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Chapter 1

Combinatorics

1.1 Some Essential Problems

Theorem 1.1.1 (Sum Rule). Suppose that S1,S2,... Sy are pairwise disjoint finite sets. For 0 <i<
let n; := |S;| be the size of the set S;. Then the number of ways to select one element from one of the
sets S1,59,...5, is the sum

ny+ng+ng+...+ny,

Example 1.1.2. Count the number of two digits positive integers n which have the following three
properties:

(i) the first digit of n is odd.
(ii) n is divisible by 3.
(iii) the second digit is less than the first.

We break the problems into cases bases on the first digit: The first digit is odd and so has to be
one of five numbers

1,3,5,7, and 9

For each case we look the consider the possible second digit (which has less than the first) and
decide whether the resulting integer is divisible by 3

first digit | second digit less than the first | divisible by 3 | number of integers in this case
1 - - 0
3 30,31, 32 30 1
5 50,51,...54 51,54 2
7 70,71,...76 72,75 2
9 90,91,...98 90, 93, 96 3
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So according to the sum rule, the total number of such integers is

0+1+2+2+3=8

Theorem 1.1.3 (Product Rule). Suppose Si,Sa,... Sy, are finite sets. For 1 <i<m let n; :=|S;| be
the size of the set S;. Then the number of ways to select one element for Sy, then select one element
from Sa, and so on, ending by selecting one element from Sy,, is the product

ninang ...y,
Example 1.1.4. Count the number of valid US phone numbers.

A US phone number consists of a three digit area code, followed by a three digit exchange code,
and then four digit station station code and has to follow these rules:

(i) The area code cannot begin with 0 or 1.
(ii) The second digit of the area code cannot be 9E|

(iii) The exchange code cannot begin with 0 or 1.

So there are 8 choices for the first digit of the area code, 9 choices for the second digit of the area
code, 10 for the last digit of the area code, 8 for the first digit of the exchange code, 10 for the second
and third digit of exchange and 10 for each of the four digits of the station code. So according to
the Product Rule the total number of valid phone numbers is

(8-9-10)-(8-10%) - 10* = 576 - 10° = 5,760, 000, 000
Definition 1.1.5. (a) Z={0,+1,+2,+3,...} is the set of integers.

(b) N={0,1,2,3,...} is the set of non-negative integers. We will also use the term natural number
for a non-negative integer.

(c) Z* ={1,2,3,...} is the set of positive integers.
(d) R is the set or real numbers.
Definition 1.1.6. LetneN, keZ and x € R.

(a) A k-set is a set with exactly k elements.

(b) (Z) 1s the number of k-subsets of an n-sets. The expression (2) 1s called a binomaial coefficient

and (Z) is pronounced n choose k.

! Area codes of the form X9Y are reserved for possible future expansion of the phone number system
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|~

(c) #f is inductively defined by 2%:=1 and if k >0 then 2% := 2E-L(x — (k- 1)). So
E-p(z-1)(z-1)...(z-(k-1))

2% is pronounced x to the k falling.

S
8
=

18 inductively defined by 20:=1 and if k>0 then . :L‘E(x + (k- 1)) So

2F =z -1D)(x-1)...(x+(k-1))

=

x" is pronounced x to the k rising.
(e) Kli=kE=k(k-1)(k-2)...2-1. k! is pronounced k factorial.
Remark 1.1.7. Let k,n e N with k <n. Then

n!
" (n-k)!

Proof.

nf=nn-1)...(n-(k-1))
n-(n-1)-(n-2)...(n-k+2)-(n-k+1) - (n-k)-(n-k-1)-...-2-1
- (n-k)-(n-k-1)-...-2-1

n!
“(n-k)!

Example 1.1.8. How many ways are there to order a collection of n objects.

The first object (in any ordering) can be any of the n elements, so there are n choice for the first
object.

The second object must be different than the first, so there are n—1 choices for the second object.

The third object must be different than the first two, so there are n — 2 choices for the third
object.

The second to last object must be different than the first n — 2, so there are 2 choices for the
second to last object.

The last object must be different than the first n — 1, so there is 1 choice for the last object. So
according the the product rule there are

nl=n-(n-1)-(n-2)-...2-1

ways to order a collection of n objects.
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Example 1.1.9. How many ways are there to choose an ordered list of k-distinct element from a
set of n elements?

As in the previous example:
There are n choices for the first element, n — 1 choices for the second elements, n — 2-choices fro
the third element, ..., n— ((k—-1) - 1) choices for the k — 1""-element and n — (k — 1) choices for the

k™ element. So the total number of choices is

n-(n-1)-(n-2)...(n-(k=2))-(n-k+1) =nk

Example 1.1.10. Let k,n € N with £ <n. How many ways are there to choose an unordered list of
k distinct element from a collection of n elements?

Let m be the number of unordered list of k-distinct elements from a collection of n-elements.
According to [T.1.§ each of these m list can be ordered in k! ways. Thus the number of ordered list
of k-distinct elements from a collection of n elements is

m - k!

On the other hand by this number is

Hence m - k = nf and so

nk n!

TR K(n-k)!

Theorem 1.1.11. Let k€ Z and n € N. Then

(TL)_ ﬁlk)':% if0<k<n
k) o ifk<0ork>n
Proof. Suppose first that 0 < k <n. By defintion (Z) is the number of k-sets in an n-sets, but that is
just the number of unordered list of k distinct elements from a collection of n-objection. By
that number is % = ﬁlk)' So the theorem holds in this case.

Suppose k < 0. There are no sets of negative cardinality, so there are also no k-subsets of an
n-subset. Thus (n) =0.

k
Suppose k > n. No set has a subset of larger size, so so there are also no k-subsets of an n-subset.
Thus () = 0. O

Example 1.1.12. standard deck of card consists of four suits (clubs, spades, hearts and diamond).
Each suits consist of thirteens card with distinct face-value (2,3,4,5,7,7,8,9,10, jack, queen, king,ace).
A poker hand is set of five cards from a standard card deck.
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(a) Count the number of poker hands.

Since there are 52 cards and five cards in each poker hand the number of poker hands is

5
(52) 0% 2,598, 960
5 5

(b) How many poker hands have exactly three cards of the same face value?

‘We can choose such a hand as follows:

13

1 ) choices.

First choose one of the 13 face-values: (
Nest choose three of the four cards of the choosen face-value: (g) choices.

Finally choose 2 of 48 card of different face-value: (428).

Hence, by the product rule, the total number of such poker hands is

(%) =01 55527 5
1/\3/\2 2

1.2 Binomial Coefficients

Theorem 1.2.1 (Symmetry). Let n €N and k € Z. Then

()-(."5)
k) \n-k)
Proof. If k<0 or k >n then also n—k >mn or n—k <0. So both sides of the equation are 0.

So suppose 0 < k <n. Then also 0 <n -k <n.
We will first give an algebraic proof:

<Z) o k‘!(nni k) (n—(n—Z;)!(n—k)! ) (ny—lk)

Next we give a combinatorial proof.
Let A be any set of size n Let B be k-subset of A. Recall that

A~B={acAl|at¢B}

and that (for example by the Sum Rule) A\ B is n—k-subset of A. Also if D is a subset of size n—k
of A then A\ D is a k-subset of A. Since A\ (AN B) = B, we conclude that the function

B —» A\B
is a bijection from the k-subsets of A to the n — k-subsets of A with inverse

D — A~ND
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Hence the number of such subsets must be equal, that is
()"0
k] \n-k
Theorem 1.2.2 (Addition). Let ne€Z* and k € Z. Then

() -G ()

= + .

k k-1 k

Proof. If k<0 or k > n, all three terms are equal to zero. If k = n, then the first two terms are equal
to 1 and the last terms is equal to 0. If k£ = 0, the first and the last terms is equal to 1, while the

middle term is 0. In any of the three cases the equation holds. So suppose 1 <k<n-—1.
Again we will first give an algebraic proof:

n-1 n-1y (n-1)! (n-1)!
(k—1)+( k )_(k—l)!((n—l)—(k—l))!+k!(n—1—k:)! | LLI
(n-1)! (n-1)!

- Dl (n-k-Dln-k)  k(k-1)ln—k-1)!
~ (n-1)! 1 1
- Dl(n-k-1)! (n—k+E)

(n-1)! (k+(n—/<:))

T h-Din-k-D)!\ k(n-k)

B (n-1)! n

C(k-D!(n-k-1)k(n-k)

_ Winwsi

TR

Next we give a combinatorial proof: Let A = {1,2,...,n}. By definition (Z) is the number of
k-subsets of A. We now count such subsets B by consider the two cases n € B and n ¢ B.

If n e B, then B\ {n} (the remaining elements of B) form a k- 1-subset of 1,...,n - 1. So there
are (Zj) choices of B\ {b}, and hence there are also (Zj) k-subsets of A containing n.

If n ¢ B, then B is a k-subset of the n — 1-set {1,...,n—1}. Thus there are (",;1) k-subsets of A

which do not contain n. The Sum Rule now shows that
()=C) (")
= +
k k-1 k

The addition rules allows as to easily compute the all the binomial coefficients using what is
called the Pascal’s triangle: Write (Z)’s 0 <k <n in form of a triangle:

O]
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()
D 6

» G 6
(1) G @
(") () e G () GR) GR)
(%) G G

According to the Addition rule any entry (except the two outer one in each row) is the sum of
the two entries immediately above it. Note also the (8) =1 and (Z) =1. This leads to
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Theorem 1.2.3. Let n,m e N. Then

Proof. We will first give an algebraic proof using induction on n. For this we first consider the case
n = 0. The left side is equal
( 1 )_ (})=1 ifm=0
m+1) 0 if m>1

The right side has just one summand and is equal to

(0)_ (0)=1 ifm=0
m) |0 itm>1

So the equation holds for n = 0. Suppose it holds for n. Then

£0-020-20)

+1 +1
= (n ) + (n ) — Induction Assumption
m m+1

= ((n 1)+ 1) — Addition Rule 1.2.2

m+1

So the equation also holds for n + 1.

Next we give a combinatorial proof by counting the number of m + 1 sets in the n + 1 set A =
{0,1,...,n}. We choose an arbitrary m + 1-subset B of A as follows:

First we choose the largest element k of B. Note that k& can be any of the numbers 0,1,2,...n.

Next for a give k we choose the remaining m elements of B. They all are smaller than k& and so
form an m-subset of the k-set {0,1,2,...,k—1}. So there are (7];) choices for B\ {k}. Thus, by the

Sum Rule, the total number of m + 1 sets in a n + 1 set is Y.} (:1) and so indeed
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Example 1.2.4. Compute (z +4)*.

(z+y)!
= (@+y)(z+y)(z+y)(z+y)
4 "
= yyyy 1 term: ways to choose the 0 positions of z
+TYyy + Yyyry + yryy + yyyx 4 terms: ways to choose the 1 position of z

+TTYY + TYTY + TYYT + yxTy + YyTryT + yyrr 6 terms: ways to choose the 2 positions of x

+rxry + YT + rYTT + yrrad 4 terms: ways to choose the 3 positions of x

=

NG C N N =)

+rTITT 1 term: ways to choose the 4 positions of x

y4 + 4J:y3 + 63:23/2 + 4x3y + y4

(0

k=0

Theorem 1.2.5 (Binomial Theorem). Let z,y € R and n e N. Then

(w+9)" =2 (k;)xkyn =3 (k:)xkyn '

keZ k=0

Proof. We first give a proof by induction on n. For n = 0 both sides are equal to 1 and so the
equation holds. Suppose it holds for n. Then

(z+y)"' = (@ +y)(z+y)"

=(z+y) Z ( ) k,n-k —induction assumption
keZ
.. Z( )knk+y Z( )knk - Distributive Law
keZ keZ
Z( ) kelynk Z( ) byl - Distributive Law
jez \k keZ
-y ( n ) () 3 ( ) ky(+D)=k  _ gubstitution: k — k — lin the left summand
ker, \k— 1 keZ
_ n n k, (n+1)-k istributi
_ " ( )] 2Fy — Distributive Law
()G
_ Z (“ + 1) by (n1)-k — Addition Rule T22
keZ,

So the Binomial Theorem also holds for n + 1, and this for all n € N.
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Let A ={x,y}.
(z+y)" =(@+y)(z+y)...(z+y)
n-times
= Z Z Z 2129 ...2n
z1€A z0€A zZn€A
To each monomial 2125 ... 2, we can associate a subset I of {1,...,n} , namely

I={ie{l,...;n}|2z =z}

Let k = |I|. Then k of the z;’s are equal to = and n — k of the z;’s are equal to y. Thus

2129 .. 2p = 2Py F

There are (") subsets of size k, hence exactly (Z) of the monomials z; ... z, are equal to z*y"*.

k
This gives
n n _
Z Z Z 2129 ... 2pn = Z( )xky" k
21€A 290€A Zn€A k=0 k
and so the binomial theorem holds. O

Example 1.2.6. A lotto game consists of selecting four different numbers from 1 to 10 to match a
randomly drawn set of four such numbers (the winning numbers). For each 0 < k < 4 determine the
number of selections which match exactly k of the winning numbers.

k =0: All four numbers are from the 6 loosing numbers: (2) = (g) = 15 selections.

k = 1: Choose one of the four winning numbers and then 3 of 6 losing numbers: (?)(g) =4-20 = 80.
k = 2: Choose two of the four winning numbers and then 3 of 6 losing numbers: (g)(g) =6-15 = 90.
k = 3: Choose three of the four winning numbers and then 1 of 6 losing numbers: (g)(?) =6-6 = 24.

k =4: All four number are winning numbers: (i) =1
Total number of selections:

15+80+90+24+1=210

Of course the total number of selection is (lf ) = 12’%'2'7 =10-3-7 =210. We derived the equation

Theorem 1.2.7 (Convolution). Let m,neN and l,peZ. Then
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n+m n m
(a) ( l )_,;Z(k)(l—k)

(b) (T;T?) ) k,% (p :L k)(l Tk)

Proof. (d): Let A and B be disjoint sets of size m and n, respectively. Then D := Au B is a set of
size n +b. We will choose an arbitrary [-subsets E of D has follows:

We first choose how many elements of F are contained in A. Call this number k. k can be any
integer. Note that F will contain exactly [ — k elements of B.

Next we choose the k-elements of A which are contained E: (T]Z) choices. Finally we choose the
[ — k-element of B which are contained in F: ( lfk:) choices. Hence the total number of choices is

Z(6 )

Of course the total number of [-subsets of the m + n-set D is (m;") and so holds.

(o)) follows from () via the substitution ! — [ +p and k - k +p. Note here that (p+1) - (p+k) =
l-k. O

Remark 1.2.8. The Addition Rule is the special case m =1 in the Convolution rule[1.2.7]

Proof. For n=1 says

Note that (llg) =1for k=0and k=1 and (llc) = 0 otherwise. So the right side becomes

1'(z7—10)+1'(l?1)
("7)-()+ (2

and thus

1.3 Multinomial Coefficients

Example 1.3.1 (Placements). Consider 10 objects and 3 boxes. How many are there to place three
of the 10 objects in the first box, 2 objects into the second box, and four objects into the third box?
Here we assume that the order in the which elements are placed in one of the boxes is irrelevant, but
the order of the boxes is relevant. Also each objects is only placed in one box.
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There are (130) to choose the three objects to be placed in Box 1. Then there are (;) ways the

choose two objects from the remaining 7 objects to be placed in Box 2. Finally there are (Z) ways

to choose four objects of the remaining 5 objects to be placed in Box 3.

1 100 7 5 100 10-9-8-7-6-
(0)'(7)'(5)=—0-7—-5—1!= O _10:9:8:76'5 _19.9.7.4.5=90-140 = 12, 600.
3/ \2) \4) 3171 2150 41 3121401 3-2-2

Definition 1.3.2. Let m,neN and ky1,ks ..., ky € Z. Given n objects and m boxes labeled Box 1 to

Box m. Then
n
(k‘l, k‘Q, ey k‘m)

s the number of ways to place k1 of the n-objects in Box 1, then place ko objects in Box 2 of the, ...
and ky, objects in Box m. (If m =0, we take the view that there is a unique way to do nothing and
define (") to be 1. )

The expression (k1 kQ” ke ) is called a multinomial coefficient.

Remark 1.3.3. Letn e N and k € Z. Then we have given two definitions of (Z) Namely the binomial
(Z) which counts the number of ways to choose k elements from a set of n, and the multinomial (Z)
which counts the number of ways to place k of the n objects into one box. But observe that both of
the number are the same.

Theorem 1.3.4. Let n,m,l e N and ki,ky ...,k € Z with I <m.

( n )_( n )(n—k:l—...k‘l)
k17k27"'7km B kla"‘akl kl+17"'ak;m

Proof. To place k; of the n-objects into Box i (for 1 <i < m, we can first place k; of the m-objects
into Box ¢ (for 1 <i <) and then place k; of the remaining ny objects into Box j for [ +1 < j <m.
The product rule now implies the Theorem. ]

Theorem 1.3.5. Let n,m €N and and ki, ka ... ky € Z. Put ko:=n— 3" k;.

( n )_ W'km' if k; >0 for all0<i<m
ki,koy. .. km 0 if k; <0 for some 0<i<m

Proof. If k; < 0 for some 1 < < n, there is no way to place k;-object the equation into a box, so both
sides of the equation are 0. If ky < 0, then n < Y7 ; k; and again there is now the to place k; of the
n-objects into a box for 1 <7 < m. So we now assume that k; > 0 for all 0 <7 < m and proceed by
induction on m.

Suppose that m = 0. Then (n) =1. Also kop=n—-Y"1ki=n-0=n and so kn_o" = %: =1. So gain
the equation holds.

Suppose next m > 0 and that the theorem holds for m — 1. Put ng := n— X5 k; and note that
ng — km = ]C().



1.3. MULTINOMIAL COEFFICIENTS 17

n n no .
= . thi=m-1
(kla--'7km) (kla-"akm—l) (km) ‘mWI "
n! ng! . .
= T B S T proy | ‘ Induction Hypothesis
n!
ke ket Ve !
n!
Ckolky .. k!
So the Theorem holds for m. ]

Example 1.3.6. Given 10 objects and three boxes. How many ways to place 4 objects in Box 1, 3
objects in Box 2 and 2 objects in Box 37

This is the same as the number of ways to place 3 objects in Box 1, 2 objects in Box 2 and 4
objects in Box 3. Hence the answer is the same as in Example that is there are 12,600 ways.

Algebraically, this says
(10)_ 00 10! _( 10)
3,4,2) 1141312 11312141 \3,2,4

In general the same argument gives:

Theorem 1.3.7 (Symmetry). Let n € Nym e Z* and ky,...,ky € Z. Then for any permutationﬂ s

ﬁom{l,...,m}:
(ﬂ— ' T ) ( m)
k(),...,k(m) k,...,k

Theorem 1.3.8 (Addition). Let neZ*, meN and ki,...,kpn € Z withn=Y1" k;. Then

st i) 1) et ™ et 1)
= + +.oo.+ .
Ktk k) \ki =1 ko, k) \ki,ka—1,... kn ki ko, ko — 1

Proof. Consider the problem to place k; of the n-objects into Box i (for 1 <i <m). Since n =" k;
each object will be placed into a box. Fix one of the objects, say Object A. Then A will be placed
into Box j for some 1 < j <m. For a fixed j, we still need to place k; — 1 objects of the remaining
n—1 objects into Box j, and for 1 <¢ <m with ¢ # j we need to place k; objects into Box . So there
are

( )
koo ki ks = 1k, ko

possible placements. This holds for each 1 < j < m and the Addition Rule shows the total number of
placements is

2A permutation of a set I is bijection from I to I
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( n-1 ) ( n-1 ) ( n-1 )
+ +...+
k-=1,ko,.... km ki,ko—1,...,kmn ki,koy...,km—1

On the other hand the total number of placements is (k1 kzn km) and the Addition Theorem is
proved. ]

Remark 1.3.9. The addition rule for binomial coefficients follows from the addition rule for multi-
nomial coefficients.

Proof. Let neZ* and k ¢ N. Then
()= (o) =) () - Gm) = ()
k)] \kn-k)] \k-1,n-k)] \kn-k-1) \k-1 k)

Notation 1.3.10. Let n €N and ay,...,a, objects. Then

(a) {a1,...,a,} denotes the set with elements ay,...,a,. So {ai,...,a,} and for any object b

be{ai,...,an} <= a=a; for some <j<n
To sets are equal if and only if the have the same elements, so the order in which the elements
are listed does not matter, and also repeating an element does not change the set. For example
{1,2,3,4} = {2,3,1,4} = {1,2,3,2,1,4}

(b) (a1,...,a,) denotes the sequence formed by ai,...,ay,. Sequences (ai,...,a,) and (b1,...,by)
are equal if and only of n = m and a; = b; for all 1 <1 < n. So order and repeated elements
matter. For example

(1727 374) ;t (1737 27 4) :/: (1737 17274)

(¢) [a1,a2,...,a,] denotes the multiset formed by ay,...,a,. Multisets [a1,...,a,] and [b1,. .., bn]
are equal if and only if there exists a bijection 7: {1,...,n} — {1,...m} with b; = ar¢ for all
1<i<n. So order does not matter, but repeats do. For example

[1,2,3,4] =[1,3,2,4] #[1,3,2,4,1]

(d) For convenience we will use the notation ajas . ..a, to denote both sequences and multisets. We
will only do this if, in the given context, it does not matter whether aias...a, is a sequence or
multiset, or if we clearly pointed out that we meant a sequence or meant a multiset.

(e) We will also use the terms ‘ordered lists’ and ‘string’ for a sequence and the term ‘unordered
list’ for a multiset.
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Example 1.3.11. How many ways to order the unordered list
[a,b,a,a,c,c,a,c,b,c,cl

We first count how often each element appears in the list:

a: 4, b:2, ¢:5

The length of the list is 11. So if the elements would be distinct there would exists 11! different
ways to order the list. But permuting the four position of the a’s has no effect on our ordered list.
The same holds for two positions of the b”s and the 5 positions of ¢. Hence there are 4! - 2!-5! ways
to permute to positions without effected the list. So the number of ways to order the list is

11!

41215!

(42,5
4,2,5

We will know explain why this the same as placing 4 of 11 objects in Box 1, 2 into Box 2 and 5
into Box 2. Label the three boxes with a,b,c. Given an ordering, say

and so number of ways to order the list is

(a’7 b? c7 a? a‘? C7 a? C? C7 b’ C)

We will place the numbers from 1 to 11 into boxes as follows. a appears in the first position, so we
place 1 into the Box a (the box labelled a). b is in the second position,, so the place 2 into Box a
and so on

number: 1 2 3 4 5 6 7 8 9 10 11

box: a b c a a c ac c b ¢

So Box a contains 1,4,5 and 7. Box b contains 2 and 10, and Box ¢ contains 3,6,8,9 and 11.

If we know which elements are in Box a, we know exactly in which position the a’s appear. So
the ordering is completely determined by the box placement. Hence we found a bijection between
the ordered lists and the box placements. This show that the number of ways to order the multiset
‘s 11
is indeed (4’275).

