D are bounded in terms of
Calt)]

It remains to bound the order of D. So suppose that D # 1 and let M be any non-
trivial normal subgroup of G contained in D. Suppose that M N D = 1. Then M =
MN/N < ZN/N = Zowa(L)) and so Cp(L) = 1 # 1, a contradiction to Z(L) = 1. Thus
M NN # N. Since N is a mininal normal subgroup of G this gives N < M. Thus N is the
uniuge mininal normal subgroup of G contained in D. In particular N < D and so N is
abelian. Since t does not invert N there a prime p and an elemenst of n of order p in C(t).
By mimimlity of N, N = (n®). Tt follows that N is an elementary abelian p group and
IN| < plG/Cq(N)| < |Cq(t)|I¢/C¢(N), Thus |N|is |Cq(t)|-bounded. Since Z/N is nilpotent
and N < Z(D), D is nilpotent. Observe that NNO, (D) =1 and so Oy (D) = 1. Thus D is
a p-group and we conlcude that [D,OP(L)] < N. If Cp(OP(L)) # 1, then also Cp(L) =1,
a contradiction. Thus Cp(OP(L)) = 1. From [OP(L),D,D] < [D,N] = 1 and the Three
subgroup lemma we get [D’,OP(L)] = 1 and so D is abelian. Since |G/D| is bounded, we
conclude that OP(L)/Cop(r)(D) is bounded. ?? now shows that |D| = |D/Cp(OP(L))| is
bounded. O

Lemma 3.3.5. [nilpotent and maximal abelian] Let P be a hypercentral groups and A
a mazximal abelian normal subgroup of P. Then Cp(A) = A.

Proof. Let h € Cp(A) with [h, P] < A. Then (h)A is an abelian normal subgroup of P and
so by maximality of A, h € A. Since P is hypercental this implies Cp(A) = A. O

Lemma 3.3.6. [2-group with small centralizer| Let P be a locally finite 2-group and
t € Pt = 1 and with |Cp(t) finite. Then there exists a integer n such that t inverts P"
and n and P/P™ are bounded in terms of |Cp(t)]

Proof. Without loss P is finite. Let A be a maximal normal abelian subgroup of P and
put m = |Cp(t)|. Let m = 2*. Since A/Ca(t) = [A,t] we have |[A/[A, ]| = [Ca(t)|||Cp(t)|
and so A™ < [A,t]. Note that t inverts [A,t] and so also A™ and [ A(t),t]. Thus
[Q0A(E), ] < Coyay(£) and [ (4)] = [[21A(8),8]|Coa, (ay (1)] < [Cp(E) = m? = 22,

If follows that A has rank at most 2k. and so A/A™ has order at most m?* = 92k*
order. Hence also P/Cp(A/A™) has m-bouned order. Put E = Cp(A™) N Cp(A/A™). By
3.3.2 P/[P, t] has order at most m and since [P, t] centralizes A™, P/Cp(A™) has order at
most m. Put E = Cp(A™)NCp(A/A™). Then P/E has m-bouned order. Let a € A and
e € E. Then [a,e]™ = [a™,e] = 1 and so [a, €] < Qx(A). Since [Qx(A) and A/A™ have order
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at most 22¥* we conclude that E/Cg(A) has order at most 24k*. Thus P/A = P/Cp(A)
has m-bounded order. Hence P' < A for some m-bounded integer k. Then P'™ < A™
and t inverts P'. Since A™ < A, |A/P'™ has order at most (Im)* and so |P/P'™| is
Im-bounded. O

Lemma 3.3.7. [coprime action| Let p be a prime and G a finite group acting a finite
p-group P.Define OP(G) = (x € G | x is a p'element)

(a) [a] G/OP(G) is a p-group and so OP(Q) is the unique smallest normal subgroup of G
whose quotient is a p-group.

(b) [c] [P,OP(G)] = [P,OP(G);n] for alln € Z".

(c) [d] The exists n € ZT with [P,G;n] = 0 if and only if [P.OP(G)] = 1 and if and only
if G/Cq(P) is a p-group.

Proof. (a) Let x € G, then x = yz where y is a p element and z is p’-elemenst. Thus
zOP(G) = yOP(@G) and so G/OP(G) is a p-group.
O

Lemma 3.3.8. [more coprime] Let P be a p-group acting on a p’'-group Q.
(a) [a] Let RS < Q be P-invariant subgroups of Q. Then Cg/r(P) = Cs(P)R/R.

(b) b] Let 1=0Qp 4 Q1 <Q2<...4Q, =Q be a P invariant subnormal series of Q.
Then

ICo(P)| = [1C0./q..(P)]
=1

Proof. (a) Let T/R = Cg/g(Q). Then Cs(R)Q < T and [T, P] < R. By Homework 1,
T =Cp(P)T,T) <Cs(P)Q <T and so T'= Cs(P)Q.
(b). This clearly holds for n = 1. Suppose n > 1 and put k =n — 1. Then

ICo(P)] = |Co(P)/Co,(R)|Cq,(R)| = [Cq(R)/Cq(R)NQklICq, (R)]
= |ICo(R)Qk/QklICo(R)] = 1Co/0, (R)I|Co, (R)]
= [Coio.RITT0 1Co,/q. . (P)] = [T [Cq. 0., (P)]

O]

Proposition 3.3.9. [nilpotent by finite| Let G be a locally finite group and t € G with
t2 = 1. Then there exists a postive integer n such that n and |G/Z,(|G,t])| are bounded in
terms of |Cq(t)|. In particular, G is nilpotent by finite.
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Proof. Put L =[t,G| and Z = Zowa(L).

Supppose first that G is finite let n be minimal with Z,(L) = Z. By 3.3.4 |G/Z| is
bounded in terms of Cg(t). So we just need to show that n is bounded. Let r and s be
minimal with O2(Z) < Zs(L) and O(Z) < Z,(L). Then n = max(r, s). By 3.3.6 there exists
an integer m such that O2(Z)™ has bounded index in O2(Z) and O2(Z)™ is inverted by ¢.
Then L centralizies O3(Z)™ and s is bounded.

For1 <j3<sput Z; = Zi(L)ﬂZZ). Then Zi/Zi—l = CO(Z)/Z[ifl(L) and1 =72y < 71 <
Zy < ...< Zp=0(Z). Let i € Z* with 2i < t. Then L does not centralizes Zo;/Zo; o, t
does not inverts Zy;/Z2i—2, Cz,,/z,, ,(t) # 0 and by Homework 1, Cz,;(t) £ Zo;—1. Thus

0<Cgz(t) <Cg(t) <...

and we conclude that s is bounded in terms of |Cg ()|

So the proposition holds for finite groups. In particular there exist bounded integers n
and m such that |H/Z,([[H,t])| < m for all finite subgroups H of G. For a finite subgroup
subgroup H of G define

k(H) = sup{| |H/H N Z,([[K,1])||H < K < G, K finite, HN [t,G] = H N [t, K]}

Observe that since H N [t, G] is a finite subgroup, there exists a finite subgroup K of G
with H < K and HN[t,G] < [t, K]. Hence HN[t,G] = HN[t, K] and k(H) is well defined.
Also

[H/H N Zn([[K,t])| = [HZn([[K, t]/ 20 ([[K, t])] < [K/Zn([KT])] <m

and so k(H) < m and there exists a finite subgroup H* of G with H < H* < G,
HnN[t,Gl=HN[t,H*] and |H/H N Z,([[H*,t]| = k(H).
Put k = max{k(H) | H < G, H finite}. Then also k¥ < M. Put

L={H <G| H finite k(H) = k}
and for L € L define
F(L*)={H <G| L*<H,H finite
We will prove next

1°. (1] LetL € £ and H € F(L*). Then LN[G,t] = LN [H,t], LN Zo([[L*,1]) =
LN Zy([H* 1)) and |L/L N Z,([H*, 1)) = k

Indeed we have

LN[G,t]=LnNn[L*t|]<LN[Ht|]<LN[H"t| <LNI[G,{]

and so LN[G,t] = LN[L* t|]=LN[H,t|=LN[H*{
Thus [L N Z,([H*,t]), L*;n] < Z,([H*,t]), H*;n] = 1 and hence
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L0 Zn([H* 1]) < LN Zp([L*, 1]

Therefore,

k=k(L)=|L/LN Z,([L*,4])| < |L/L N Zo(H*, 1| < k(L)
and (1°) is proved.
2°. (2| Let L €L and H € F(L*). Then k(H) =k and H = L(H N Z,([H*,1])).
By (1°) we have

k |L/LmZn([[H*7t” = |LZn(HH*7t])/Zn([[H*vt”

|HZn([H", 1]/ Zn([[H",1]) = k(H) <k

IN

Thus k = k(H), and HZ,([[H*,]) = LZ,([[H*,4])). Thus H = L(H N Z,([[H*,])) and
(2°) holds.

3°. 8]  PutZ=Upc,LNZ,(L*1t]). Then Z is a normal subgroup of G.
Let Li,Ly € L and put H = (L3, L%). Then by (2°), H € L and by (??), L, N
Zn([L},t]) < HN Zy([t, H]) < Z. Thus
(L1 N Zy([L1, ], La N Zn([L5,1])) < Z
and so Z is subgroup of G. Since £ is invariant under G, also Z is invariant under G.
4°. 4] G=LZ forallL € L and |G/Z| <k <m.

Let g € G and put H = (L*,g). Then by (2°), H € Land g € H = L(HN Z,[H*,t]) <
LZ. Thus G=LZ and so G/Z|=|L/LNZ| < |L/LN Z,([L*,t])| = k < m.

5°. 5] Z < Za([G.1).

Clearly Z < [G,t] and so we only need to show that [Z, [G,t];n] = 1. This holds if an
only if [z, F';n] = 1 for all z € Z and all finite subgroups F' of [G,t]. . Pick L € £ with
z € LNZ,([L*,t]) and then H < G with H finite, L* < H and F < [H,t]. Then using (1°),
z € LNZy([L*t]) = LNZ,([H*,1]) and so [z, F;n] < [Z,([H*,t]),[H*,t];n] = 1. So (5°)
hold.

By (4°) and (5°), G/Z,(|G,t])| < m and the theorem is proved.
O

Corollary 3.3.10. [infinite centralizer| Let H be an infinite locally finite simple group
and t an involution in H. Then Cg(t) is infinite.

Proof. This follows immediately from 3.3.9 O
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3.4 Locally finite groups with MIN

This section is entirely devoted the proof of the following Theorem

Theorem 3.4.1. [If with min| Every locally finite group which fulfills MIN is a cernikov
group.

Suppose the theorem is false.

Step 1. [step 1| There exists an infinite locally finite simple groups G all of whose proper
subgroups are Cernikoovgroups.

Proof. Let Gg be a locally finite group with MIN which is not Cernikoév. Let G; be a
subgroup of Gy minimal with respect to not being Cernikodv. ?7 implies that Gy has a
component K with K/Z(K) infinite. Put G = K/Z(K). By minimality of G — 1, all proper
subgroups of G; and so also of G are Cernikoévgroups. O

Step 2. [step 2| G is not a 2'-group.

Proof. Otherwise the Odd Order Theorem implies that all finite subgroups of GG are solvable.
But then G is locally solvable and all chief factor of G are abelian, a contradiction. O

Let P be the set of all positive primes, m C P, D, be the set of maximal divisible abelian
m-subgroups of G and D = D.

Step 3. [step 3] Let H be proper subgroup of G and put Hy = {x € H° | x is a m— element.
Then H, contains every divisible abelian w-subgroup of H and is contained in every mazximal
w-subgroup of H.

Proof. Let D be a divisible abelian m-subgroup of H. Then D = D° < H° and so D < H,.
Let M be maximal w-subgroup of H. Since H, is normal in H, H,;M is w-subgroup of
G and so M = H; M by maximality of M. O

Step 4. [step 4] Let 1 # D € Dy and D < H < G. Then D = H; and H < Ng(D). So
N¢g(D) is the unique mazimal subgroup of G containing D.

Proof. We have D < H, and so by maximality of D, D = H,. Since H < H, H <
N¢g(D).

O

Step 5. [step 5] Let D € D, and E a divisible abelian 7 subgroup of G. Then E < D or
ENnD=1.

Proof. Assume that END # 1. Then D # 1. Put H = Cg(E N D). Since G is simple,
END 4 G and so H # G. Note that (E, D) < H and by Step 4, D = H,. Thus by Step
3, E<D. O
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Step 6. [step 6] Every every non-trivial divisible abelian subgroup A of G lies in a unique
mazimal divisible abelian subgroup A of G. If in addition A is a m-group, then A, is the
unique mazimal divisible abelian w-subgroup of G containing A.

Proof. Let D, E € D with A < D and A< E. Then A< DNE. By Step 5 D = E. Now
suppose A and B are divisible by groups with A < B. Then A < B and so B = A and
B < A;. O

Step 7. [step 7] Let D be non-trivial divisible abelian subgroup of G. Then Ng(D) <

Na(D) and if D € Dy, then Ng(D) = Ng(D).

Proof. Let g € Ng(D). Then D < D? € D and so D = D? by the uniqueness of D. So the
first statement holds. For the second observe that D = D, and so Ng(D) < Ng(D). O

Step 8. [step 19|
(a) [a] Every maximal subgroup of G is infinite.

(b) [b] Every proper infinite subgroup R of G lies in a unique mazimal subgroup R of G,
namely R = Bg(R°).

(c) [c] If My and Ma are maximal subgroups of G with My N My infinite, then M; = M.
(d) [d] Let M be a mazimal subgroup of G and H < G with M N H infinite. Then H < M.

Proof. (a) Suppose F' be a finite subgroup of G and let g € G\ F. Then (F,g) is finite,
F < (F,g) < G and so F is not maximal.

(b) Let R< M < G. Then R° < M° < R° and so R° = M°. Thus M < Ng(R°).

(c) By (b) M N My is contained in a unique maximal subgroup and so M; = M.

(d) By (b) H lies in a maximal subgroup M of G. Then HN M < M N M and so by

(¢), M =M. Thus H < M. O
Step 9. [char max]| Let M < G. Then following are equivalent.

(a) [a] M is a maximal subgroup of G.

(b) [c] 1# M° €D and M = Ng(M°).

(c) [b] M = Ng(D) for some set of prime m and some 1 # D € D,.

Proof. (a) = (c):  Suppose M is maximal in G. By Step 8(a), M is infinite and so
M° # 1. By Step 8(b), M = Ng(M?°) and so M° < M and thus M° = M° € D.

(¢c) = (b): Just set 7 =P and D = M°.

(b) = (a):  See Step 4. O

Definition 3.4.2. [omega| Let H be a group. Then Q'(H) = (x € H | 2™" =1}. If H is
a p group for some prime p, then Qun(H) = Qb (H).
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Step 10. [step 9] Let p be a prime and 1 # D € D,. Let T be p-subgroup of G with
Qa(D) <T. Then T <Ng(D) and |T/T N D| < |Ng(D)/D|,.

