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Chapter 1

Set Theory

1.1 Induction and the Well Ordering Principal

Let N={0,1,2,3,4,5,6,...}. So Nis the natural numbers, that is the set of all non-negative integers.

Just for fun, let us define what we mean with the symbols, 0,1, 2,3 and so on.

We define 0 the empty set: 0 := {}. 1 is the set whose only element is the empty set, so
1:={{}} = {0}. 2 is the set whose elements are 0 and 1: 2 :={0,1} = {{}, {{}}}. Observe that 2
is the unions of the set {0} and {1}. Since 1 = {0} we have 2 =1U {1}. Suppose we already define
a natural number n. Then we define

n+1:=nU{n}

So n + 1 has all the elements of n, plus one more: {n}. It follows that

n+1=4{0,1,2,3,...,n}

The natural numbers will be the main object of interest in the class. The most of important tool
to prove statement about the natural numbers

Axiom 1 (Principal of Induction). [pi] Let P(n) be a statement involving the variable n. Suppose
that

(I1) [1] P(1) is true.
(I12) [2] If P(n) is true for a natural number n, then also P(n+ 1) is true.
Then P(n) is true for all n.

Since this is not a logic class, we will not define what we really mean with *P(n) be a statement
involving the variable n” and "P(n)’ is true. Instead, here is an equivalent version of a the Principal
of induction, purely in set theoretic terms:

Axiom 2 (Principal of Induction, Set Theoretic Version). [pis] Let A be a set of natural numbers.
Suppose that

(I1S) [1] 1€ A.
(12S) [2] Ifn € A thenn+ 1€ A. true.
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Thenn € A for alln € N (that is A=N.).

Lets us prove that the two version are equivalent. Indeed if P(n) is statement, then define

A={neN|Pn)}

Conversely if A is a set of natural number, define P(n) to be statement

P(n): necA

In both cases we see that

P(n) is true <= nec A

and so
P(1)true <=1 € A,
P(n) is true for a natural number n, then also P(n + 1) is true .
—
Ifne Athenn+1¢€ A
and

P(n) is true for all natural numbers.
<~
neAforalneN

This shows what the two versions of the principal of inductions are indeed equivalent.
Often we will use the following more powerful version of the principal of inductions:

Axiom 3 (Principal of Strong Induction). [psi] Let P(n) be a statement involving the variable n.
Suppose that for all n € N,

(SI) [2] If P(k) is true for a natural number k with k < n, then also P(n) is true.
Then P(n) is true for all positive integers n.
Also the Principal Strong Induction has a set theoretic version:

Axiom 4 (Principal of Strong Induction, Set Theoretic Version). [psis] Let A be a set of natural
numbers. Suppose that for all n € N,

(SIS) [sis] Ifk e A for all k € N with k <n, thenn € A.
Thenn € A for alln € N (that is A=N.).

The same argument as above, shows that Principal of Strong Induction is equivalent to its set
theoretic version,
As we will prove below, all of the above principal of inductions are equivalent to

Axiom 5 (Well Ordering Principal). [L]et A be a non-empty set of natural numbers. Then A has
a least element, that is there exists m € A with m < a for all m € A.

Theorem 1.1.1. [equivalence of induction| The following are equivalent:
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(a) [a] The Principal of Induction.

(b) [b] The Principal of Strong Induction.

(¢) [c] The Principal of Induction, Set Theoretic version.

(d) [d] The Principal of Strong Induction,Set Theoretic version.
(e) le] The Well Ordering Principal.

Proof. We already have seen that (a) and (c) are equivalent, and that (b) and (d) are equivalent.
So it suffices to show that the last three statements are equivalent.

(¢) = (d): Let A be set such that n € A whenever n € N with k € A for all £ € N with
k <n. But

B={neN|ke Aforal ke Nwith k <n}

The clearly 1 € B and if n € B, then n € A by assumptions. If k <n+ 1. then k <nor k=n
and so n + 1 € B. The Principal of induction implies n € B for all n € N and since n < n = 1,
n € A for all n € A.

(d) = (e): Let A be a set and A has no least element. Put B = N \ A. Let n € B such that
k € B for all k € N with k < n. Then k ¢ A for all k¥ with ¥ < n and so n < a for all a € A. Since
A has no least element n ¢ A and so n € B. The Principal of Strong Induction now implies that
B=Nandso A=N\B=0.

(e) = (c): Let Abeset withle Aandn+1¢€ A whenever n € A. Let B =N\ A. Suppose
that B has a least element m. Since 1 € A, m # 1. Thusm > 1, m—1 &€ Nand m—1 < m. Since m
is minimal elements of B, m—1 ¢ B and so m—1 € A. Hence m = (m—1)+1 € A, a contradiction
to m € B. Thus B has no least element and the Well Ordering Principal shows that B = (). Thus
A=N\B=N. O

1.2 Equivalence Relations

Definition 1.2.1. [defirelation] Let A be a set.
(a) [a] A relation on A is a subset R of A x A. Let a,b € A we will write aRb if (a,b) € R.
(b) [b] A relation R in A is called

(d) [d] an equivalence relation if R is reflexive, symmetric and transitive.