Definition 1.3.12. Let A =ajas...a, be an ordered or unordered list of objects.
(a) n is called the length of A.
(b) We say that A is from the set B if a; € B for all 1 <i<n.

(c) A is called non-repeating if a; # aj for all 1 <i<j<n.
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(d) Let b be an object and k = {1 < j <n|b=a;}. k is called the multiplicity of b in A and is
denoted by multy(A). We will also say that b appears exactly k-times in A.

(e) We say that A has multiplicities (k1,ko,...knyn) with respect to the non-repeating sequence
(biy...,bm) if {ar,...,an} € {b1,... by} and k; = multy, (A) for all 1 <i <m. In this case we
will also say that A has multiplicities [ki, ..., kmn].

(f) If A is an unordered list with multiplicity (ki, ..., ky) with respect to (b, ...,by,) we will denoted
A by [b1%,... bk, and also by bi* .. bkn.

Example 1.3.13. Consider the sequence or multiset A = 122133323422232. Then A has length 15
and

mult; (A) =2, multa(A4) =6, multz(A) =5, multy(A) =1, mults(A4) =0
Hence the multiplicities of A with respect to (1,2,3,4,5) are (2,6,5,1,0).
With this notation we can now state Example [1.3.11| as a general theorem.

Theorem 1.3.14. An unordered list of length n and multiplicities [ki,...,kn] can be ordered in

(kl,.ﬁkm) ways.

Example 1.3.15. Compute the coefficient of 223?22 in (z +y + 2)*2.

Expanding (z +y + 2)*? using the Distributive Law we see that (2 + y + 2)*? is a sum of terms
21 ... 749 there each z; is one of z,y, z. Using the Commutative Law this product is equal to z*y'z™
with k,1,m € N and k +1+m = 42. Observe that product z; ...z is equal to the product z2¢°22! if
and only if ordered list z; ... 249 is an ordering of the unordered list x12y9z21. By the number
of such ordering is (12%92’21).

The general version of this argument shows:

Theorem 1.3.16 (Multinomial Theorem). Let n,m € N. Then

n
n _ k:l k:z k
(1 +z2+...+xp)" = > (k‘ f )331 A
k1,k2,..kmeZ 1y Pm
ki+ko+...+km=n

Proof. In addition to the above combinatorial argument we will give an algebraic proof by induction
on n.

If m = 0, then both sides are equal to 0 and if m = 1 both sides are equal to z*. Suppose now
that m > 2 and the Theorem holds for m — 1 and all n. Then
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(1 +x2+.. )"

=(a:1 + (22t xm))m Associative Law
n
) Z (k )xlfl (22 +... xm)n_kl Binomial Theorem
kleZ 1
n
- 2 ( ) 2 ( )5”’;2 X -$ﬁ1m Induction Hypothesis
k1€Z ko Tomez. VK2, km

ko+...+km=n—kq

n n—ky o
= Z Z ( )( )xlflxgz . a:fn’” Distributive Law
KicZ  kodmez K1/ \Ek2,. . kp

ko+...+km=n-k1

n
-y ¥ ( )x’;lx’;z...x':nm Theorem [34
k1€Z  ka,..kmeZ ki, ko, .. km

k2+.“+km:n7k1

n k1 .k
-3 (k o )xl b .
k1,ka,..kmeZ 15 R2y .-

k;l +k:2+...+km=n

Example 1.3.17. Use the Multinomial Theorem to compute (z +y + 2)3.

(ry+2)= (37370);633,0 r (o,g,o)xoy3zo+(0,3,3)x0y023
+(2,:1)),0)“7”2y1 2 (2,3,1)332‘”021+(1,§,0)x1y220

(0 2, 1)3”0'”221 (1,3,2):”1?’022+(0,Z1)),2)x0ylz2
. (1 )xlylzl
3

= B+ 243y + 2

+

2rvxyt + oyt + a2 v y2?) + 6ayz

1.4 The Pigeon Hole Principal
Theorem 1.4.1 (Pigeon Hole Principal). Let n,k € Z* with k > n. If k objects are placed in n bozes,
then at least one boxr contains at least two objects.

Proof. For 1 < i < n let m; be the number of objects in box i. Then k& = Y1 k;. Suppose for a
contradiction that no box contains at least two elements. Then m; <1 for all 1 <7 <n. Thus
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contrary to the assumption that k£ > n. O

Example 1.4.2. (1) If 400 students are enrolled in a class than at least two have there birthday
on the same day of a year.

(2) A human has no more than 250,000 hair on there head. The City of Phoenix as more that 1.5
Million residents. So at least people in Phoenix have the same number of hair on their head.
Actually there are at least six people in Phoenix have the same number of hair.

Theorem 1.4.3 (Pigeon Hole Principal). Let k,n,m € Z* with k > nm. If objects k objects are
placed into n boxed then at least one box contains at least m + 1 objects

Proof. For 1 <i < n let m; be the number of objects in box i¢. Then k = Y1, k;. Suppose for a
contradiction that no box contains at least m + 1 elements. Then m; <m for all 1 <7 <n. Thus

M=

Il
—_

n
k= miSZmznm
i=1

)

contrary to the assumption that k > nm. O

Theorem 1.4.4. Let n € Z* and ay,...,a, € R. Let u = @ be the average of (a1,...,a,) The
there exist 1 <i<n and 1 <j<n with a; <p and a; > p. In other words:

min(aq,...a,) <av(ay,...,ay) <max(ai,...,a,)
Proof. Suppose that a; > p for all 1 <7 <n. Then

_ X N g
n n n

=H,

a contradiction. Thus there exists 1 <7 < n with a; < u. Similarly (or by applying this results with
each a; replaced by —a; ) we get a; > pu for some 1< j <n. O

Definition 1.4.5. Let s =ajas...ay, be a sequence of objects and 1 <41 <ig <...<ipym <n. Then
A Qig « - Qg
is called the subsequence of s at the positions (i1,...,im)-

Definition 1.4.6. Let s =ajas...a, be a sequence of real numbers.

(a) s is called increasing if
ap<az<az<...<ap

and is called strictly increasing if

a1 <az<az<...<ap
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(b) s is called decreasing if

and is called strictly decreasing if

ay>az>az>...>an
Example 1.4.7. Consider the sequence

s=(4,8,12,3,7,11,2,6,10,1,5,9)

What is the length of the longest increasing subsequence? What is the length of the longest
decreasing subsequence?

There many increasing subsequence of length three, for example

(4,8,12), (4,8,9), (47,11, (3,7,11), (3,7,10), (2,6,9), (1,5,9)

but no increasing subsequence of length four. To see the latter, arrange the elements in a array

4 8 12
3 7 11
2 6 10
1 5 9

Let ab be subsequence of length two of s such that a and b appear in the same column of the
table. Since subsequence are in the original order, a must appear in a higher row than b. The entries
in any columns are strictly decreasing from top to bottom, so a > b. Thus ab cannot be part of an
increasing subsequence. Hence any increasing subsequence of s can have at most one entry from each
column. Since there are three columns, an increasing subsequence can have length at most 3. So the
length of a longest decreasing subsequence is 3.

Next let ab be subsequence of length two of s such that a and b appear in the same row of the
table. Since subsequence are in the original order, a must appear on the left of b. Note that the
entries in any row are strictly increasing from left to right, so a < b. Thus ab cannot be part of
decreasing sequence. Thus any decreasing subsequence of s. can have at most one entry from each
row. There are four rows, so a decreasing subsequence can have length at most 4. So the length of
a longest decreasing subsequence is 4.

Observe that the length of s is 12 and 12 = 3-4. Our next theorem shows that a sequence of

length 13 would have to have a increasing sequence of length 4 or a decreasing subsequence of length
4.

Theorem 1.4.8. Let k,m,n € Z* with k > mn. Then any sequence of real number has an increasing
subsequence of length m + 1 or a strictly decreasing subsequence of length n+1 (or both).
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Proof. Let s=s1...s; be a sequence of real number of length k. For 1 <7 < k let d; be the length of
a longest strictly decreasing subsequence of s starting at the position ¢ of s. Similarly let e; be the
length of longest increasing subsequence of s starting the position ¢ of s. We will first show

(#) Letl<i<j<mn Ifs; <sj, then d; > d; and if s; > s;, then e; > e;. In particular,
(disei) # (dj, €5).

By definition of d; there exists a strictly decreasing subsequence a of s of length d; starting at
position j of s. So a = ai...aq;, a1 = 8; and a1 >as > ... > ag;.

Similarly there there exists a increasing subsequence b of s of length e; starting at the position j
of s. So theb:bl...abj, b1 = s; and by Sbg>...Zbej.

Suppose first that s; > s;. Since a1 = s;, we get

§i>0a1>0a2 > ...04,;,

and so sjai ...aq; is a strictly decreasing subsequence of s starting at position ¢ with length d; + 1.
Hence d; > d;.
Suppose next that that s; <s;. Since by = 55, we get

5; by < by >< bej,

and so s;by...be; is a increasing subsequence of s starting at position ¢ with length e; + 1. Hence
e; > ej. This completes the proof of ..

By we obtain k distinct pairs (d;,e;). Suppose for a contradiction that d; <n and e; <m for
each 1<i<k. Then 1<d; <n, 1<e; <m and so there are n choices for d; and m choices for e; and
nm choices for the pair (d;,e;). But then k < nm, contrary the hypothesis of the theorem. ]

Theorem 1.4.9 (Direchlet’s Approximation Theorem). Let a € R and Q € Z with Q > 2. Then there
exist p,ge Z with 1 <q< @ and

P 1
a—=<—
ql q@Q
Proof. Divide the real interval [0,1] into @) subintervals of equal length é:
03) [aa) — %) 5]
b Q ) Q’ Q b MR Q b Q ) Q b

For 0 <i <@ let ia = s; + d; where s; € Z and d; e R with 0 <d; <1. Put dg = 1. Then d; € [0,1]
for all 0 <7 < @ so each of the d; lies in one of the () subintervals. There are () + 1 choices for 7, so
by the pigeon hole principal there exists 0 < ¢ < j < () such that i # j and d; and d; lie in the same
subinterval. Since the subintervals have length é we get

1
d;i —d;| £ =
|d; - di 0
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Note that dj = rpa — s with g, s, € Z. Indeed for k < @), choose s; as above and rp = k. For
k=@, choose rg =0 and sg =-1. As Q> 1,

1
d —do =1-0>—
|dq — do| 0

and so {7,7} # {0,Q}. It follows that r; # r; and |r; — r;| < Q. Without loss r; < r;. Put p=r; —r;
and ¢ = sj—s;. Then p,geZ and 1 <g< Q. Also

1

g 2|k —dil =[(rja=si) = (rja=s;) = |(r =ri)a = (55 = si)| = ga = pl

Dividing by ¢ now gives the Theorem. O

1.5 The Principal of inclusion and exclusion

Suppose A; and As are subsets of a set A. Count the number of elements of A which are are neither
in Ay nor As:

At most |A|, but we need to exclude the elements from |A|; and |Als. giving |A| - (|A1] + |Az2]).
But we exclude the elements of |A; N A + 2 twice so the correct answer is

|A| = (JA1] +[Az]) + A1 0 Ag

With three sets consider

|A‘ - (’Aﬂ + |A2| + ‘A3D + (|A1 N A2| + ‘Al n A3‘ + ’AQ N Ag’)

The elements of A; N Ay N Ag are counted once in the first summand, excluded 3 times in he
second summand and included again three times the third term. Hence they need to be excluded
one more time. So the correct answer is

|A| - (|A1| + |A2| + |A3D + (|A1 n A2| + |A1 N A3| + |A2 N A3|) - ’Al N AQ N A3|

Theorem 1.5.1 (Inclusion-Exclusion Principal). Let A and I be finite set and for each i € I let A;
be a set. For Jc I define

Aj:={acA|acAj forall jeJ}.

Then
A= 50 145

iel

Proof. Observe first that

) PO EFED WD CILEDIDNCIES

JcIl JclacAy acA Jcl
aeJ
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Fix a € A. Define K := {i € Ila € A;} and n := |K|. Then a € A4; if and only if i € K. Let J ¢ I.
Observe that

(%) acAy < acAjforall jeJ < jeKforalljeJ < JcK

Put B := A\ User A;. Observe that n =0 if and only if a ¢ A; for all i € I and if and only if a € B.
Define x(a) =1 of a€ B and x(a) =0 if a ¢ B. Then

x(a)=1 <= aeB <= n=0 and x(a)=0 <= a¢B <= n>0

We compute

J<I Jck iz K ieZ 1 ifn=0
aEAJ |J|=Z

(ern) ¥ ()1 B Z(—DU:E:2:«4Y:§x—n%?):va+1w:{o SR E)

Substituting into gives
Y EDM A= Y x(@) =1+ 3 0=1B|

JeIl acA aeB acANB

Before applying the Principal of Inclusion and Exclusion, here is an equivalent formulation:

Theorem 1.5.2 (Inclusion-Exclusion Principal). Let A be a set of size N, let r € N and let by ..., b,
be a list of properties. For k e N and 1 <ij <ig < ...< iy <1, let N(b;, ...b;,) be the number of
objects in the set A which have each of the properties b, ,b;,,...b;, . Let Ny be the number of objects
in the set A which do not have any of the properties. Then

NoZN—ZN(bZ‘)+ZN(bibj)— Z N(bz‘bjbk)-i-...-i-(—l)k Z N(bil...bik)-i-...+(—1)TN(b1...br)
7 i<j i<j<k 11<...<lp

Definition 1.5.3. (a) Let m,n € Z, not both 0. Then ged(m,n) is the largest integer d such that
d divides both m and n in 7Z.

(b) Let neZ*. Then ¢(n) is the number of integers m such that 1 <m <n and ged(m,n) = 1.

Example 1.5.4. Let 1 <m < 24. The only prime divisors of 24 are 2 and 3. Hence ged(m,24) =1
if and only if neither 2 nor 3 divides m. So we can find all such m by listing all elements from 1 to
24 and cross out all multiples of 2 and all multiplies of 3.

1727 37 47 57&7 77 87 Q?M? 1]‘?}{1 137/]47\&\7/}67 17,}&7 19720/7\24\7%? 2372(
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There are 8 elements left and thus ¢(24) = 8. Rather than making the list we could have used
the Inclusion-Exclusion Principal. There are 24 integers between 1 and 24, % are divisible by 2, %
are divisible by 3 and % are divisible by 2 and 3. Thus

$(8)=24-12-8+4=8
We now use this method the compute ¢(n) in general.

Theorem 1.5.5. Let ne€ Z" and I the set of positive prime integers dividing n. Then
1
¢(n)=nJ(1-~
iel ¢

Proof. Let A={1...,n} and for i e I define 4; = {a € A|i|a}. Let m e A. Then ged(n,m) =1 if and
only if ¢ 4m for all primes ¢ dividing n. Thus

(*) o(n) = [A\J Al

iel
Note that
(%) |AJ|:|{G,EA|j|G,fOI’aH]EJH:HaEA‘H]lCLH: -
jeJ HjeJ]
and so
¢(n) = A\ J Al -
iel
=> (-4, — Inclusion-Exclusion Principal
Jel
=YD - ()
Jer [Tjes
1
Jcl jeg J
1
:nH(l——,) — See Homework 4
jedJ J

Example 1.5.6. ¢(24)=24-(1-3)(1-3)=24-1-2=8.

Example 1.5.7. Let n be a positive integer. How many primes are there between 1 and n? Let
1<m <m. If m is not a prime, then m = ab with 1 <a <b<m. Let p be a prime dividing a. Then
p<a<ab= Vm < y/m. So we can count the number if primes between 1 and n by excluding all
the numbers which are divisible by a prime between 1 and \/n. But note that thus also exclude all
those primes and does include 1, so we will have to adjust for that.

Let A={1,2,3,...n}, [ ={peZ]|1<p<\/n,pis aprime}. For J c I define
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Ay={acA|jl|aforall jeJ}
Then

) |AJ|:|{aeA\Hj|a}|={ n J

jeJ Hjer
Hence the number of primes between 1 and b is

(vl -1er= (5 com| )i

Jel Jel jeJ

Consider n = 48. Then 6 < /48 < 7, so the primes between 1 and /48 are 2,3,5. We compute
l L J for each subset J of 2,3, 5:

Hje]j
\; J 7[ J 7[ J ’\; J 7[ J ’l J ’l J 7[ J )
I 2 3 :; 2‘3 2'{' 3‘!3 2'3'5

Thus the number of primes between 1 and 48 is

[48 - (24+16+9) + (8+4+3)—1]+3-1=48-49+15+1=15
To confirm here is the list
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47
Definition 1.5.8. Let I be a set.
(a) Let I be a set. A permutation of I is a bijection from I to I.
(b) A derangement of I is a permutation © of I such that w(i) 1 for allieI.
(¢) Let neN. Then nj is the number of derangements of a set of size n.

Example 1.5.9. Let n e N. Compute nj.

Let I be a set of size n. We start with all the permutation and the exclude the permutation with
a fixed-point. Let A be the set of permutation of I and for i € [ and J eI let A; = {me A|n(i) =1}
and

Aj={meA|meAjforaljeJ}={mre A\n(j)=jforall jeJ}
Note that

|A| = n!
|[Ail = (n - 1)!
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and if k = |J|
Ayl = (n-k)!
Thus
-l U
= > (-4,
Jcl
=3 3 (-D)F(n-k)!
k=0 JcI
7=k
-3 (F)erm-ny
= Z:E) k:'( k))'(n k)!
(-1)
=n!
,§ ;
It follows that - .
hm— lim Z( Z(_l) 26*1:1
n— o0 n' n—>ook -0 n=0 kj‘ e

k .
Note that >,2, 1) converges quickly, so % is effectively independent of n. Indeed

k!
6i
e 0.36805555555 . . .
2! 0.36788194444 . . .
101 _ = 0.36787946428 . ..
10!
131 _ () 36787944116 ...
13!
1
= =0.36787944117. ..
e

Observe that the quotient % can be viewed as probability. For example the probability that,
after thoroughly shuffling a 52-card deck of cards, one of cards is in the same positions as before
shuffling is 52, ~ 1~ 36.8%.

1.6 Generating function

Definition 1.6.1. Let I ¢ N and let a = (a;);e; be a sequence of real number then
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Go(z) =), a;x’

iel
is called the generated function of a.
Example 1.6.2. Let n € N. Then the generating function of the sequence ((Z)))ZZO is
n
2 ()
jz0 \F
which by the Binomial theorem is equal to

(z+1)"

1.6.1 Generating Functions of multisets
Definition 1.6.3. Let k,n e N and let a be a sequence, multiset or set.

(a) P(a) is the set of all subsequences, sub-multisets and subsets of a, respectively.

(b) Px(a) is the set of all b e P(a) such that b has length k (Here we define length of a set be the

size of a set.
Example 1.6.4. (1) Consider the sequence a = (1,2,1,3). Then
Ps(a) ={(1,2,1),(1,2,3),(1,1,3),(2,1,3)}
(2) Consider the multiset b=[1,2,1,3]. Then
Py(b) = {[1,2,1],[1,2,3],[1,1,3]}
Note here that [2,1,3] =[1,2,3].
(3) Consider the multiset ¢ ={1,2,1,3} Then c¢={1,2,3} and so

Ps(b) = {{1,2,3}}
Definition 1.6.5. Leta = [a1,az,...,a,] andb=[by,...,by] be multiset with multiplicities (k1,. .., km)

and (l1, ..., ly) with respect to the sequence (dy,ds,...dy). Then ab, aub and anb are the multisets
whose multiplicities with respect to (dy,...,dy) are

(k)l +l1,k2+l2,...,k)m+lm)
(max(kq,11), max(ke,l2), ..., max(km, ly)

and
(min(kq,11), min(ke,l2), ..., min(ky, ly),

respectively.
a and b are called disjoint if anb=[].
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Example 1.6.6. Consider the multisets a = [1,2,2,2,2,4,4,4,4] and b=[1,1,2,3,3,5,5]. Then

ab=11,2,2,2,2,4,4,4,4,1,1,2,3,3,5,5] = [1,1,1,2,2,2,2,2,3,3,4,4,4,4,5,5]
aub=[1,1,2,2,2,2,,3,3,4,4,4,4,5,5]

and
anb=1[1,2]

Definition 1.6.7. Let A be the sequence, multiset and set. Then GA(JJ) is the generating function
of the sequence (|Pk(A)|)keN' So

GA(x) = Y [Pe(A)e*
keN

Example 1.6.8. (1) Compute G4(z) if A is a set of size n.
Let k € N. Then Py (A) is the set of k-subsets of the n-set A. So

Pl - (1)

and

Ga(2) = 3 Pu(A)ak = T (Z)xk (@1

keN keN

(2) Compute G*(xz) if A is the multiset a*™ where n € N and a is object.

Let k e N. If k < n then a*” has a unique sub-multiset of length k, namely a** if k > n, the a*"
has no multi-subset of length n. Thus

1 ifk<n

Pr(A)| =
[P (Al {0 ifk<n

and so

Ga(z) =Y [Pu(Ala' =D 12"+ Y 028 =) 2k =
foel k=0 k=ntl k=0 r-1
(3) Compute G4 (z) if A is infinite multiset with just one object a.
This time |Px(A)| =1 for all ke N. So

1

Ga(x) = L —
k;) 1-z
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Example 1.6.9. Find all sublist of the multiset aaabb and compute G ().
Consider the formal calculation

([]+a+aa+aaa)-([]+b+0bb) = [] | 1 sublist of length 0
+a+b | 2 sublists of length 1
+aa+ab+bb | 3 sublists of length 2
+aaa + aab+ abb | 3 sublists of length 3
+ aaab + aabb | 4 sublists of length 4
+ aaabb | 1 sublists of length 5

Hence G4 () = 1 + 2z + 322 + 322 + 4a* + 2°
Substitute = for @ and b. Then each sublist of length k is replaced by z* and the coefficient of
2¥ is the number of sublist of length k. Then

2 5

(Q+z+a?+2®) (Q+z+2®)=1+20+322 +32° + 4zt + 2

that is

Gaaa(x) . be(l‘) _ Gaaabb(x)'

Theorem 1.6.10. Let C' be a multisets from the set S. Then GY(x) is obtained from Y aep(c) C by
replacing each s € S by x and [] by 1.