Proof. Since D < Ng(Q2(D)), Step 4 implies Ng(Q2(D)) < Ng(D). Since T is a Cerniko6vp-
group, 1 # Z(T). Observe that [Q2(D),Z(T)] = 1 and Z(T) < Ng(2(D)) < Ng(D).
Thus by ??, [D,Z(T)] = 1. We have D < Cg(Z(T)) < G and so usingStep 4, T' <
Cq(Z(T)) < Ng(D). Since D = D,, D/D, is p/-group and so TN D < D,. Thus
T/TND=T/TNoD=TD/D < Ng(D)/D and Step 13 is proved. O

Lemma 3.4.3. [cernikov and sylow]| Let H be a Cernikodvgroup and p a prime, then H
acts transitively on Syl,(H).

Proof. Note that H, < H and H) is a p-group. Let T' € Syl,(H). Then H),S is a p-group
and so H, < S. Since H°/H), is a p'-group, S N H® = H,. Thus |S/H,| = |SH°/H®| and
so S/H, is finite. Note that S/H, is a Sylow p-subgroup of H/H,. We conclude from ??
that all Sylow p-subgroups of H/H, are conjugate in H/H,. Hence all Sylow p-subgroups
of H are conjugate. O

Step 11. [scirc] Let S € Syl,(G). then S° € D), and S° = 5°,

Proof. Since S° is a divisible abelian p-goup, S° < §°,. Pick D € D, with S°, < D.
By Step 4, D is unique and so S normalizes D. Thus SD is p-group and so D < S by
maximality of S. Hence D < S° and so S, = 5°, = D. 0

Step 12. [transitive on syl| Let H < G. Then H acts transitively on Syl,(H).

Proof. 1If H # G, then H is a Cerniko6vgroup and we are done by 3.4.3.

So suppose G = H and let S; and Sy be Sylow p-subgroups of G. If S; or Ss is finite
we are done by ??. So we may assume that S # 1 for ¢ = 1 and 2. Put E; = Q3(S;) and
L = (Ey, Ey). Then L is a finite group and so by Sylow’s Theorem (F, EY) is a p-group for
some g € L. Thus by Step 13 E§ < N¢(S°) and so Ej is contained in a Sylow p-subgroup of
Ng(S7). By the first paragraph of the proof Egh < S for some h € N (S7). Hence by Step
13, 51 < Ng(S;gh and then by the first paragraph, Sghk = 51 for some k € Ng(Sggh. O

Step 13. [step 9] Let p be a prime. Then G acts transitively on D,,.

Proof. Let Dy, Dy € D), and pick S; € Syl,(G) with D; < S;. Then S{ = S, for some g € G.
Since D; = 57, this gives Dng. ]

Definition 3.4.4. [def rank]| Let H be a locally finite group and p a prime. Then m,(G) =
sup{k € N | there existsA < H with A = C}.

Step 14. [step 12| Let p be prime. Then my(G) is finite.
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Proof. Let S € Syl,(G). Every elementary abelian subgroup of G is contained in Sylow p-
subgroup and so conjugate to a subgroup of S. Thus m,(G) = m,(S). By 77, k :=m,(5°)
is finite. Put |S/S°| = p' and let A be an elementary abelian subgroup of S. Then
|S° M A| < pF and AS°/S°| < p'. Thus |A| < p**! and so m,(S) < k + 1. O

Theorem 3.4.5. [walter feit] Let H be a finite simple group and with dihedral Sylow 2
subgroups. Then H =2 Alt(T) or La(p*), where p is an odd prime and |p*| > 3.

Lemma 3.4.6. [12p] Let H = Ly(p"), p an odd prime.

(a) [a] LetT € Syl,(H). ThenT is elementary abelian p group of rank k and |Ny(T)/Cu(T)| =
k

pt—1
5 -

(b) [b] Let A be an elementary abelian r subgroup of H, where r is an odd prime, r # p.
Then ’NH(T)/CH(T)’ < 2.

Proof. Readily verified. O

Step 15. [s is not dihedral] S be a Sylow 2-subgroup of G. Then S 2 Dgor for k €
7T U oco.

Proof. Suppose S = Dqygr. If |S| = 2 let R = S otherwise pick R < S with R = Cy x Cs.
choose R < Hy < Hy < H3 < ...H, < ... with (H;,1) € K and |Hy| > 7!. Let S; €
Syly(H;) with R < S;. By Step 12 there exists ¢ € G with §; < S9. It follows that
S — i is either a dihedral group or cyclic. Since R < S;, S; is a dihedral group. Thus
by 3.4.5, H; = Lg(pfi, p; an odd prime or Alt(7). Since |H;| > |7!, H 2 Alt(7) and
H # Ls(5). So by 3.4.5 H; = Lg(pfi, pfi > 5. Let p = p1 and A € Syl,(Hy). Then by
?2?72(??) |Nu,/Cu, (A)| = ple_l > 521 = 2. Thus ?7(??) implies that p = p; for all i. Since
H; < Hit1, ki < ki1. Since my(G) > my(H;) = kj, this gives m,(G) = oo a contradiction
to 77 O

Definition 3.4.7. [def:strongly p-embedded] Let H be a locally finite group, p a prime
and M a subgroup of H. Then M is called strongly p-embedded if

(i) [i] M is not a p'-group.
(i1) [if] M N MY is p'-group for all g € H\ M.

Theorem 3.4.8. [bender| Let H be a finite group with a proper strongly 2-embedded sub-
group. The one of the following holds:

1. [1] [z, H] has odd order for all involutions z of H.

2. [2] H/O(H)| < f(ma(H)) where f : Zt — ZT is some function independent of H.
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Proof. Suppose first that mo(H) = 1. Then H has a unique class of involution and [z, z] # 1
for all involutions z, z in H with = # z. Thus Glauberman’s Z* theorem shows that [z, H]
has odd order.

Suppose next that mo(H) > 2. Then Bender’s strongly embeded theorem shows that
H/O(H) = Ly(q), Sz(q) or Us(q), where ¢ = 2* for some k € Z*. Tt follows that my(H) = k
and |H/O(H)| < ¢° = 2% = 2m2(), O

Step 16. [step 13] G has no proper strongly 2-embedded subgroup.

Definition 3.4.9. [def:kegel cover| Let H be locally finite group. Then a Kegel cover K
for H is a set of pairs of subgroup of H such that

(i) 1] If (K,M) € K then M QK < H, K is finite and K/M is simple.

(i1) [2] If F is a finite subgroup of H, then there exists (K, M) € K with F < K and
FNM=1.

Theorem 3.4.10. [kegel] Every locally finite simple group has a Kegel cover.

Proof. Let H be a locally finite group. Define K to be the set of all pairs (K, M) such
that M < K < H, K is finite and K/M is simple. F be a non-trivial finite subgroup of
H. Let 1 # f € F. Since H is simple H = (ff) and so there exists a finite subset Iy
of H with F < (fIr). But F* = (F,I; | f € F*). Then F < (fI") for all f € F*. Put
K = (FF"). Let N be the intersection of the maximal normal subgroups of K. Then N
is characteristic subgroup of K and N # K. Since F** normalizes K it also normalizes
N. If F < N we get K = (FI"*) < N, a contradiction. Thus F £ N and there exists
a maximal normal subgroup M of K with F £ M. Note that (K, M) € K and F < H.
Suppose that £ N M # 1 and pick f € Ff. Then f € F* and so F* < (fI'"") < K. Hence
F < (ff"y <(MH) = M, a contradiction. Thus F N M = 1 and K is a Kegel cover. O

Step 17. [step 14] There exists a finite subgroup @ of G such that M =1 for all finite
subgroups M of G with Q < Ng(M) and Q"M = 1.

Proof. Suppose not. Put L; = M; be a arbitrary non-trivial finite subgroup of G and
assume inductively that we already define finite subgroups L;, M;, 1 < i < n in G. By
assumption there exists non-trivial finite subgroup M, of G with L,, < Ng(M,+1) and
LoNMu41=1. Put Ly = LyMpq.

Define H,, = (M; | i € Z,i > n). Then clearly

Hy>Hs > Hz > ...

Fix n > 2. We will now show that L,, 1N H, =1. Let g € L,_1NH,. For m > n define
Ry, = (M; | n <i < m). Then H, = |J,._,, Rm and so we can choose m minimal with
x € Ryy,. Suppose that m # n. Then R,, = (Ry—1, M,,). Note that R,,—1 < L,,—1 and so
R,,_1 normalizes M,, and R,, = R;,,_1M,,. Since x € L,_1 < Lp,_1 and Ry,_1 < L,,_1 we

get
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* € L1 N Ry 1 M, = Rmfl(mel N Mn) =Ry

a contradiction to the minimal choice of m. Thus m = n, x € R, = M, and = €
L, NM,=1.
So L,_1NH,=1andso H,_ 1 > H,, a contradiction since G fulfills MIN. ]

Step 18. [simple cover| Let F be a finite subgroup of G and m € Z*. Then there exists
a finite simple subgroup K of G with F' < K and |K| > m.

Proof. Let @ be as in Step 17. Since G is infinite there exists I C G with |[I| > m and
F C1I. Put R=(I,Q). Then R is finite and by 3.4.10 there exists a finite subgroup K of G
and maximal normal subgroup M of G with R < K and RNM = 1. Then Q < K < Ng(M)
and @ N M = 1. Thus by Step 17, M = 1. So K is simple. Since FCI C R< K, F < K.
Since |I| > m, |K| > m and so 77 O

Lemma 3.4.11. [normalizer condition]
(a) [a] Let S be a nilpotent group and T < S. If Ng(T) =T, then T = S.

(b) [b] Let S be a locally nilpotent group and T a finitely generated subgroup of S. If
Ng(T) =T, then S =T.

Proof. (a) Let Zyp < Z; < ... < Z, be the upper central series of S. Note that Zy < T.
Assume inductively that Z; < T. Then

(Zit1,T) < [Zi41,81 < Z; <T

and so Zj11 < Ng(T)=T. Thus S=2, <Tand T = S.
(b) Let s € S and put R = (T, s). Then R is finitely generated and so R is nilpotent.
Also T < Np(T) <Ng(T')=T and so by (a), R=T. Thus s € T and S =T. O

Proposition 3.4.12. [char strongly p-embedded]| Let H be a locally finite group, p a
prime and M < H. Suppose that

(a) [i] M is not a p' group and M—H.
(b) [ii] If x € M has order P, then Cq(z) < M.
(c) [iii] Let S be a Sylow p-subgroup of G.

1. [1] If S is finite, then Ng(S) < H.
2. [2] IfS is infinite, then each h € H\ M, M N M" has finite Sylow p-subgroups.

Then M is a strongly p-embedded subgroup of H.
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Proof. Suppose not and let h € H \ M such that M N M" is not a p’ group. Let T €
Syl,(H N H9) and S € Syl,(T). By (c:1), T is finite. Suppose that S # T. Then by
??7(??), Ng(T') # T and so there exists ' < P < Ng(T') with P finite. Thus there exists
1 # 2 € Cp(P). Then by (b), P < Cy(x) < M and thus T' < P < HNM", a contradiction
since P is p-groups and T is a Sylow p-subgroup of H N H7.

Thus T'= S and so T' € Syl,,(M¥). In particular, M has finite Sylow p-groups. It follows
that M9 acts transitively on Syl,(MY). Since T' < M, Th < M9 and Th € Syl,(M?9).
Thus T"% = T for some k € M". Then hk € Ny(T) and so by (c:2), hk € M. Thus
M = M" = (M"* = M" and so k € M and h = (hk)k~! € M, contrary to the choice of
h. O

Lemma 3.4.13. [dihedral] Let x and y be non-conjugate involution in a group H. Then
|xy| has even order, (xy) contains a unique involution u, and any involution in < x,y) is
etther equal to u or conjugate to x or to y.

Proof. This follows easily from the fact that (x,y) is dihedral group. O

Step 19. [step 20| Let M be a finite set of maximal subgroups of G and K a non empty
G-invariant subset of G*. Then K \ |JM is infinite.

Proof. Suppose that K \ |JM is finite. If K is finite, (K) would be a non-trivial finite
normal subgroups of G, a contradiction, since G is infinite and simple. So K and K N|J M
are infinite. Since M is finite, there exists M € M such that K N M is infinite. Let g € G.
Then (KN M)9 = KN MY is infinite and so there exists N € M with K N M9 N N infinite.
Hence by ??(??), M9 = M € M. Thus M is finite. Then also G/Cg(M%) is finite and
Cg(M%)is a normal subgroup of finite index in G. Hence Cg(M%) = G and M 9 G, a
contradiction O

For z € T, let H; be the unique maximal subgroup of G containing Cg(2).
p

Lemma 3.4.14. [lemma 14| Let D be a divisible abelian group and o € Aut(D) with
o? =idp. If Cp(a) is finite, then o inverts D.

Proof. Observe that the map 7: D — D,d — dd® is a homomorphism with Im 7 < Cp(«).
Thus D/ ker « is finite. Since divisible groups of no proper subgroup of finite index, D =
ker 7 and so dd® = 1 for all d € D. Hence d* = d~ . ]

Step 20. [step 15] Let z € Z and M a mazimal subgroup of G with z € M £ H,. Then z
inverts M°.

Proof. If Cyo is finite, then by Step 17 z inverts M°. So suppose Cyo(2) is infinite. Since
Cre(z) <H,NM,??2(??) gives M = H,. O
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Step 21. [step 16] Let A < G be a fours group (that is A = Cy x Co) and M a maximal
subgroup of G containing A. Then M = H, for some x € A%, If Cq(A) is infinite, then M
is the unique mazimal subgroup of G containing A.

Proof. Let A* = {a,b,c}. If a does not inverts M°, then by (??), M = H,. Similary if b
does not inverts M°, then M = H,. If a and b inverts M°, then ab = ¢ centralizes M° and
so M = H..

Thus M = H, for some 1 # x € A. Suppose Cg(A) is infinite. Then C(A) < Cg(x) <
H, = M and so M is the unique maximal subgroup containing C(A). O

Step 22. [cga not in hz| Let 1 # z € Q1 Z(S). There exists a € S with |a| = 2 and
H, # H,.

Proof. Suppose first that Ng(S) £ H, and pick ¢ € Ng(S) \ H,. Then 29 € S and
H,o = H! + H,.

Suppose next that Ng(S) < H,. Since H, is not strongly 2-embedded there exists
be H, with | =2 and Cg(b) < H,. Then Hy, # H,. Also a is conjugate to an element a
of S and so Step 22 holds. O

Step 23. [rank less than 2] my(S°) < 1.