(c) [c] Let R be relation on A and a € A. Then [a]gr := {b € R | aRb}. if there is no doubt about
the relation in mind. We just write [a] for [a]r,

(d) [d] Let R be an equivalence relation on A and a € A. Then [a]r is called an equivalence class
of R. A/R:={[algr|a € A}. So A/R is the set of equivalence classes of R.

Lemma 1.2.2. [basic equivalence| Let R be an equivalence relation on A and a,b € R. Then the
following statements are equivalent
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(a) [a] aRb

(b) [b] b€ [al.

(c) [c] [al N [b) # 0.

(d) [d] [a] € [b]

(¢) le] ac[b]

(f) 18 o] < [a]

(9) 8] la] = [b].

(h) [h] bRa.

In particular, a lies in a unique equivalence class of R, namely [a].

Proof. (a) = (b):  If aRb, then by definition of [a], b € [a].

(b) = (c):  Since R is reflexive, bRb and so b € [b]. Thus b € [a] N [b] and [a] N [b] # 0.

(¢) = (d): Letcela]N[b) and d € [b]. Then aRd, aRc and bRc. Since R is symmetric, we
get dRa, aRc and cRb. Since R is transitive, this gives dRc and then dRb and bRd. Hence d € [b]
and so [a] C [b]

(d) = (e):  Since R is reflexive, aRa and a € [a]. Since [a] C [b], a € [b].
Ee) = (f):  Apply Steps '(b) = (¢): ’ and ’(¢) = (d): ’ with to (b,a) in place of (

a,b).
f) = (g): We have b € [b] C [a] and so [a] N [b] # 0. Step '(c) = (d): ’ implies [b] C [a

I
(g) = (h): a€a] =[b) and so bRa.
(h) = (a):  This hold since R is symmetric.
Since (c) and (g) are equivalent, a € [b] if and only if [b] = [a]. So [a] is the unique equivalence
class containing a. O



Chapter 2
Divisibility

2.1 The Division Algorithm

Theorem 2.1.1 (Division Algorithm). [division algorithm] Let a and b be integers with b # 0.
Then there exists unique integers q¢ and r with

a=qgb+r and 0 <r <|b

Proof. Let A={a—kb|k € Z}. Put k= —|—Z‘|a\. Then k = +a and so k € Z. Since b # 0, [b] > 1
and so

_ el
b
If follows that ANN # () and so by the Well Ordering Principal, A NN has a least element 7.
Then r > 0 and r = a — ¢b for some a € Z. Suppose that |b] < r. Then

a—kb=a—( la))b=a—+|a||b] > a+|a] >0

b
OST—|b\za—qb—\b|=a—(q—|—|—b|)b

Thus r — |b] € ANN, a contradiction since r — |b| < r and r is the least element of A N N.
This show the existence of ¢ and r. To show uniqueness, let ¢, G, r, 7 € Z with
a=qgb+r,0<r<|b,a=gb+rand 0 <7 <|b
Thus ¢b+ 7 =a = ¢b+ 7 and so

(*) (g—qb=7—r

Since 0 < 7 and r < |b] we have —|b| = 0 — || < 7 — r and and since 7 < |b] and 0 < r,
r—7 < |b|—0=|b|. Hence —|b(F —r < |b] and by ( *) —|b] < (¢—§)b < |b|. Therefore |¢—q||b| < |b]
and dividing by |b| gives |¢ — ¢| < 1. Since ¢ — ¢ is an integer, this implies ¢ —¢=0. (¥*) 7 —r =10
and thus ¢ = ¢ and r = 7. So ¢ and r are indeed unique. O

q is called the integer quotient and r the remainder of a when divided by b.

Lemma 2.1.2. [n2mod4] Let n be an integer. Then the remainder of n? when divided by 4 is 0 or
1.

11
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Proof. By the division algorithm n = 2¢+7 with 0 < r < 1. The r = 0 or 1 and so r = r2. Moreover,
n? = (2¢+7r)? =4¢* +4qr +r* =4(¢* +qr) +r
Since 0 < r < 4, we see that r is the remainder of n?, when divided by 4. O

Definition 2.1.3. [def:divide] Let a and b be integers. Then we say that a divides b and write a|b
if there exists an integer n with b = am.

Instead of saying that a divides b, we will often use the expression a is a factor of b or b is a
multiple of a.
Let a be any integer. Then ala, a| — a, a|0 and 1|a. But 0|a if and only if a = 0.

Lemma 2.1.4. [basic divide] Let a, b and c be integers.

(a) [a] If a|b and blc, then alc.

(b) [b] If alb and alc, then alb + c.

(c) [c] Ifa|bandb+#0, then |a| <b).