Proof. Let A € P(C) be of length k. Then a = s ...s; with s; € S. So a is replaced by z*. Since
Y 4eP(C) C = LkeN L aep, (¢) C we conclude that 3 4ep(c) C' is replaced by

>3 af = S P(O)]2" = GO ().

keN AePi(C)  keN

Theorem 1.6.11. Let A and B be disjoint multisets. Then

GA(z)-GP(z) = G*B(2)

Proof. Let E be sublist of AB. Since A and B are disjoint, £ = C'D for unique sublist C' of A and
D of B. We conclude
>C- Y D= > CD= Y E
CeP(A) DeP(B) CeP(A),DeP(B) EcP(AB)
Let S be the union of the sets obtained from A and B. According to replacing each s € S
by x we obtain

GMz)-GP(x) =GP (a)
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Corollary 1.6.12. (a) Let A be a multiset with multiplicities [n1,n2,...,nmy]. Then

ni+1 _ 1
i=1 ¥~ 1

Moy -T1 Yo -1t
i=1 k=0

(b) Let A be a multiset with multiplicities [00™™], so A has m distinct objects and each objects
appears infinitely often. Then

AJJ T
Ay =11 3 ot axw

i=1 keN

Example 1.6.13. Let m,n € N and let A be a multiset with multiplicities [c0*™]. Compute the
number of sublists of length n of A
Solution 1:

Put f(z) = G4(z). We need to compute the coefficient of 2™ in f(z). By 1.6.12 f(x) =

m. By Taylor’s Theorem

f@)= 3 s

We compute

1

M (z m)—————r =m—-
FO@) = (m) )Wgn Tt

1 (1)33 :_mm m+1
2f (@) 2 (m+1) (1 x)m+2 ( )1 x)m*2

Suppose inductively that - f(")(m) (n+m I)W
Then

— D (z) =

n+1( f(n)( ))

) ni1 ((m+:_1)m),
:L(n+m)(m+:—1) 1

(n+1)'

n+l1 (1 - g)m+m+l
_m+n(n+m—1) 1
o+l n (1 - x)n+m+l

_(m+n) 1
\n+1/(1-g)nrmel
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Thus the formula also holds for m + 1
We conclude that the number of sublist of length n of A is

lf(")(O) _ (n+m—1); _ (n+m—1)
n! n (1-0)mtn n
and so also
1 n+m-1
GA(x) = = ( ):c”
a-o 2\ n
Solution 2 Let aj,as...,an, be the distinct elements of A. Then any sublist of length m can be

written as

ajal...a1a2a2...a9...0m0m0 ...0n

k1—times ko—times k. —times

where k; € N with ky + ko + ... + ky, = n. Insert a “divider’ | in between any two of the consecutive
maximal constant subsequences and replace each a; by . We obtain a sequence of length n +m -1
with n dots and m — 1 dividers.

ee...0|ee. .. 0| ... |0e. ..o
—_— —— —_——
ki1—-times ko—times ko —times

Observe the sublist is uniquely determined by the sequence of dots and dividers and any sequence
such sequence of dots and dividers comes from a sublist. Hence the number of sublist of length of A
is equal the number sequences of length n+m —1 with n dots and m — 1 dividers. Any such sequence
is determined by the choosing the n positions for the dots among the n +m — 1 available positions.
So the number such sequences of

n+m-1
%)

Remark 1.6.14. Let n,m € N and (ki,...,kn) a sequence of cardinalities. Then the following
numbers are equal

(a) The number of sublist of length n of a multiset A, where A has with multiplicities [k, ..., kmn].

(b) The number of ways to choose n objects from a set of m objects with repetition, if objects i can
be chosen at most k; time, assuming that order does not matter.

(¢) The number of sequence (li,la,...ly) of natural numbers with l; <k; and Iy +1la+ ... 1y =n.

(d) The number of ways to place n identical objects into m boxes if box i can contain at most k;
objects.
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Example 1.6.15. How many ways are there to choose 10 objects from a set of 5 objects with
arbitrary repetition, assuming that order does not matter?

(5 +10- 1) ) (14)
10/ \10
Example 1.6.16. Let n € N. Compute G4(x) if A is a multiset with multiplicities [2*"].

We have A = ajajasas...ama., for distinct objects aq,...,a,. By 1) G®% = 1+ 1+ 22
and so by [1.6.11

G (x) = ]G4 (x)
i=1
=(1+z+2%)"

= Z (n)(:n + wZ)k — Binomial Theorem
keZ k

ny k k

z"(1+x)

()

= (n)xk 3 (k)xJ - Binomial Theorem
k JEZ J

-V R (n)(k)xk” — Binomial Theorem
ke e \KJ\J

- ( (mrij)(mj_j))xm -m:=k+jk=m-j
meZ \jel

So the number of ways to choose m objects from a set of n objects, if each objects can be choose

So the number of five cards poker hands from a double standard deck of cards is

(552)((5)) " (542)(11) " (532)(2) = 3,748,160

The first card summand is the number of ways to choose the five cards without repetition. The
second summand is the number of ways to choose the fives cards with exactly one card repeated:
There are (542) to choose the four distinct card and then (Zf) to choose the card among the four cards
which is repeated. The last summand is the number of ways to choose five cards with two cards
being repeated: There are (532) to choose the three distinct card and then (g) to choose the two cards
among the three cards which are repeated.
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1.6.2 Fibonacci Numbers

The sequence
0,1,1,2,3,5,8,13,21,34,55,89, ...

is called the Fibonacci sequence. It its define recursively be

Fy=0, =1, and F,=F, o+ F, 1 forallneN withn>2

Let F(x) = Y,y Fix"™ be the corresponding generating function. We will first find an explicit
formula for F'(x), and then use this formula to compute the Fibonacci numbers F,.

F(z) = i E,z"
n=0

:F0+F1{L'+ Z Fn{L'n

n=2

=z+ Y (Fpg+Fy1)a" - —Fy=0,Fi=1, F,=F,9+F,

n=2

o0 o0
=+ Z F, o™ + Z EF,_z"
n=2

n=2

o0 o0
=z + 2’ Z F,0a" 2 +x Z F,_2™ !
n=2 n=2

z + 22 Z F,o" +x Z F,z" —shift n by 1 and 2 respectively

n=0 n=1

o0 (o)
x+x22an”+xZan” -Fy=0
n=0 n=0

=z +2°F(x) +2F(z)

We proved that F(z) =z + 2?F(z) + F(z). So —z = (2® + z - 1) F(x) and

-z
Flx)=———
() 2+z-1
We will now use partial fractions to compute the power series of ——"—.
1\ 5 1 V5 1 V5
:r2+:1:—1:(x+—) -—= a:+—+£ :U+——£ =(z+a)(a+p)
2 4 2 2 2 2
where
1 V5 1 V5
a==+-— and fB=—--—.
2 2 2 2

We need to find A, B € R with
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x A B
— — +
2+2-1 xz+a x+p

Multiplying with (z + a)(z + ) gives

—xr=A(x+p)+B(x+a)=(A+B)x+AB + Ba

and so

A+B=-1 and AB+Ba=0

Multiplying the first equation with a and subtracting the second gives

A(a—p)=-a and Bz—ﬁA
«
Note that a—,@z\/g. SO
B a P
A=—-— and B=-%—-——=—"—.
V5 a V5 B
Thus
x2+:v 1 \/5 o
%( a,Ba:+a —aﬂi+ﬁ) —af =-1since(z +a)(z+ ) = (> +2-1)
(1t )
\/5 6w+1 —az+1
1
ﬁ(l ar  1- Bx)
= —( -5") geometric series
It follows that, for all n e N,
an_ﬁn
F, =
\/5
Observe that v/5 ~ 2.2 and so a = (1+\/_)~ 2-16and = (1—\/_)~ -0.6. In

particular, |o| > 1 and |3| < 1 So for large n:

F, =~

Sl
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1.6.3 The Generalized Binomial Theorem

Let a be any real number and n € N. What is the power series of (1 +2)®? We compute

Fla)=(+a)
1 o
ﬁf(l)(x) =a(l+z)*!
ala-1)

1 a—
SO @) - (1+2)2
1 -1)... (- 1
—f(n)(l')Za(a ) (Od n+ )(1+x)a
n! n!
a o
= F(1+x)
Thus ) " "
n a a
/O = S0 =T
We define

Definition 1.6.17. Let a € R and ne€Z Then

(a) 3 {‘;L—T ifn>0
k)7 lo ifn<0
(2‘) 1s called a generalized binomial coefficient.
We proved
Theorem 1.6.18 (Generalized Binomial Theorem). Let a € R. Then

(o) =3 (1)

nez

1.6.4 Catalan numbers

For n € N let C,, be the number of many way to calculate a product of a sequence xg,x1,...,x, of
length n = 1 of real numbers, or matrices or any set with a binary operation? Consider the case
n=3. Then C3=5:

((moz1)z2)zs  (wo(z122))zs, (wox1)(maws), wmo((w122)w3), wo(21(z223))

Note that sequences are ordered, so we do not allows products like (x3z2)(x120).
C,, is called the n’th Catalan number. The C,’s can be computed recursively: Consider the very
last multiplication done to compute the product:
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(ox1 ... ) (Tis1Tis2 - - Tp)

Note that i can be any integer with 0 <7 <n —1. The sequence (xg,...,z;) has length i + 1 and so
there are C; ways to compute xgx1...z;. The sequence x;.1 ...z, has length n —i and so there are
Ch_i—1 to compute the product x;41...x,. Thus

n—1

(*) Cn=> CiChic1 = CoChot+ C1Chg+...CpaCi + CpqCp.
i=0

There is only one way to compute a product of one element. So

Co =1
Cy = CoCy =1-1 =1
Cy =CyCh + C1Cy =1-1+1-1 =2
C3=CyCy + C1C1 + CyC1 =1-2+1-1+2-1 =5
Cy = CyC5 + C1Cy + CoC1 + C3Cy =1-5+1-2+2-1+5-1 =14

Cs=CoCy +C1C3+(C5Cy+C3C1 +C4Cp=1-14+1-5+2-2+5-1+14-1=42

Let C(x) = X029 Cpa™ be the generating function of the Catalan sequence. Let n € Z*. Then
coefficient of 2" in C%(z) = C(z)C(x) is

n-1
> CiChni
i=0

Hence this is also the coefficient of 2" in zC?(z). From we conclude that for n > 1 C'(z) and
xC?(z) have the some coefficients. Note that the coefficient of z° in C(z) is Cp = 1 and in 2C?(x)
is 0, so C(x) =1 +2C?(z). Thus

1+v1-4x
=g

Since Cp = 1 we need the function on the right side to have removable discontinuity at 0. In
particular, the numerator needs to be 0 at = 0. Thus

C(x) = 1-vi-do V21_4x

We now use the Generalized Binomial Theorem to compute the power series for /1 — 4ax:
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\/1—4:5:(1—413)%

5 )
:1--496593(I%C)(—zmc)k“1

k=1

=1- 4@«’;) (k% 1)(—4)%’c

and so
\/ T 1
C(x)zﬁz Z_:( il)(_4)kxkz
Hence
3 kol+2k (2)k+1 (-1)kot+2k ko1
Ch=2(-4) (k:+1) = (=172 (k+1) (k+1)' 1,1_([)(5_2)
G S T A o D L ,
~ (k+1)! g 2 ~ (k+1)! g(l_%) T (k+ 1)11_[( i-1)
2k (2k)! 1 (2k) 1 (2k)!
S (k+)ITIR, 2k T (k+ 1)k K T k+1EI(2k - k)!
1 (2%
_k+1(k)
Thus
1 (2k
G = k+1( k)
So for example
1 (2-3\ 16-5-%
C3:3+1( 3 )227:5

and

just as we have seen above.
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1.6.5 Changing Money

How many ways are there to make change for one dollar bill with coins?

‘ penny ‘ nickel ‘ dime ‘ quarter | half dollar coin ‘ one dollar coin ‘

‘ 1 ‘ 5 ‘ 10 ‘ 25 ‘ 50 ‘ 100 ‘

So we need to count the number of sequence (my,ma, ms, mg, ms, mg) of natural numbers with
100 = mq + 5msg + 10mo + 25my4 + 50ms + 100mg

Consider the general problem:

Definition 1.6.19. Let A = (a1,...,ax) be a sequence of positive integers. Then

dﬁ = |{(m1’m2’-~ 7mk) |mz e N,mja; + moag +...mgag = n}|

(So d;? 1s the number of ways to make change for n cents with k-distinct coins of values a1, as, . .., a
(in cents). For n €N
DA(:U) denotes the corresponding generating function, that is

DA(z) = > daan
neN
Example 1.6.20. Compute d/} and DA(z) if
(a) A=(1).

We only have one coin, a penny. For each n there is only one way to make change with only
pennies, take n pennies. so

1
1-x

DA(z) = i "=
n=0

(b) A=(5).
We only have one coin, a nickel. If n = 5k there is a unique way to make change: take k nickels.
So d = 1. If 54n, there is no way to make change, so d2 = 0. Thus

> 1
DA(QU): ng)k: 1_ 45
k=0

(c) A=(a) for some a € Z*. Then

1 if ad 1
d,‘? = 1 aln and DA(x) = Z 2% =
0 ifatn =0 1- @
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Theorem 1.6.21. Let A and B be sequences of positive integers. Then
DAB(z) = DA(z) DB (x)

Proof. Let n € N and let k£ and [ be the length of A and B. Suppose we are making change for
n-cents with the k + [ coins with values AB. Let i be the contribution from the first k coins and j
the contribution from the last coins. Then n =i+ j. There are df‘ ways to make change for i-cents
with the fist £ coins and Df ways to make change j-cents with the last [ coins. Thus

Wy ol
ijeN
i+j=n
and so d is exactly the coefficient of 2" in D?(z)DP(x). Thus DAP(x) = DA(x) DB (). O
It follows that

Corollary 1.6.22. Let A= (ai,...,ar) be a sequence of positive integers. Then

N k koo k 1
D (m)zED(“i)(m)zn Z:c“”zl—[

— a;
i=1k;=0 o1 1 —x

Example 1.6.23. The generating function to makes change with pennies, nickels, dimes, quarters,
and half dollars

1
(1-2)(1-2°)(1 - 210)(1 - 22%)(1 — 259)(1 — 2100)

We will now develop a recursive formula to compute D4(z). :

Theorem 1.6.24. Let k€ Z*, let n € N and let A = (a1,...,a;) be a sequence of positive integers.
Put B =(ay,...,ax-1) and a = a. Then

JA - db ifn<a
dB+dd , ifn>a

Proof. Note that A = Ba. So by [1.6.21
1

1-—z@

DA(z) = DP%(z) = DP(2)D (2) = DB(2)
Hence

(1-2*)D*(x) = D" (x)
and thus

DA(z) = DP(z) + 2°D*(x)



1.6. GENERATING FUNCTION 43
it follow thats

JA - db ifn<a
- dB+dl , ifn>a

O]

We now compute the numbers of ways to make change for a half-dollar with pennies, nickels and
half dollars.

n 0 5 10 15 20 25 30 35 40 45 50
i) 11 1 1 1 1 1 1 1 1 1
A 1 2 3 4 5 6 7 8 9 10
i = d +d(Y) 12 3 4 5 6 7 8 910 11
dlhe0) 1 2 4 6 9 12 16 20 25
di->0 = d{"Y +d(L510) 12 4 6 9 12 16 20 25 30 36
dfll_,gélo,25) 1 13
d7(1175710725) _ dg_’?bm) +d,511_7§7510725) 1 13 49
d,(lljgblo’%ﬁo) 1
d£1’5’10’25’50) =d7(11’5’10’25) +d£1_,2610,25,50) 1

Next we will derive a general formula for A(z) := D(:%19)(z). The same method also works for
D(1:5:10,25,50,100) 1yt the details of the computations are more complex (see the text book).
We have

5

1 > i l+x+22+23+24
A(x) = = Lo =
(I-o)(1-2)(1-20)  (1-a9)(1-a%)(1-210)  (1-a")?(1-'0)
and so
Az) = (1 +z+22+ 23 +2)B(2)
where

1
(I-)*(1-22)

B(z) =

Let a, and b, be the coefficients of 2™ in A(xz) and B(x) respectively. Then
Then
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A(z) = (1+z+22+ 23 +2%)B(2) = Zl’ befﬂz_zszf)qw

q=07r=0
Thus

an = by where g,r € N with n=5¢+7r and r <4

For example as3 = as.4+3 = by and a1001 = a5.200+1 = b200-
So it remains to compute B(x).

1
(1-2)*(1-2?)
(=)
T (1-22)%(1-2?)
1+ z)?
(1 -22)3
1+2x+2x
= (1+2z+2%)C(x)

where C(z) = 2)3) Recall from |1.6.13| that

B(z) =

2

1 :Z(k+m_1)xk:z:(k+m_1)xk
(L-2)™ (& k kez\ M-l
For m = 3 and with 22 on place of z:
1 -1 2
C(a:):—23:2(k+3 )(xQ)k:Z(ki+ )gczk
(1_1:) keZ 3-1 keZ 2

Thus

B(z) = (1+2x + 2*)C(x)
= C(x) +2C(z) + 2°C(x)

_y (k+2) 2h z2(k+2) ket 3 (k;2)$2k+2

keZ keZ keZ
= Z [(k+2) 2k (k+1)] Z2(k+2) 2k+1 k5 k-1 in the last summand
keZ keZ

We compute
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(k+2)+(k:+1): (k+2)(k+1)+k+1)k: (k+1)(k+2+k)

2 2 2 2 2
and
2(’“2) _ok+2)(k+1) (k+2)(k+1)
2 2
Thus
B(z) = Y (k+1)% 2 + S (k+2)(k + 1)2**!
keZ keZ

Hence

{(k+ 1)2 if ¢ = 2k
.=

(E+2)(k+1) ifg=2k+1

Let =2k +s with s=0,1 and n=5¢+r with 0 <r <4. Put £ =5s+r. Then

n=5¢+r=52k+s)+r=10k+5s+r =10k +t

Note that 0<t<4if s=0and 5<t<9if s=1. Hence

A10k+t = n = 0g =

(k+1)2 ifo<t<4
(E+2)(k+1) if5<¢t<9

:(k+1)(k+1):(k+1)2

45

For example the number of ways to make change for 20 bill using pennies, nickels and dimes is

a2000 = a200-10+0 = (201)* = 40401

1.6.6 Recurrence Relations

Let b,ce R and A = (ay)neny @ sequence of real numbers such that

(*) an =bay,_1+c

for all neZ™.
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Let G(z) = Ga(x) = X0 ganz™ be the generating function of A. We compute

G(z)=ag+ Y, ana"

n=1

o0
=ag+ » (ban-1 +c)z" | (*)

n=1

o0
=ag+x Z (ban-1 + c)a:"_1
n=1

=ag+z Y (bap+c)z" ‘ substitution:n — n + 1
n=0

[ee) o0
=a0+bx2anx”+cx2x"
n=0 n=0
cr

=ag+bzrG(z) + I | Definition of G(z), geometric series

Hence
cr

(1-bx)G(x) =ap+

1-2x

and so

agp cx
G = T o

To determine the power series for G(z) we first find A, B € R with

x A N B
(1-z)(1-bx) 1-z 1-bz

Multiplying with (1 —z)(1 - bz) gives

x=A(1-bx)+B(l-z)=(A+B)-(Ab+ B)zx

and so
A+B=0 and Ab+B-=-1
B=-A and -1=Ab-A=A(b-1)
and if b#1
A:% and B:—A:—%_b
So

(1_x>3(61_bx) ) 1ib(1ix_1—1bx)
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and
cx
G —
(@) = T 0=2)(1-bx)
c 1 c 1
1 bx 1 bl r 1-bl-bx
( ) c 1
= +
1-bx 1-bl-=x
> c c
_ _ bn n
nz_o[((““ l—b) +1—b]x

We conclude that

c n c
“”:(“0_ 1—b)b 10
1.7 Polya’s Theory of Counting

1.7.1 Groups

Definition 1.7.1. A group is a pair (G,o) such that G is a set, o is a function and the following
five conditions hold:

(i) aob is defined for all a,be G. (More precisely, (a,b) is in the domain of o for all a,be G and
we denote the image of (a,b) under o by aob.)

(ii) aobe G for all a,be@G.
(iii) (aob)oc=ao(boc) for all a,b,ce@.

(iv) There exist an element in G, denoted by e and called the identity of G, such that ace =a =eoa
for all a in G.

(v) For each a € G, there exists an element in G, denoted by a”! and called‘a inverse’, such

acal=e=aloa.

Example 1.7.2. (a) (Z,+), (Q,+) and (R, +) all a groups.
(b) (Z,-) is not a group.
(c) Let Q'=Q~ {0}. Then (Q!,-) is a group.

(d) Let I be a set and define Sym(I) to be the set of bijections from I to I. Then (Sym(I),o) is
a group, where o denotes composition of functions.

(e) Let n e Z* and GL,(R) the set of nxn-matrices with real coefficients and non-zero determinant.
Then (GL,(R),-) is a group, where - denotes matrix multiplication.



48 CHAPTER 1. COMBINATORICS

If n e Z* we write Sym(n) for Sym({1,2,...,n}. Let 7 € Sym(n). We will denote 7w by the two
rows :

1 2 ... 0n
m(1) w(2) ... w(n)

For example

1 23 45 6
346 2 51

is the permutation 7 € Sym(6) with
m(1)=3, 7(2)=4, ,7(3)=6, w(4)=2, w(5)=5 w(6)=1
We also write 7 : 4+~ j to indicate that 7(i) = j. For example with the above 7
m: 1-»3»6m~1 242 55
Most often we will use cycle notation: The above 7 is denoted by

(1,3,6)(2,4)(5)

If all the number only have one digit we will leave out the commas. We also usually don’t list
the cycles of length 1:

(136)(24)
Note that the cycle notation is not unique. For example

(136)(24) and (42)(631)

denote the same element of Sym(6). To make it unique we usually use the ‘standard cycle notation’:
Each cycle starts with the smallest element of that cycle, and the first elements of each cycle appear
in increasing order. So (136)(24) is in standard cycle notation, but neither (42)(631) nor (24)(136)
are.

Definition 1.7.3. Let G be a group, a € G and n € Z.
(a) Define a™ recursively as follows:

n e ifn=0
aa™ ! ifn>0

(b) If there exists n € Z* with a™ = e, then the order of a is the smallest such n. Otherwise, a has
infinite order. We denote the order of a by |al.
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Example 1.7.4. Let 7 = (136)(24). Compute 7" for all n € Z. What is |x|?

70 = (1)(136)(24)
7 = (136)(24)
72(136) (24 0 (136)(24) = (163)(2)(4) = (163)
7w = (136)(24) o (163) = (1)(24)(3)(6) = (24)
7t =136)(24) o (24) = (136)
7 = (136)(24) o (136) = (163)(24)
70 = (136)(24) o (163)(24) = (1)
7' =(136)(24) = 7
7' = (631)(42) = 7°

72 (70)2 = 710 =
So |7| =6 and #™ = 7" if r is the remainder of n when divided by 6.

Definition 1.7.5. Let (G,o0). Then H is called a subgroup of G, and we write H < G, provided that
H c G and (H,o) is group.

Definition 1.7.6. Let G be a group and H a subset of G. Then

(H)= (1 K
K<G
HcK

So (H) is intersection of all the subgroups of G which contain H. (HY) is called the subgroup of G
generated by H.

Remark 1.7.7. Let G be a group and H € G. Then (H) is the smallest subgroup of G containing
H, that s

(a) Hc(H),
(b) (H) <G, and
(¢) If K is a subgroup of G with H < K, then (H) € K.
Example 1.7.8. Find the subgroup of Sym(6) generated by (136)(24)
Put 7 = ((136)(24) and put H = (7). Since H is a subgroup of G, Thus e = (1) € H and H is

closed under multiplication and inverses. It follows that «" € H for all n € Z.
Thus
{(1),(136)(24), (163), (24), (136), (163)(24)} < H
One can verify that the set on left side is subgroup of Sym(6) and so is equal to H.
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Definition 1.7.9. Let G be a group and a € G.
(a) The order of the group G is the cardinality of the set G.
(b) G is called cyclic if G = (g) for some g € G.
(¢) Let ne€Z*. Then C,, denotes the subgroup ((123...n)) of Sym(n).
Theorem 1.7.10. Let G be a group, a € G and i,j € Z. Put n :=|al.
(a) (a) = {a™[m eZ}.
(b) Suppose n is infinite. Then a' = a’ if and only if i = j. In particular, a' = e if and only if i = 0.