Proof. Let D = S¢rc and M = Ng(D). Let y be any involution in M. Put A = Q;(D).
Since S° < Cg(A), C(A) is infinite. Since ma(S°) > 1, A contains a fours group. Thus
A is contained in a unique maximal subgroup of G. We claim that H, = M. If y does not
invert M°, then by Step 20, M = H,. If y inverts M°, then A < Cg(y) < H, and again
Hy, =M. Thus Cq(y) < Hy < M.

Let g € G\ M. If M N MY is infinite then ?? implies that M = M9 and D = DY and
g € Ng(D) = M. Thus M N M9 is finite and so by ?? M is a strongly 2-embedded on G,
a contradiction to Step 16. O

Lemma 3.4.15. [transitive on coset| Let H be a group, A and abelian subgroup of G
with A = A? and y € Ng(A). If y inverts A, then A acts transitively in Ay.

Proof. Note that also y~! inverts A. Let a € A. Since A = A%, o= = b? for some b € A.
Then y* = b~tyb = b~ yby Ly = b= 10¥ 'y = b~1b 1y = (b2) Ly = ay. O

Step 24. [step 18] Suppose ma(S°) > 1. Then G acts transitively on{z € I | D, is a not2'—
group}.

Proof. Put I* = {x € I | D, is a not2’ — group. Since my(S°) = 1, S° has a unique
involution zx.

Note that S° = (D, )2 and so z is the unique involution in D, and D, is not a 2'-group.
Thus z € Z* and z € Z(H,).
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Suppose that G does not act transitively on ¢I* and pick an involution y in G. which
is not conjugate to x. Since G is simple G = (z%) and so #9 ¢ H,. Thus z ¢ H§71 and
replacing y by yg_1 we may assume that x ¢ H,.

Since = and y are not conjugate there exists a unique involution u € (xy). Then
u € Cg(y) < Hy. By ??, Since (Dy)s < S" for some h € G. Since y € I*, (D,)2 is a
nontrivial divisible group. hence (Dy)? = S°*. Thus D, N D! # 1, D, = D! and 2" is
the unique involution in D,. Thus by u and y centralizes z". Put A = (y,z"). Since
y ¢ 2%, A is a fours group. Since C¢(y) is infinite, also Cp, (y) is infinite and so C(A) is
infinite. Thus by Step 21, A lies in a unique maximal subgroup of G. Note that A < H,,
and A < Cg(u) < H,. Thus H, = H,, and « < Cy(u) < H, = H,, a contradiction. O

Step 25. [s is finite] S is finite.

Proof. Suppose S is infinite, then by Step 23 mo(S°) = 1. Let x € S° with |z| = 2.

Suppose that Cg(S°) # S° and pick S° < T < Cg(S°) with |T//S°| = 2. Then T is
abelian and so by ??, T' = S° x K for some L < T. y € K with |z| = |y| = 2. Since
S° < D, N Dy we have D, = D,. Hence D, is not a 2’-group and by Step 24 y = 29 for
some g € G. Thus D, = D, = D¥. Since z € S° = (D), this gives y = 29 € (D%), =
(Dz)p = S°, a contradiction.

Hence C5(S°) = S°. Put Sy = {z € §° | 2* = 1}. By ??, Cs5(Sp) = Cs(S°) = S°. Since
|So| = 4 we conclude that |S/S°| < 2.

Suppose that z is the only involution in S. Let y be any involution in H,. Note Then
yh € S for some h € H, and so y" = z. Thus Cg(y) = Ca(z" ') < H,. Let g € G with
|H, N H| = co. Then by ??, D, = DJ and so g € Ng(D,) = H,. 3.4.12 now shows that
H, is a strongly 2-embedded subgroup, a contradiction to 7?7 O

Theorem 3.4.16. [brauer| Let H be a finite simple group, T a Sylow 2-subgroup of G and
x0, 1, T2 € T with |z1| = |z2| = 2. Then one of the following holds:

(a) [1] For 0 <i <2, there exists y; € S N x¥ with y1y2 = yo and Cr(yo) € Syl2(Ca(wo))-

(b) [2] |H| < a(so, s1,52), where s; = |Cy(z;)/O(Cy(x;)) and o : Z2 — ZF is a function
independent of H.
Let 1 # z € Q1 Z(S).
Step 26. [brauer step| For all 1 # x¢ € S there exists y1,y2 € SN 2% and yo € SN yg
with y1y2 = yo and Cs(yo) € Syla(Ca(yo))-

Proof. Put z; = z for i = 1,2 and for 0 < i < 2 define t; = Cg(z;)/Cq(x;)°]. Put
m = max{a(so,s1,52) | 1 < s; < t;}. Pick T' € Syly,(Cg(xo) and let H be finite simple
subgroup of G with (T,S) < H and |H| > m. Put s; = |Cg(x;)/O(Cg(z;). Since S is
finite, Ca(z;)° is a 2/ group and so Cg(z;) N Cg(z;)° < O(Ch(x;). Hence

si = |Cr(z:)/QUCh(2i)| < [Cr(2:)/Ch(xi) N Ca(2:)°] < Cu(w:)Ca(w:)°)/Ca(x:)°| < ti
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and so |H| > m > a(sg, s1, 52). Thus by 3.4.16 there exists y; € SN such that y1y2 = yo
and Cs(yo) € Syla(Cr(yo). Since T < Cg(xo) we get Cs(yo)| > |T| and so Cs(yo) €
Syly (Ca(yo)- O

Step 27. [2 central fours group]| There exists a fours group E < S in G with z € E and
Ef € 2C.

Proof. By Step 26 applied with zq = z, there exists y; € 2¢ NS with yiy2 = yo. Put
F = (y1,y2). Then F* C z%. Moreover, y{ = z for some g € G and so z € F9 < Cg(2).
Since S is a Sylow 2-subgroup of Cg(z) and so by Step 12 there exists h € Cg(z) with
E:=F%" <S. Alsoz=z"€eE. O

Lemma 3.4.17. [centralizer of hyper planes| Let B be finite elementary abelian p group
acting on a locally finite abelian p'-group D. Then D = (Cp(X) | X < B,|H/X| = p).

Proof. See MTH913 Homework 1. O

Step 28. [step CGA| Let A < S be a fours group and suppose that A is contained in more
than one mazximal subgroup of G. Then Q3(Cq(A)) = A and there exists d € 2 N S with
z ¢ Cg(A). In particular, A £ Z(S).

Proof. Suppose there exists an involution b € Cg(A)\A. Put B = (A,b). Then B = C3. Let
M; and Mj be two distinct maximal subgroups of G containing A. By Step 21, M; = H,,
for some a; € A. Thus B < Cg(a;) < M;. By 7?7 M7 = (Cpo(X) | X < B, |B/X| = 2).
Thus there exists B; < B with |B/B;| = 2 and C)yso(B;) infinite. The B; is a foursgroup
and by Step 21, B; is contained in a unique maximal subgroup of G, a contradiction to
B; < My N M.

Thus Q?(Cg(A)) = A. Suppose S is elementary abelian. Then S < Q1(Cs(4)) = A
and so S = Dy, a contradiction. So there exists zg € S with |xg| > 2. By Step 26 there
exists involutions y1,y2 € SN 2% and yp € SN zf with y1y2 = yo. Suppose y; and ys are in
Cs(A). Then yo € (y1,y2) < Q1(Cs(A)) = A and so y3 = 1, a contradiction. Thus one of
y1 and yo is not in Cg(A). O

Step 29. [s in a unique maximal] H, is the unique mazimal subgroup of G containing

S.

Proof. Suppose S < M with M # H,. If |Q; Z(S)| > 4, we can choose A < Q; Z(S) with
|A| = 4, a contradiction to Step 28. Thus Q4 Z(S) = (z). By Step 20, z inverts M°. Thus
M Z(S)NCs(M°) = 1. Since Cs(M°®) is normal in S this implies Cg(M°) = 1. Let E be as
in Step 27 and let E'\ (z) = {a, b}. If a inverts M° we get b = az € Cg(M°), a contradiction.
Thus a does not invert M° and by Step 21, M = H,. By symmetry, M = H;. Thus a and
b invert D, and so ab = z centralizes D,. Since a € zG, a centralizes D, = M?°, again a
contradiction. O
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Let e € S be an involution in S with H, # H,. If H, € HZG, put x = a. If H, ¢ HZG,
then choose g, h € G with e = 292" and put z = e9 ', In either case put A= (x,z2), y = zx
and A= {a € A| H, € HF}. Let T € Syly(H, N Hy).

Step 30. [basic a] A is a foursgroup, A = (x,z), Hy # H, and |A| > 2.

Proof. If H. € HY thena=e,a € A, Hy, = H. # H.,a € S < Cg(z) and A = (a,z) is a
fours group.

If H. ¢ HS then o =9 ' = (29219 = 22" and so y = 2z = 2" € 2¢. Thus
zx has order two and A is fours group. Also H, = H,?g_l € HS and so y € A. Since
H,=H! ¢ HS, H, # H.. O

For a € A% pick S, € Syly(H,) with T N H, < S, and define T, = Ng,(Cs, (A)).
Step 31. [omega t] Let
(a) [a] A= Al C 2@,
(b) [b] A=QZ(T) = (T) and Cs,(A) =T
(c) le] Z(Sa) =N Z(Ta) = (a)
(d) [d] To = Ns,(T) = Ns,(A) and [T, /T| = 2.
(¢) [e] Na(T)/Ne(T)N Ca(A) = Sym(AF)

Proof. Let a € A. By definition of A, H, is conjugate to H, and so contains a Sylow 2-
subgroup of G. Thus S, is Sylow 2 subgroup of G. By 7?5, # Cs,(A) and A = Q;(Cs, (A)).
Thus also T, # (Cs,)(A) and A <IT,. Tt follows that 1 < C4(T,) < A and so there exists a
unique 1 # a* € C4(1,). Note that both Q4 Z(S,) and €y Z(T,) are contained in € (Cs, (A4))
and so also in Cy(Ty,). Thus Q; Z(S,) = Q1 Z(Ty,) = (a*) Then S, < Cg(a*) and so by 77
H,» = H,. If a # a* we get A* = {a*,a,a’}, where t € T, \ Cs,(A). Since t € H, this
gives H. = H, = H,« and Step 21 implies that H, is the unique maximal subgroup of G
containing A, a contradiction, since A < H, N H,. Thus a = a™.

Since |A| > 2, we can choose b € A with b # a. Note that T, acts as the two cycle with
fix-point a on A* and T}, as the 2 cycle with fix point b. Thus (T}, T}) acts as Sym(A*) on
Af. So all elements in A* are conjugate in G and A = A? C 2€.

Suppose now that a € A with T' < H,. Note that Cg,(A) < H,NH, and (T, Cs,(A)) <
Sq. Since T is a Sylow 2 subgroup of H, N H, we conclude that Cg, (4) = Cr(A). Also
|Ng,(A)/Cs,(A)| <2 and so Ng,(A) =T,Cg,(A) =T,.

If A< Z(T), then Np(Cp(A)) # Cr(A) and since |T,/Cs,(4)| = 2, T, = Nr(Cr(A).
This hold for a = z and x and so T, = T, centralizes (x, z) = A, a contradiction.

Thus A < Z(T'), Cs,(A) = Cr(A) =T and T, = Ng,(T). Hence (1,,T;) < Ng(T') and
0 Z(T) < (T) < Q(Cq(A)) = A < QZ(T). So Ng(T) acts transitively on A* and thus
T < H, for all a € A!. ]
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Definition 3.4.18. [def:quasidihedral] Let n be positive integer. Then QDs, = (s,t |
52 =1,(ss")? = 1,12 = (ss')"). QDs,, is called the quasidihedral group of order 8n.

Lemma 3.4.19. [char quasidihedral] Let P be a finite 2-group and A a fours group in
P with Cp(A) = A. Then P is a dihedral or quasidihedral group.

Proof. Observe that Z(P) < Cp(A) < A. If A < Z(P), then P < Cp(A) < S and we
are done. So suppose A £ Z(P) and pick 1 # a € A\ Z(P) and 1 # z € Z(P). Then
Cp(a) =Cp({a,z)) = Cp(A)+ A. Let D < P such that D is dihedral group maximal with
respect to A < D. If D = P we are done. So suppose D # P.

Let Q@ = Np(D). Then D < Q. Let A= {t € D\ Z(P) | t* = 1}. Put |D| = 4n. Then
| = 2n. Note that @ acts on A and so

2n = [cA| > [a?| = |Q/Cqla)| = |Q/A| = |Q/D||D/A| > 24nd = 2n

It follows that A = a® and |Q/D| = 2. Let b € A with (a,b) = D. Then there exists t € Q
with a’ = b. Put @ = ab. Then either |D| = 4 and z = z or |D| > 4 and () is the unique
cylcic subgroup of order 2n in D. In either case X < Q. So also Y = (2?) < Q. Consider
Q =Q/Y. Then e Cy(t) = X and replacing t by at if necessary we may assume that
t has order 2. Thus t> € Y and so t?> = 2! for some even integer with 0 < I < 2n. Thus
bt = at’ = 2 laz! = aa e aa! = az'z! = az? and so ot = (ab)t = baz? = z 1% = 221,
Since t centalizes t> = z! this means ! = (z!)! = 2/~ and so /(=2 = 1. Since z has
order m we conclude 2n | I(2] —2) = 2I(l —1). Since m is power of 2 and [ is even , we infer
2n |2l and son | 1. As 0 <1< 2n we have l =0 or [ = n. If > = 1 and in the second case
t2 = z". In either case b’ = ax®" = a. Observer that Q = D(t) = (a,b,t) = {(a,t). So if
t2 =1 then Q is a dihedral group, a contradiction to the maximality of D. Hence t*> = 2"
and @ is a quasi dihidral group or order 8n. Sine [ = n and [ is even, ) has order at least
16. group.

Put E = (DNP(@), Then D < E < Q and FE is generated by involutions. By Homework
1, @ is not generated by involutions. Since |Q/D| < 2 this gives E = D and so D < Np(Q),

Np(Q)=Q and Q = P. ]

Theorem 3.4.20. [semidihedral] If H is a finite simple group with quasidihedral Sylow
2-subgroup of order at least 16, then H = My, L3(p*) or Us(p*), where p is an odd prime.

Proof. ]

Lemma 3.4.21. [basic semidihedral] Let H = L3(q or Us(q), q a power of an odd prime.
and t € H with |[t| = 2. Cg(t) has a normal subgroup isomorphic to SLa(q). Moreover,
[H| < ¢**.