Proof. (a) By definition of dividing we have b = ka and ¢ = Ib for some integers k and I. Thus
c=1b=1(ka) = (lk)a

Since | and k are integers also [k is an integer and thus a | ¢, by the definition of divide.
(b) By definition of dividing we have b = ka and ¢ = la for some integers k and {. Thus

bt+c=ka+la=(k+1)a

Since | and k are integers also k + [ are integers and thus a|b + ¢, by the definition of divide.
(¢) I By definition of dividing we have b = ka for some integer k. Since 0a = 0 and b # 0, k # 0.
Since k is an integer this gives |k| > 1 and so |b| = |ka| = |k||a| > 1|a| = |al. O

Corollary 2.1.5. [divide linear comb] Let a,by,bs, ... bk, 11,12, ...l be integers with alb; for all
1<i<k. Then
a|llb1 4+ loby + ... + ;b

Proof. Since alay and ag|lpbg, 2.1.4(a), shows that a|agbr. In particular, the statement holds for

k = 1. Assume inductively that the statements holds for k — 1. Then all1by +1lobs ... l;_1br—1. Since
also a | agbg, 2.1.4(b) shows

al(liby +l2ba .. lg—1bg—1) + lkbs

and so the statements also hold for k. O

Lemma 2.1.6. [greatest element] Let A be a set of non-empty set of integers numbers and suppose
there exists k € Z with a < k for alla € A. Then A has a greatest element, that is there exists d € A
with a < d for all a € A.

Proof. Let B={k—a|a€ A}. Since a < k, k—a € N. Thus B is non-empty set of natural number
and so by the Well ordering principal has a least element b. Then b = k — d for some d € A. The
k—d<k-—aforallae A andsoa<d. O
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Definition 2.1.7. [defiged] Let A be a set of integers and d an integer.
(a) [a] We say that d is a common divisor if A and write d|A, if d|a for all d € A.
(b) [b] Div(A)={d e Z|d| A} is the set of common divisor of A.
(c) [c] We say that d is a greatest common divisor of A, if d is a greatest element of Div(A), that
s if
(i) [i] d]|a forallac A, and
(i1) [ii] Ife e A withe|a foralla € A, thene <d

If d and e are greatest common divisors of a set of integers A, then d < e and e < d. So e = d.
This shows that A has at most one greatest common divisor.

Lemma 2.1.8. [gcd] Let A be a set of integers. Then A has a greatest common divisor if and only
if AZ {0}.

Proof. Suppose first that A C {0}. Since n|0 for all n € Z we conclude that Div(A) = Z and so
Div(A) does not have a greatest element.

Suppose next that A ¢ {0}. Then there exists a € A with a # 0. Since n | a for all n € Div(A)
we get n < |a| for all n € Div(A4) and so be 2.1.6, Div(A) has a greatest element. O

Notation 2.1.9. [not:gcd] Let A be a set of integers. If A C {0} then ged(A) =0 and if A Z {0}
then ged(A) is the greatest common divisor of A.

Lemma 2.1.10. [equal ged] Let a,b, q and r be integers with a = gb+r. Then Div(a,b) = Div(b,r)
and ged (a,b) = ged (b, r).

Proof. Let m € Div(a,b). The m divides a and b and also r = a — rb. Thus Div(a,b) C Div(b, ).
Now let m € Div(b,r). The m divides b and r and also a = gb+ r. Thus Div(b,r) C Div(a,b).
This proves the first statement. The second follows from the first. O

Lemma 2.1.11. [gcd a0] Let a € Z. Then ged (a,0) = |al.

Proof. Note that Div(a,0) = Div(a) = Div(|a|). If @ # 0, then b < |a| for all b € Div(Ja|) and so
ged (a,0) = |al. If @ = 0, then Div(|a|) = Z and ged (a,0) =0 = |al. O

Theorem 2.1.12 (Bezout). [bezout| Let a and b be integers and let E_1 and Ey be the equations

1 a + 0 b
0 a + 1 a

E_1 Loa
EO : b

and suppose inductively we defined equation E,—1 < k <1 of the form

Ey: . = 2 a 4+ yr b

If r; # 0, let E;y1 be equation obtained by subtracting q;+1 times equation E; from E;_1 where q;+1
is the integer quotient of r;_1 when divided by r;. Let m € N be minimal with r,, = 0 and put
d= Tm—1, L = Tm—1 and Y=Ym-1-

(a) [a] ged(a,b) = |d|
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(b) [b] =,y €7Z and d = xa + yb,

PTOOf. Observe that Ti+1 = Ti—1 — qi+1Tiy Ti41 = Ti—1 — i+1T5 and Yi+1 = Yi—1 — qi+1T4. So
inductively r;41,®;41,y;+1 are integers and r;41 is the remainder of r;_; the divided by r;. So
ri41 < |ri| and the algortithm will terminate in finitely many steps.

From 7;_1 = ¢;+17; + r;11 and 2.1.10 we have ged (r;_1,7;) = ged (74, r;41) and so

ged (a,b) = ged (r—1,19) = ged (ro,m1) = ... = ged (Tm—1,7Tm) = ged (d,0) = |d|

So (a) holds. Since each z; and y; are integers, x and y are integers. d = za + yb is just the
equation F,,_1. O

Example 2.1.13. [ex:bezout] Let a = 1492 and b = 1066. Then

1492 = 1-1492 + 0-1066

1066 = 0-1492 4+ 1-1066

426 = 1-1492 — 1-1066

214 = —-2-1492 4 3-1066

212 = 3-1492 — 4-1066
2 = —5-1492 + 7-1066
0

So ged (1492, 1066) = 2 and 2 = —5 - 1492 + 7 - 1066
Corollary 2.1.14. [linear eq] Let a,b,c be integers. Then the equation
xa+yb=c
has integral solution if and only if ged (a, b) |c.