(c) Suppose n is finite. Then a' =a’ if and only if n divides j —i. In particular, a' = e if and only
if n divides i. Moreover, (a) = {e,a,a?,...,a" 1}.

(d) lal =[{a)]-
Example 1.7.11. Let ne Z*.
(1) Sym(n) as order n!.
(2) (Z,+) is a cyclic group of infinite order.
(3) (123...n) has order n in Sym(n) and C,, is a cyclic group of order n.
Let m=(1234...n). Then
152535 .5 n-15nb1

Thus 78(1) =1+ k # 1 forall 1 <k <n-1 and 7°(1) = 1. Inn particular, 7% # (1) for all
1 <k <n. Similarly we have 7" (i) =i for all 1 <i<n and so 7" = (1). Thus |7| = n.

Remark 1.7.12. (a) C,, can be viewed as the group of rotations of a regular n-gon.

(b) Dy, is the group of symmetries of a regular n-gon, consisting of n-rotations and n reflections.
For example

Dy ={(1),(1234),(13)(24),(1432),(12)(34),(14)(23),(13),(24)

and

D5 = {(1), (12345), (13524), (14253), (15432), (25)(34), (13)(45), (24)(15), (12)(35), (14)(23)}
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1.7.2 Burnside’s Lemma

Definition 1.7.13. A function * is an action of the group (G,o) on the set S if

(i) a* s is defined for all a € G and s € S. (More precisely, (a,s) is in the domain of * for all
a€G and s €S and we denote the image of (a,s) under * by a * s.)

(ii) a*seS forallaeG, seS.
(ili) (aob)*s=ax*(bxs) foralla,be G and s€ S.
(iv) exs=s forallseS.
Example 1.7.14. (1) Sym([/) acts on [ via 7w * s = w(s) for all m# € Sym([), se S.
(2) GL,(R) acts on R™ via A » v = Av for all A€ GL,(R) and v € R” For example for n = 2,

(3) Let (G,0) be a group. Then o is an action of G on G, called the action by left multiplication.

(4) Let V be the set of vertices of a regular n-gon and E the set of edges. (Here we view an edge
as set of size two consisting of two adjacent vertices. Then D,, acts on V' via 7 * v = w(v) and

on E via 7 * {a,b} = {m(a),n(n)}.
For example (13)(24) = {1,4} = {2,3}.

Theorem 1.7.15. Let * be a action of the group G on the set S. For a € G let mg be th function
from S to S defined by m,(s) =ax*s. Then

(a) Let a,be G then maop = T4 © Tp.
(b) me =idg.
(¢) Let ae G. Then m, is a bijection with inverse w,-1. In particular, 7, € Sym(S).

Proof. Let s€ S.

(a):

Taob(8) = (aob) * s — Definition of my0p
=ax*(b*s) — Definition of an action
= 7a(mp(8)) — Definition of 7, and
= (mgom)(s) — Definition of composition of function

Since this holds for all s € S we get maop = g © Tp.
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Te(s)=exs —Definition of 7,
=5 —Definition of an action
=1idg(s) —Definition of idg

Since this holds for all s € S we get 7. =idg.

Using () and (b)) we compute

Tq O My-1 = Mgog-1  — @
= T, — Definition of a group
=idg = ()

Tq-19Tq = Tg-log — "
=T, — Definition of a group

=idg - ()

Hence 7,-1 is an indeed an inverse of the function m,. This 7, is a bijection and holds.
O

Remark 1.7.16. (a) If (G,o) is a group, then we will often just say that G is a group and write
ab for aob.

(b) If * is an action of the group G on the set S, we will often just say that G is a group acting
on the set S and write as for a * s.

Theorem 1.7.17. Let G be a group acting on the set S and let g € G and s,t € G.
(a) g7 (gs) =s.
(b) If gs = gt, then s,t.

Proof. @
97 (9s)=(g'g)s=es=5s

(]EI) Since gs = gt we get g1 (gs) = g~ *(gt) and so @) implies s = t. O
Definition 1.7.18. Let S be a set, Rc S x S. Put ~= (S, R).

(a) ~ is called a relation on the set S.

(b) We write a~b if a,beS and (a,b) € R.
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(¢c) ~ is called reflexive if a ~a for all a € S.

(d) ~ is called symmetric if b~ a for all a,b with a ~ b,

(e) ~ is called transitive if a ~ ¢ for all a,b,c with a ~b and b~ c.

(f) ~ is called a equivalence relation of ~ is reflexive, symmetric and transitive.

(g) LetaeS. Then [a].={beS|a~b}. [a]. is called the class of a with respect to ~.
(h) S/ ~={[a]. |a€S}.

Theorem 1.7.19. Let ~ be an equivalence relation on the set S and a € S. there exists a unique
B e S/~ with a € B, namely B = [a].. In particular, S/ ~ is a partition of S.

Proof. Let B € S/ ~. We need to show that a € B if and only if B = [a]..
<—: Suppose B = [a].. Since ~ is reflexive, a ~ a and so a € [a]. = B.

==: Suppose that a € B. By definition of S/ ~, B = [b]. for some b€ S. Since a € B = [b]. we
get

(*) b~a
Next we show

(%) [a].c B

For this let d € [a].. Then a ~ d. By b~a. Thus b~ a and a ~ d, and since ~ is transitive we
get b~ d. Thus d € [b]. = B. We proved that d € B for all d € [a]. and so [a]. € B. Thus is
proved.

(% * ) B c [a]..

By b ~ a. Since ~ is symmetric this gives a ~ b and so b € [a].. Applying with ¢ and b
interchanged gives [b] ~¢ [a]. and so B ¢ [a]..

Observe that and gives [a]. = B. O

Theorem 1.7.20. Let G be a group acting on a set S. Define the relation =g on S by s =g t if there
erists g € G with t = gs. Then =g is equivalence relation on S.
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Proof. Let r,s,t € S. We write s ~t for s =g t.
Note that s =es and so s ~ s.
Suppose that s ~t. Then there exists g € G with ¢t = gs. Then gt = g7!(gs) = s and so t ~ s.
Suppose that r ~ s and s ~t. Then there exists g, h € G with s = gr and t = hs. Thus

t=hs=h(gr)=(hg)r
and so r ~ s. O
Definition 1.7.21. Let * be an action of the group G be a group acting in a set S, s€ S and g € G.

(a) Gxs={g*s|seG}. Note that G = a is the class of a in S with respect to the relation =g’
G is called the orbit of s in S under G.

(b) Gs={g9geG|g*s=s}. Gsis called the stabilizer of s in G.
(c) Sg={seS|g*s=s}. Sy is called the set of fized-points of g in S.
(d) S/G={Gx*s|seS}. Note that S|G =S] = is the set of classes of =g’ in S.

Example 1.7.22. Let S ={1,2,3,4} and G = Sym(4) = Sym(S5).
Then
Gy = {m e Sym(4) | w(4) =4} = Sym(3).

Put D = ((124) = {(1), (124), (142)}. Then

D1={(1)(1),(124)(1),(142)(1)} ={1,2,4}, D2=={(1)(2),(124)(2),(142)(2)} ={2,4,1} = D1 = D4

and
D3 ={3}

So the set of orbits D on S is

S/D ={{1,2,4},{3}}.

Let g =(1,3,4). The S, = {2}.
Note that

|G| =412=24, |G1]=/{1,2,3,4} =4 |G4|=|Sym(3)| = 3!6.
So
|G| =G1]- |G

Theorem 1.7.23. Let G be a group acting on the set S, s€ S and A an orbit of G on S. Then

G| = |Gs|-|Gs| = Y |Gl
te A
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Proof. Recall that Gs ={gs|ge G}. So for each a € G5 choose g, € G with

(*) l=gts

Define

F: GsxGs—G, (a,h)w~ g.h

We will show that F' is a bijection. To show that F' is injective let a,b € Gs and h,k € G5 with
F(a,h) = F(b,k). Then

gah = gok
(9ah)s = (gok)s
ga(hs) = gp(ks) — Definition of an action
JaS = GpS —h,keGy
a=b -
Hence also g, = g, and so g.h = gk = g.k. Now implies h = k. We proved a =b and h = k,

so (a,h) = (b, k) and so F' is injective. To show that F' is surjective, let h € G. Put a := hs. Then
shows that

P

gaS=a=hs

and so

(92" 1)s = ga' (hs) = ga' (gas) =
Thus g,'h € G, and

F(a,g,'h) = ga(g;'h) = h

Thus F' is surjective. We proved that F' is a bijection and so

|G| = |Gs x G| = |Gs| - |G
So the first equality holds. For the second we may assume that s € A. Then A = Gs. Then
|Gl = AllGS|
In particular, |G¢| = |G| for all ¢ € A and so

|G| = AlIGs| = 3 |Gsl = 3 |G|
teA teA
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Theorem 1.7.24 (Burnside). Let G be a group acting on a set S. Then

> 181 = 221Gl = 15/G|- |G|

geG seS

Proof. Let

D={(g,5)|geG,s€8S,gs5=s}

We will compute |D| in two ways:
For a fixed g € G, (g,s) € D if and only of s € S;. So there are |Sy| choices for s. Hence

D] =3 15|
geG
For a fixed s, (g,s) € D if and only of g € G5. So there are |G| choices for s. Hence
1D = X 1G]
seS

So the first equality in Burnside’s Theorem holds.

Let A be an orbit of G on S. Then by [1.7.23[|G| = ¥ ,c5|Gs|- Also G/S is a partition of S and so

DG = > Y IGd= > IGI=1S/G|-|G]

seS AeS|G seA AeS|G

so also the second equality holds. O

Definition 1.7.25. Let S and T be sets. A coloring of S with T is a function ¢ from S to T. We
denote the set of coloring of S with T by Co(T,S). Note that if T ={1,2,3,...n}, when a coloring
of S with T is a sequence (c(z'))n=1 from T.

i

Example 1.7.26. Let S ={1,2,3,4} and T = {g,w}. Then

Co(S,T) = {9999, 999w, ggwg, gguww, gwgg, gwgw, gwwg, gwww,
WGy, WGW, WGWg, WGWW, WWgg, Wwgw, wwwg, wwww }

Now view S has the set of vertices of a square and define two coloring to be equivalent, if the
second is rotation of the first. So for example ggww, wggw, wwgg, gwwg are equivalent to each other.
What are the equivalence class?
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{9999}

{wggg, gwgg, ggwg, gggw}
{ggww, wggw, wwgyg, gwwg}
{gwgw, wgwg}
{gwww, wgww, wwgw, wwwg}

{wwww}

So there are six equivalence class.

Theorem 1.7.27. Let G be a group acting on a set S, and let T be a set. Then G acts on Co(S,T)
via

(g*c)(s)=c(g's)

forall ge G, ce Co(T,S) and s€ S

Proof. Observe that g * ¢ = gomg-1, where my : S - S,g = gs is the function defined in As

_ -1
Tg1 =T, We get

-1

*C=Co
gxc=com,

We compute
(goh)xe=comph =co(nom) =co(m'omy") = (com ) omy' = g% (h+c)
and
exc=com, =coidg' =coidg =c
So = is indeed an action of G in Co(S,T). O

Theorem 1.7.28. S,T be sets.

(2) [Co(S,T)| = T/,

(b) Let G be group acting on S. Then |Co(S,T)q| = |T|IS/C1,

(c) Let g € G and let kq be the number of cycles of g on S, that is the number of cycles of the
permutation m, of S, including the cycles of length 1. Then |Co(S,T),| = |T|*s.

Proof. (i) Let c € Co(S,T). For each s € S, ¢(s) is one of the |T| elements of 7. So the product rule
shows |Co(S,T)| = |T|1°.
() Let ¢ € Co(S,T). Then
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ceCo(S,T)q
c=g+cforall geG
c(s)=c(g's) forall ge G,s¢ S
c(s)=c(gs) forall ge G,se S
c(s) =c(t)for all Ae S/G,s,te A

reny

So ce Co(S,T), then for each A € S/G we have |T| choices for the common color of the elements
of A. Thus |Co(S,T)¢ =|T|9/¢.

Put H = (g). Each orbits of H on S consist of the elements of a cycle of g on S. So kg is the
number of orbits of H on S, that is |S/H|. Hence () is a special case of ([]). O

Corollary 1.7.29. Let S and T be sets and let G be group acting on S. For g € G let ky be the
number of cycles of g on S Then the number of orbits of G on Co(S,T) is

1
= 2 Tl

|Co(S,T)/G| =
|G| meG

Proof. By Burnside’s Theorem
|G|+ |Co(S,T)/G| =} |Co(S,T),]

geG
and by |Co(S,T)y| = |T|Fs. Thus

1 1
Co(S,T)/G| = — > |Co(S,T)lg = = > |TI*.
|G| meG ‘G| e

O]

Example 1.7.30. Use[1.7.29|to determine the number of orbits of C4 and D4 on Co({1,2,3,4},{g,w})
and on Co({1,2,3,4}, {r,w,b})

We need to compute k, of for each 7 in Dy.

elements m = # elements k, 2Fr m-2k 3k . 3kn
(1)(2)(3)(4) 1 4 16 16 81 81
(1234), (4321) 2 1 2 4 3 6
(13)(14) 1 2 4 4 9 9
(12)(34), (14)(23) 2 2 4 8 9 18
(13)(2)(4), (14)(2)(3) 2 3 8 16 27 54
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Thus the number of orbits of C4 are
16+4+4 24 81+6+9 96
|Cy4l 4 |Cy 4
and the number of orbits of D4 are

16+4+4+8+16_48 q 81+6+9+18+54_168

- -0 g
ID.| g D] 8

1.7.3 The Cycle Index

Definition 1.7.31. Let G be a group acting on a set S. Put n=|S| and z = (z;)]-1 = (z1,...2y) be
a sequence of n indeterminates.

(a) Let k4 is the number of cycles of g on S. For 1<i<ky letl; be the length of i-th cycles of g on
S and for 1 <1 <n let my be the number of cycles of length | of g on S. Define the multinomial

kg
Mg(i) = Hl"li =TTy . Ty,
=1

and note that

m
My(z) = H )"
I=1

Depending on the content we way also write My, Mgs and Mgs(g) for M.

(b)

=é;%@

Pg(z) is called the cycle index of G on S. We also may write P5(z) for Pg(z) to indicated
the dependence of Pg(x) on the set S.

Pa(z) -

Example 1.7.32. Compute Pc,(z) and Pp,(z).

The elements of Cy are (1)(2)(3)(4), (1234),(13)(24) and (14)(23). We compute

M(l)(2)(3)(4) =T1Tr1r1,1 = lel
M 1234) = 4
M(13)(24) = T9T2 - x%

M (1432) =2y
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and so

1
|Cal

The elements of D4 which are not in Cy4 are the four reflections (13)(2)(4), (24)(1)(3), (12)(34)
and (14)(23). We compute

1 1
Pc, = Z M, = Z—l(:pf‘+:p4+x%+x4)=Z(x‘11+2334+a:%)

geCy

M13)(2)(4) = 22171 = 212

M 24)(1)(3) = T2T171 = T3 22

M)z =272 =23
May3) =wm2x2 = 95%
Thus
1
Pp, = My =—(x +2x4+x2+x12x2+$2x2+x2+x = —(z +2x4+3$ + 222 T
4 \D4] 1 2 1 21T T 1 2 1
geDy

Theorem 1.7.33. Let S and T be sets and G a group acting on S. Then number of orbits of G on
Co(S,T) is
|Co(S,T)/G| = PE(T|, T\, |T|)

Proof. Let n=|S| and g € G. Then

kg
Mgy(x1,...,2n) = Hxli
i=1

and so

kg
M,(IT|,...,|T]) = TTIT| = |T|"
=1
As Pg(2) = & Tgec My () we get

Po(T) T = g T M7, 1T1) = 1 & 11
geG ge

By [1.7.29| the latter sum in equal to |Co(S,T)/G| and so indeed
|Co(S,T)/G| = Pe(|T|,|T,...,|T1)
O

Example 1.7.34. Use the cycle index to compute the number of orbits of D4 on Co({1,2,3,4},{g,w}).
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By [1.7.32)

1
Pp,(z) = g(aff + 234 + 333 + 2021y,

Also |[{g,w}| =2 and so by [1.7.33[ the number of orbits is

1 1 4
Pp,(2,2,2,2) == §(24+2-2+3-22+2-22-2):g(l6+4+12+16):§8:6

Note that this is the same answer as in

Our next goal is to compute Pp, (z) for arbitrary n € Z*.

For this we need to determine the lengths of the cycles of the rotation and the reflection. We
start with an example

Example 1.7.35. Let © = (1,2,3,4,...,20) be the rotation by 18°. For i = 1,2,3,4,5,12 compute
the order of 7’ and the number and lengths of cycles of 7.

7! = 7 has order 20 and has 1 cycle of length 20.

72 =(1,3,5,...,19)(2,4,6,...,20) has order 10 and as 2 cycles of length 10.

7 =(1,4,7,10,13,16,19,2,5,8,11,14,17,20, 3,6,9,12, 15, 18) has order 20 and as 1 cycle of length
20.

7t = (1,5,9,13,17)(2,6,10,14)(3,7,11,15,19)(4,8,12,16,20) has order 5 and has 4 cycles of
length 5.

70 =(1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5, 10, 15,20) has order 4 and has 5-cycles of
length 4.

7'2 = (1,13,5,17,9)(2,14,6,18,10)(3,15,7,19,11)(4,16,8,20,12) has order 5 has 4-cycles of
length 5.

The general pattern:
Let [ € Z. Then 7! order k and has m cycles of length k, where m = ged(l,20) and km = 20.

How many rotation of order 4 are in Cap. Let 0 < I < 20. The 7! as order 4 if and only if
4-gcd(1,20) = 20, that is ged(l,20) = 5. Hence [ is one of 5,15. So there are two such elements. Note
that any such [ can be written as 5d where 0 < d < 4 and ged(d, 4). So there are ¢(4) such elements.

In general, if k € Z* with k|20, then any rotation of order k in Cyy can be written as 7%, where
m =7 and 0 < d <k with ged(d, k) = 1.

Theorem 1.7.36. Let G be a cyclic group of finite order n and g € G with G = (g).

(a) LetleZ. Then |g'|= m. In particular, |g'| divides n.

(b) Let ke Z* with k|n and let h e G. Putm =%. Then |h| =k if and only if h = g™ for some deZ
with 0 < d < k and ged(d, k) = 1. Moreover, this d is uniquely determined by h. In particular,
then number of elements of order k in G is ¢(k).

(c) Let heC,, and put k = |h|. Then h has exactly 3 cycles, each of length k.
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Proof. @ Let m € Z then (¢")™ = e if and only of ¢!™ = e and, since |g| = n, if and only of n
divides Im. The latter holds if and only of divides m. Hence the smallest positive integer
with (¢! )m:elskzm

(]EI): Since h € G = (g) and |G| = n there exists a unique [ € Z with 0 <! <n and h = g.

Suppose that |h| = k. Then (a) shows that k = m =2m =2 = ¢ and so m divides . If h = g™?
with 0 <d <k =, then 0 <md <n and so [ = md and again m divides .

So we may assume that m divides [. Put d = % Then d is the unique integer such that [ = md.
Since [ is the unique integer with i = ¢ and 0 <1 < n = mk, d is the unique integer with 0 < d < k
and h = ¢, Tt remains to show that |h| = k if and only if ged(k,d) = 1.

gcd(l n)

|| =
n
k=—F— -
ged(l,n) 2
n
d(l,n) =2

ged(md,mk) =m —1l=md,n=mk
m-ged(d, k) =m
ged(d, k) =1

L1t

Hence (]ED holds.

Since 7 € Cy,, 7 is a rotation of order k of a regular n-gon. Let a be a vertex of the n-gon. For
any 1 <i <k, 7 is a non-trivial rotation and so 7¢(a) # a On the other hand 7% = ¢ and so 7*(a) = a.
So the cycle containing a is

(a, m(a), 71'2(a), e Wk_l(a))
We proved that each cycle of 7 has length k. Since there are n-vertices, 7 must have 7 cycles. [

Example 1.7.37. Let n € Z*. Compute Pc, (z) and Pp, ().

We start with Pg, (z). Let k € Z* with k|n. From [1.7.36| each element of C,, has order dividing
n, and C,, has gb(k) elements of order k. Moreover, if g € C,, has order k, then g has 7 Cycleb of

length k. So M, = :vk Hence for each k € Z* with k|n there are ¢(k) elements with M, = xk Thus

Peu(@) =7 & M= 3 olk)ef

geCy, N ezt
kn

For example, using the formula
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we compute

Peyy(2) = — (¢(1)a3" + ¢(2) 23" + ¢(4)x] + ¢(5) a5 + ¢(10)x3, + $(20) 23 )

2

(LL’%O + :L‘%O + 2932 + 4:1:45L + 4m%0 + 81:20)

8|*‘o|*“

Next we compute Pp_(z). For this we still need to compute the cycles for the n-reflections.

Let g € D, be a reflection. Then g2 = (1) and so the cycles all of length 1 or 2. Note that there
are two kinds of reflection: Reflection at a line through a vertex, and reflections through a mid-point
of an edge. These reflections behave differently when n is even vs. when n is odd.

Suppose first that n = 2m + 1 is odd. The point opposite to a vertex is the mid-point of an edge
and vice versa. It follows g fixes exactly one of the vertices. Hence 7 has one cycle of length 1 and
m cycles of length 2. Thus

m
Mgy = x175

Since there are n reflections we conclude:

1 1 n .
Pp, (z) = Do zD: M, = on kzz: d(k)x) + nrixy
nl geDy, ezt
Kn

Suppose next that n = 2m is even. Then the point opposite to a vertex is vertex and the point
opposite to the mid-point of edge is the mid-point of edge. So if g is reflection at a line through a
vertex, then g has two fixed points and otherwise none. In the first case g has two cycles of length
1 and m -1 cycles of length 2, so M, = x%xgn_l. In the second case g has no cycles of length 1 and

m cycles of length 2, so My = z3'. There are m reflections of each of the two kinds, thus

1 1 n _
Pp,(x)=—— > My=—| 3 ¢(k)z} + maiad™" +may’
|Dn| geDy, 2 k;’}%J’

For example if n =20 =2-10, then

1

Pp,, () = 0 (23° + 25 + 225 + dag + 42T + 8wag + 102325 + 1023)
1

" (23° + 11230 + 22 + 4ad + 42, + 8o + 102725

o
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Chapter 2

Graph Theory

2.1 Introductory Concepts

2.1.1 The Basic

Definition 2.1.1. A graph G is a pair (V, E) such that 'V is a set and E is a subset of Po(V'). The
elements of V' are called the vertices of G and the elements of E are called the edges of G. A graph
G is called finite if V' is finite. All graphs in these lecture notes are assumed to be finite.