Proof. Put K = F, and define GL;}(K) = GL,(K) and GL, (K) = GU,(K). Put H =
GLY(K) and V = F3, where F = K in the L3(q) case and F = K2 in the Us(K). Then
H/Z(H). Note that |H| < |GLs(¢*)] = (¢° — 1)(¢° — ¢*)(¢° — ¢*) < ¢'%. Since Z(SL§(K))
has order dividing 3, there exists a unique element of order two ¢ in Z(SL§(K) which maps



78 CHAPTER 3. GROUPS WITH MIN

which maps to . Since || = 2 and det? = 1 and char K # 2 we have V = [V, #] @ Cy () with
dim[V, ] = 2 and dim Cy/(2) = 1. 2-dimensional. In the GU3(K) case, [V,f] L Cy(t) and so
this direct sum is an orthogonal sum. It follows that C(f) = GLE([V,1)] x GLS(Cy (t) =
GL5(K) x GL§(K). It follows that C; () has a normal subgroup K isomorphic to SL§(K).
K centralizes Cy (f), and since the elements of Z(H) acts by scalar multiplication on V', and
KNZ(H). Thus K = KZ(H)/Z(H) and so Cy(t) has a subgroup isomorphic to SL(K).
Since SU2(K) = SLy(K), the lemma is proved. O

Step 32. [step semidihedral] S is not a quasidihedral group.

Proof. Suppose S is a quasidihedral group. By 7?7 S is not a dihedral group and so |S| > 16.
Pick a finite simple subgroup H of G with |H| > (|Cq(z)/D.|)'®. and S < H. Since
|My| = 11-10-9-8 < 218 < |H|, we conclude from 3.4.20 that H = L§(q), q¢ a power
of an odd prime and g > |[Cg(z)/D,|. Let K < Cg(z) with K = SLy(q). Then Z(K)
has order two, and Z(K) is the unique minimal normal subgroup of K. Since D, is 2'-
group, Z(K) £ D, and so KN D, = 1. Hence |KD,/D,| > |K| > q > |Ca(2)/D.|, a

contradiction. O

Step 33. [t not a] T # A.

Proof. Otherwise Cg,(A) =T = A and by ??, S, is a dihedral or quasidihedral group, a
contradiction to ??7 and 77 O

Step 34. [z centralizes hz| Let a,b € A" with a # b.
(a) [a] H, # Hp.
(b) [b] z centralizes D,.

(c) [c] Let C&(D,) be the set of elements in G which centralize or inverts D,. Then
t € C%(D,) and [H,,t] < Cg(D,) for allt € 25N H,

(d) [d] Cg(Da)NCaq(Dyp) = 1.

Proof. (a) By Step 31 there exists g € Ng(T') with 29 = a and 29 = b. Since H, # H,,
H, + Hp.

(b) From (a) and Step 20 both z and zz invert D, and so z = z(xz) centralizes D,.

(c) If H, = Hy then by (b), t centralizes D; = D,. And if H; # H,, then by Step 20 ¢
inverts D,. So t € Cy;_(D»).

Since C(D.) is anormal subgroup of H, and C§(D.)/Cq(D.)| < 2 we have [C4 (D), G] <
Ca(D,). and so (c) holds.

(d) Suppose that X := Cg(D,) N Cq(Dy) # 1. Then (D, Dy) < Ce(X) and so D, =
X° = Dy. Hence also H, = N¢g(D,) = Hy, contradiction.

O
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Step 35. [ngt] For each a € A" there exist t, € 2T, \ T such that if Sq # Ty, then
[T,t4) < {a). For any such t's and any a,b € A* with a # b:

(a) [b] Putk:=tuty. Thenaf =c, F=b, b¥ =a, k3 =1 and Or(k)=1.
(b) [e] T = [T, ta][T; ).

Proof. We first show that existence of ¢,. Suppose first that S, # T,. Pick s, € Ng, (Ts) \
T,If A% < T, then A% < Qu(T) = A. Thus A = A% and s, € Ng,(A). So by Step 31
Sq € Ty, a contradiction. Thus A% # T and (a) < T N A%, Since A < T, also A% < T,
and so [T, Ale] < T N Ale = (a).

If S, = T, the existence of ¢, follows from Step 28.

Since t, acts as the cycle (b,c) and t; as the cycle (a,c) in A% k acts as (b,¢)(a,c) =
(a,c,b) on AR Thus k% € Cg(A) < H,. By (??) Step 34(c), kb = [k, t,] € Ca(D,). By
symmetry, k%nCq(Dy) and so by Step 34(d), k® = 1. Thus k3 € Q2(Cg(A)) = A. Since
Ca(k) = 1 this implies k% = 1. Since Q1(T) = A and Ca(k) = 1, Cr(k) contains no element
of order 2 and so Cr(k) =1

(b) By Homework 1, since |k| is coprime to |T'|, T' = Cr(k)[T, k] =|[T, k]. Thus

T =[T,k] <I[T,(ta,tp)] = [T,ta][T,tp] <T and (b) holds. O

Step 36. [t normal in s] T'< S, for all 1 # a € A.
Proof. By Step 35, T' = [T, t,][T,ty] < A and so T'= A, a contradiction to Step 33 O

Step 37. [step c| For a € A* define C, = Cp(D,) and Then C, = [T,t,], T = C4 x Cy
and T is abelian.

Proof. By Step 34(?7?) [T,t,) < Ca(D,) and since t, normalizes Cy, [T, t,] < C,. Thus by
Step 35(77?), T = C,Cy. By Step 34(d), C, N Cp = 1. Since both C, and C} are normal in
T this implies [Cy, Cy) = 1 and T' = C,, x Cy,. Moreover, C. is centralized by C, and Cj, and
so C. < Z(T). The same holds for C, and C}, and so T' = C, x C} is abelian. O

Step 38. [sz] Z(S) has order two.

Proof. Let xg € Z(S). Then S < Cg(zo). By Step 26, there exists y1,72 € 25 NS and
Yo € z§ with zg = y1y2 and Cg(yo) € Syly(Ca(yo). Since Cg(zo) and so also Cg(yo)
contains a Sylow 2-subgroup of G, we conclude that Cg(yp) = S. Thus [yp,y1] = 1. Since
Yo = Y1Y2, Y1 inverts yo and so yo has order two. Hence xg € Q1 Z(S) = (z). O

Step 39. [step contradiction| The final contradiction.

Proof. Let d € Cy. Then dd'* is centralizes by C(t,) = T(t, >= S, and so dd' € Z(S).
Thus dd’ has order at most two. Since C' = C, x C}, |d| = |d!|. Thus d®> = 1. So d € G
and Cy < A. By symmetry, C, < A and so T = C, x C}, = A, a contradiction to Step
33 O
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3.5

In this section we prove:

Theorem 3.5.1 (Janko). [j1] Let G be a finite group of even order and t € G with |t| = 2.
Suppose that all involutions in G are conjugate and Cg(t) = Co x Alt(5). Then |G| =
23.3.5.7-11-19 = 11(11 + 1)(113 — 1) = 175,560. Moreover such a group exits and is
unique up to isomorphism.

Before we start the proof we will prove need to prove a few lemmas from finite group
theory.

Lemma 3.5.2. [even more coprime action] Let A be a finite abelian p-group acting on
an finite p’ group Q.

(a) [a] Q= (Cq(B)|B < A, A/Bcyclic).
(b) [b] If A= C), x Cp, then

_ [HICe(B)|| B < A,|B| = p}
[Ca(A)lP

Q|

Proof. Let H = QA be the semidirect product of A and Q). Let g be a prime dividing the
order of Q and S € Syl (Q). Then by the Frattini argument, H = QNg(S). Then |A]

divides N (S) and so Ny (S) contains a Sylow p-subgroup, A of H. Choose h € H with
Al = A. Then A normalizes S". So if (a) and (b) holds whenever Q is a g-group for some
prime g # p, then it also for any arbitray p’ group. Thus we may and do assume that Q is
a g-group.

(a) Put Q@ = Q/Q’. Then Q@ is abelian and so by , Since Q is a p’-group, @pm = Q for
all m € Z*. Hence by Homework 1

Q= (Co(B) | B < A, A/Bcyclic)

By 3.3.8, C5 = Cg(B) and thus

Q = (Cq(B)|| B < A, A/Bcyclic)Q’
By the induction on —Q—,

Q' = (Cy/(B)|| B < A, A/Bcyclic}

and so (a) holds.

(b) Let M a maximal A invariant normal subgroup of @ and define Q = Q/M and
B={B < A|A/Bis cyclicCq(B) # 1.

By (a) Q = (Cq(B) | B € B) and so [B| > 1. Since Q' is a proper A invariant normal
subgroup of @Q, the maximality of M implies that @/ =1 and so @ is abelian. Let B € B,
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then C5(B) is a non-trivial A-invariant normal subgroup of Q. Thus Cg(B) = Cg(B). We
claim that (b) holds for @ in place of Q. Suppose first that [B] = 1. Then [Co(B)| = Q|
while [C7H(C)[ = 1 for each of subgroup C' of A with |C| = p and C # B. In particular,
|Cg(A)] =1 and so

[HICa(D)I| D<A DI =r}, QI _
Co(A)P BT

and the claim holds in this case.
Suppose next that |B| > 2 and let By, By € B with By # Bs. Then A = B1By and
since By and By centralize @, A centralizes Q. Thus |Co(B)| = |Q| for each of the p + 1

subgroups of order p in A. Also C5(A4)| = |Q| and thus

[I{ICg(D) | D < AD|=p} |Qp+

-0
[Ca(A)lP QP
and again the claim holds.
By induction on |Q| we also have
[Car(A)[P
Since |Q| = |M||M| and |Co(X)| = |Cm (X)[|Cq(X) for any X < A we conclude that
(b) holds. O

Definition 3.5.3. [def:weakly closed|

(a) [a] Let G be a group, and A < H < G. Then A is called weakly closed in H with
respect to G if A9 = A for all g € G with A9 < H. (That is if A is the only conjugate
of A in G contained in H.

(b) [b] Let p a prime, and A a p subgroup of finite group G. Then A is called a weakly
closed subgroup of G if there exists a Sylow p-subgroup S of G with A < S such that A
is weakly closed in S with respect to G.

Lemma 3.5.4. [char weakly closed| Let p be a prime, G a finite group and A a p-
subgroup of G. Then the following are equivalent.

(a) [a] A is a weakly closed subgroup of G.
(b) [b] Each Sylow p subgroup of G contains exactly one conjugate of A in G
(c) [c] Each p-subgroup of G contains at most one conjugate of A in G

Proof. Suppose (a) holds. Then there exists some Sylow p subgroup S of G such that A < §
and A is weakly closed in S with respect to G. So S contains a unique G-conjugate of A
(namely A). Since any two Sylow subgroups are conjugate in G we see that (a) holds.
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Suppose (b) holds and let T be a p subgroup of G. Then T' < S for some Sylow p-
subgroup of G. By (a) , S contains a unique conjugate of A in G and so 7" contains at most
one conjugate of A in G. Thus (c) holds.

Suppose (c) holds and let S be a Sylow p-subgroup of G with A < S. Then by (c), A is
weakly closed in S with respect to G and so (c) holds. O

Lemma 3.5.5. [weakly closed and conjugate| Let A be a weakly closed p-subgroup of
a finite group G and A < H < G. If g € G with A9 < H. Then A9 = A" for some h € H.

Proof. Let A < S € Syl,(H) and A% <T € Syl,(H). By Sylow’s Theorem, Sh = T for some
h € H and so both A" and A9 are G-conjugates of A in T. Thus by 3.5.4, A" = A9. O

Lemma 3.5.6. [control fusion| Let A be a weakly closed p-subgroup of a finite group G
and X andY A-invariant subsets of A. If X9 =Y for some g € G, then X" =Y for some
h € Ng(A).

Proof. Observe A < Ng(X) and A < Ng(Y). Hence also A9 < Ng(X9) = Ng(Y). So be
3.5.5, A9 = A for some | € Ng(Y). Hence gl € Ng(A) and X9' =Y! =Y. O

Corollary 3.5.7. [fusion for abelian| Let G be a finite group and S € Syly(G). Suppose
S is abelian and 29 € S for some g € G and x € S. Then 29 = x" for some h € Ng(9).

Proof. Just observe that S is weakly closed an, since S is abelian, {z} and {z9} are S
invariant subsets of S. So we can apply 3.5.6 O

Lemma 3.5.8. [tompson transfer| Let G be a finite group, S € Syly(G), T < S with
|S/T| =2 and x € S. Then one of the following holds:

1. [a] 29 €T for some g € G.
2. [b] y9 € S\ T for somey € (x> > and some g € G.
3. [c] G has a subgroup H with |G/H| =2 and x ¢ H.

Proof. We assume without loss that neither (1) nor (2) holds. Consider the action of G on
G/T by right multiplication. We will show that z induces an odd permutation on G/T.
Then (3) hold with H consisting of all the elements in G’ which induces an even permutation
on G/T.

Define @ : G/T — G/S,Tg — Sg. Since Sg = STg, this is well defined. Observe that
for all g,h € G,

((Tg)h) = &(T(gh)) = S(gh) = (Sg)h = @(Tg)h
and so @ is G equivariant.

Put X = (z). Let A be an orbit for X on G/S of size m and put m = ®~1(4). Since
® is G-equivariant, B is X-invariant. Since |S/T| = 2, |®~!(a)| = 2 for all « € G/S and so
|B| = 2m. Pick f =Tg € B and put a = ®(3) = Sg. Observe that Cx(a) = X N SY and
Cx(B) =X NT9. We will show
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1°. [1] One of the following holds:
IM X9'NS=X9"NT and X has two orbits of length m on B.
I [I1] xX9'ns #* X9 'NT and X has an orbits of length 2m on B.

Suppose first that X9 NS = X9 NT. Then also X N S9 = X NTY, Cx(a) =Cx(p)
and

|8X] = |X/Cx(B)| = |X/Cx(a)| = [aX] = |A] =m

Suppose next that X9 NS # X9 'NT. Then also XNSY £ XNTY, |S9/NX/TINX| = 2
and |Cx () /Cx(B)| = 2. Thus

|BX] = |X/Cx(B)] = 2|X/Cx ()] = 2|aX| = 2|A] = 2m

So (1) holds.

This allows us the determine the orbits of X on G/T in terms of the orbits X on G/T"

Suppose that [A] > 1. Then X # XNS9  andso X9 NS #X and X9 NS < (22).
Since by assumption (2) fails, we conclude that X9 ' NS < X9 ' NT. Hence by (1°), X
has two orbits of length m on B. Thus «x is an even permutation on B. Since this holds for
all non-trivial orbits for X on G/S, x is an even permutation on ®~'(Suppg,s(X)).

Suppose next that |A| = 1. Then X < $9 and so 9 ' € S. Since (1) fails, we get
29 ¢ Tandso X9 NS =X9 ' #X9' NT. Thus by (1°), X has an orbits of length
2 on B. Since this holds for each trivial orbit on A in G/S, X has |Fixg,g(X) orbits of
length 2 on ®~!(Fixg,s(X). Observe that |G/S]| is odd, while |Suppg/(X)| is even. Hence
|Fixg,s(X)| is odd and so X has an odd number of orbits of length two on <I>_1(FixG/S(X).
It follows that X is an odd permutation on ®~!(Fixg/s(X) and so also on G/S. O

Lemma 3.5.9. [burnside| Let G be finite group and S € Syly(G). Suppose that S <
Z(Ng(S)). Then G = O(G)S.