Proof. Suppose first that ¢ = az + by for some x,y € Z. Since ged (a, b) divides a and v, we conclude
from 2.1.5 that ged (a,b) divides c.

Suppose next that ged (a,b) |e. then ¢ = k ged (a, b) for some k € Z. By 2.1.12, ged (a,b) = ua+vb
for some u,v € Z and hence c(ku)a + (kv)b . O

Definition 2.1.15. [def:lecm] Let A be a set of integers and m € Z.
(a) [a] We say that m is a common multiple of A and write A|lm if alm for all a € A.
(b) [b] Mult(A) ={m € Z | Alm} is the set of common multiples if A.

(c) [c] If Mult(A)NZ*T # O then lem(A) is the least element of Mult(A)NZT. If Mult(A)NZ*T =0,
then lem(A) = 0. lem(A) is called the least common multiple of A.

If A =0 then Mult(@) = Z and so lem(A) = 1. If A = {aq,az,...,a,} is a non-empty of non-zero
integers, then |ajas...a,| € Mult(4) NZ* and so lem(A) € Z*. If A is infinite or A contains 0,
then Mult(A) = {0} and so lem(A) = 0.

Lemma 2.1.16. [gcd lem] Let a and b be integers.
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(a) [a] gcd (a,b)lem(a,b) = |abl.
(b) [b] Letm € Z. Then alm and blm if an only if lcm(a,b)|m.

Proof. If a = 0 and b = 0 this is readily verified. So assume that (a,b) # 0. Replacing a and b by
|a| and |b| we may assume that a > 0 and b > 0. d = ged (a,b) and | = %2 We first prove

1°. [1] 1€ Z" andl divides a and b.

Note that | = %a = 9b. Since d|a and d|b, (1°) holds.
2°. (2]  If m € Z with alm and blm, then l|m.

By 2.1.12, d = za + yb for some integers x and y. Thus

ﬂd_m(xa+yb_ﬂx+@
ab ab b a?

m
l

SHE

_m

Since alm and b|m, both 5' and ™ are integers. Hence also 7 = 7'z 4 7y is an integer and so I|m.
3°. [38] [l=lcm(a,b) and so (a) holds.

By (1°), [ is a common multiple of a and b. If m is any common multiple of a¢ and b, then by
(2°), 1 | m. so by 2.1.4(c), I = |I] < |m|. Thus [ is the least element of Mult(a,b) N ZT and so
[ = gcd (a,b).

It remains to prove (b). By (3°) and (2°), lem(a,b) divides any common multiple of ¢ and b.
Conversely suppose that lem(a,b) | m for some m € Z. Since a and b divide m we conclude (see
2.1.4(a)) that a and b divide m. Thus (b) holds. O

Corollary 2.1.17. [lem and mult] Let A be a finite set of integers.
(a) [a] If A= BUC for some subsets B and C, then

lem(A) = lem(lem(B), lem(C))

(b) [b] Let m € Z. Then Alm if and only if lem(A)|m.

Proof. We will prove (a) and (b) simultaneously by induction on |A|. If |A] = 0,the A=0 = B =C,
Alm for all m € Z and lem(A) = 1. So both (a) and (b) hold.

So suppose |A| > 0 and let A = BUC for subsets B and C of A. If A = B = C, then clearly
(a) holds. So we may assume that B # A. and so by induction lem(B)|m for all m € Mult(B). In
particular, lem(B)|lem(A). Assume that C' = A. It follows that lem(lem(B),lem(C)) = lem(C) =
lem(A) and again (b) holds. Assume C' # A, then by induction also lem(C)|m for all m € Mult(C)
Hence

Mult(A) = Mult(B U C) = Mult(B) N Mult(C) = Mult(lem(B)) N Mult(lem(C))
and so by 2.1.16

Mult(A) = Mult(lem(lem(B), lem(C))

It follows that lem(lem(B),lem(C)) is the smallest possible integer in Mult(A). Hence lem(A) =
lem(lem(B),lem(C)) and
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(%) MultA = Mult(lem(A))

If |[A] = 1, then A = {a} for some a € A and lem(A) = |a|. So (b) holds in this case. If |A| > 1,
then A = BU C for some subsets B, C with B # A # C. Thus (*) implies that (b) holds. O

Definition 2.1.18. [defc:coprime] Let a,b € Z then a and b are called coprime if ged (a,b) = 1.
Corollary 2.1.19. [coprime] Let a,b, ¢ be integers with a and b coprime. Then

(a) [a] If a|lc and blc, then ablc.

(b) [b] If albe, then alc.