Note that every edge of G is a set {a,b} with a,beV and a # b.

Example 2.1.2. Let V ={1,2,3,4,5}, E ={{1,2},{3,4},{1,5},{2,5}}. Then G = (V, E) is a graph
with 5 vertices and 4 edges. We can visualize this graph by the diagram

1 3
\ 5
2 /
Definition 2.1.3. Let G = (V, E) be graph, v,weV,ee E and ScV.
(a) The order of G is the cardinality |V| of V.

(b) The size of G is the cardinality |E)|

(¢) We will write vw for {v,w}. If a formula ®(S) is defined for S being a set of vertices and also
for S being an edge, then in ®({v,w}) we view {v,w} has set of two vertices and in ®(vw) we
view vw as an edge.

(d) We say that v is adjacent to w or that v and w are adjacent, if vw is an edge of G, that is if
{v,w} e E.

65
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(e) v and w are nonadjacent in G if vw is not an edge of G.

(f) If v ee we say that v is a (end) verter of v, that e is incident with v and that v is incident to
e.

Example 2.1.4. Consider the following graph G

G has order 5 and size 6.
5 is adjacent to 1,2,3 and nonadjacent to 4.
4 is incident with 24 and not incident with 15.

Definition 2.1.5. (a) The (open) neighborhood of v in G, denoted by N(v) is the set of vertices
adjacent to v, that is
Nw)={weV |vweE}

(b) The closed neighborhood of v in G, denoted by N[v] is the set consisting of v and all vertices

adjacent to v, that is
N[v] = {v} uN(v)

(¢) The (open) neighborhood of S in G, denoted by N(S) is the set of vertices adjacent to some
vertex in S, that is

N(S) = | N(s).

seS

(d) The closed neighborhood of S in G, denoted by N(S) is the vertices which are in S or are
adjacent to some vertex in S, that is

N(S) = U N[s]-

seS
Example 2.1.6. Consider the following graph G
/ 5
2 4

N(1) ={2,5}, N[1]={1,2,5}, N({2,4})={1,3,5} and N[{2,4}]={1,2,3,4,5}
Definition 2.1.7. Let G = (V, E) be a graph.
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(a) The degree of a vertex v, is the cardinality of N(v), that is the number of vertices adjacent to
v.

(b) The mazimum degree of G, denoted by A(G), is the largest degree of a vertex of G, that is
A(G) = maxdeg(z)

(¢) The minimum degree of G, denoted by §(G), is the smallest degree of a vertex of G, that is
§(G) = mindeg(z)

(d) The degree sequence of G is the decreasing sequence obtained from the multiset [deg(v) | v e V].
Example 2.1.8. Let G be the graph

1\3/5
2/ \4

deg(1) =2, deg(2)=3, deg(3)=4, deg(4)=3, and deg(5)=2
So

A(G)=4 and 6(G)=2

and the degree sequence is

43322
Theorem 2.1.9. Let (V, E) be a graph. Then

> deg(v) = 2|
veV

In particular, the number of vertices of odd degree is even.

Proof. Let I ={(v,w) eV xV |vw e E}. We count the elements of I in two ways.
First note that any edge vw of G gives rise to two elements of I, namely (v,w) and (w,v). Thus
|I| = 2|E|. Also

1] = Z HweV]|vweE} = Z IN(v)| = Zdeg(v)

veV veV veV
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Definition 2.1.10. Let G = (V, E) be a graph, let k € Z*, let u,v € V and and let W = wows . . . wg
be a sequence of vertices.

(a) W is called a uw—v walk if u=wp,v =wy and w;-1 is adjacent to w; for each 1 <i<k.

(b) Suppose W is a u—v walk. Let 1 <i<k and put e; = e;_1e;. Then e; is called an edge of W.
Then (e;)i, is called the sequence of edges of W. The length of the walk W is defined to be k
(so the length of sequences of edges of W ). u and v are called the end vertices of W.

c) A trail is a walk with no repeated edges.

(
(d) A path is a walk with no repeated vertices.
(
(f

)
)
e) A u—v walk is called closed if u=wv.
) A circuit is a closed trail of length at least 1.
(g) W is a cycle if W is a circuit and wy ... wy s a path.

Remark 2.1.11. (a) A path with no repeated vertex cannot have a repeated edge. So every path
s a trail.

(b) If vw is an edge in a graph, then v # w and vwv has a repeated edge. Thus all circuits and all
cycles have length at least three.

Example 2.1.12. Consider the graph

QL —— O — N

1\ /3
6/ \4

01235 is not a walk.

102302 is a walk but neither closed nor a trail.
012056 is a trail, but neither closed nor a path.
123456 is a path, but is not closed.

0120320 is a closed walk, but not a circuit.
0120650 is a circuit, but a not cycle.

1234561 is a cycle.

Definition 2.1.13. A subwalk of a walk W is a subsequence of W which is a walk.

Theorem 2.1.14. Let W be a u —v walk in the graph G. Then every shortest u—v subwalk of W
s a path in G.
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Proof. S =s1...5, be a u—wv subwalk of W of smallest length. Suppose S has a repeated vertex.
Then there exist 1 <7< j <n with s; = s;.
Suppose j =n. Then s1 = and s; = s; = 5, =v and so

§182...8;

is a u — v-subwalk of W of shorter length than S, a contradiction.
Suppose that j <n. Since s;s;,1 is an edge, we see that s;s;,1 is an edge. Also s1 =u and s, = v,
SO

5152...5i5j+1---8n

is a u — v-subwalk of W of shorter length than S, again a contradiction. O

Definition 2.1.15. Let G = (V, E) be graph.

(a) LetveV. Then G —wv is the graph obtained from G by removing v and all edges incident with
v. That is

V-v=V{v}, E-v=E~{ecE|vee}, and G-v=(V-v,E-v).

(b) Let ScV. Then G-S is the graph obtained from G by removing each vertex of S and all edges
incident with a vertex of S. That is

V-S=V~\S FE-S=FE~{ecFE|sceforsomeseS}, and G-S=(V-SE-S5).

(¢) Let ee E. Then G — e is the graph obtained from G by removing e. That is

V-e=V, E-e=E~{e}, and G-e=(V-e,E-e).

(d) Let T E. Then G -T is the graph obtained from G by removing each edge of T. That is

V-T=V\T, E-T=E~T, and G-T=(V-T,E-T).

Example 2.1.16.
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G G-d G-{f.9} G-cd G —{eg, f9}
NN N N N
% % %
d d d d
e/ \f e f e/ e/ \f e/ \f
NN % g

Definition 2.1.17. Let G be graph.

(a) Let u,v be vertices of G. We say that u is connected to v in G if there exists a u—v walk in

G.

(b) We say that G is connected if G has order at least 1, and u is connected to v in G whenever
u and v are vertices of G. G is disconnected if G has order at least 1 and is not connected.

Example 2.1.18. Consider the graphs
Gy G G

a——5> a——)
N N VAN
/N VRN
f—9 f—9g c
(i1 is connected.
a is not connected to e in G5. So (G5 is not connected.

G5 and (3 are the exact same graphs. So GG3 is not connected.

Theorem 2.1.19. The relation ‘is connected to’ on the vertices of a graph is an equivalence relation.

Proof. Let u,v,w be vertices of the graph.
v is a v — v walk, so the relation is connected.
If wy...w, is a v —w walk, then w, ... w; is a w — v walk, so the relation is symmetric.
If v1...v, is a u—v walk, and wy,...w,, is a vw walk, then v, = v = w; and so

V... VW2 ... W

is a u —w walk, so the relation is transitive. ]
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Definition 2.1.20. The equivalence classes of the relation ‘connected to’ on the vertices of graph
are called the connected components of the graph.

Example 2.1.21. The graph G in has one connected component, and the graphs G5 and
G's each have two connected components.

Definition 2.1.22. Let G be a graph of order n.
) A wvertex v of G is called a cut vertex if G —v has more connected components than G.
) An edge e of G is called a bridge if G — e has more connected components than G.

(c) A set of vertices S of G is called a cut set if G- S is disconnected.
)

k(Q) is the minimum size of a cut set of G, with k(G) =n-1 if G is a graph of order n with
no cut set. k(G) is called the connectivity of G.

(e) A graph is called complete if vw is an edge whenever v and w are distinct vertices of V.

(f) Let ke N. We say that G is k-connected if G- S is connected of order at least 2 for all sets of
vertices S with |S| < k.

Remark 2.1.23. A graph G of order n is k-connected if and only if k <n and any subgraph obtained
by removing less than k vertices from G is connected.

Example 2.1.24. Consider the graphs
Gy G G

NS N T,
\
ARV TR S S

c is a cut vertex of G, ec is bridge of G, {c} is a cut set of G; and k(G1) = 1. Gy is 1-connected
but not 2-connected.

G2 is complete, does not have a cut vertex, does not have a cut set and k(G2) =5-1=4.

G3 has no cut vertex, {a,b,e, f} is a cut set and k(G3) = 4.
Theorem 2.1.25. Let ne Z*,k € N and let G be a graph of order n.
(a) G is 0-connected.

(b) G is 1-connected if and only if G is connected and n > 2.
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(¢) G is complete if and only G has no cut set and if and only if G is n — 1-connected.
(d) If G is k-connected, then k<n—1.

(e) k(Q) is the largest integer m such that G is m-connected. In particular, G is k-connected if

and only if k < k(G).

Proof. @: There are no sets of size less than 0, so G is 0-connected.

@: @ is the only set of size less than 1 and G — @ = G. Hence G is 1-connected if and only if G
is connected and n > 2.

: Suppose G is complete and S is a subset of V. Since G is complete also G — S is complete
and thus G - S is connected. So S is not a cut set.

Suppose G does not have a cut set and let S ¢V with |S| <n—1. Then G - S has order at least
two and is connected. Thus G is n — 1-connected.

Suppose G is n—1-connected and let v and w be distinct vertices of G. Put S =V \ {v,w}. Then
S| =n—-2<n-1 and since G is n — 1 connected we conclude that G — S is connected. The only
vertices of G — .S are v and w and so vw must be an edge. Thus G is complete.

(d) Let v e V and put S =V ~ {v}. Then G- S has order 1. If |S| < k then since G is k-connected
we conclude that G — S has order at least 2, a contradiction. Hence k <|S|=n—1.

@ By @ k <n -1, whenever GG is k-connected. Thus there exists a largest integer m such that
G is m-connected. Moreover m <n — 1.

Suppose first that there does no exist a cut set of G. Then shows that G is n — 1 connected
and so m >n—1. Thus m = n - 1. Moreover, the definition of x(G) implies kK(G) = n - 1. Hence
m = k(G) in this case.

Suppose next that there does exist a cut set and let T be a cut set of minimal size. So |T'| = k(G)
by definition of kK(G). As G - T is not connected and G is m-connected we cannot have |T| <m. So
m < |T|. Now let S ¢V with |S| < |T|. By the minimal choice of |T| we see that G — S is connected.
Also G- S has order larger than G-T. But G —T is disconnected and so has order at least 2. Hence
also G — S has size at least 2 and so G is |T'|-connect. It follows that m > |T| and so m = |T'| = k(G).

[

2.1.2 Special Graphes

In the section we name a few classes of graphs.

Complete Graphs

K, denotes a complete graph of order n.
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/1\
o L
3—14

1 1
Kli 1 Kz: K3: / \ K4:
3

2 2

IX<I

A~

Empty Graphs

A graph G = (V, E) is called empty if G has no edges, that is £ = @. F,, denotes an empty graph of
order n.

Complements
Let G = (V,E) be graph. Then the complement G of G is the graph (V,P2(V) \ E), so G and G

have the same vertices and vw is an edge of G if and only if it is not an edge of G.

1 3 1 3

-

4

Cycles

C,, denotes graph consisting of the vertices and edges of a cycle of length n:

1
2 Ty
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Paths
P, denotes any graph consisting of the vertices and edges of a path of length n —1:
P 2 3 4 5 6 7

Subgraphs
Definition 2.1.26. (a) Let G = (V,E) be a graph. Then V(G) =V and E(G) = E.

(b) Let H and G be graphs. We say that H is a subgraph of G if V(H) € V(G) and E(H) < E(G).
In this case we also say that G contains H and write H € G.

Is H; a subgraph of G?
G H, H, Hj

N o /
| |

e e d e
f——9 f g g f———9
H; is a subgraph.
Hj is not a subgraph, since d is a vertex of Hs but not of G.
Hj is not a subgraph, since ae is an edge of H3 but not of G.

Induced subgraphs

Definition 2.1.27. Let G = (V, E) be a graph and W ¢ V. The graph (W, Po(W)n E) is called the
subgraph of G induced by W and denoted by (W)g or by (W). Note that if v,w € W, then vw is an
edge of (W) if and only if vw is an edge of G.

Is H; an induced subgraph of G?

G H, Hy Hy
a———) a———) a———) a——)
NS
&
e e (& e
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H, is not an induced subgraph of G, since fg is an edge in G but not in H;.
Hs is an induced subgraph.
Hj is not an induced subgraph, since be is an edge of Hs but not of G.

Bipartite Graphs

Definition 2.1.28. A bipartition of the graph G = (V, E) is a partition (V1,V2) of V such that each
edge has one vertex in Vi and the other in Vo. A graph is called bipartite if it has a bipartition.

(G1 and (3 are bipartite and G is not.
Theorem 2.1.29. A graph is bipartite if and only if all closed walks have even length.

Proof. Let G = (V, E) be a graph.

Suppose first that (V1,V2) is a bipartition of G. Let W = vjvy...v, be a walk in G say with
v1 € V1. Then vy € Vi, v € V7, and in general v; € V7 if i is odd and v; € V5 of 7 is even. If W is a walk
then v, = v1 € V7 and so n is odd. Hence the length of W, namely n — 1, is even.

Suppose next that all closed walks in G have even length. Let G1,...G,, be the connect com-
ponent of G. Assume that (U;, W;) is a bipartition of G;. Put U = U?, U; and W = U”; W;. Then
(U,W) is a bipartition of G.

So we may assume that G is connected. If G has no edges, then (V, @) is a bipartition of G. So
we may assume that V has an edge xy.

Let v,w in V. We say that v is evenly connected to w in G if there exists a v — w walk of even
length in G. Just as in[2.1.19 we see that ‘is evenly connected’ is an equivalence relation. Let V; and
Vo be the equivalence class of x and y, respectively. We will show that (V;,V2) is a bipartition of G.

Let v € V. Since G is connected there exists an x —v walk W. If W has even length, then v € V.
If W has odd length, then yW is a y — v walk of even length and so v € Vo. Thus V =V; u Vs.

Let vw be any edge of G. Since V =V UV, we can choose i, j € {1,2} with v € V; and w € Vj. Let
U a v—w-walk. Then Uv is a v — v walk and so closed. Thus Uv has even length. It follows that U
has odd length for all such U and so w is not contained in the equivalence class of v. Thus W ¢ V.
Hence V; # Vj and ¢ # j. It follows that exactly one of v and w is in V4 and the other in V5. This
applied to the edge xy shows that V; # V5 and so Vi n'Vo = @. Thus (Vi,V3) is a partition of V' and
a bipartition of G. So G is indeed bipartite. O
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Definition 2.1.30. A bipartition (Vi,Va2) of a graph is called complete if vive is an edge of G for
all vi € Vi and vy in Va. A graph is called complete bipartite if it has a complete bipartition (V1,V3).
Such a graph is denoted by Ky, vy)-

Example 2.1.31.

1 al ———— b1
2
/3 a2 b2
Ks3 Kig 0= Ky4
N4
\ a3 b3
5
6 Y

Regular Graphs

Let G be graph and r € N. G is called regular of degree r (or r-regular) if deg(v) = for all vertices
v of G.

G is O-regular graph if and only if its empty If G has order n, then G is n — 1-regular if and only
if G is complete. Below are examples of a 3-regular and a 4-regular graph:

1 02
03 ol
71

/

04 i2 /
AN

\

/‘ f 05
\Ll 06

Embeddings and Isomorphisms

o7

NG

Definition 2.1.32. Let H and G be graphs.
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(a) Let I and J be sets, K a subset of I and f:1 — J a function. Then f(K) :={f(k)|ke K}
Note that f(K)c J.

(b) A homomorphism from H to G is a function f: V(H) — V(G) such that f(e) € E(G) for
ecE(H). (So f sends the edges of H to edges of G.)

(¢) An embedding of H into G is a homomorphism f from G to H such that f:V(H) - V(G) is
injective. We say that H is embedded in G, if there exists an embedding of H into G.

(d) An isomorphism from H to G is a homomorphism f from G to H such that the function
f:V(H) > V(G),v— f(v) and the function E(H) - E(G), e~ f(e) both are bijections. We
say that H is isomorphic to G if there exists an isomorphism from H to G.

Example 2.1.33. Let H and G be the graphs and f: V(H) — V(G) a function. If v € V(H) we
write v’ for f(v). In the examples below, decide whether f is a homomorphism, an embedding, an
isomorphism or neither.

2/ 1/
2 1
/NS N\ , ,
H: 3 6 ¢ 4 3
4 5 6/ —5%
f is an isomorphism (both graphs are K3 3).
2! 1 1
2—1
! !/
H 3 6 G 4 3 2
4 5 6’ 5 3

f is an embedding, but not an isomorphism.
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2/ 1/

4’ 3’

V.

4 ——7-35 6/ —5%

f is not a homomorphism.

271 2/:6/ 1/:51

5—6 3=7 4 =g

f is a homomorphism, but not an embedding.
Example 2.1.34. Are the following two graphs isomorphic:

2——1

02\ /01 / \

12 11

/iS i4\ \ /

03 o4 5———6

Yes, redraw the second graph:
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02 ol
2 il 2 1
i3 14 5 6
03 o4 4 7
And so the function
f: ol—8 023, 034, 04T, il—1 22, 35, 46
is an isomorphism.
Example 2.1.35. Are the following two graphs isomorphic?
3 2 1 0 2 3—6
4 0 8 8 7
5 6 7 5 4 1

One can often distinguish graphs by their degree sequence:

The degrees of the first graphs are: ~ 423232323. So the degree sequence is 433332222.

The degrees of the second graphs are: 223433322. So the degree sequence is 433332222.

But since the degrees sequences are the same, we cannot conclude that the graphs are not
isomorphic. But we can also not conclude that they are isomorphic:

The first graph has no cycles of length 3 (indeed {{0,1,3,5,7},{0,2,4,6}} is a bipartition), but
the second has the cycle 2352 of length 3. Thus the graphs are not isomorphic.

Theorem 2.1.36. Let H and G be graphs and f:V(H) — V(G) a function. Put

H' = (£(V(). F(E(D))
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and define
[ V(H) > f(V(H)), v f(v).

(a) f is homomorphism if and only if H' is a subgraph of G.

(b) Suppose f is a homomorphism. Then also f' is a homomorphism of graphs. Moreover, f is an
embedding if and only if f' is an isomorphism.

(¢) H is embedded in G if and only if H is isomorphic to a subgraph of G.

Proof. @ Both statement just say that f(e) is an edge of G for all e e E(H).

(b) By definition of H', each f(e), e € E(H) is an an edge of H'. So f’ is a homomorphism.
Again by definition of H', f’ is surjective. As f(v) = f'(v) for all ve V(H), f is injective if and only
of f’is injective. Thus f is an embedding if an only of f’ is an isomorphism.

() = If f is an embedding, then (a)) and (b)) show that H' is a subgraph of G and f': H - H'
is an isomorphism. Thus H' is a subgraph of G isomorphic to H.

<=: Suppose H* is a subgraph of G isomorphic to H. Let ¢* : H - H” be an isomorphism
and define g: V(H) - V(G),v » ¢g*(v). Then g is an embedding of H in G. O

Example 2.1.37. Is the first graph embedded in the second?
2 0 2—3—6
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So
f: 1-3 22 3-5 4-4

is an embedding of the first graph in the second.

2.2 Distances in Graphs

2.2.1 Basic Properties of Distance

Definition 2.2.1. Let G be connected graph and x,y vertices of G. The distance from x toy, denoted
by dg(x,y), is the length of a shortest x —y walk in G. We will usually just write d(x,y) for the
more precise dg(x,y).

Example 2.2.2. What is d(0,6) in the following graph:

01246 is shortest walk from 0 to 6. So d(0,6) = 4.
Definition 2.2.3. A metric on the set S is a function M : S xS — R such that for all x,y,z € S.
(i) M(x,y) >0 with equality if and only of x =y.
(i) M(x,y) = M(y,z). Y
(i) M(z,z) <M(z,y)+M(y,z) [Triangular Inequality]. z /7\ 2
Theorem 2.2.4. Let G = (V,E) be connected graph.
(a) d(-,-) is a metric on V.
(b) Let x,y € V. Then d(z,y) is the length of a shortest path from x to y.

Proof. @ Let x,y,2€V. Let x = vg,v1 ...,v, =y be a shortest x—y-walk and let y = wg, w1, ..., Wy =
z be a shortest y — z-walk. So n =d(z,y) and m = d(y,z). We will now verify the three conditions
on a metric:

(i) The length of any path is in N. So d(z,y) >0. If d(z,y) =0, then n =0 and so = vp = v, = y.

(ii) ¥y = vpn,...,v9 = ¢ is a y — x walk of length n, so d(y,z) <n = d(z,y). For the same reason
d(z,y) <d(y,z), so d(z,y) = d(y, z).
(iii) = vo,...,Vp = Y = Wo,W1,... Wy, = 2 is a x — z walk of length n+m. So d(z,z) <n+m =

d(z,y) +d(y, 2).
(o) By [2.1.14) any shortest = — y-walk is a path. O
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Definition 2.2.5. Let G = (V,E) be a connected graph and veV.

(a) The eccentricity of v in G is defined as

eccg(v) = ecc(v) = ma&cd(v, w)
we

(b) The radius of G is defined as
rad(G) = mié;eccc,v(v).
(US]

(¢) The diameter of G is defined as

diam(G) = mz‘x/xeccG(v) = max d(v,w)

)

Example 2.2.6. Let G be the graph

ecc(0) =7
4
ecc(2) =7
2
rad(G) =7.
2
diam(G) =7.
4
Example 2.2.7. What is the radius and diameter of a complete graph of order n?

1 ifn>2

d(K,,) = di K,) =
rad(K,,) = diam(K,) {0 _—
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Theorem 2.2.8. Let G be a connected graph. Then

rad(G) < diam(G) < 2rad(G)

Proof. Recall that rad(G) and diam(G) are the minimum and maximum of the eccentricities, re-
spectively. Thus rad(G) < diam(G).
Let x,z € V with diam(G) = d(z, 2) and y € V with ecc(y) = rad(G). Then

diam(G) =d(z,z) <d(z,y) +d(y, z) = d(y,z) + d(y, z) < ecc(y) + ecc(y) = 2ecc(y) = 2rad(G).