Proof. Since S < N¢(S) we have S < Z(S) and so S is abelian.
We will first show:

1°. [1] Ifa € S and g € G with a9 € S, then a9 = a.

By ??, a9 = a” for some h € Ng(S). Since S < Z(Ng(S)) this gives a9 = a. So (1°) is
proved.

If S =1, then G = O(G) and the lemma holds. So suppose S # 1 and pick T' < S with
|S/T|=2and z € S\T.

Let g € G with 29 € S. Then by (1°), 29 = 2 ¢ T and ??thompson transfer]a does not
hold.

Let y € (2?) and g € G with y9 € S. Then by (1°), y9 = y. Since |S/T| =2, 2> € T
and so y9 =y € T. So also ??thompson transfer|b does not hold
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Thus ??thompson transfer]c must hold and there exist a subgroup H of G with |G/H| =
2. Then G = HS, H <G and H N S is a Sylow 2-subgroup of H. We claim that H NS <
Z(Ng(HnNS)). For thislet a € HN S and g € Ng(HNS). Then a9 € HNS < S and
so by (1°), a? = a. Thus indeed H N S < Z(Ng(H NS). By induction on |G| we conclude
that H = O(H)(HNS). Since H <G, O(H) < O(G) andso G=HS =0(H)(HNS)S =
O(G)S. O

We now start the proof of Janko’s Theorem. So let G be a finite group of even order with
a unique conjugacy class of involutions and z € G with 22 = 1 and Cg(z) =& Cy x Alt(5).
Let S € Syly(Cg(2)). For t € G with 2 = 1, define G; = Cg(t) and K; = G} = Alt(5). So
Kt = Alt(5) and Gt = <t> X Kt.

Step 1. [j1-1]

(a) [a] S Cyx Cyx Co.

(b) [b] S € Syly(G).

(c) [c] Ca(B)=S for all B < S with |B| > 4.
(d) [d] |Ng(S)|=2%-3-7.

Proof. (a) Just observe that ((12)(34),(14)(23)) is a Sylow 2 subgroup of Alt(5) and is
isomorphic to Cy x Cs.

(b) Let T' € Syly(G) with S < T and pick 1 # ¢t € Q Z(T). Then T < Cg(t) and
Ca(t) = Cy x Alt(5). Thus |T| <8 and S=T.

(c) Without loss |B| = 4. Pick 1 # b € B. Then Cg(B) = Cg,(B). Since G = (b) x K
we have B = (b) x (BN K;) and Cg,(B) = (b) x Ck, (BN K}). Alt(5) has a unique class of
involutions and Cyy(5)((12)(34)) = ((12)(34), (13)(24)) has order 4. This C(B) has order
eight and Cg(B) = S.

(d) Let s € S*. Then |s| = 2 and so there exists g € G with 29 = s. By ??, 2" = s for
some h € Ng(S). Thus Ng(S) acts transitively on S* and so |[Ng(S)/Ng(S)NG.| = |5t = 7.
Also Ng(S)NG, = (2) x Nk, (SNK). Since Ny 5)((12)(34), (13)(24)) = Alt(4) we conclude
that Ng(S) NG, = Oy x Alt(4) has order 23 - 7. Thus Ng(S) has order 23 -3 - 7. O

For x € G let Gt = Ng((z)) and 0; = O(G}). In order to count the involutions in G we
need to compute G4 where d is an element of order 3 in G,. For this we have to investigate
subgroup L of G such that O(L) # 1 and 4‘|L|. Let L be such a group, Y = O(L),
A € Syly(L) and for a € A* put Y, = Cy(a).

Step 2. [j1-2]
(a) [a] For a € A8, Y, has order 1,3 or 5.
(b) [b] Al = 4.

(c) [e] |Y|=T1lacat Yol =3%5Y for some x,y € N with v +y < 3.
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Proof. (a) Observe that Y, is a subgroup of odd order in G,. Thus Y, < K, = Alt(5)). By
Lagrange’s Y, has order 1,3,5,15. Since Alt(5) is simple it has no subgroup of index 4 and
so |Yy,| # 15.

(b) Suppose that |A| = 8 and let B < A such that |A/B]| is cyclic. Then B has order at
least 4 and so by Step 1, Cg(B) has order eight. Thus Cy(B) = 1. Hence

Y =(Cy(B)| B<A A/Biscylic)=1

a contradiction.
(c) By 3.5.2

Yi=TlICr(B) | B<A,B =2) = [] IVl
ac At

Together with (a) this gives (c). O
Step 3. [j1-3] One of the following holds:
1. Ja] L=YA and N(A) = A.

2. [b] Y is elementary abelian of order p® for some p € {3,5}, Y is a minimal normal
subgroup of L and N (A) = Alt(4).

Proof. Since |Cg(A)| = 8 and A is a Sylow 2 subgroup of L, Cr(A) = A. Moreover
N1(A)/CL(A) is isomorphic to subgroup of odd order of Aut(A) = Sym(3) and so N (A4) =
Cr(A)=Aor N (A)JA=Cs/

Suppose first that Np(A) = A. Then A < Z(Np(A)) and by 3.5.9, L = O(L)A =Y A.
So (1) holds.

Suppose next that Ny (A)/A = Cs. Then Np(A) = Alt(4) and N7 (A) acts transitively
on Af. Let 1 # a € A and put p = |Y,|. Then p € {1,3,5} and |V}| = p for all b € A",
Hence |Y| = p% and p € {3,5}. So Y is a p-group. Let D be a minimal normal subgroup of
L contained in Y. Since D = (Cp(a) | a € Af) we get Cp(a) # 1 for some a € A*. Since
|Y,| = p this gives Y, < D and since Ny (A) acts transitively on A*, Y, < D for all a € AF.
Thus |D| = p? and Y = D. In particular, Y = Q; Z(Y) and so Y is elementary abelian. []

Step 4. [j1-4] Let D be a non-trivial A-invariant subgroup of G of odd order.
(a) [a] If D <L, the D<Y.

(b) [b] If D is not elementary abelian or 3% or 53, then Ng(D) = O(Ng(D))A and every
subgroup of odd order normalizing D is contained in O(Ng(D)).

Proof. (a) If L = Y A, this is obvious. So suppose L # Y A. Then |Y| = p3. Since DY <
O(DY A) we conclude from Step 2 that applied to DY A in place of L, that Y = O(DY A)
and so D <Y.

(b) Put L = Ng(D). Then D is a non-trivial normal subgroup of L contained in O(L).
Thus Step 3 applied to L shows that L = O(L)A and so (b) holds. O
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Step 5. [j1-4.3] Let D <Y with |D| = p?, p € {3,5}. Then D QY and if |Y| # p3, then
D QL.

Proof. If D =Y, this is obvious. So suppose D # Y. If |D| = p3, then D < Ny(D) <Y
and so D 4Y. If |[Y| # p? the by Step 2, |D| = p?>q where ¢ € {3,5} with p # ¢. Thus D is
a Sylow p-subgroup of Y and the number of Sylow p-subgroup of Y divides ¢ and is equal
to 1 (mod p). Since 3 # 1 (mod 5) and 5 # 1 (mod 3) we conclude that D is the unique
Sylow p subgroup of Y. Thus D < L. O

Step 6. [j1-4.6] Let p € {2,3} and for i = 1,2 let D; < G with |D;| and |Cq(D;)| even.
Let t; € Cq(D;) with |t;| = 1. Then there exists g € G with t] = ty and D{ = Ds. In
particular, D1 and Do are conjugate in G.

Proof. Since all involutions in G are conjugate, there exists h € G with t? = ¢5. Then both
Dy and D} are contained in Cg(t2). Since Cg(t2) = Co x Alt(5), the Sylow p subgroups
of G have order p. Thus Dy and D} are Sylow p-subgroups of Cg(t2) and so there exists
| € Cg(ty) with DM = Dy. Also t}! =t} = t5 and so the lemma holds with g = hl. O

Step 7. [j1-5] Suppose |Y| does not divide 15 and put Y* = Cg(Y) and L* = Ng(L*).
Then L L*,Y <Y*, Y*=0(L*) and L* #Y*A

Proof. Since |Y| does not divide 15 and |Y| = 3*5Y with « + y < 3 there exists p € {3,5}
with p? | |Y]. Let D be a Sylow p-subgroup of Y. If |Y| # p?, then |D| = p? and so by Step
5 D < L. If |[Y] =p3 then D =Y and again D < L. Since D is a p-group, 1 Z(D) # 1
and so there exists a € A* with Ca, z(py(a) # 1 and so Y, < Q1 Z(D). Since |D| > p? there
exists b € A% with Cp(b) £ Y,. Then b # a. Put E =Y,Y},. Since Y, < Z(D), E = C, x C,.
By 7?7 Y < Ng(F) and so by Step 4, Y < F := O(Ng(E)). By Step 6 there exists g € G
with a9 = b and Y =Y. Let e € {a,b}. Then E is a subgroup of odd order in G, and so
by Step 4, E < O, := O(Ng(Ye)). So by Step 6, E < O,. Thus another application of Step
4 shows that O, < F. Observe that F'/E has order 1,3 or 5, E < O, N Oy, and |Og4| = |Op|.
Thus either £ = 0, = Qp or F'= Oy = Op. In any case O, = Qp and so g € L := Ng(0,).
Put YV = O(N). Since a9 = b, L # Y A. Hence by Step 3, Y is elementary abelian of
order p? and Y = O, = O, Slnce YQ, < F, this gives Y = F and Y < Y. Since Y has
order at least p?, Cg(Y) has odd order. Since Y < Cg(Y) we conclude from Step 2, that
Y = Cq(Y) = O(Ng(Y)). In particular, L < Ng(Y) and the lemma is proved. O

Step 8. [j1-6] |Y| divides 15.

Proof. Suppose not. Then we can apply Step 7 and replacing L by L* we may assume
that |Y| = p3, L = Ng(Y) and L # YA. Let a € A* Then |Y,| = p. By Step 4,
Na(Ya) = O(Ng(Y,))A and it follows that Y = O(Ng(Ya) and Ng(Y,) = YA. By Step
3 Np(A) = Alt(4) and so there exists d € Np(A) with |d| = 3. Put b = a? and ¢ = b%.
Then A* = {a,b,c} and Y =Y, x Y}, x Y. Let 1 # y, € Y, and put y, = y%, y. = y; and
Y = YaYpYe. Since d has order three, y € Cy(d). Also y. € Y., y # 1 and |y = p. Since
Y{d) < Cg(y), Cg(y) has order divisible by 3p® and so (y) is not conjugate to Y,. Put
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S = Cg(A). Then |S| = 8 and d normalizes S. Thus d centralizes an element & of order 2
in S%. In G we see that there exists a subgroup A of order 4 inverting d. Thus L = Ng((d)
is divisible by 4. From Step 4 we conclude that y € Y := O(Ng((d)).

Suppose that p = 5. Then 15 divides Y and by Step 7 we conclude that |}7\ = 15. Thus
(y > is the unique subgroup of order 5 in ¥, A normalizes (y) and so [y,b] = 1 for some
b e A%, But then (y) is conjugate to Y, a contradiction.

Thus p = 3. We will show that L = Y N1 (A). For this we investigate the action of L
on the set P of subgroups of order 3 of Y. Note that |P| = 13. N (A) has three orbits Ps,
P4 and Pg on P of size 3, 4 and 6 respectively. Indeed Py = {Y, | e € A}, Py = (y)Ve(A)
and Ps = (yayp) V=M. Since (y) is not conjugate to Y, in G there are three possibilities
for the orbits of L on P:

(a) Ps, Py and Pg.
(b) P3 U Pg and Py.

(C) P3 and Py U Pg.

In any case there exists i € {3,4} such that P; is an orbit for L on P. Put Q =
Cr(P;). Then L/Q is isomorphic to a subgroup of Sym(i) and N7(A)Q/Q = Alt(i). Thus
|L/NL(A)Q| < 2. Since A is a Sylow 2 subgroup of L we get L = NL(A)Q. Note that
|Q/Cqo(U)| < 2forall U € P; and so Q/Cq(Y)| is a 2-group. Since Y = Cg(Y") this gives
Q=CoY)(QNA)<YAand L =N,(A)YA=N,(A)Y.

Note that this implies that P3 is an orbit for L on P. Let g € G with Y, < Y. Then by
Step 4, Y < O(Ng(Ya)? and Y = O(Ng(Yy)) = Y9. So g € Ng(Y) = L and Y € Ps. So
Y contains exactly three G conjugates of Y, and these three conjugate generate Y. Since
(d) is conjugate to Y, the same is true for Y.

Put R = Cy(d)(d) = (y,d). Then R <Y and Then R < Nyg(R) = Ny(R)R. So
Ny (R) # Cy(d) and [Ny (R)/Cy(d)| = 3. Also [Ny (R) N Ny ({d)),{d)] <Y N{(d) =1 and
so [(d >Nv(B) | > 3. Hence R contains at least G-three conjugate of Y. But the R contains
all G conjugates of Y4 in Y and so R =Y, a contradiction. O

Step 9. [j1-7] L= D]_Q,DQO or D6 X D10~

Proof. By Step 8, |[Y| = 3,5 or 15 and so by Step 3, L = Y A. So L has order 12, 20 or 60
and the lemma follows. O

Step 10. [j1-8] For p = 3,5 let S, be a Sylow p subgroups of Cq(z). The one of the
following holds.

1. [a] Ng(S3) = D12 and N¢g(S5) = Dyp.

2. [b] Ng(S3) = Dg x D10 = Ng(S5).
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Proof. Let p € {2,3}. Then by Step 9, Ng(Sp) = Duy, or Dg x Dig. So either (2) holds
or Ng(Sp) = Dg x Dip. Suppose the latter and let {p,q} = {3,5}. Then Ng(S,) as a
normal Sylow ¢ subgroup Tj,. Moreover Ng(S,) N Cg(Ty) contains an involution and so T
is conjugate to S;. Thus also Ng(Sq) = Dg x Do and (1) holds. O

Proposition 3.5.10. [bender counting| Let G be a finite group of even order and J the

set of involutions in G and T = {t € J | HN H" # 1}. Let H be a subgroup of G. Let

imn=HU€eG/H|U#H,UNJT|=n} and i, =|{U € G/H |U # H,|UNZ|=n}|. For

K={Z,J} put K, ={t € K|t ¢ H,|HtNZ| =n}. Let m be the number of orbits of H on

Ji\Zi. Put c= % and h = |H|. Then

(a) [a] Forallte J\H, HtNZ = {ht | h € HNH' h' = h~'}. In particular Z,, = J,
for all n > 2.