Proof. (a) Since a and b are coprime, we have ged (a,b) = 1. So by 2.1.16(a), lem(a, b) = |ab| and
by 2.1.16(b), lem(a, b) | c¢. So |ab||c and ab|c.
(b) By 2.1.12 there exists x,y € Z with za + yb = ged (a,b) = 1. Hence

¢ =cl = c(azx + by) = (cz)a + y(be)
Since a divides a and be, 2.1.5 shows that alc. O

Lemma 2.1.20. [ax+by=c]| Let a,b,c be integers with (a,b) # (0,0) and put d = ged (a,b). Then
the equation ax + by = ¢ has an integral solution, if and only if dlc. In this case, if (zo,y0) is a
particular solution , thene (x,y) is an solution if and only if

r=2x —I—néand = —ng
= 20 d Y=Y d

for somen € Z.

Proof. The first statement we already proved, see 2.1.14. So suppose (zg,yo) is a solution. Then
b a anb  bna
al|xo+n-— +b(yofn7>:axo+by0+—f—:axo+by0:c
d d a d

Sox=ux9+ n% and y = yo — nj is indeed a solution. Conversely suppose that (z,y) is integral
solution. Then

ax + by = ¢ = axg + byy

and so
a(r —xo) = —b(y — o)

and
(¥ (o205 =~y — o)

Since ged (%, %) =1 we conclude from 2.1.19(b), that %|(z — z). Thus
b

T —x9g=n-—
d
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for some n € Z. Substituting into (*) gives % = —(y — yo)% and so

a
Y—%Y = *ng
So

b a
x:onrng andy:yofn&

for some n € Z.

Example 2.1.21. [ex:ax+by=c] Consider the equation 1492z + 1066y = 6.

By 2.1.13 ged (1492,1066) = 2 and —5 - 1492 + 7 - 1066 = 2. Since § = 3 € Z, we get

—15-1492 + 21 - 1066 = 6.

So xg = —15 and yo = 21 is a particular solution. Also # = 746 and % = 533. Hence

= —15+533n and y = 21 — 746n

is the general solution.

17
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Chapter 3

Primes

3.1 Prime decompositions

Definition 3.1.1. [def:prime] An integer p is called a prime if p > 1 and 1 and p are the only
positive divisors of p.

Lemma 3.1.2. [basic prime] Let p be a prime and a,b € Z. Then
(a) [a] pla or ged (a,p) = 1.
(b) [b] If plab, then pla or p|b.

Proof. (a) Let d = ged (a,p). Then d|p and since p is a prime, d = p or d = 1. If d = 1 we have
ged (a,p) = 1. If d = p, then p | a.
(b) We may assume that pta. Thus by (a), ged (a,p) = 1 and so by 2.1.19(b), p | b. O

Corollary 3.1.3. [p divide product] Let p be a prime and a1, . . . ay integers. If p divides aias . .. a,
then p divides a; for some 1 <1 <k.

Proof. By induction on k. If kK = 1, the statement is obvious. Suppose now that & > 1. Then p
divides (aj ...ag—1)ar and so by 3.1.2(b), plaj ...ar—1 or a; | ai. In the first case, by induction,
p | a; for some 1 <i<k—1. O

Theorem 3.1.4. [prime decomposition]| Let n be an integer with n > 1. Then there exists
uniquely determined positive integers k,p1,p2, ... Dk, €1, - - - € such that

(a) [a] p; is a prime for all 1 <i <k.
(b) [b] p1 <pz2<...<p
(c) [e] n=pi'ps* ... py*

Proof. We will first show the existence. If n is a prime, choose k =1, p; = n and e; = 1. So suppose
n is not a prime. Then n = ab for some integers, 1 < a,b < n. By induction the theorem holds for
a and b in place of n and it so also for n. .

To prove uniqueness, suppose n = p{'...pF = q{l ...qlfl, where k,l,eq,...ex, f1,..., fi are
positive integers and p1,...,pr, q1,...q are primes. Then ¢i|n = pi* ... p;* and so by 3.1.3, q1 | p;

19
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for some 1 < i < pg. Since p; is a prime and ¢; > 1 this gives ¢ = p;. hence p; < p; < ¢; and by
symmetry, g1 < p;. Hence p; = ¢;. Thus

e1—1, ea ex _ n fi—1 es fi

—_—n __
pv PP T T -0 @24
By induction we conclude that k=1, e; —1=f; — 1, ¢, =p;and e; = f; forall2<i<k. O

Corollary 3.1.5. [prime divisor| Let n € Z with n > 1. Then there exist a prime p with p | n.
Proof. Just choose p =p; in 3.1.4 O

Corollary 3.1.6. [prime and divide] Let p;,...pr be pairwise distinct primes and eq,...ey,
f1... fr be non-negative integers. Put

a=pi...p* andb:p{e...pi"“
(a) [a] a|b of if and only if e; < f; for all1 < i <k.

(b) [b] ged(a,b) = p* ...pzk, where g; = min(e;, f;).

Proof. (a): Suppose first that e; < f; and put d = p{ﬁel ...pirek. Then d € Z and ad = b. So
alb.