2.2.2 Graphs and Matrices
Definition 2.2.9. Let I,J and R be sets.
(a) IxJi={(i,)|iel,je}.

(b) An I x J-matriz with coefficients in R is a function M : I x J - R. We will write m;; for the
image of (i,7) under M and denote M by [mi;]ier. myj is called the ij-coefficients of M. We
jedJ

will also write [M;; for m;;.
(c) Let n,meN. An nxm-matriz is an {1,2,...,n} x{1,2,...,m}-matriz.
Notation 2.2.10. Notations for matrices

(1) We will often write an I x J-matriz as an array. For example

Ml|lx y =z
TO 1 2
b |1 2 3
c |2 3 4
d|3 4 5

stands for the {a,b,c,d} x {x,y, 2z} matric M with coefficients in Z such that mqey =0, Mgy =1,
mbx=1, mCZ=4,

(2) nxm-matrices are denoted by an n x m-array in square brackets. For example

01 2
4 5 6

denotes the 2 x 3 matrix M with m11 =0,mi2 =1, mo; =4, ma3 =6,....



84 CHAPTER 2. GRAPH THEORY

(3) Suppose I ={ai,...,an} and J = {b1,...bp}. Then we can view an I x J matrix M as the
n x m matriz [Maz.bj] 1<i<n - For example we can view the matriz in as the 4 x 3 matriz
L5

<Jsm
01 2
1 2 3
2 3 4
3 4 5

Note that the n x m matrixz depends an the order of the elements ay,...a, and of the elements
bi,...bm.

Definition 2.2.11. Let G = (V, E) be a graph. The adjacency matriz A = [ayy]vey of G is the V xV
weV

matriz define by

1 ifvweFE
Qyw =

0 ifvwé¢l

a—5
Example 2.2.12. Compute the adjacency matrix of the cycle ; ‘
—c

Ala b ¢ d

a0 1 0 1

b|1 0 10

c|0 1 0 1

di1 0 10

Definition 2.2.13. Let I,J, K be sets with J finite.

(a) A be an I x J -matriz and B a J x K matriz with coefficients in R. Then AB is the I x K
matrixz defined by

[ABlir = > [Ali;[Bljk
jed
foralliel ke K.

(b) The identity matriz on I, denoted by 1dy, is the I x I-matriz defined by

1 ifi=j
0 ifi+j

(Id;]i; = {
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(¢) Let neN and A a J x J-matriz with coefficients in R. Then A™ is recursively defined by

A =1d; and A= AA"

a—:1»
Example 2.2.14. Compute A? and A3 for the adjacency matrix A of the cycle ; ‘
—c
Ala b ¢ d Ala b ¢ d A% la b ¢ d
al0 1 0 1 al0 1 0 1 a |2 0 2 0
A = pl1 o010 b1 010 = 5[0 20 2
c|0 1 0 1 c|0 1 0 1 c |12 0 2 0
d|1 0 1 0 d|1 0 10 d |0 2 0 2
and
—0 1 0 1- —2 0 2 O- —O 4 0 4-
s 1 010 0 2 0 2 ) 4 0 40
01 01 20 20 0 4 0 4
_1 01 0‘ _O 2 0 2_ _4 0 4 O_

For each vertex x count the number of bx of walks of length 2 and of length
Length 22 b-a:0 b-0:2 b-c:0 b-d:2
Length 3: b-a:4 b-0:0 b-c:4 b-d: 0

Theorem 2.2.15. Let A be the adjacency matriz of the graph G. Then for alln € N and all vertices
v,w, [A" |y s the number of v — w-walks in G.

Proof. The proof is by induction on n. Suppose first that n = 0. If v = w, then v is the unique v —w
walk of length 0 and if v # w, there is no v — w walk of length 0. Thus
1 ifv=w

(A% = [1dy ]pw = {0 o = number of v — w walks of length 0
ifv+w

Assume next that n > 1 and that the theorem holds for n — 1. For v,w in V let kyy, = [An_l]vw and
ayw = [A]pw-. By the inductions hypothesis, &y, is the number of v — w walks of length n — 1. Also
Gy = 1 if vw is an edge and @y, = 0 if vw is not an edge. Consider a v —w walk of length n:

V=v,U=0V1,V2y...,Up =W.
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Then w is any vertex such that vu is an edge (that is uw € N(v)), and vy, ..., v, is any u —w walk of
length n — 1. Thus the number of v — w walks of length n is
Z kuw = Z ukuw — Qyy =1 for u e N(v)
ueN(v) ueN(v)
= Z avukuw - Quyy = 0 for u ¢ N(U)
ueV
= Z [A]W[A”_l]uw — definition of a,, and k.
ueV
= [A"]pw — definition of A™ = AA™!

2.3 Forests, Trees and Leaves

2.3.1 Definition of Forests, Trees and Leaves

Definition 2.3.1. (a) A graph is called acyclic if its has has no cycles. An acyclic graph is called
a forest.

(b) A tree is a connected forest.
(c) A leaf of a graph is vertex of degree 1.

Example 2.3.2. Which of the following graphs are trees? Forest? Find all the leaves.
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Not a forest, since 321,3211,3212,321 is a cycle. The leaves are the green vertices except for
3211 and 3212.
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Is a forest, but not a tree since not connected. Leaves are the green vertices.

2.3.2 Basic Properties of Forest, Trees and Leaves

Theorem 2.3.3. Let G be graph and v,w € V(G).

(a) Suppose G is forest. Then there exists at most one v —w path in G.

(b) Suppose G is a tree. Then there ezists a unique v —w path in G.

Proof. @ Suppose that G is a forest and let U = uguq...u, and W = wy...w,, be v —w paths in
G. We will show by complete induction on n that U = W. Suppose that v = w. Since U and W are
paths this implies n = m =0 and so U = v = W. So we may assume the v # w. In particular, n > 1
and m>1. If n=m =1, then U =vw = W. So we may assume that n +m > 3.

Consider the closed walk

V=Ug, ULy Un-1,Up =W = Wm, Wn-1,...,W1,Wo =V

of length n + m. Since G is acyclic, this is not a cycle. As n+m > 3, there must be a repeat vertex
(not counting the last vertex). As U and W are paths and so do not have repeat vertices this shows
that u; = w; for some 1<i<m-1and 1<j<m~-1. Then

v =Ug,UL,...,u  and v =wo,wr, ..., W = U;

are v — u; paths. Since i < n the induction hypothesis shows that the two paths are equal.
Similarly,

Uiy Uity -5 Up =W AN U = Wy, Wig1,y .o, Wiy = W
are u; — w path and since n — i < n, they are equal. Hence also U = W.

(]E[) Since trees are connected there exists at least one v — w path and since trees are forests @
shows there exists at most one v — w path. O
Definition 2.3.4. Let G = (V, E) be graph and e = {v,w} a subset of size 2 of V.

(a) G+e=(V,Eu{e}).
(b) We say that e is internal to G if v is connect to w in G. Otherwise e is called external to G.

Example 2.3.5. For z =e, f and ¢: Is x internal to G, does there exist a cycle in G + & containing
xz? Compare the connected components of G and G + x.

1—2 1—2 1T2 1—2
4—3 473 4—3 4—3

G: G+e: / G+f: G+g: p
) 8—9 5 8—9 ) 8—9 5) 8—9

/NS /NS /NS /NS

6 711 —10 6 711 —10 6 7 11 —10 6 711 —10
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e is external to G and not contained in cycles. G + e has one connected component less than G.

f is internal to G and contained in the cycle 3123. G + f has the same connected components as
G.

g is an edge of GG and internal.

Remark 2.3.6. Any edge of a graph G is internal. The converse is not true unless all connected
components of G are complete.

Theorem 2.3.7. Let G = (E,V) be a graph and e a subset of size 2 of V with e ¢ E. Let k be the
number of connected components of G.

If e is internal to G, then G + e has k-connected components.

(a
(b

If e is external to G, then G + e has k — 1-connected components

)
)
(c) e is internal to G if and only if there exists a cycle in G + e containing e.
(d) G +e is forest if and only if G is a forest and e is external to G.

Proof. @ and (]E[): Note that any vertices which are connected in G are also connected in G +e. Let
e ={a,b} and let A and B be the connected components of G containing a and b respectively. Note
that A = B if and only if a is connected to b in G and so if and only if e is internal to G.

Suppose v and w are vertices of G which are connected in G + e, but not in G. We will show
that that one of v and w is in A and the other in B. Let U = ugui...u, be v —w path in G +e
Then U is not a path in G and so e is an edge of U. Since U is a path, U is also trail and so there
exists a unique 7 € N with ¢ < n and e = u;u;.1. Without loss u; = a and u;41 =b. Then ug...u; is an
v—a walk in G and u;;1,...u, 1S a b—w walk in G. Thus v € A and w € B. Since v and w are not
connected in G we conclude that A # B, so e is external.

In particular, if e is internal to G then v and w are connected in G if and only if they are connected
in G+e. So GG and G + e have the same connected components and @ holds.

Suppose that e is external to G. Then A # B. Since e = ab is an edge of G + e, a and b are
connected to G +e. Let A= Dq,B = Dy, Ds,...D} be the connected components of G. It follows
that Au B, Do, ... Dy, are the connected components of G. Thus (]ED holds.

Suppose e is external to G. Then a and b are connected in G and so there exist an a — b path
a=v9,...,0,=bin G. Since a # b, n+0 and since e=ab¢ E, n+ 1. Son+12>3 and thus

a=vy,V1,...0, =b,a
is cycle in G + e containing the edge e = ba.
Suppose next that U = vyv; ... v, is a cycle in GG + e containing e. Without loss v; =b and v;41 = a
for some 0 <i<n. Then
Q= Vigly-vr,VUp =00, V1,...0 =D

is an a — b path in G. Thus e is external to G.
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@ Observe that each cycle of G + e either is contained in G or contains e. Thus G + ¢ is a forest
if and only if G is a forest and there does not exist a cycle of G + e containing e. By this holds if
and only if GG is a forest and e is external to G. O

Corollary 2.3.8. Let G be a graph and e an edge of G. Then e is bridge of G if and only if e is
external to G —e and if and only if e is not contained in a cycle of G.

Proof. Put G’ = G —e. Then ¢ is not an edge of G and G = G’ + e. By definition e is a bridge of
G if and only if G’ has more connected components than G. By this holds if and only if e is
external to G’ and if and only if e is not contained in a cycle of G. O

Theorem 2.3.9. Let G be graph of order n and size m, and let k be the number of connected
components of G. Then
m>n-k

with equality if and only if G is a forest.

Proof. The proof is by induction on m. If m =0, then G has no edges. In particular, G is a forest
and the connected components of G are the subsets of size 1 of G. Thus k=n and so m=0=n—k.
Thus the theorem holds in this case.

Suppose now that m > 1. Let e be an edge of G and put G’ = G -e, so G =G’ +e and e is not an
edge of G'. Note that G’ has order n and size m —1. Let k' be the number of connected components
of G'. Then by induction

m-1>n-k

with equality if and only if G’ is a forest.
Suppose e is an internal edge of G’. Then by G (that is G’ + e) is not a forest and k = k’.
Thus

m>m-1>n-k =n-k

and the theorem holds.
Suppose next that G is an external edge of G'. Then by k=K -1and G (that is G’ +e) is

a forest if and only if G’ is a forest. Thus
m=(m-1)+1>(n-k)+1=n-k
with equality if and only if G’ is a forest and so if and only if G is a forest. O

Example 2.3.10. Compute the order n, size m and number of connected components. Is m =n—k?.
Is the graph a forest?

1—2 ) 8—9

G: /N

4—3 6 7 10— 11
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n=11,m=9,k=3. m=9>8=11-3=n-k. Not a forest: 9,10,11,9 is a cycle.

1—2 8—9

)
G: N/ S

4—3 6 7 10— 11

n=11,m=9, k=2, m=9=11-2=n-k. No cycles so G is a forest.
Corollary 2.3.11. Let G be of order n and size m. Then the following statements are equivalent.
(a) G is a tree.
(b) G is a forest and m =n - 1.
(¢) G is connect and m=n—1.
Proof. Let k be the number of connect components of G. Then shows that
(*)  m=n-kif and only if G is a forest.

@ S (@: Suppose G is a tree. Then G is a connected forest. So k = 1 and shows
m=n—-k=n-1and (]ED holds.

(]ED — : Suppose G is a forest and m =n - 1. By m=mn—k. Hence k=1 and so G is
connected.

& @: Suppose G is connected and m =n —1. Then k£ =1 and so m =n—1. Thus (%)
shows that GG is a forest. As G is connected, this shows that G is a tree. O

Theorem 2.3.12. Let G = (V, E) be a connect graph of order n.

(a) Let W be a proper subset of V, that is W ¢V and @+ W # V. Then there ezists w e W and
v eV NW such that vw is an edge.

(b) Let W<V with W #@ and N(w) €W for allweW. Then W =V.

(¢) Let H a connect subgraph of order m of G. Then for each k € N with m < k < n, there exists a
connected subgraph K of order k of G containing H.

Proof. @) Since @+ W # V we can choose w e W and v € V ~ W. Since G is connected there exists
aw-v walk v1...v, in G. Then v; = w € W and we can choose ¢ < n maximal with v; € W. As
v, =v ¢ W we have ¢ # n. Thus v;v;11 is an edge and by the maximal choice of 7 we have v;,1 ¢ W.

(]E[) If W +V, then shows that there exists w € W and v € V \ W such that vw is an edge, a
contradiction to N(w) ¢ W.

: The proof is by induction on k. If kK = m, we can choose K = H. So suppose k > m and by
induction that there exists a connected subgraph L of order k-1 of G of containing H. Since H ¢ L,
V(L) +@. Ask-1<k<n, V(L) +V. Hence (| shoes that there exist w e V(L) and v e V ~ V(L)
such that vw is an edge. Put K = (V(L)u{v},E(L)u{vw}). Then K is a connect subgraph of G
of size k containing L and so also H. O
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Theorem 2.3.13. Let G = (V, E) be a graph.

(a) Let veV and let H be a connected component of G—v. If G is connected, then H contains at
least one vertex adjacent to v.

(b) Let ScV,veS and let H be a connected component of G- S. If G is |S|-connected, then H
contains at least one vertex adjacent to v.

Proof. @ Let w a vertex of H. Since (G is connected there exists a v —w path v =vg,v1,...,0, =W
in G. Since v # w, n # 0. Then vy,...,v, =w is v1 —w path in G —v and so vy € V(H). Thus v; is
an vertex of H adjacent to v.

() Put T =S —v. Then |T| <|S| and since G is |S|-connected, G — T is connected. Note that H
is connected component of (G—-T')—v and so (]ED follows from @ applied to G—-T in place of G. [

Theorem 2.3.14. Let G be a tree of order at least 2 and let v be a vertex of G.

(a) Each connect component of G —v contains exactly one element of N(v). In particular, G —v
has exactly deg(v) connected components.

(b) v is a leaf of G if and only if G —v is connected.
(¢) G has at least two leaves.

Proof. @ Let H be a connected component of G —v. By @ H contains at least one vertex
w of N(v). Suppose now u € N(v) with u # w. Then uwvw is a u—w path in G. Since G is a tree 2.3.3]
shows that wvw is the unique u — w path in G. Hence there does not exist a u —w path in G —v and
so u ¢ V(H). Thus u is vertex of H in N(v).

@ Follow from @

Let n be the order of G. Let v be any vertex of V. Then by there exist a connected
subgraph H of size n — 1 of G containing v Let v" be the unique vertex of G not in H. Then
V(H) = V(G -v') and since H is connected also G — v’ is connected. Thus (b)) shows that v’. is a
leaf of G. Since v € H and v' ¢ H, we know that v # v’. This applied to v’ shows that v is a leaf
and v v’ O

Theorem 2.3.15. Let T be tree of size m and G a graph of order at least 1 with 6(G) > m. Then
T is embedded in G.

Proof. Since T is a tree, T has order m + 1. If m =0, then T has order 1 and since G has order at
least 1, T is embedded in G.

Suppose now that m > 1 and that the theorem holds for trees of size m—1. Note that T has order
m+1>2 and so by T has a leaf v. Put S =T —v. Then by the induction assumption
there exists an embedding f: S — G. Since deg(v) =1, v is adjacent to a unique vertex w of T'. Put
w’ = f(w). S is a tree of order m and so

[F(V(S) —w))[ = [V(S)| -1 =m-1<m<(G) < [N(w)
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So there exists v’ € N(w") with v" ¢ f(V(S) —w).
Define
if zeV(S)

ifx=v

VT -G by fHa) - {(”

Note that v' # w’ and u ¢ f(V(S)-w). Thus f*(v) =v" # f(z) = f*(«) for all in V(.S). Together
with the fact that f is injective this shows that f* is injective. Let e be an edge of T'. If v ¢ e, then e
is an edge of S and so f*(e) = f(e) is an edge of G. If v € e, then since deg(v) = 1 we have e = vw and
so f*(e) = f*(vw) =v'w" and so again f*(e) is an edge of G. Thus f is an injective homomorphism
and so an embedding of T" in G. O
2.3.3 Spanning Tree
Definition 2.3.16. Let G be a graph.

(a) A tree (forest) of G is a subgraph of G which is a tree (forest).

(b) A spanning forest T of G is a mazimal forest of G, that is T is a forest of G and if H is forest
of G containing T, then T = H.

(¢) A spanning forest of G, which is a tree, is called spanning tree of G.
Remark 2.3.17. Let T be a spanning forest of the graph G. Then V(G) = V(T).

Proof. Let v be a vertex of G. Then (V(T') u {v},E(T)) is forest of G containing 7. As T is a
maximal forest of G this implies v € V(T). So V(G) = V(T). O

Example 2.3.18. The red edges are the edges of a spanning forest of the following graph:

]——2 9*12

S RAND

Theorem 2.3.19. Let G be a graph order n. Let k be the number of connected components of G
and let T be a forest of G with V(T') = V(G). Then the following statements are equivalent.

0 — 13
T is spanning forest.

(a
(

b) All edges of G are internal to T'.

)
)
(¢) T and G have the same connected components
(d) T has k connected components.

)

(e) T has size n—k.
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Proof. @ e (]E[): Suppose T is a spanning forest and let e be an edge of G. Since T is a maximal
forest of G, either e € E(T") or T + e is not a forest. In the latter case shows that e is internal
to T. The same is true if e € E(T") and so all edges of G are internal to 7'

(]E[) & @: Suppose all edges of G are internal to T. Let F' be a forest of G with T ¢ F.
Let e be an edge of F. Suppose e is is not contained in T'. Since T'+e € F, T + e is a forest. So
shows that e is external to T, a contradiction. Thus e € E(T) and so E(T") = E(F'). Hence T is
maximal forest of G, that is a spanning forest.

(]ED = (id): Suppose all edges of G are internal to T. Let v and w be vertices of G which
are connected in GG. Then there exists a v —w walk vy ...v, in G. Then each v;v;,1 is internal to T’
and so there exists a v;v;41 walk in T". Hence there also exists a v —w walk in T and so v and w are
connected in T'. Thus the connected components of G and 1" are the same.

- (]ED: Suppose T and G have the same connected components and let e = vw be an edge
of G. Then v is connect to w in G and so also connected to w in T'. Thus e is internal to G.

— @: Since T is a subgraph of G, any path in 7" is also a path in G. Thus any connected
of GG is a union of connected components of T'. Hence G and T" have the same connected components
if and only if the have the same number of connected components.

@ — : Let m’ be the size of T and let &’ be the number of connected components of G.
Since V(G) = V(T'), T has order n. As T is a forest shows that m’ =n —k’. Thus m’' =n -k if
and only if k = k’. So @ and (@ are equivalent.

O

Definition 2.3.20. (a) A weight function for the graph G is a function from W :E(G) — R.
(b) A weighted graph is a pair (G,W), where G is a graph and W is a weight function for G.
Definition 2.3.21. Let (G, W) be weighted graph
(a) The total weight of a subgraph H of G with respect to W, denoted by W (H), is defined to be

W(H)= Y W(e)
ecE(H)

(b) A minimal weight spanning forest of G is a spanning forest of G of minimal total weight.

Algorithm 2.3.22 (Kruskal). Let (G, W) be a weighted graph. Define subgraphs T; of G recursively
as follows:

(0) To = (V(G), 2)

Let i € N and suppose recursively that T; has been defined.
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(1) If there exist an external edge e to T; in G choose such an edge, say e;, with W (e;) minimal
and define

Tiv1:=Ti+e
Repeat Step with i+ 1 in place of

(2) If all edges of G are internal to T;, the algorithm stops. Define m =i and T =T,,.

Then T is a minimal weight spanning forest for G.

Proof. Note that Ty is a forest. If T; is a forest, then since e; is external to T; also T;.1 = T; + ¢; is
a forest, see Thus T =T, is a forest. By construction all edges of GG are internal to 1. Thus
2.3.19| shows that T is a spanning forest of G.

It remains to show that 7" has minimal weight among all the spanning forest. For this let S be
any spanning forest of W. Observe that Tp € S and so we can n in N with n < m maximal subject
to T, € S. We will use downwards induction on n to show that W (S) < W(T).

If m =n, then T =T, ¢ S and so certainly W(T) < W (S).

So suppose n < m and that W(T') < W(S’) for any spanning tree of G with T,,,1 € S’. Put
e := ey and let v,w € V(T') with e = vw. Then e ¢ V(S). Since S is a maximal forest of G this shows
S + e is a not a forest. Hence shows that e is internal to S, that is there exists a v —w path
P=wguy...u; in S. Since e ¢ S, P # vw and since v — w is the unique v — w path in T" we conclude
that P is not contained in T'. Thus there exists an edge ¢ of P not contained in 7. Since P is the
unique v — w path in S and ¢ is not in S — ¢ we conclude that there does not exists a v — w path in
S —c. Thus e is external to S —c¢. Hence[2.3.7implies that S —c+ e is a forest. Observe that S—c+e
has the same size as S, so shows that S — ¢+ e is a spanning forest of G.

Since T}, + ¢ € S, we see that T,, + ¢ is a forest Also ¢ ¢ V(7},) and so shows that c is external
to T),. The minimal choice of W (e) in (1)) now implies that W (e) < W(c¢). Thus

W(S+e—c)=W(S)+W(e)-W(c) <W(S).

Observe that Ty,11 = Ty, +e € S+e—c. So the induction assumption implies that W (7T') < W (S+e—-c)
and so also W(T') < W(S). O

Example 2.3.23. Find a minimal weight spanning tree for the weighted graph

1
8 9 3 12
2
\ 4
1
0 14
/
2
11 1 1
2 0 3 3
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8 L 9 3 12
\
4
1
0 14
1
s
11 0 13
2 3
1
8 9 & 12
2
\ 4
1
0 14
>
2
11 1
2 0 3 3
1
8 9 3 12
2
\ 4
1
0 14
A
2
11 0 13
2 3
1
8
1 \
11
2

2.3.4 Counting Trees

Example 2.3.24. How many trees with vertex set {1,2,3}7



2.3. FORESTS, TREES AND LEAVES 97

So there are 3 such trees.
How many trees with vertex set {1,2,3,4}?

1—2 1—2 1 2 1 2 1 2 1 2 1—2 1—2
X XL N
4—3 4—3 4 3 4—3 4 3 4—3 4—3 4—3
1—2 1 2 1—2 1 2 1—2 1—2 1 2 1 2
X X I I 1 N LS
4 3 4 3 4 3 4 3 4 3 4 3 4—3 4—3

So there are 16 such trees.