(b) [b] LetU =Hg e G/H withU # H and putl = |UNJ|. Then UNZT C J;. Moreover,
either HNHI9 #1 andUNel CZyor HNHI=1,1<1andUNZC T\ 7.

(c) [c] For alln € 7%, |Ju| = njn and I,, = |niy|. In particular i, = j, for all n > 2.
(d) [d] ji1=1i1+mh and |T|=|Z| + mh.

(¢) le] |TI =T OVH|+> 02 njn =T N H| +[mh+ 3202 nin

(f) B |G/H[ =1+ gjn=1+jo+mh+3_in

(9) [g] h((h—c)m+jo) =|T NHle—h+ 337, (nc— h)iy

Proof. (a) Let h € H. Since ht ¢ H, ht # 1 and so |ht| = 2| iff (ht)*> = 1. Since
(ht)? = htht = hh?, we have (ht)? = 1 if and only if h* = h~!. Observe that h* = h~!
implies h € HNH*. Soif t € J,, for some n > 2, then H N H' contains at least two elements
inverted by t and so HNH! # 1 andt € Z. Thus HtNJ = HNel and t € Z,,.

(b) Observe that U = Ht for all t € UN J. Thus |[HtNJ| = |UNJ| =1 and so
UNJ C J;. Observe also that HNH! = HNHY. So if HN HY %1, then UNJ C 7, and
it HNHY9 =1, then UNJ C J, \ Z,,. In the latter case, (a) implies n < 1.

(¢) Obvious.

(d) Let t € J1 \ Z;. Then Cy(t) < HN H' =1 and so all orbits of |[H| on J; \ Z; have
length h = |H|. Hence |71 \ \Z1| = mh and so | 71| = |Z1| + |71 \ 71| = i1 + mh. Since
In =TI, for all n > 2 this implies

|T\NH| =) |Tul =mh+ ) |Ts| = mh + |T|
n=1 n=1
(e) This follows from (c) and (d).

(f) This follows from (c) and (d).
(g) Note that ¢|J| = |G| = h|G/H]|. So by (e) and (f):
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c<|JﬂH|+mh+Znin> :h<1+jo+mh+2in)

n=1 n=1

and so (g) holds. O

Lemma 3.5.11. [computing in] Retain the assumption and notation from 3.5.10. For
g€ G and K < H with K9 = K define g € Aut(K) by k9« = k9. Define
E={(K,s)|1# K < H,sc Aut(K),s* = 1}.

Note the H acts on Z via (K,s)9 = (K9,59), where s9 € Aut(K9) is defined by 1(s9) =
(1971)%)9. Let A be the set of orbits for H on E and A\, pn € A Let (K, s) € X and define

ay = {(L.)eI\H|1#L<HteJ\HL =L, (Lt,)€A
by = [{t€I\H|[(HNH tyng:) € A}

ny = {keK |k =k}

run = HL<K|L* =L, (L sg) € p}|

Then
(a) [a] Let (K,s) € \. Then ay = |[H/Ng(K)|- |{t € No(K)\ H | (K,tx) € A\}.
(b) [b] Let ju € A. Then by = ay — Y, nen Tiaba-

(c) [e] in=1%(bx| A€ Any=n).

Proof. Define

Ay = {(Li)eI\H|1#L<HteJ\HL =L,(Lt) €}
By = {teI\H|HNH tyny) €N}
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Appendix A

Set Theory

A.1 The basic language of sets theory

A simple term is a set or a variable. A formula is any expression which can be obtained in
finite steps according to the following rules:

(a) [a]

r=yandzxr €y
are formulas, where x and y are simple terms.

(b) [b] If ¢ and v are formulas and = a variable, then

(—¢)
(¢ — )
oV )
(Fz¢)
are formulas.
These formulas are pronounced as follows:
x =y: z is equal to y.
x € y: x is an element of y.
(—¢): not ¢
(¢ — ): ¢ is equivalent to 1.

(¢ V1): ¢ or 9.
(Jx¢): there exists x such that ¢.

We use following abbreviations:

(Vz¢) means (—(Ix(—9)))

91
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(¢ A 4p) means (=(3z((—=¢)) V (=¢))))

(¢ — ) means ((=¢) V ¢)

Az (¢p) means (Jy(Vx(x =y <> ¢))), where y is any variable not appearing in ¢.

(3(z € y)¢) means (Fx(z € y A ¢)).

(V(z € y)¢) means (Vz(z € y — ¢)).

Let ¢ be a formula and v a variable. We inductively define the terminologies, v is free
variable of ¢’ and ’free appearance of “x” in ¢ If ¢ is x = y or x € y, then any x or y equal
to v is called a free appearance of x in ¢. Any variable is called free variable of ¢.

If ¢ is # 9 then a free variable of ¢ is free variable of 1. A free appearance of v in ¥ is
free appearance of v in 1.

If ¢ is (¢ <> 7 or (¢ V 7, then a free variable of ¢ is a free variable of ¥ or of 7. A free
appearance of v in ¢ is free appearance of v in ¢ or in 7.

If ¢ = (3xv)), then v is a free variable of ¢ if v # x and v is a free variable of ¢. If
v # x, then any free appearance of v in v is a free appearance of v in ¢.

A variable which is not free variable of ¢ is called a bound variable of ¢.

Now let ¢ a formula, v a variable. ¢ and ¢ a simple term. Then ¢(v “\ t) is the formula
obtained to replacing all free appearances of v by t. More formally ¢(v \, t) is inductively
defined

Let 7, s be simple terms distinct v and let ois one of =, €, Then

If p=rosthen ¢p(v \(t) =ros. If g =vosthen ¢p(v \(t)=tos. If $=rowv then
plo\yt)=rov. If g =vowvthen ¢p(v \(t) =tot. If ¢ = (# 1), then ¢p(v \  t) = (#
P(v N\ 1))

Let ¢ is one of — or V. If ¢ = (¢ o 7), then ¢(v \(t) = (Y[v \(t] o T[v \( 1)

If ¢ = (3z¢) and z is a variable different from v, then ¢(v \  t) = (Isto(v — t). If
¢ = (Fvyp) then ¢(v \ t) = (Jvy).

We will often use the following more convenient notion: We use the symbol ¢(v) in place
of ¢ and from then on ¢(t) denotes the formula ¢(v N\, t). So ¢(v) is a formulas with a
distinguished variable v.

A class A is just a formula ¢(v) with a free distinguished variable v. But we think about
A as the collection of all sets which fulfill ¢ and write

A={z]¢(z)

Any set s can be viewed as the class

{z |z e€s}

The class V := {z | = z} is called the universe. Every set is a member of the universe.

The class ) := {x | x # x} is called the empty class. The empty class has no members.

We introduce an extended language: A simple class term is a variable, a set or a class.
Now a class formula is defined in the save way as a formula: just replace 'simple term’ by
'simple class term’.

Any class formula @ has a corresponding set formula @ inductively defined as follows:
Let A and B be simple class terms, and s a simple set term. If A is a set or variable, let
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¢(v) be the formula v € A, where v is a variable distinct from A. If A is a class, let ¢(v)
be the formula used to define A. Also u is a variable different from s and not involved in ¢
and 1.

If ®= A = B, then ® = Vu(¢(u) <
psi(u). If ® = s € B, where s is a set term, then ® = ¢(s). If ® = A € B and A is a
class, then ® = (Ju(u=AAu € B), f® =V < X, then =V & . If » = ¥ V X, then
d=TVVYE Ifd=(—0), then d = (—F). If d = (32¥), then ® = (IsV).

® is called the translation of ®. Note that if s and ¢ are sets terms then s = ¢ is
translated into Yu(u € s <» u € t). This is justified be the following Axioms of Set Theory

Set Axiom 1 VaVy(z =y« (Vz(z € z <> 2z € y))
Definition A.1.1. [def:int]

(a) [a] Let ®(z) a class formula. Then {x | ®(z) denotes the class {x | ®(z)} defined by
the translated formula ®(x).

(b) [b] Let A be class. Then (A:={z| (Va € A)z € a}.
(c) [c] Let A be a class. Then |JA :={z | (Ja € A)z € a}
If A={z| ¢(x)}, then

ﬂAE{x|(VaeA)azea}:{x|Va(a€A—>x€A}:{x|Va(¢(a)—>x)Ea}

and

UAE{:B\(EIaEA)xGa}:{:ﬂEla(xEA}:{:MEa(gb(a)/\xea}

A.2 The Axioms of Set Theory

To continue we need

Set Axiom 2 VaVydzVw(w € z <> (w =x Vw =y))

Note that this just says that for any sets x and y, there exists a set z whose elements
are exactly  and y. We denote this set by {x,y}. The special case z = y, show that there
exists a set {x} whose only element is x.

Definition A.2.1. [def:ordered pair] Let a, b be sets. Then (z,y) denotes the set {{z},{x,y}}.
(x,y) is called the ordered pair x and y.

Lemma A.2.2. [ordered] Let a,b,c,d be sets. Then (a,b) = (¢,d) if and only if a = b and
c=d.
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Proof. See Homework 2 ]
Definition A.2.3. [def:relation]

(a) [a] A relation is a class R such that all members of R are ordered pairs. If x and y are
sets then xRy means (x,y) € R. Dom(R) := {a | aRb for someb} and Ran(R) := {b |
aRb for some a}.

(b) [b] A function is a relation F such that b = ¢ for all sets a,b,c such that (a,b) € F
and (a,c) is in F. F(a) = b means that (a,b) € F. Also if F is a function and A
a class then {F[A] :=={b|a € A,b = Fla]}. F[A] is called the image of A under F.
FA|.={(a,b) |a€ A,b= F(a)}.

Lemma A.2.4. [int class| Let A be a class.
(a) [a] If A=0, then N0 =V.
(b) [b] If A#0, then (A is a set.

Proof. (a) U N0 ={z|zecyforallyecd}={z|} =W
(b) Let @ € A. Then (| A C a.Since [ A is a class, A.2.5 implies that (A is a set. [

If A and B are classes we define A C B to mean (Vx(x € A — x € B).
We are able to state all the Axioms of Set Theory :

Set Axiom 1 [1] VaVy(x =y < (Vz(z € = +» z € y)), that is two sets are equal if and
only if they have the same elements.

Set Axiom 2 [2] VaVydzVw(w € z <> (w = xVw = y)) (That is for all sets x and y there
exists a set z with exactly x and y as elements.

Set Axiom 3 [3] For all sets z, {y | y C x} is a set.

Set Axiom 4 [4] For all sets z, [Jx is a set.

Set Axiom 5 [5] For all functions F' and all sets x, F[z] is a set.

Set Axiom 6 [6] There exists a set z such that () € z and for all z € z also z U {z} € 2.

Set Axiom 7 [7] For all non-empty classes A, there exists x € A such that y ¢ A for all
Yy Eex.

(6) includes the statement that the empty class is a set. Indeed () € z, means that there
exists a set  with o = () and = € 2. Henceforth we will call the empty class, the empty set.

Lemma A.2.5. [subclass]
(a) [a] Ifx is a set and A a class, then x N A is a class.

(b) [b] If z is a class and A a set with A C x, then A is class.
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(c) [c] A function is a set if and only if Domf is a set.
Proof. See Homework 2. O

Lemma A.2.6. [compatible] Let A be a class of compatible functions, that is A is class,
if f € A, then f is a function and a set, and if f,g € A, then f(x) = g(x) for all
x € Domf NDomg. Then |J A is a function.

Proof. Let a € |JA. Then a € f for some f € A and so a is an ordered pair. Now let a,b, ¢
be sets with (a,b) € |JA and (a,c) € |JA. The (a,b) € f and (a,c) € g for some f,g € A.
Thus a € Domf N Domg and so

So (A is a function. O

A.3 Well ordered sets and the Recursion Theorem

Definition A.3.1. [def:relation]| Let R be a relation and A a class
(a) [a] aRb means (a,b) € R and a RB mean (a,b) ¢ R.

(b) [b] R is called irreflexive on A if a Ra for all a € A.

(¢) [c] R is transitive of A aRc for all a,b,c € A with aRb and bRc.
(d) [d] T partially orders A if R is irreflexive and transitive on A.

(e) [d] R totally orders A if R is partially orders A and for all a,€ A one of aRb, a = b
and bRA holds.

(f) le] An R-minimal element of A is an element m € A such that for alla € A, m = a
or mRa.

(9) [e] If x is any object that AF .= {a € A | bRz}.

Lemma A.3.2. [trivial total orders|Suppose the relations R totally orders the class A.
Then for all a,b in R exactly one of aRb, a = b and bRa holds,

Proof. By definition of a total ordering, at least one of aRb, a = b and bR holds. Id a = b,
then a /Rb and b /Ra since R is irreflexive on A. If aRb and bRA, then aRa since R is
transitive, a contradiction since R is irreflexive. O

Definition A.3.3. [def:well orders| Let R be a relation and A a class. We say that R
well-orders A if

(i) [i] R totally orders A.
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(i) [ii] FEvery non-empty subset x of A has a RR-minimal element.
(i4i) [iii] For all a € A, AR is a set.

Lemma A.3.4. [minimal for class] If the relation R well orders the class A, then every
non-empty subclass of A has a R-minimal element.

Proof. Let B be a subclass of b € B. If b is a minimal element of B we are done. So suppose
b is not a minimal element. Then there exists a € B such that neither a = b nor bRa. So
aRb and thus Bf is not empty. not-empty. By definition of a well-ordering AbR is a set and
so also Bf = BN AbR, since the intersection of a class with a set is a class. Since Bf is a set,
the definition of a well ordering implies that Bf has a minimal element m. Since m € B,
we have mRb. Let y € B. If yRb, then y € Bg’% and so y = m or mRy. If y = b then mRy.
If bRy then m Ry since R is transitive on A. Thus m is a minimal element of B. O

Definition A.3.5. [defisegment] Let R be a relation, A a class and B a subclass of A.
(a) [a] B is called in initial R-segment of A if a € B for allb € B and a € A with aRb.

(b) [b] B is called an R-section of A if B = AL for some a € A.

With this definition the last condition on a well-ordered class says that every section is
a se

Lemma A.3.6. [union of segments| Let R be a relation, A a class and T a non-empty
class of initial R-segments of A. Then |JT and (T are initial R-segment of A.

Proof. Observe first that | J7" is a subclass of A. Let b € |[JT and a € A with aRb. Then
b € B for some B € T. Thus a € B since B is an initial R-segment of A. Hence a € T
and so [JT is an initial R-segment of A.

A similar proof shows that (7 is an initial R-segment of A. O

Lemma A.3.7. [segments| Let R be relation which well orders the class A and let B be
an initial R-segment of A. Then B = A or B is an R-section of A. In particular, B = A
or B is a set.