Suppose next that a | b. Then b = ad for some d € Z*.By 3.1.4 d = p{* ...pikqf1 ...qf’, where
P1s---Pksq1 - - - q are pairwise distinct primes s; € N, t; € Z1 and [ € N. Thus

p{l pﬁk =b= ad:p161 +81 .Hka‘f’Skqil q;L

The uniqueness of prime factorizations now shows that f; = e; + s; and so ¢; < s;.

(b) Let ¢ = pi*...pp*F with s; € N. By (a), ¢ divides a and b iff s; < e; and s; < f;, iff s; < g; iff
c|pf...pl* . Thus (b) holds. O
Lemma 3.1.7. [powers and primes| Let a = ay...ar where aj,ay...a; are pairwise coprime
positive integers and let m € Z+.

(a) [a] Let p be a prime with p™ | a. Then p™|a; for some 1 <i < k.
(b) [b] There exists b € ZT with a = b™ if and only if there exist b; € ZT, 1 <i < k, with a; = bF.

Proof. (a) By 3.1.3 there exists 1 < i < k with p | a;. If m = 1, we are done. So suppose m > 1.
Since the a;’s are pairwise coprime p { a; for all j # i. Note that

a;
m—1 i
P \a1a2...ai,1?ai+1...ak

Since p™~! f a; for j # i we conclude by induction on m that p™~! | % and so p™|a;.

(b) The backwars directions is obvious. So suppose a = b™ for some b € Z*. If b= 1, thena = 1
and a; =1 for all 1 <i < k. So (a) holds with b; = 1. Thus we may assume that b > 1 and so there
exists a prime p with p | b. Then p™ | b = a and so by (a), p™ | a; for some 7. Then

b P a;
- :alag...ai,lpaiﬂ...al

p ;
By induction in a we conclude that there exists ¢; € ZT with

m m
ap =Cy y...0;—1 =C;_q, ch,ai+1=cf+l,...ak:ck

SIS

Put b; = ¢; for j # i and b; = pc;. Then (b) holds. O

~
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Corollary 3.1.8. [m root] Let n,m € Z*. Then %/n € Q if and only if Y/n € Z.
Proof. The backwards direction is obvious. So suppose that %/n € Q. Then 3/n = ¢ with a,b € Z*
and ged (a,b) = 1. Thus (£)™ =n and so

a™=b"n

Since n | @™ and a and b are coprime we conclude that b and n. Hence also b™ and n are coprime,
and by 3.1.7(b) n = ¢™ for some ¢ € Z*. This ¥/n =c € Z. O

3.2 On the number of primes

Lemma 3.2.1. [infinitely many primes]

(a) [a] Let p1,pa2,...,pn be primes. Then there exists a prime p with p | p1pa...pn + 1 and p # p;
foralll <i<n.

(b) [b] Letn € Z*. Then there exists at least n primes less or equal to 22"
(c¢) [c] There are infinitely may primes.

Proof. (a): By 3.1.5 there exists a prime dividing p dividing p1ps...p, + 1. If p = p; for some 1,
then p would divide, py...p, and so also 1 = (p1...p, + 1) — (p1...pn), & contradiction. Thus
p# p; forall 1 <i<mn and (a) is proved.

(b) Note that 2 is a prime less or equal to 2 = 227" So (b) holds for n = 1. Suppose inductively
that (b) holds for all 1 < ¢ < n. Then there exists n pairwise distinct primes primes pi,pa,...pn
with p; < 22", Let p be as in (a). Then

p < pip2---pntl
< 9292792° 92"t g
= 2+ 2ti2nt Ly
= 2%l
< 22"

So (b) also holds for n + 1 and (b) is proved.
(c) follows immediately from (b). O

Lemma 3.2.2. [primes 3 mod 4] There exists infinitely many primes of the form 4q+ 3, ¢ € N.

Proof. Observe first that 3 is such a prime. Now suppose pi,ps...,p, are distinct primes with
p; = 4q; + 3 for some g; € N. By 3.1.4

4p1p2...pn—1=t1...t2...tk

for some primes ty,ts...t;. By the remainder theorem t; = 4m; + r; for some m;,r; € Z with
0 <r; <3. Since 4p1ps ... pn + 2 is odd also each t; and r; is odd. Thus r; € {1,3}. Suppose for a
contratiction that r; = 1 for all 1 < ¢ < k. Then
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and so by the distributative law, t; ...t = 4m + 1 for some m € Z. But this contradicts

4m+1:tltg...tk:3p1p2...pn+271

and so 4 |1 — (—1) = 2, a contradiction.
Hence r; = 3 for some 1 <14 < ¢;. Since t; divides 4py ...py and t; { —1, t; # p; for all 1 < j < n.
Therefore ¢; is another prime of the form 4¢ + 3 and the Lemma is proved. O

3.3 Fermat and Mersenne Primes

Definition 3.3.1. [def:fermat]
(a) [a] A prime p is called a Fermat prime if p = 2" + 1 for some n € N.
(b) [b] A prime p is called a Mersenne prime if p = 2" — 1 for somen € N.
(c) [c] Letn € N. Then F, =2>" +11. F, is called a Fermat number.
(d) [d] Letp be a prime. Then M, = 2P~'. M, is called a Mersenne number.
Lemma 3.3.2. [binom]| Let a and b be integers and m € Z*. Then a — b divides a™ — b'™.
Proof.