Note that 3 = 3372 and 16 = 4*2. Let n € Z* and let V be a set of cardinality n, In this subsection
we will show that the number of trees with V(T') = V is n™ 2 by establishing a bijection between
such tress and the sequence of length n — 2 from V. This bijection depends on a chosen ordering of
the vertices:

Definition 2.3.25. Let S be set. Then an ordering on S is a relation <’ on S such that for all
a,b,ce§S:

(i) Ezactly one of a<b,a=b and b< a holds; and
(ii) ifa<b and b<c, then a<c.

An ordered set is a pair (S,<), where S is set and < is an ordering on S. An ordered graph is a
triple (V, E,<) such that (V, E) is a graph and (V,<) is an ordered set.
Example 2.3.26. (1) How many ordering does a finite set S of cardinality n have?
nl:
Any ordering of S can be viewed as a non-repeating sequence siSs ..., of length n from S.
Indeed given such a sequence we can define an ordering on S by s; < s; if and only if i < j.

Conversely, if < is an ordering of S define s; to be the smallest element of S and inductively for
1 <i<n, define s;1 be the smallest element S~ {s1,...,s;}. Then s13...s, is a non-repeating
sequence of length n from S.

Note that these two functions are inverse to each other.

(2) S be a set of real numbers, and ‘<’ the usual ‘less than’ relation on R, then (.S, <) is an ordered
set. Henceforth we will view any set of real numbers as an ordered set in this way.

Definition 2.3.27. We recursively define a function PS which assigns to each ordered tree T of
order n > 2 a sequence PS(T) of length n—2 from V(T). If n=2, then

PS(T) = ()
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the sequence of length 0. Suppose that n > 3. Let v be the smallest leaf of T and w the unique vertex
of T adjacent to v. Then

PS(T) = wPS(T - v)
PS(T) is called the Priifer sequence of T.

Example 2.3.28. Compute the Priifer sequence of the ordered tree
8 -
1

3

7

9 25

The leaves are 8,9,2 and 5. So the smallest leaf is 2. The vertex adjacent to 2 is 1. Thus 1 is the

first element of the Priifer sequence. Remove 2 from the tree and continue. (Here the green vertex

is the smallest leaf and the yellow vertex the unique neighbor of the green vertex). Stop then only
two vertices will be left.

8 —3 8§ —3 8§ — 3 8 — 3 3
/| /| /| / /
1 7 1 7 1 7 1 1
/N /] / / /
9 2 5 9 5 9 9 9
Hence the Priifer sequence is
17331

Given the sequence 17331 of the tree T in the previous example. Can we recover 77 Suppose we
can determine from the sequence 17331 that 2 was smallest leaf of 7. Then 7331 is the sequence for
the tree T'— 2 and 1 is the unique element of T - 2 adjacent to 1. Recursively we can recover T — 2
from 7331 and then we get T' by adding the vertex 2 and the edge 12. Note that in the example 2
is the smallest element which does not appear in the sequence 17331. The next theorem shows that
this is always the case.

Theorem 2.3.29. Let T be an ordered tree of order n > 2. Let v be smallest leaf of T and let w the
unique vertex of T adjacent to v.

(a) Suppose n>3. Then w is the first element of PS(T).

(b) Let u be a vertex of T. Then u appears with the multiplicity deg(v) —1 in PS(T).
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(¢) v is the smallest vertex of T which does not appear in PS(T).
Proof. (g By definition PS(T) = wPS(T - v), so (@] holds.

(]E[) The proof is by induction on n.

Suppose n = 2. Then PS(T") = (). Thus both vertices of T" appear with multiplicity 0 in PS(T).
Also both vertices have degree 1 and so (]ED holds in this case.

Suppose next that n > 3. Then PS(T") = wPS(T —v). By definition, PS(T -v) is a sequence from
T —v. Also v # w and so v does not appear in PS(T'). Since v is leaf, deg(v) -1=1-1=0. So @
hold for u =v.

u .

By induction u appears with multiplicity degy_,(u) —1 in PS(T - v). Since w is adjacent to v,
degr(w) = degp_,(w) + 1. And since PS(T") = wPS(T - v), w appears once more in PS(T") than in
PS(T - v). So (b)) also holds for u = w.

Suppose u # v and u # w. Since w is the unique vertex of T" adjacent to v, u is not adjacent to v.
Thus degp(u) = degp_,(u). As PS(T') = wPS(T -v), u appears with the same multiplicity in PS(T")
as in PS(T - v). So (b also holds in this last case.

By (b)) the leaves are exactly the elements of T which do not appear in PS(T). Thus
holds. O

Definition 2.3.30. We will recursively define a function PT which assigns to each pair (V,o) such
that V' is a finite ordered set of size n>2 and o is a sequence of length n—2 from V', a tree PT(V, o)
with set of vertices V.

Suppose n=2. Then PS(V, o) is defined to be the complete graph on V.

Suppose that n > 3. Since o has length less than n there exist at least one element of V' which
does not appear in o. Let v be the smallest such element and let w be the first element of o. Let o’
be the sequence of length n — 3 with o = wo'. Since v does not appear in o, o' is sequence of length
n-3 from V —v. Let E' be the set of edges of PT(V —wv,0"). Define

PT(V,0) = (V,E"u{vw})
PT(V,0) is called the Priifer tree of o with ordered vertex set V.

Example 2.3.31. Compute the Priifer tree of 17331 with ordered vertex set {1,2,3,5,7,8,9}.
We compute

Vv o

1235789 | 17331
135789 | 7331

13789 331
1389 31
139 1

19
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and so the tree is
8 ; 3

|
1 7

/ N\

5

9 2

Theorem 2.3.32. Let V be a finite ordered set of size n > 2 and let o be sequence of length n — 2
from V. Let v be the smallest element of V' which does not appear in o.

(a) Suppose that n >3 and let w be the first element of o. Then w is the unique vertex of PT(V, o)
adjacent to v.

(b) Let ueV. The degree of u in PT(V,0) is mult, (o) + 1.
(c) v is the smallest leaf of PT(V,0).

Proof. Put T :=PT(V,0)

() Let 0 = wo’ where o’ is a sequence of length n -3 from V. Put T’ := PT(V - v,0’). By
definition of T, E(T) = {vw} UE(T"). Since V(T") = V — v, v not an vertex of 77 and so also not
contained in any edge of T”. Thus vw is the unique edge of T' containing v and so w is the unique
vertex of T adjacent to v.

(]E[) Suppose first that n = 2. Then ¢ has length 0 and so both vertices of V appear with
multiplicity 0 in o. Since n = 2, the definition of T" shows that 7" is the complete graph on V and so
both vertices have degree 1 in 7. Thus (@ holds in this case.

Suppose now that n > 3. By @ w is the unique vertex of T' adjacent to v, so deg(v) =1. Also v
does not appear in o. Thus (]ED holds for u = v.
Suppose next that v # v. By induction

degy(u) = mult, (o) + 1.

Since o = wo’,

mult,(o’) +1 ifu=w

mult, (o) = {

mult,, (o) if u+w

Since E(T) = E(T" u{vw}) and u # v,

=mult, (o) +1

mult, (o') + 1 if u+w

degp(u)+1 fu=w (mult,(o’)+1)+1 ifu=w
degy (u) if u+w

degy(u) = { =

(c): By (]ED the leaves of T are exactly the vertices of 7' which do not appear in o. So (|
holds. O
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Theorem 2.3.33. Let n e Z* and let V be a set of cardinality n. Then there exist exactly n" 2 trees
with vertex set V.

Proof. Suppose n = 1. Then there exists exactly one graph with vertex set V', namely the empty
graph. Also 1'2 = 17! = 1 and so the theorem holds in this case.

So we may assume n > 2. Choose some ordering on V.

The function PS assigns to each tree with vertex set V' a sequence of length n -2 from V. The
function PT(V,-) assigns to each sequences of length n -2 from V a tree with vertex set V. Note
that [2.3.29 and [2.3.32] imply that these two assignments are inverse to each other. Hence the number
of trees with vertex set V' is equal to number of sequences of length n —2 from the set V. As |V|=n,
the latter number is n" 2. d

2.4 Eulerian Circuits and Hamiltonian Paths

2.4.1 Eulerian Circuits

Definition 2.4.1. Let G be a graph and W a walk in G.
(a) V(W) is the set of vertices and E(W) is the set of edges of W.
(b) W is called Eulerian in G if E(W) = E(G).
(¢) G is a Eulerian graph if G has a closed Eulerian trail.

(d) A trail T is called extendable in G if there exists a vertex w of G such that Tw is trail. Otherwise
T is called non-extendable.

(e) Let W = wowy ... w, and let W' be a walk in G. Then W' is called a rotation of W if either
W'=W or W is closed and there exists i € Z* with i <n and

!
W' = ww;g1 ... wpwi ... Wi—W;

Example 2.4.2. If possible, find a Eulerian circuit.

/
\

2——1
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So the first graph is Eulerian while the second does not seem to be Eulerian.
Theorem 2.4.3. Let T be a trail in the graph G.

(a) Let w be the last vertex of T. Then T is closed if and only if w is incident with an even number
of edges of T'.

(b) Let v be any vertex of T. Then v is incident with an odd number of edges of T if and only if
T is not closed and v is an end vertex of T.

Proof. @ Let T =tg...tn,80 w=1,. If n =0, then T is closed and w is not incident with 0 edges of
T, so the theorem holds in this case.

So suppose m > 1. Put T’ = t;...t,. Let m and m’ be the number of edges of T and T”,
respectively, incident with w. By induction m’ is even if and only if 7" is closed.

If w is incident with tot; (that is w =ty or w =t1), then m =m' + 1. Otherwise m =m/.

Suppose first that w = t;. Then m =m/ +1, t; = t,,, T' is closed and m’ is even. So m is odd.
Since tgty is an edge, to # t1 = w and so T is not closed.

Suppose next that w # ¢t1. Then 7" is not closed and so m’ is odd. If w =ty then T is closed and
m=m'+11is even. If w # tg, then T is not closed and m =m’ is odd. Thus @ is proved.

(]E[) If v is not a vertex of T, then v is incident with 0 edges of T and (]ED holds.

If v is the last vertex of T, (]ED follows from @ If v is the first vertex of T', then follows from
@ applied to the inverse path of T'.

It remains to consider the case there v # tg,w # t, and v = ¢; for some 1 <7 <n-1. Then v
is an end vertex of the two trails tgty...t¢; and t;t;41...t,. Neither of the two trails is closed, so v
is incident with an odd number of edges of each trail, and hence with an even number of edges of
T. O

Theorem 2.4.4. Let W be a non-extendable trail in the connected graph G. Let w be last vertex of
w.

(a) Any edge of G which is incident with w is an edge of W.

(b) W is closed if and only if deg(w) is even.
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(¢) Suppose that W is closed and no rotation of W is extendable. Then W is closed Eulerian trail
in G.

Proof. Let W = wq, w1, ..., w,.
@ Suppose wv is an edge of G which is not edge of W. Then

W, W,y .-y Wy =W,V

is a trail in G, contrary to the assumption that W is not extendable.
Hence all edge incident with w are edges of W.

(]ED Observe that deg(w) is the number of edges of G incident with w. By this is the number
of edges of W incident with w. By the latter number is even if and only if W is closed.

Let u be any vertex of W. Then there exists a rotation W’ of W with last vertex u. By the
hypothesis of W' is not extendable. So we can apply @ and (]E[) to W' and conclude that all

edges incident with u edges of W.

If V(W) # V(G), then (2.3.12))(a) shows that there exists v € V(W) and w € V(G) ~ V(W) such
that vw is an edge. But then vw is not an edge of W, a contradiction. Thus V(W) = V(G). Hence
every edge of V is incident with a vertex of W, and so E(W) = E(G). Thus W is a closed Eulerian
trail in G. O

Algorithm 2.4.5. Let G be graph. Define m € N and trails T;, 0 <i <m recursively as follows.
(0) Define Ty = (), the unique trail without vertices.
(1) Suppose recursively that i € N and that T; has been defined.

(i) If some rotation of T; is extendable, choose an extendable rotation T; of T; and a vertex
v; such that T]v; is a trail and define T;11 = T]v;. Repeat Step 1 with i+ 1 in place of i.

(ii) If no rotation of T; is extendable, define m =i and the algorithm stops.
If G is connected and deg(v) is even for all vertices v of G, then Ty, is a closed Eulerian trail in G.

Proof. Put T = T,,. By construction, T is a trail of G and no rotation of T is extendable in G.
Suppose now G is connected and deg(v) is even for all vertices v of G. Let w be the last vertex of T'.

Then deg(w) is even and (2.4.4)(b) shows that T is closed. Now (2.4.4)(c]) implies that T is closed
Eulerian trail in G. O

Corollary 2.4.6. Let G be a connected graph. Then G is Eulerian if and only if all vertices of G
have even degree.

Proof. Suppose G is Eulerian. Then there exists a closed Eulerian trail W in G. Let v € V. Then
deg(v) is the number of edges of G (and so also of W) which are incident with v and so is even by

2.4.3
Suppose all vertex of G have even degree. Then shows that GG has closed Euclidean trail. [J
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Example 2.4.7. Use to find a Eulerian circuit in the graph

Theorem 2.4.8. Let G be a connected graph. Then G has a Eulerian trail if and only if G has at
most two vertices of odd degree.
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Proof. If G has an Eulerian trail T', then shows that all vertices except possible the end vertices
of T" have even degree.

Suppose next that at most two vertices of G have even degree.

If G has no vertices of odd degree, then shows that GG has closed Euclidean trail and we are
done.

So suppose that G has one or two vertices of odd degree. By G has an even number of
vertices of odd degree. Thus G has excatly two vertices, say v and w of odd degree.

Assume that vw is an edge of G. Then G —vw is a graph all of those vertices have even degree
and so has closed Eulerian trail 7. Replacing T be a rotation we may assume that v is the last vertex
of T. Then T'w is a Eulerian trail of G.

Assume that vw is not an edge of G. Then G + vw is a graph all of those vertices have even
degree and so has closed Eulerian trail T'. Replacing T be T be a rotation we may assume that vw
is the last edge of T'. Removing the last vertex of T', we obtain a Eulerian trail of G. O

2.4.2 Hamiltonian Paths
Definition 2.4.9. Let G be a graph.

(a) A walk in G is called Hamiltonian if V(H) = V(G).
(b) G is called traceable if G has a Hamiltonian path.
(¢) G is called Hamiltonian if G has a Hamiltonian cycle.

SN\ NN TN
\VAVERVAVERR B
VYA /TN
N/ \/ N

D
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|
e
|
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—
[a)

Not Traceable since 0 is a cut
vertex
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Theorem 2.4.11. Let P be a longest path in graph G and v a end vertex of P. Then N(v) ¢ V(P).

Proof. Replacing P be its inverse if necessary we may assume that v is the last vertex of P. Let
w € N(v). Then vw is an edge and so Pw is a walk. Since P is a longest walk we conclude that Pw
is not a path, thus w € V(P). O

Theorem 2.4.12. Let A and B be subsets of the finite set D. If |A|+|B|>|D|, then An B + @.

Proof.
|A|+|B|-|AnB|=|AuB|<|D|<|A|+|B|

and so |[An B|>0. O
Theorem 2.4.13. Let G = (V,E) be a graph of order n>3. If 6(G) > 5, then G is Hamiltonian.
Proof. Observe that
(x) deg(v)2d(G) 275 forallveV.

Next we show that
(%) G is connected.

Let v,w e V. Then

N[l + N()] > (5 + 1) + 5 >n=1V]
and so there exists u €e N[v]nN(w). If u = v, then vw is a v —w walk and if u # v then vuw is a v —w
walk. Thus v is connected to w in G.

Let P =v;...v, be a longest path in G.
(% %)  There exists a cycle C of length m in G.

For 1 <i<n-1, define v] = v;y1. By [2.4.11| both N(v;) and N(v,,) are contained in V(P). As
Um ¢ N(vy,) we can define N™(v,,) = {u* | w € N(v;,)}. Then both N(v1) and N*(v,,) are subsets of

{v2,v3,..., v} of size at least §. Note that § + 5 =n>m>m~-1 and so N(v1) nN"(v,,,) # @. Thus

there exists 1 <i<n -1 with v; € N(vy,) and v =v; € N(V7). It follows that
U15U27 . ‘Uivlvmyvm—lv AR 7vi+1avl

is a cycle of length m in G.

(+) N(v) cV(C) for allveV(C).

Note that there exists a rotation C’ = cgcy ... ¢, of C with v as last vertex As m is the length of
a longest path, ¢ ...cp, is a longest path of G and [2.4.11| shows that N(v) € V(C") = V(CO).

By G is connected and by V(v) € V(C). It follows that V(C) =V, see (2.3.12) (D).

Thus C is an Hamiltonian circle. O
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Definition 2.4.14. Let G be graph and W € V(G). W is called independent if no two vertices from
W are adjacent in G. a(QG) is the largest size of an independent subset of V(G). a(G) is called the
independence number of G.

Remark 2.4.15. Let G be graph and W ¢ V(G). Then W is independent if and only of the subgraph
of G induced by W is empty. In particular, a(G) is the largest order of an empty induced subgraph
of G.

Example 2.4.16. Compute the independence number of G.
/ \/ \ o
/ AN
9 3—4——5 10
AN /
\ /\ \ /N

The independent subsets of maximal size in the first graph are:

{1,3,5}  and  {2,4,6}

Thus a(G) =3
In the second graph there is a unique independent subsets of maximal size namely

(1,3,5,7,9,10}
Thus a(G) = 6.

Theorem 2.4.17. Let G be graph and W € V(G). Let H be a connected component of G-W and
let U=WnnN(V(H)). If |U| < k(G), thenU =W and H=G-W.

Proof. Suppose |U| < k(G). By definition of x(G), G has no cut set of size less than x(G) and so
G - U is connected. Suppose that V(G -U) # V(H). Then by (2.3.12)(b) there exists an edge ab of
G-UwithaeV(H)andbe V(G-U)~V(H). Thenb¢ U and be N(V(H)), so b ¢ W. Hence ab is
an edge of G —W. But then a and b are in the same connected component of G- W a contradiction
since a € V(H) and b ¢ V(H).

Thus V(G-U) =V(H). AsU ¢ W and WnV(H) = @, this implies U = W and V(G-W) = V(H).
So also H=G-W. O

Theorem 2.4.18. Let G = (V, E) be a graph of order n >3 with a(G) < k(G). Then G is Hamilto-
nian.

Proof. We will first show that
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(*)  K(G)=>2.

Otherwise a(G) < k(G) < 1. Let v,w € V with v # w. Since a(G) <1, {v,w} is not independent
and so vw is an edge. Thus G is a complete graph and so k(G) =n—-1. Thusn-1<1and n<2, a
contradiction to the assumptions.

Since k(G) > 2, G is 2-connected and so Exercise 3b on Homework 10 shows that G has a cycle.
So we can choose longest cycle C = cpey ...¢p in G. If V(C) = V(G), then C' is a Hamiltonian cycle
and we are done. So we may assume that V(C') # V(G). Thus there exists connected component H
of G-V(C). Define
W ={weV(C) | w is adjacent to some w’ € V(H)}

For 0 <i<m -1 define ¢ = ¢;+1 and put W+ ={w* |we W}. For we W choose w' € V(H) such
that w is adjacent to w'.

(#%) LetweW. Then w* ¢ W.

Otherwise there exists 0 <7 < n -1 such that ¢; ¢ W and ¢;41 = ¢f € W. Since H is connected
there exists a ¢, — ¢, walk hg...h;in H. As V(H) nV(C) = @ we conclude that

1+1

! _h h _ I
c0,C1..-,Ci,Co =10y - N =Ci41,Ci+1,Ci42, -, Cm
is a cycle in G is length m + [ > m, a contradiction to the maximal choice of C.
(exx)  [W[2K(G).

Suppose that |[W| < k(G). Then [2.4.17| shows that W = V(C). Let w € V(C). It follows that
weW and w* € W, a contradiction to (jx*]).

(+) W is independent.
Otherwise there exists ¢;,c; € W and ¢4 = c;’ is adjacent to c}’ = cj+1. Since H is connected there
exists a ¢; —¢j path ho...h; in H. Then

/ !
€0yC1y - Ciy € = hoy by oo hy = €5, €5, €521, Civ2, Cin, G415 Cja2, - - - CO

is a cycle of length m + [, contradiction the maximal choice of C'. Thus holds.

We are now able to derive a contradiction.

Let v e V(H). Let w e W, then shows that w* ¢ W and so v is not adjacent to w*. As
W™ is independent we conclude that also W* u{v} is independent. Hence |IW™* u{v}| < a(G) and so
W< a(G). Thus

k(G) < W =W <a(G) <k(Q).

a contradiction. O
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2.5 Colorings of graphs

2.5.1 Definitions
Definition 2.5.1. Let G = (V, E) be a graph. .

(a) Let S be a set. A coloring of G with S is a function K : V — S (that is a coloring of V' with
S) such that K(v) # K(w) whenever vw is an edge of G.

(b) Let keN. Then G is called k-colorable if there ezists a coloring of G with a set of size k.

Remark 2.5.2. Let G = (V,E) be a graph of order n. Then idy : V - V,v - v is a coloring of G
with V. In particular, G is n-colorable.

Remark 2.5.3. Let G be a graph. Let k € N. Then G is k-colorable if and only if there exists a
partition (V1,..., Vi) of V(G) such that each V; is independent in G.

Definition 2.5.4. Let G be a graph. The chromatic number of G, denote by x(G) is the smallest k
in N such that G is k-colorable.

Example 2.5.5. Let GG be a graph.
(1) x(G) =1 if and only if
G is empty.
(2) x(G) <2 if and only if
G is bipartite and if and only if G is has no odd cycles.
Example 2.5.6. Let n e N with n > 2
(1) Compute x(Pp)
X(Py) =2.
(2) Compute x(C)

2 if n is even

C,) =
X(Ch) {3 if n is odd

(3) Compute x(K,)
X(Ky) =n.

Algorithm 2.5.7 (Greedy Algorithm). Let G be an ordered graph and S an ordered set. Define a
coloring K of G with S recursively as follows:

Let v be vertex of G and suppose K(w) has been defined for all vertices w < v.

(a) Compute S" = {K(w) |weN(v),w <v}.
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1) If S =5', the algorithm stops and has failed.

2) If S+ 5’ let s be the smallest element of S\ S and define K(v) = s.

(b) (1)
)
)
)

1
2) Otherwise go to Step @ with v replaced by the smallest vertex larger than v.

()

If v is the largest element of V', the algorithm stops successfully.

(
(
(
(

Theorem 2.5.8. Let G be graph. Then x(G) < A(G) + 1.

Proof. Order G and let S be any ordered set of size A(G)+1. Apply 2.5.7 Note that |S’| < |deg(v) <
IA(G)|+1=1S|. Thus S # S’ and the algorithm does not fail. O

Theorem 2.5.9. Let G be a connected graph of order n. Then either G = K,, or n is even and
G =Cy_1, or x(G) < A(G).