Proof. Suppose B # A. Then A\ B is a non-empty subclass of A and so has a R-minimal
element m. Let a € A. We claim that aRm if and only if a € B. If aRm, then a ¢ A\ B,
since m is the minimal element of A\ B. Thus a € B. If a = m, then a ¢ B since m € A\ B.
Suppose mRa and a € B. Since B is an initial segment this gives m € B, a contradiction.
Thus proves the claim and so B = A and B is an R-section of A. O

Theorem A.3.8 (Recursion Theorem). [recursion] Let R be a relation which well-orders
the class A. Let T be a function with domain the universe V.. Then there exists a unique
function F with domain A such that for all a € A

(%) F(a) = 7(F |4z)
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Proof. Recall that two functions F' and G are called compatible if F(z) = G(x) for all
x € Dom(F) NDom(G). Just in this proof we will call a function F recursive if its domains
is an initial segment of A and F(a) = 7(F |4z) for all a € Dom(F).

1°. [1] Any two recursive functions are compatible.

Let Fy and F5 be recursive functions and x € Dom(F;) N Dom(F»). By induction we
may assume that Fy(y) = Fa(y) for all y € Dom(F7) N Dom(F3) with yRz. Since Dom(F;)
is an initial segment we have A® C Dom(F}) N Dom(F3). So the induction assumptions
shows that Fy [qr= F5 [4r. Thus

Fi(z) = 7(F1 [ar) = 7(F2 [4r) = F2(2)
So Fi and Fy are indeed compatible.
Observe that (1°) implies the uniqueness statement of the Theorem. To prove the

existence
Let T be the class of all recursive functions whose domains are sets. Put F' = JT.

2°. [2]  F is a recursive function.

By (1°) and A.2.6 F'is a function. Observe that Dom(F') = | J{Dom(G) | G € T'}. Since
the unions of a class of initial segment is an initial segment, Dom(F') is an initial segment.
Now let 2 € Dom(F) and G € T with x € Dom(G). Then Af C Dom(G) and so

F(z) = G(z) =7(G |ar) = 7(F [ 4r)
and so F' is indeed a recursive function.
3°. [3] Dom(F)= A.

Suppose not. Then by A.3.7 DomF' = A%, for some x € A. Let G = F U {(z,7(F)}.
Since z ¢ AEF = Dom(F) we see that G is a function. Let y € Dom(G). Then either
y € Dom(F) or y = x. In the first case A C Dom(F) C Dom(G) and G(y) = F(y) =
T(F |A5) =7(G |A5)- Also A = Dom(F) C Dom(G) and G(z) = 7(F) = 7(G |ar). Hence
in either case Af C Dom(G) and G(y) = 7(G \AyR). Thus Dom(G) is an initial segment of

A and G is a recursive function. By definition of a well-ordered class, Ar(x) is a set and so
also Dom(G) = AR U {z} is a set. Thus G € T. But then x € Dom(G) C |J{DomH | H €
T} = Dom(F) = A a contradiction. Thus (3°) holds.

By (2°) and (3°) F fulfills the conclusion of the theorem. O

A.4 Ordinals

Definition A.4.1. [def:ordinal] An ordinal is a set a such that every elements of a is a
subset of a and ‘e’ well-orders . Ord s the class of all ordinals.

For example 0, {0}, {0, {0}} all are ordinals.
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Lemma A.4.2. [basic ord] Let o be an ordinal.
(a) [a] B¢ B forpBea.

(b) [b] a¢a.

(c) [c] Every elements of a is an ordinal.

(d) [d] aU{a} is an ordinal.

Proof. (a) This holds since ’ €’ is a well-ordering and so irreflexive on a. (b) If a € «, (b)
gives a ¢ a.

(c) Let « be an ordinal and v € 8 € . Since f3 is a subset of «, 7 is an element of «
and so a subset of a. Let 6 € v. Then ¢ € a. Since v € § and € is transitive on «, d € 8
and so vy is a subset of 5. A restriction of a well ordering to a subset is a well ordering and
£ is an ordinal.

(d) Since € a for all 8 € a, a is a maximal element of o U {a} with respect to €.
This easily implies that € well orders a U {a}. If 8 € a U {a} the either 5 € a or § = a.
In either case [ is a subset of & and so also of o U {a}. O

Notation A.4.3. [alpha+1] If « is an ordinal, we denote the ordinal o U {a} by o + 1.
We also denote ) by 0, 0+ 1 be 1, 1+ 1 by 2 and so on.

Theorem A.4.4. [ord well-ordered| ' €' well-orders Ord.

Proof. Let a, f and v be ordinals. By A.4.2(a), a ¢ « and so € is irreflexive on Ord. If
a € B and B € 7, then B is a subset of v and so a € 8 and so € is transitive on Ord.

To show that one of a € 8, =  and 8 €  holds, put 6 = a U 5. We will show that §
is a initial segment of a.. So let € € @ and v € § with € € v. Note that y € S and so e €
since «y is a subset of 5. Hence e € aN G = §. So § is indeed and initial segment of . 77
choose that either § = « or there exists p € a with

d=a,={rcalrzecp}=p

We proved that § = « or § € a. By symmetry, § = 3 or § € (.

Suppose that § = a. Then @ = g or § € 8 and we are done with this part of the
proof. So we may assume ¢ € o and by symmetry also § € 5. But then § e anN g =94, a
contradiction to § € a and ?7(?7?).

Now let = be any non-empty subset of Ord. Pick o € x. Suppose « is not a minimal
elements of z. Then {# € x | € a} is a non-empty subclass of a and so has a minimal
element «. But then « is also an minimal element of Ord. Hence any case x has minimal
element.

For any a € Ord, Ord, = {f € Ord | 8 € a} = a and so Ord, is a set. We verified all
the defining properties of a well-ordered class and the Theorem is proved. O

Corollary A.4.5. [intersect ordinals| Let A be non-empty class of ordinals. Then (A
is the minimal element of A with respect to €.
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Proof. Since Ord is well ordered with respect to €, 7?7 shows that A has a minimal elements
a. Let v € A. Then o =y or a € 7. In any case o C 7 and so o C [ A. Since (A C «,
this gives (1A = a. O
Lemma A.4.6. [unions of ordinals| Let A be a class of ordinals.

(a) [a] If|JA is a set, then (A is an ordinal. In particular, if A is a set, then |JA an

ordinal.
(b) [b] If|JA is not a set, then | JA = Ord.
Proof.

1°. [1] JA COrd
Thus holds since every element of ordinal is an ordinal.

2°. [2] € well-order |J A.
Since € well -orders Ord, this follows from (1°).
3°. [3]  Ewvery element of |J A is a subset of | J A.

Let x € |JA. Then z € « for some a € A. Thus z C a. Since o C A thus gives x C A

(a) If |J A is a set, then (2°) and (3°) shows that [ J A is a ordinal.

(b) Suppose now that JA is not a set and let § be ordinal. Since ¢ is a set, and
subclasses of sets are sets, we get (JA ¢ . Thus there exists « € A with a ¢ §. Note
that @« = 6 or a € § imply a C §, a contradiction. Since € is a totally ordering on Ord we
conclude that § € @ and so § € |J A. Since this holds for all ordinals, Ord C |J A. So (1°)
implies (b). O

A.5 The natural numbers

Definition A.5.1. [ordering] Let o and 8 be ordinals. We will write « < 3 if a € B and
a<pBifa=p06oracf.
Lemma A.5.2. [in and sub] Let a and 8 be ordinals.
(a) [a] a€fiff a <pB and iff a C 5.
(b) [b] (a€Bora=8)ifa<piffaCp.
(c) [c] If a« < B, then a+1 <. So a+ 1 is the least ordinal larger than c.
Proof. (a) The first statement is just the definition of o < 5. If a € /3, then the definition
of and ordinal implies o C 3. Since € is irreflexive on Ord, o # 8 and so a C . Suppose
now that o C 3. Since € is total ordering o € 5, = 8 or € . The last two statements
imply that 8 C «, a contradiction to @ C 3. Hence a € S.

(b) follows immediately from (a).

(c) Otherwise (b) gives 8 € a+1=aU{a}. So
beta € a or B = «, a contradiction to « € . ]
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Definition A.5.3. [limit ordinals] Let o be an ordinal.

(a) [a] We say that « is an successor if &« = [+ 1 for some ordinal B.In this case [ is
denoted by o — 1.

(b) [b] We say that « is a limit ordinal, if « is neither zero, nor an ordinal.
(¢) [c] We say that « is a natural number of o+ 1 contains no limit ordinal.
(d) [d] N is the class of natural numbers.

Note that first & + 1 contains no limit ordinal iff neither o nor any element of « is a
limit ordinal. « is a natural numbers if and only if either o = 0; or « is an successor and
each non-zero ordinal 8 with 8 € « is successor.

Lemma A.5.4. [natural numbers]

(a) [a] Let o and § be ordinal with o € B. If 5 is a natural numbers, so is «.
(b) [b] Let n be a natural numbers. Then n+ 1 is a natural number.

(c) [c] Letn be a non-zero natural number. Then n — 1 is a natural number.

Proof. (a) Observe that 41 C S+ 1. Since + 1 contains no limit ordinal, o + 1 contains
no limit ordinal.

(b) If x € n+ 1, then € n or x = n + 1. In neither case z is limit ordinal.

(c) Observe first that is neither 0 nor a limit. Hence n — 1 is defined. Since n — 1 € n,
(c) follows from (a). O

Lemma A.5.5. [induction on n] Let A be a class. If 0 € A and a U {a} € A for all
a€ A, then NC A.

Proof. Note that B := N\ A is subclass of N. Suppose B # () and let n be the minimal
element of B. Then n # 0. By minimality of n,n —1 € Aandsoalson=(n—1)+1=
(n—1)U{n—1} € A, a contradiction. O

Lemma A.5.6. [n a set]
(a) [a] N is a set.
(b) [b] N is an ordinal, in fact N is the smallest limit ordinal.

Proof. (a) By Set Axiom 6, there exists a set z such that 0 € z and zU {z} € Z. So by
A.5.5, N C z. Since subclasses of subsets are sets, N is a set.

(b) Since N is a subclass of the well-ordered class Ord, € is a well ordering in N. Let
n € N and o € n. Then by A.5.4(a), o € N. So n is a subset of N. Thus N is an ordinal.
Let § be any limit ordinal. Then 0 € § and if v € J, then v+ 1 < § and since J is not a
successor. Thus v+ 1 € §. So A.5.5 implies that N C §, and so N < §. O
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Definition A.5.7. [def:sum of ordinals| Let a and 8 be ordinals, then the ordinal oo+ 3
is inductively defined by

Q@ if 6=0
at+Bi=q(a+d6)+1 iff=0+1
U7<B a+~ if Bis a limit ordinal

Since 1 = 0+1 is an ordinal we now have two definitions of «+1. But since a4 (0+1) =
(o +0)+1=a+1, these two definitions agree.

Lemma A.5.8. [sum of ordinals] Let a, 8 be ordinals and n,m € N. Then
(a) [a] (a+pB)+n=a+(B+n)
(b) [b] n+m=m+n and n+ m is a natural number.

Proof. (a) If n =0, thus is obvious. So suppose (a) is true for n, then

(a+8)+(n+1) = ((a+B)+n)+1=(a+(B+n))+1=a+((B+n)+1) = a+(B+(n+1))
and so (a) also holds for n + 1.
(b) If n = m = 0, then both sides are zero. Suppose next 0 +m = m + 0. Then
0+ (m+1)=0+m)+1=(m+0)+1=m+1=(m+1)+0

So (??) holds whenever n = 0. By symmetry it also holds whenever m = 0.
Suppose 1 +m = m + 1. Then

I+(m+1)=1+m)+1=(m+1)+1

and so (b) holds whenever n = 1.
Suppose (b) holds for some n € N and all m € N

m+n+1l)=m+n)+1l=mn+m)+1l=n+m+1)=n+1+m)=mn+1)+m
and so (b) holds for n + 1 and for all m € N. O

Lemma A.5.9. [decompose ordinals| Let « be an ordinal then there exists a non-
successor B and a natural numbers n with o = 4+ n.

Proof. Note that @ = a + 0 and so there exists a least ordinal § such that « = 8+ n for
some natural numbers n. Suppose that 3 is a successor and let 6 = 8 — 1. Then

a=0F4+n=00+1)+n=50+1+n)=0+(n+1)

Since n + 1 is natural number we get a contradiction to the minimal choice of 3. O
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A.6 Cardinals

Definition A.6.1. [def:cardinals] Two sets a and b are called isomorphic, if there exits
a bijection from a to b. The cardinal |a| of a set a is the least ordinal isomorphic to a.

Lemma A.6.2. [injective] Let a and b be sets, then there exists a injection from a to b if
and only if |a| < |b].

Proof. Let F':a — |a| and G : b — |b| be bijection.

Suppose first that |a| < |b]. Then |a| C |b|. Thus G~! o F is an injection from a to b.

Suppose next that H : a — b is a injection. Then I = G o H o F~! is an injection from
la| to |b]. Put d = I(|a|. Then d C |b|. Define ® : d — Ord inductively by ®(e) is the least
elements of Ord \ {®(c) | c € d,c < e. We claim that ®(e) < e for all e € d. Indeed if ¢ < e,
then by induction ®(e) < e and so ®(e) # e. Thus ®(e) < e by defintion of ®(b).

Since ®(e) < e and |b| is an initial segment of Ord, ®(e) € |b]. We claim that ®[d] is an
initial segment of |b|. Indeed of a < ®(e), then a = ®(c¢) for some ¢ € d with ¢ < e. Thus
®(d) is an ordinal, also ®(d) < |b| and ®(d) isomorphic to a. Thus |a| < [®(d) < |b]. O

Corollary A.6.3. [sb] Let a and b sets. If the exits an injection from a to b and an
injection from b to a, then a and b are isomorphic.

Proof. By A.6.2 |a|] < |b] and |b| < |a|. Thus |a| = |b| and @ and b are both isomorphic to
|lal. O



Appendix B

Homework

B.1 Homework 3 from MTH912

Let K be a division ring and Vi, V5 and V3 a left K space. A function f: V) — Vo,v = vf
is called K-linear if v+9)f = vf+0f and kv.fk,vf forallv e Vand k e K. If f: V] — V3
and g : Vo — V3 are K-linear, then fg is the K-linear function from Vi — V5 defined by
v.fg =vf.g. Homg(Vi, Va) denotes the set of all K-linear map from Vi — V2. Endg(V) =
Homg (V, V). Note that Endg (V) is a ring.

Similarly let W7, Wy and W3 a left K space. A function f: W7 — Wy, w — fw is called
K-linear if f(w,w) = fw+ fw and fw.k = fow for all w,w € V and k e K. If f: W} — Wo
and g : Wy — Ws are K-linear, then ¢gf is the K-linear function from W7 — Ws defined by
fgw = f.gw. Homg (W7, W5) denotes the set of all K-linear map from Wy — Wa.

So we view function on a left vectors space to be acting from the right. while functions
on a right vector space act from the left.