(a—b) (@™ t4+am2b+...+ab™ 2+

= a™ +a™ b+ +ab™!

—am 1l — . —abml —pm

O

Lemma 3.3.3. [fermat primes| All odd Fermat primes are Fermat numbers. That is if n € ZT
such that 2™ 4+ 1 is a prime, then n = 2™ for some m € N and 2" + 1 = F,,.

Proof. Let n = 2™k with m € N, k € ZT and k odd. Put a = 22".

"+ 1=2""% 4 1=af +1=0a"— (-1)F

By 3.3.2 a+1= (a—(—1) divides a* — (—1)* = 2" 4+ 1. Note that @ > 2 and so a+1 > 1. Since
2" 4+ 11is a prime, a +1=2"+1 = a* + 1. Hence a = a* and since a > 2, k = 1 Thus n = 2™ and
2" +1=2""+=F,. O

The first five Fermat numbers all are Fermat primes:

Fpb=2'+1=3

F=224+1=5

Fy=2"41=17

F3 =28 +1=257,

Fy =216 41 =65,537.

But no other odd Fermat primes are known.

We will show that Fj is not a prime, by proving that 641 divides F5 = 232 + 1.
Observe that
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641 = 16 + 625 = 2* + 54

and
641 =5-1284+1=4-2"+1

Thus

232 — 24 . 228

(641 — 54) . 228
(641 - 228) — (641 — 1)*

= (641-2%) — (5.27)*
= 641-228 — 641 +4-641° —6-6412+4-641 — 1

Hence 232 = 641m — 1 for some m € Z and so 641m = 232 + 1.
So Fy indeed is not a prime.

Lemma 3.3.4. [fn relation] Let n € Z*.

(a) @] F,—2=(F,_1—2)F,_1.

(b) [b] Fp—2=FFFy... Fy ;.

(c) [c] Let m € N with m <n. Then ged (F,,, F,) = 1.

Proof. Observe first that F,, —2 = (22" +1) — 2 = 22" — 1. We compute

2n—1

(Foo1—2)F, =22 -2 +1) =2 )?-1=2"-1=F, -2
and so (b) holds.

We have F; —2 =5 —2 =3 = F, and so (b) holds for n = 1. Thus (b) follows from (a) and
induction on n

Let d = ged (Fy, Fi). Since F, is odd, d is odd. As m < n and d | F,, we conlcude from (b),
that d | F,, — 2. Since also d | F,, d divides F,, — (F,, — 2) = 2. Since d is odd this gives d = 1 and
(c) is proved. O

Proposition 3.3.5. [mersenne| Let a,n be integers such that a > 1, n > 1 and a™ —1 is a prime.
Then a = 2 and n is a prime. So a™ —1 = 2" —1 = M, is a Mersenne prime and a Mersenne
number.

Proof. Since n > 1 there exist a prime p with p | n. Put b = av. Then b» —1=a*—1lisa prime
By 3.3.2, b — 1 divides b — 1. Since b > 1 and p > 1, b — 1 > b — 1 and since b — 1 is a prime,
b—1=1. Thus b= 2. Since b = a» we conlude that a = 2, % =1 and n = p is a prime. O

Lemma 3.3.6. [check prime| Let n be an integer with n > 1. Then n is not a prime if and only
of the exits a prime p with p | n and p < \/n.

Proof. The backwards direction is obvious. So suppose n is not a prime. Then there exists a € Z
with 1 < a <n and a | n. Thus n = ab for some b € Z. Note that also 1 < b < n and interchaning
a and b if necessary, we may assume that a < b. Then a2 <ab=mnandsoa< v/n. By 3.1.5 there
exists a prime p with p | a. Then p | n and p < a < y/n. O
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Chapter 4

Congruences

4.1 The Ring Z,

Definition 4.1.1. [modulo n| Let n € Z. Define the relation =, on Z by

=, :={(a,b) € Z x Z|n|b— a}
If a =, b we say that a and b are congruent modulo n and write
a=b (modn)
Note that a =, b iff a = b (mod n) and iff n divides b — a.
Lemma 4.1.2. [mod equiv] Let n € Z. Then =,, is an equivalence relation on Z.

Proof. Let a,b,c € Z. Note that 0On=0=a—a. Son |a—a, a =a (mod n) and =, is reflexive.
Suppose a = b (mod n). Then n | (b —a) and so also n | (—=1)(b—a) = a—0b. Thus b =a
(mod n) and =,, is symmetric.
Suppose that a = b (mod n) and b = ¢ (mod n). Then n | (b —a) and n | (¢ — b). Hence also
n|(b—a)+(c—b)=(c—a)and a = ¢ (mod n). Thus =, is reflexive. O

Definition 4.1.3. [def:congruence class] Let n € Z.
(a) [a] [a]lp:={b€Z]|a=b (mod n)}. [a], is called the congruence class of a modulo n.
(b) [b] Zn={laln|acZ}.