Proof. Put k:= A(G) and let S be any ordered set of size k.
(%) If G is not regular, then x(G) < k.

Suppose G is not regular. Then there exists w of V(G) with deg(w) # k and so deg(w) < k =15].

Choose an ordering of V' such that u < v whenever d(w,u) > d(w,v). (So the smallest element
of V are the elements furthest from w, and w (the closest element to w) is the largest element of V.
We will show that the Greedy algorithm does not fail. Let v € V(G) and suppose K (w) has been
defined for all vertices less than v. If v = w, then deg(v) < |S| and so |S’| < degv < |S|. If w # v,
then there exists a vertex u adjacent to v with d(w,u) = d(w,v) =1 < d(w,v). Then u > v and so
|S7| < deg(v) =1 < A(G) =1|S|. In either case S #S” and the algorithm does not fail.

(#%)  Suppose k <2. Then the theorem holds.

Suppose k <1, then n <2 and so G = K.
Suppose that k=2. Then G is P, or C,,—1. If G = C,_1, n even, the theorem holds. If G = P, or
n is odd and G = C),_1, then x(G) =2, and again the theorem holds.

Observe that

(» %) Ifdiam(G) <1, then G is complete.
So we may assume from now on that

(+) G is regular, k >3 and diam(G) > 2.

Case 1. G is not 2-connected.

Then G has cut vertex v. Let H;,1 < i <[ be the connected components of G —v. Let G; be
subgraph of H induced by V(H) u {v}. By @ there exists a vertex h; in H; adjacent to v.
Hence degg, (v) < degg(v) = k. Since G is k-regular we have degq, (w) = k for w € V(H;). Thus
G is not regular, and so by implies that there exists coloring K; of G; with S. Pick s € .S and
choose permutation 7; of S with 7;(K;(v)) = s. Define L; = 7; o K;. Then L; is a coloring of G; and
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L;i(v) =s for all 1 <i <. Hence we can define L:V — S by L(u) = L;j(u) if u e V(G;). If uvw is an
edge of G then uw is an edge of some G; and so L(u) = L;(u) # Li(w) = L(uw). Thus L is a coloring
of G with S

Since diam(G) > 2 we can choose vertices a and b with d((,a),b) = 2.
Case 2. G is 2-connected, but G —a — b is not connected.

Let H;1 <4 <1 be the connected components of G —a —b. Let G; be subgraph of H induced by
V(H)u{a,b}. By @ there exists a vertex a; in H; adjacent to a. Hence deg, (v) <k Since
G is k- regular we have degg, (w) = k for w € V(H;). Thus G; is not regular, and so by implies
that there exists coloring K; of G; with S.

Suppose first for each 1 <i <1, degc € {a, 8} with degs,(c) <k-2. Let {a,b} = {c,d}. Then there
exists s € § with s # K;(d) and s # K;(w) for all w in V(H;) nN(c). Hence we may assume that
Ki(a) # K;(b). Hence we can choose a coloring L; of G; such that L;(z) = K;(x) for all = € {a,b}
and all for all 1 <14,j5 <.

Hence we can define L:V — S by L(u) = L;j(u) if u e V(G;). If uw is an edge of G then uw is
an edge of some G; and so L(u) = L;(u) # Li(w) = L(w). Thus L is a coloring of G with S

Case 3. G —-a-0b is connected.

Put v1 = a and vy = b. We will now choose vertices vs,...v, in G — a — b recursively as follows
Since d(a,b) = 2 there exists a path a — b path acb of length two in G. Put v, =¢. Let 3<i<n and
suppose we already choose vj;1,...v,. Put U = {vj;1,...v,}. Since G-a-b is connected there exists
a vertex w in G'—a - b with w ¢ U such that w is adjacent to some v; in U. Choose v; = w.

Order G such that v; < vg < ... < v,. It remains to show that the Greedy algorithm does not
fails.

Suppose K (v;) has been defined for all 1 <[ <.

Suppose i = 1. Then S’ = @ and so K(v1) is the smallest element of S.

Suppose i = 2. Since d(a,b) = 2, vy is not adjacent to v;. Thus S’ = @ and so K(ve) is the
smallest element of S. In particular, K (v;) = K(v2).

Suppose 3 <i < n. Then v; is adjacent to some v; with ¢ > i and so |S’| < |S].

Suppose ¢ =n. Then v, = ¢ and v, is adjacent to v; and vy. As K(v1) = K(v2) this shows that
1S’ < |S].

Thus S # 5’ in all cases and so the Greedy algorithm succeeds.

2.6 Chromatic Polynomials

Definition 2.6.1. Let G be a graph and S a set. Then Co(G,S) is the set of colorings of G with S
and cq(S) denotes number of colorings of G with S. If k € N, then cq(k) = Cq(S), where S is any
set of size k.
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Example 2.6.2. Compute cg, (k) and cg, (k).

CKn(/{?) =k

cg, (k) = k"
Definition 2.6.3. Let G = (V. E) be a graph and e = vw an edge of G. Then G|e is the graph
obtained from G by removing e and identifying v and w.

More formally for x € V define T =z if x # w and T=v if v =w. For an edge f = {y,z} of G-e
define f ={y,z}. Define Vje={T |z eV}=V -w, Ele={f|feE-e} and Gle=(V]e, E]e).
Remark 2.6.4. Let G = (V,E) be a graph, e = vw an edge of G and x,y € V ~{v,w}. Then x is

adjacent to y in G/e if and only if x is adjacent toy in G. And x is adjacent to v in G/e if and only
if x is adjacent to v or to w in G.

Example 2.6.5. Compute G - 45 and G/45.

JISZIN,
NP

SINCIN I SN

4 5 — 10

N NN

6 ——7—8 6 —7—8

Theorem 2.6.6. Let G = (V, E) be a graph, S a set and e = vw an edge of G.
(a) The colorings of G are exactly the colorings K of G —e with K(v) # K(w).
(b) If K is a coloring of V', restrict K to a coloring K| of V —w via K| (u) = K(u) for all
u=V -u.

If L is a coloring of V —w, extend L to a coloring Lt of V by

L(u) ifueV-w

Lt (u) = {L(v) ifu=w

Then the function K — K| is a bijection between the coloring of G — e with K(v) = K(w) and
the colorings of GJe. The inverse is given by L — L1.

'Note that the definition of E/e depends on the pair (v,w) and not only the edge e, but since the two graphs G /vw
and G/wv are isomorphic, we still use the ambiguous notation G/e.
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(c) ca(S) = ca-e(S) —cgre(S)-
Remark 2.6.7. Let G be graph with connected components G1,Go,...G; and k € N. Then

cq(k) = cg,(k)cg, (k) ...Cg, (k)
Example 2.6.8. Use Theorem to compute cp, (k).
G
0O——1—2
CG(k) = CGO(/C) - Cxy (k) = k3 -2k%+ k

Go=G-01 G, = GJo1
0 1—2 0——2
cGy (k) = caoy (k) = cay, (k) = K> = k ccy (k) = cayo (k) = cayy (k) = K = k2
Goo = Go - 12 Go1 = Go/12 Gio=G1-02 G11 = G1/02
0 1 2 0 1 0 2 0
CGyo (k) = K2 cay, (k) = K2 cay, (k) = K2 cay, (k) =k

Example 2.6.9. Use a counting argument to compute cp, (k).

0 1 2

We can choose K(0) to be any of the k-colors. Then K (1) can be any color other than K(0), so
there are k — 1 choices for K(1). Now K (2) can be any color other than K (1), so there are k -1
choices for K(2). Altogether we see that

cp, (k) =k(k-1)(k-1)=k(k* -2k +1) = k> - 2k* - k
Theorem 2.6.10. Let G be a graph of order n > 1.
(a) ca(k) is a polynomial of degree n.
(

b) The leading coefficient of cq(k) is 1.

d

)
)
(c) The constant coefficient of cq(k) is 0.
) The coefficients of cq(k) alternate in sign.
)

The absolute value of the coefficients of k"' is the size of G.

(e
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2.7 Matchings

2.7.1 Definitions and Examples

Remark 2.7.1. Let G be a graph. Then the following statements are equivalent:
(a) G is 1-regular.
(b) Each connected component of G has order 2.

Definition 2.7.2. Let G be a graph.

A matching in G is a 1-regular subgraph of G.

(a
(

)

b) A mazimum matching of G is matching in G of largest order.

(¢) A perfect matching of G is a matching in G with vertex set V(G).
)

(d) Let M be matching of G and v,w wvertices of G. We say that x matches y in M if zy is an
edge of M. In this case we also say that that y is the match of x in M.

Example 2.7.3. Find a maximum matchings:
(1)

2 1

3 0 6
4 5
2 1

3 0 6
4 5
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§ ———9—12
N
14

11 10
§ ———9—12
N
14

11 10

(3)
0—1 2

2.7.2 Hall’s Marriage Theorem and SDRs

Definition 2.7.4. Let M be matching in the graph G and P a walk in G

(a) P is called M-alternating if the edges of P alternate between M-edges and non M -edges, that
is, if e1 ... ek is the edge sequence of P and 1 <i <k, then e; € E(M) if and only of e;+1 ¢ E(M).

(b) P is called M-augmenting if P is M -alternating of length at least 1 and none of the end vertices
of P are in M

Theorem 2.7.5. Let M and M’ be matchings of the graph G. Suppose there neither exists a M-
augmented nor an M'-augmented path in G. Then M and M’ have the same size and order.
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Proof. Let H be the union of the two graphs M and M’, so V(H) = V(M)uV(M') and E(H) =
E(M)uE(M").

Let v a vertex of H. If v e M then z is incident with exactly one edge from M and at most one
edge from M’, thus

(*) 1 <degy(v) <2.
Let K be a connected component of H. We will now show that
(#%)  The number M-edges in K is equal to the number of M’ edges in K.

Since 1 < degy(v) < 2 for all vertices v of K, K is either path graph or a cycle graph of size
at least 1 , In particular, there exists a path or cycle P = vy...v, of length at least 1 in K with
E(P) = E(K). Put e; = ¢;_1¢;. If ¢; is in M, then e;41 is not in M and so ¢; is in M'. Thus P is an
alternating M and an alternating M’ walk.

Suppose that n is even. Then P (and so also K) has exactly § edges from M and § edges from
M'. So holds.

Suppose next that n is odd.

Asssume ey is in M and in M'. If n > 2, e5 would be neither in M nor in M’, a contradiction.
Thus n =1 and e; is the only edge of K, so holds in this case.

Note that the setup is symmetric in M and M’. So we may assume now that e; is in M’ but not
in M. Since n is odd and P is M'-alternating, also e, is in M’. Note that e; is the only M-edge
incident with vy and that vy # v,. Thus e; is the only edge of P and so also of K) incident with vy.
Thus vy is not incident to any M-edge of K and so vg ¢ V(M ). The same holds for v,. Thus M is
an M-augmented path, a contradiction to the hypothesis of the theorem. Thus is proved.

By each connected component of H has same number of M-edges as M’ edges. Thus the
same holds for H. As H contains all M and all M’ edges, this show that M and M’ have the same
size. For any 1-regular graph the order is twice the size, so M and M’ also have the same order. []

Theorem 2.7.6. A matching M in the graph G is maximum if and only there does not erist a
M -augmenting path in G.

Proof. Suppose that there does exist am M-augmenting path P = vgvy...v, in G. Put e; = v;_1v;.
Then vy and v, are not in M and so also e; and e, are not in M. Since P is alternating we conclude
that n is odd, that

er,e3....en ¢ B(M), and eg,eq,...,e,-1 € E(M)

Put F = {eg,e4,...,e5-1} and F' = {e1,€e3,...,e,}. So F and F’ u is the set of M- and non
M-edges of P, respectively Consider the graph M’ with vertices V(M) U {vo, v, } and edges (E(M)u
F)\NF.

Next we show

(%) Let v be a vertex of M'. Then degy;(v) = 1.
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We need to show that v is incident with a unique edge of M.
Suppose v = vg or v, then v ¢ E(M) and so v is not incident with any edge of M. Thus e; (if
v=1p) and e, (if v = v,) is the unique edge of M’ incident with v.

Suppose that v = v; for some 1 <i<n. Let i =2j — k with j € Z" and k € {0,1}. Then ey; is the
unique M-edge incident with v. Thus v is not incident with any edge in E(M) \ F. It follows that
e2;-1 is the unique edge in M’ incident v.

Suppose finally with v ¢ V(P). Then v € E(M) and so v is incident with a unique edge e of M.
As v ¢ V(P), v is not incident with any edge of P. Thus e ¢ F and so e € E(M"). Moreover, e is
incident with any edge in F’, so e is the unique edge of M’ incident with v.

Thus (%)) is proved.

By M’ is 1-regular, and so a matching in G. But M’ has two more vertices (namely vy and
vp,) than the maximum matching M, a contradiction.

Thus completes the proof of the forward direction. Suppose now that there does not exist an
M-augmented path in G. Let M’ be any maximum matching of G. By the forward direction there
also does not exist an M’-augmented path, so m shows that M and M’ have the same order.
Hence, as M’ is maximum, so is M. O

Definition 2.7.7. Let (X,Y) be a bipartition of the graph G. We say that X matches into Y if
there exists a matching M of G with X € V(M).

Example 2.7.8. Does X match into Y7

(1)

yl
zl /

Y2
z2

Y3
z3

/
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yl
zl
y2
x2
y3
z3

N

y4d

]l ——— yl
/
2 Y2
x3 y3
x4 ————y4

No, since both x1 and z2 would have to match y1.

Theorem 2.7.9. Let (X,Y) be a bipartition of the graph G and let M be mazimum matching of
G. Let W =X NV(M). Let A be the set of all vertices v of G such that there exist w € W and an
M -alternating w —v walk. Put S=AnX, T=AnY and T* =SnV(M). Then

(a) S=WuT*, SnT*=g and TuT* cV(M).

(b) The M-matches of the elements of T are the elements of T* and vice versa. In particular,
T = |T7.

(c) N(S)=T.
Proof. Let v e A. Then there exist w € W and an M-alternating path
P: wvy=w,vi,...,V0m-1,Um = 0.

Suppose that m > 1., Note that w ¢ V(M) and by there does not exist an M-augmenting
path in G. It follows that
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(*) veV(M).

As w ¢ V(M), vovy is non M-edge. As P is M-alternating, this shows that v;_jv; is an M-edge
if and only if [ is even. Since G is bipartite and w € X, v; € X if and only of [ is even. For [ = m (and
so v; = v) we conclude

(*%)  Um_1Um s an M-edge if and only if ve X.

@ If w e W, then w is an alternating path of length 0 and so w e AnX =5. Thus W c S.
As W =X ~M(V) we also get W =S~ (SNnV(M)=S\T*. SoS=WuT"and WnT" =g. If
veT =AnY, then v+ w and so () shows that v e V(M). Thus T ¢ V(M).

Suppose that v € T*. Then shows that v,,_1v is an M-edge. Thus v,,_1 is the M match
of v, note also that v,,_1 € T and so the M-matches of the elements of T are all contained on T.

Suppose that v € T. By (a) v € M(V) and so v has an M-match u. Then u € X nN(V).
From we know that v,,—1v is non-M-edge. If v = v; for some 0 < [ < m then vy,...v; is M-
alternating w — u-path. Otherwise w = vg,...,Um-1,m = v,u is an M-alternating path. In either
case, u€e AnX nV(M)=T". So the M-matches of the elements of T" are all contained on T

Suppose v € S and let u € N(v). We need to show that u € T. Since G is bipartite and
veScX wegetueVY.

If v e W, then v —u is an M-alternating path and soue AnY =T.

So suppose v ¢ W. Then v € T" and m > 1. If vu € E(M), then u is the M-match of v and
(]ED shows that u € T. So assume that vu ¢ E(M). By Um-10 is an M-edge. If u = v; for some
0 <1 < m then vg,...v; is M-alternating w — u-path. Otherwise w = vg,...,Vm-1,Vm = v,u is an
M-alternating path. In either case, ue AnY =1T. O

Theorem 2.7.10 (Hall’s Marriage Theorem). Let (X,Y") be a bipartiton of the graph G. Then X
matches into Y if and only if |S| <|N(S)| for all S c X.

Proof. Suppose first that X matches into Y. Then there exists a matching M of G with X ¢ V(M).
Let Sc X. Then S cV(M). As M is 1-regular we get Nj/(S)| = |S|. But Ns(S5)|legNg(S) and so
|SllegNG(55).

Suppose next that |S| < [N(S)| for all S ¢ X and let M be a maximum matching of G. We use
the notation from[2.7.9] Then W = X \V(M), N(S) =T, S=WuT*, WnT*@ and |T| = |T"*. Hence

(W[ +[T" = [WuT| =S| <IN(S)| = |T| = T"]
Thus |[W|=0 and so W =@ and X ¢ V(M). Hence X matches into Y. O

Definition 2.7.11. Let X and Y be a sets and A = (Az)rex a family of subsets of Y (so for each
xeX, Ay is a subsets of Y).

(a) A system of representatives for A is a family (ay)zex of elements of Y such that a, € A, for
all x e X.
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(b) A system of distinct representatives (SDR) for A is a system of representatives (ag)zex for A
such that a; # ay for all x,y € X with x #y.

Notation 2.7.12. (a) Let X = {1,2,...n}. Note that a family (a;)zex is just a sequence of length
n. So we also use the notations (a;);-, and (ai,...,ay)

(b) Let X ={x1,...,2,} be a set. Then we denote the family A = (Ayz)zex by

‘xl‘m“xn

‘Am Au,y .‘Amn

Example 2.7.13. (a) Does ({2,8},{8},{5,7},{2,4,8},{7}) have an SDR?
Yes, exactly one, namely (2,8,5,4,7).
(b) Does ({1,2},{1,3},{2,3},{1,4},{2,4}) have an SDR?
No, any SDR would be a non-repeating sequence of length five from a set of size four, which is
impossible for example by the Pigeonhole principal.

Definition 2.7.14. Let X and Y be disjoint sets.

(a) Let A = (Az)zex be family of subsets of Y. Then G 4 is the graph with vertex set X uY and
edges {z,y}, ve X,y e A,.

(b) Let a = (az)zex be family of elements of Y. Then M, is the the graph with vertices x and a,,
x e X, and edges {x,a,}, v e X.

Example 2.7.15. Let X ={1,2,3}, Y ={a,b,¢,d}. Compute G4 and M, for

‘1‘2‘3‘ 11213
and a:

A:
{aby | bd) | {a,ca) | alvla

Theorem 2.7.16. Let X and Y be disjoint sets. Let A = (Ay)zex be family of subsets of Y and let
a = (ay)zex be family of elements of Y.

(a) (X,Y) is a bipartition of G 4.
(b) N(z)=A, forallxeX.

(¢) The function A - G 4 is a bijection between the families (Az)zex of subsets of Y and the graphs
with bipartition (X,Y).

(d) a is an SDR of A if and only if M, is matching of G 4.

(e) The function a — M, is a bijection between the SDRs of A and the matchings M of G with
X cV(M).
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Corollary 2.7.17. Let X and Y be disjoints sets and A = (Az)zex a family of subsets of Y. Then
A has an SDR if and only if

|5 <|U As

seS

forall Sc X.
Proof. Consider the graph G4 defined in[2.7.14 Let Sc X and s S. By (2.7.16) () N(s) = A, and

SO

N(S) = UN(s) = U A,

seS seS
Thus

1S1< U As

seS

for all S ¢ X if and only f N(S) < |S| for all S ¢ X. By [2.7.10] the latter holds if and only if X
matches Y, that is if and only if there exists a matching M of G4 with X ¢ V(M), and so m@
if and only if A has an SDR.

Example 2.7.18. Does

({a.c.d.g}.{a,bie, £} {a,c, g} {e,d, g}, {b.d. e, g} {a. d} {a,d, g})

have a system of distinct representatives?

No, since the union of five of the sets, namely the first, third, fourth, sixth seventh, is equal to
{a,c,d,g,} and so has size less than 5.

2.7.3 Edge Covers

Definition 2.7.19. A edge cover for the graph G is a set of vertices C' of G such that each edge
of G is incident with at least one vertex of C. A minimum edge cover is an edge cover of smallest
cardinality.

Example 2.7.20. Find a minimum edge cover.

0—1—2

9/3\4/5\10
N

6 —7—8

The claim that the yellow vertices in the following diagram form an edge covering.



122 CHAPTER 2. GRAPH THEORY

NI
N\ L

6 —7—8

0

This is the edge covering with six vertices. Any edge covering needs three vertices from the cycle
0,3,4,6,9,0 and three vertices from the path 1,2,5,10,8,7. So six is the minimum size of an edge
covering.

Theorem 2.7.21. Let G be a bipartite graph. Then number of edges in a maximum matching of G
s equal to the number of vertices in minimum edge cover.

Proof. Let M be a maximum matching for G and C' a minimum edge cover of G. Note that C' must
be contain a vertex from each edge of M and since the edge of M are disjoint |C| > E(M). So to
complete the proof we just need to find an some edge covering D of G with |D| = |E(M)).

Let (X,Y) be an bipartition of G. Define W,S,T and T as in 2.7.9 Then W = X \ V(M),
S=WuT*, T*=V(M)nS and |T|=|T"]. Put D=(X~S)uT. Then X\ S=(XnV(M))\T"
and |D|=|X nV(M)|=|E(M).

It remains to show that D is an edge cover of G. For this let e = zy be an edge of G with z € X
and yeY. ByN(S):T. Soifxe S, thenyeT c D and if x ¢ S, then x € X N\ S c D. In either
case e is incident with a vertex in D and so D is indeed an edge cover. O



Bibliography

[1] J. Harris, J. Hirst, M. Mossinghoff, Combinatorics and Graph Theory second edition,
Springer Undergraduate Texts in Mathematics 2008.

123



Index

a(G), @
E(W), [101
V(W), [101

acyclic,

complement,
connected,
connected to, [70]
cycle index,

disconnected,

empty, [73]
Fulerian, [101

Eulerian graph,
forest,
independent,
subgraph, [74]

tree, [36]

weight, [04]

124



	Combinatorics
	Some Essential Problems
	Binomial Coefficients
	Multinomial Coefficients
	The Pigeon Hole Principal
	The Principal of inclusion and exclusion
	Generating function
	Generating Functions of multisets
	Fibonacci Numbers
	The Generalized Binomial Theorem
	Catalan numbers
	Changing Money
	 Recurrence Relations

	Polya's Theory of Counting
	Groups
	Burnside's Lemma
	The Cycle Index


	Graph Theory
	Introductory Concepts
	The Basic
	Special Graphes

	Distances in Graphs
	Basic Properties of Distance
	Graphs and Matrices

	Forests, Trees and Leaves
	Definition of Forests, Trees and Leaves
	Basic Properties of Forest, Trees and Leaves
	Spanning Tree
	Counting Trees

	Eulerian Circuits and Hamiltonian Paths
	Eulerian Circuits
	Hamiltonian Paths

	Colorings of graphs
	Definitions

	Chromatic Polynomials
	Matchings
	Definitions and Examples
	Hall's Marriage Theorem and SDRs
	Edge Covers