Let V be left- and W a right K-space. Let s : V x W — K be a K-bilinear function. So
forallv,0 € V,w,w € W and k € K, (v+0)w = vl4+ 0w, v(w+w) = vw+ovw, kv.aw = kow
and vw.k = vw.k. Noe that just means taht for each v € V', the map s, : W — W, w — vw
is K-linear and for each w € W, the map s, : v — vw is K-linear.

Put E := Endg (V, W) be the set of all (a, 8) € Endg (V) x Endg (W) such that va.w =
v.fw. for all v € V,w € W. Note that V is a right E-module via v(«, 8)va and W is a left
E-module via («, 8)w = fw. Soif § = (o, 8) € E the vdw = v.dw for all v € V, w € W.
Observer that F is a subring of Endg (V') x Endg (W).

Define wv € Endg (Vi Endg (W) by 0.wv = dw.v and wv. = w.vw for all o € V,w € W.
We claim that wv € E. Indeed
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w)v)w  definition of wwv
)(vw) sy is linear

= O(w(vw)  sp is linear

(wv)w)  definition of wv

So wv € F.

Observe that we now have binary operation, KX K - K, KxV -V, W xK — W,
VxE—-V, ExW—>Wand FExFE — E.

We say that K has type (0,0), V has type (0, 1), W has type (1,0) and E has type (1, 1).
If X has type (4,7), Y has type (k,[l) and Z has type (m,n), then we have a binary operation
X xY — Zif and only if j = k and (m,n) = (4,1). In particular, if z,y,2 € KUVUWUE,
then zy.z is defined if and only if zy.z is defined.

We will now show if xy.z is defined, then zy.z = x.yz. Indeed, almost all of theses
equations follows immediately from the definitions, except for wv.a = w.va and aw.v =
alpha.wv, there v € V,w € W and o € E.

Note that wv € E and so wv.ae € E. So to show that wv.cc = w.va we need to show
that they act the same way on V and W. So let VeV and W e W. Then

o((wv)ar)) =
= (o(wv))a definition of mult. in
= (dw)v))a definition of wv
= (tw)(va) « is linear
= o(w(va)) definition of w(va)

B.2 Homework 4 from MTH912

Homework B.2.1. [t in m’] Let F be a division ring, V a left F space, W a right F
space, s : V. x W — F a bilinear form and N a series of closed F-subspace of V. Let
M = MZ(V,W) be the corresponding McLain group and let v € Vv and w € Wt with
t(v,w) € M'. Then T, < Ty. Here T, = ({{E €N |vE€ E} and T, = U{FE € Nw € E*.

Proof. Since t(v,w) € M we have T, < T,,. Let B, = {bigcupD | v ¢ D}. Then v ¢ B,.
Since B, is closed, v ¢ Bj* and so Bi- £ vt. Thus [t(v,w),By] # 0 and so w € wF =
[t(v,w), By]. On the other hand (B,,T;,) is a jump of A" and by ??

M' ={ge M| [B*,g] < (T*)™ for all jumps(B,T) of N'}
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Thus w € [t(v,w), BL] < (T;)5)~. Since (T;H)~ = U{D+ | T, < D € N'} we conclude
that w € D+ for some D € N with T, < D. Then D < T, and so T,y < T}. O

Definition B.2.2. [def:component)]

(a) [a] If H is an ascending subgroup of G. the dc(H) is the mimial length of an ascending
sequence from H to G.

(b) [b] A component of a group is a quasisimple ascending subgroup of G.

Homework B.2.3. [basic components| Let K and L be components of a group G and
M a subnormal subgroup of G.

(a) [a] K=1L or[K,L]=1.

(b) [b] K <M or[K,M]=1.

Proof. Let K be a components of G

1°. [1]  Let M << G. If K Q(KH), then K < M or [K, M) =1.

Suppose first that M is normal in G, that is 6g(M) < 1. Put H = (KY) and assume
that K < M. Then KNM < K and since KNM # K we get KNM < Z(K). Since HNM
normalize K we have [H N M, K] < KNM < Z(M) and thus |[H N M, K, K] = 1. Hence
also [K,H N M, K] =1 and the Three Subgroup Lemma implies that [K, K, H N M| = 1.
Since K is perfect, [H N M,K] = 1. Since H and M are normal in G and K < H,
[M,K] < [M,H] < HN M and so [M,K,K] = 1. Another application of the three
subgroups lemma shows that [M, K] = 1.

Suppose nest tat 0g(M) > 2. The there exists MascM* < G with dp+« (M) = dg(M)—1.
If K # M*, then by the previous paragraph, [K,M*] = 1 and so also [K,M]| = 1. If
K < M*, then by induction on g (K) we have K < M or [K, M] = 1. Thus (1°) is proved.

2°. [1.5]  Let K and L be components of G with K < (K%) and L < (L%). Then K = L
or [K,L] =1.

Since L < (L%), L << G. Thus by (1°), K < L or [K, L] = 1. By symmetry L < K or
[L, K] =1 and so (2°) is proved.

Let (Ga)a<ss (k) be an ascending sequence from K to G.

3°. [2]  Suppose that K = L or [K,L] =1 for all 3 < & and all components L of Gg with
0G5(K) = 0g,(K). Then K = K9 or [K, K9] =1 for all g € G and so K < (KG).

If v < 6 be minimal with g € G,. Note that v = 0, 7 is a limit ordinal or v = 3 + 1 for
some ordinal 3. In the first case g € K and so K = KY. If the second case, g & U, Ga =
G, a contradiction. In the third case g normalizes G and so g, (K) = dg,(K7) and K9
is a component of Gg. Hence assumption of (3°) imply that K = K9 or [K, K9] = 1.

4°. (3] K =L or|K,L| =1 for all components K and L of G with éq(K) = dc(L).
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Suppose inductively that K* = L* or [K*, L*] = 1 whenever K*, L* are components of
a group G* and d¢g+(K*) = 6g+(L*) < dg(K). Then the assumptions of (3°) are fulfilled.
Thus K < (K%). By symmetry, L < (L) and so (4°) follows from (2°).

5°. [4] Letg€ G. Then K = K9 or [K, K9] = 1. In particular, K < (K%).

This follows immediately from (4°).

(a) follows from (5°) and (2°). (b) follows from (5°) and (1°). O
Homework B.2.4. [component and hp]| Let K be a component of G. Then [K,HP(G)] =.

Proof. By 7?7 K < HP(G) or [K,HP(G)] = 1. In the first case K would be locally nilpotent
and so all chief-factors of K would be abelian. But K/Z(K) is a non-abelian chief-factor of
K. O

Definition B.2.5. [def:invert]| Let H be a group acting on a abelian group A and I a
subset of H and h € H. We say that h inverts A of a® = a™! for alla € A. We say that I
inverts A if each elements of I either centralizes A or inverts A.

Homework B.2.6. [basic invert| Let H be a group acting on an abelian group A.
(a) [a] If I C H with H = (I), then H inverts A if and only of I inverts I.
(b) [b] Let h € H with h*> =1. PutI4(h) ={a € A|a" =a"'} and I} = {aa" | a € A}.

(a) [a] A/ =ZT1a(h) =T (h) and A/Ca(h) = [A,h] as
(b) [b] Ig(a) is largest subgroup of A inverted by h and I*(h) is the smallest subgroup
of A whose quotient is inverted by h.

(¢) [c] [A,h] <Tg(a) and ITya < Cu(h).
(c) [c] Suppose H is an finite elementary abelian 2-group. Then there exists a finite series
1=4 <A <...A,=4
of H-invariant subgroups of A all of whose factors are inverted by A.

Proof. (a) Let i,j € I. If i and j centralizes A, or i and j inverts A, then ij centralize A.
If one of ¢ and j centralizes A and the other inverts A, then ij inverts A. So the set of
elements of A which centralizes or inverts A forms a subgroup of H.

(b:a) Consider the homomorphisms A — A,a — aa” and A — A,a — a~'a”. The first
has I4(h) as kernel and I4(h) as image. The second has C,4(h) as kernel and [A, h] a image.

(b:b) Readily verified.

(b:c) (a™ta™)P = (a=H)"a" = (a")ta = (aLa™) ! and (aa™)" = (a"a’) = a"a = aa”.

(c) Let H = (h1,ha,...h,) for some h; € H and put Hy = (h1,...h,—1. By (b) h,
inverts [A, hy] and centralizes A/[A, hy]. Since H is abelian, [A, hy] is Hy invariant and so
Hy acts on [A, hy| and A/[A, hy]. By induction on n there exitss Hp invariant subgroups,
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l=Ag< A1 <. . Ay=[Ah] <A1 < ... Ap = A

such that Hp inverts each of the factors. Note h,, inverts each of the factors A;/A;_; for
1 < i <t and centralizes each the factors A;/A;_1, t <i < m. Thus by (b), H each of the
factors. O

Homework B.2.7. [char subsolvable| Let G be a group with no non-trivial finite normal
subgroup of odd order. Then G is super-solvable if and only if GG s finitely generated and
G? is nilpotent.

Proof. Suppose first that G is super solvable. Then G is polycyclic and so finitely generated.
Moreover, there exists a strong composition series
1=Go<G1<... <G <Gp1 <G =G

such that for 1 < i < k, Gi/Gk—_1 has odd prime order and for k < i < n, G/Gk_1 is
cyclic of order 2 or co. Then G}, is the unique maximal subgroup of odd order. So Gy, is

normal in G and so by assumption, GG = 1 and thus & = 0. It follows that for all 1 < i < n,
Aut(G;/G;_1) has order at most 2. Thus G? centralizes G;/G;_1. Hence

1=GoNG*<GNG*<...G,NG* =G

is a finite normal series for G? all of whose factor are centralized by G2. Thus G? is nilpotent.

Suppose next that G is finitely generated and G? is nilpotent. Note that G/G? is a
finitely generated elementary abelian 2 group and so finite. Since subgroups of finite index
in finitely generated group are finitely generated, G? is a finitely generated nilpotent groups.
Thus every section of G2 is finitely generated. Let

1=20< 21 < Zm =G
be the upper central series for G2. But Z,4+1 = G. Then each Z; is G invariant and
Z;/Z;_1 an finitely generated abelian group centralized by G2. So we can apply B.2.6 with
H =G/G? and A= Z;/Z; 1 to obtain a G invariant series of subgroup
Zin=2in < Zin < ... 25, =2

all of whose factors are inverted by G. Since Z; j/Z; j_1 is finitely generated there exists

a finite series
Zij-1 = Zij0 < Zija < Zijki; = Zig

of subgroups of Z; ; all of whose factors are cyclic. Since G? inverts Z; ;/Z; ;—1 each of Z; ; 1
are G invariant. Thus the Z; ; , from a supersolvable series for G and G is supersolvable. [J
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Homework B.2.8. [char series for supersolvable| Let G be a supersolvable group and
p1 > p2 > ... > pi the order of the strong chief-factors of odd order of G. Then there exists
series

1<51<85<...5:<505G

of characteristic subgroups of G such that G/S« is a finite 2-group, Soo/Sk s a torsion free
nilpotent group, and for 1 <i <k, S;/Si_1 is a finite p;-group.

Proof. Let H be the unique maximal subgroup of odd order of G. Let

Hy<Hy <...<Hj

be chief-series series such that (|Hy/Hy|, |H2/Hi|, . .., |Hg/Hk—1]) is maximal in lexiographic
order. Suppose that p := |H;/H;—1| < q := |Hj+1/H;—1 for some 1 < i < k. Then
H;i1/H;_1 is a group of order pq. By Sylow’s Theorem H;ii/H;_1 has a unique Sylow
g-subgroups H/H;_;. But then

Hy<H <H; 1 <H<H;...<H,

is a chief-series of G of higher lexiographic order, a contradiction.
Thus HHZ/HZ_1| < ‘Hi-i—l/Hi—l‘ For1 <j <klet ij be maximal with ’Hij/Hij—l‘ =Dpj-
Put S; = H;;, So =1 and ip = 0 Then

Sj—l = Hij—l < Hij—l-‘rl <.. -Hi]- = Sj

is a series all of whose factors have order p; and so S;/S;_1 is a finite p;-group. Hence S;
is finite {p1,...,p;} group. Let = be {p1,...,p;} element in H and pick [ minimal with
x € S;. Then zS;_1 is a non-trivial {p1,...,p;} element in the p;-group S;/S;—; and so
[ < j. Thus S; is unique maximal subgroup {pi,...,p;}-subgroup of H. Hence S; is a
characteristic subgroup of H and GG. Note that S, = H.

Replacing G by G/H we may assume from now on that G has no non-trivial normal
finite subgroups of odd order. Choose a supersolvable series

1=Go<G1 <...<G, <..Gp£...G, =G
such that
(i) [i] |Gi/Giz1] =00 1<i<a.
(ii

(iii

ii] |G;/Gi—1] =2 for 1 <i < a. equals 2 for
[iii] |Gpr1/Gpl =2if b < n.
[iv] a is maximal with respect to (i)-(iii).

(iv

)
)
)
(v)

[v] b is minimal with respect to (i)-(iv).
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We claim that b = n. Suppose not. If a = b then (i)—(iii) are fulfilled with b+ 1 in
place of a, contradicting the maximality of a. So a < b. Put Gpy1 = Gpy1/Gp_1. Then Gy
has order 2 and Gy 11/Gy is cyclic of infinite order. Pick x € G}, \ Gp_1 and y € Gp,1 with
(y)Gp = Gpy1. Suppose that T € (). Then Gy, is cyclic and the series

Go<..Ga<...<Gp1 <Gp1 <G =G

contradiction the maximality of a (if a = b — 1) and the minimality of b if a # b — 1.

Thus 7 ¢ (7) and Gp = (T) x (7). Thus Gy = (0y?). Put A = Gp_1(y?). Then A = Gys1
is a characteristic subgroup of G171 and so A is normal in G. Note that A/G}_1 is cyclic
of infinite order, while AGy/A and Gp11/AG} both have order 2. Thus

1=Go<G1<...<Ga<...<Gp1<A<AGy<Gpi1...Gp =G

contradiction the maximality of a (if a = b — 1) and the minimality of b if a # b — 1.

So b =n and G/G, is a finite of order 2"~ %. . Let g € G be a nontrivial element of finite
order and let ¢ be minimal with g € G;. Then gG;_; is an element of finite order in G;/G;_1
and so i > a. Thus G, is torsion free. Put m = maxn — a,1 and Sec = G?". Then S is a
characteristic subgroup of G' and Sy, < G,NG2. By ??7 G? is nilpotent and so S is torsion
free and nilpotent. It remains the show that S/S. has finite order. For 1 <i < a, G;/G;-1
is cyclic of infinite order. Thus Gi/G?mGi_l has order 2™ and so G;/(G; N Sx)Gi—1 has
order at most 2™. Thus G,/G4 N So has order at most 2" and G /Sy has order at most
2ma+(n—a). n
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