Note that [a], is the equivalence class of =, containing a.

If n =0, then n | b —a if and only if b — a = 0, that is b = a. So [a]o = {a} and Zg is essentially
the same as Z.

Ifn=1,thenn|b—aforall a,b € Z. So [a] =Z and Z; has just one element, namely Z.

Observe that n | b — a if and only if —n | b — a. Hence =,==_,,.

Lemma 4.1.4. [modulo and remainder| Let a,b € Z and n € Z*. Then the following are
equivalent.

(CL) [a] [a]n = [b]n

25
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(b) [b] a=b (mod n)
(c) [c] b=a+kn for somek € Z.
(d) [d] a and b have the same remainder when divided by n.

Proof. By 1.2.2 (a) and (b) are equivalent.

(b) = (c): Ifa=b modn,thenn|b—a, b—a=kn for some k € Z and b = a+ kn. So (c)
holds.

(¢)= (d): Leta=gn+rwithgqreZand0<r < |n|. Thenb=a+kn=(¢g+kn+r
and so r is also the remainder of b when divided by n.

(d) = (b):  Let r be the (same) remainder of a and b divided by n. Then a = gn + r and
b=gn+r for some ¢q,§ € Z. Thusb—a=(§—¢)nandson|b—aand a =b (mod n). O

Corollary 4.1.5. [zn] Let n € Z withn > 1. Then
(a) [a] Zn ={[0]n;[Un,. .- [n = 1]n}.

(b) [b] Let [r]n # [s]n for all0 <r < s <n.

(c) el [Zn|=mn.

Proof. (a): Let a € Z and r the remainder of a when divided by n. Then [a], = [r], and so (a)
holds. (b): Follows from 4.1.4.
(c) follows from (a) and (b). O

Lemma 4.1.6. [ring zn| Let a,b,a’,b',n € Z with

a=d (modn) andb="b" (mod n)

Then
a+bv = a+b (mod n)
ad—-bv = a-1» (mod n)
b = ab (mod n)

Proof. Since a = a/ (mod n) and b =" (mod n) there exist k,l € Z with a’ = a+kn and b’ = b+In.
Thus

a+b = a+b+(k+Dn
a—-bv = a-b+(k—In
ab = ab+ (al + kb+ kin)n
and so the Lemma holds. O
Definition 4.1.7. [def:ring zn| Let n be an integers. The binary operations "+7,7-” and 77 on
Z,, are defined by
[aln + [b], = [a+b,
la]ln, — [b], = [a—1b,
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Note that by 4.1.6 these binary operation are well defined.

Lemma 4.1.8. [polynomials modulo n] Let f € Z[z] and a,b € Z. If a = b (mod n), then also
f(@) = f(b) (mod n).

Proof. Let f =" ;cpa™ with ¢; € Z. If n = 0, then f(a) = ¢o = f(b) and the lemma holds. So

suppose n > 1 and put g = Z;:Ol cip1xt. Then f = ¢y + zg. By induction on n, g(a) = g(b) = p

mod n. Also ¢y = ¢y (mod n) and a =b (mod n). Hence by 4.1.6

f(a) = co + ag(a) = co +bg(b) = f(b) (mod n)

Example 4.1.9. [ex:no root] The polynomial f = x° — 2% + x — 3 has no root in 7Z.

We compute modulo 4

f(-1)= -1-1-1-3 =—-6%#0 (mod4)
f(0) = —3#0 (mod4)

F)= 1-1+41-3 =-2%#0 (mod4)
f2)= 32—-442-3 =27#0 (mod4)

Now let n be any integer. Then n is congruent to one of —1,0,1, or 2 modulo 4. Hence 4.1.8
and the above calculation, f(n) Z 0 (mod 4). Thus f(n) is not a multiple of 4 and in particular,
f(n) £0.

4.2 Solving One Congruence

Lemma 4.2.1. [divide congruence] Let a,b,n,t € Z such that t divides a,b and n and t # 0.
Then

Proof. We have

a=b (modn)
— b—a=kn for some k € Z
= %—%: 7 for some k € Z
— 2=! (mod?)

Lemma 4.2.2. [cancel modulo n] Let a,b,n,t € Z and suppose that ged (n,t) = 1. Then

a=b (mod n)
<~ at=0bt (mod n)
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Proof. We have
a=b (modn)
n|lb—a
n|(b—a)t since ged (n, t) = 1(2.1.19(b))
n|bt—at

1117

at =bt (mod n)
O

Lemma 4.2.3. [congruence| Let a,b and n be integers with n # 0 and put d = ged (a,n). Then
the linear congruence
ax =b (mod n)

has a solution if and only if d|b. If d|b and x¢ is a solution, then x is a solution if and only if
x =z +t% for some t € Z. In particular, the solutions form exactly d congruence classes modulo
n, namely [ro +t%],,0 <t < d.

Proof.
za=b (modn)  for somex € Z
= ar =b—ny for some x,y € Z
= ar+ny=>= for some x,y € Z

So by 2.1.20 az + ny = b has a solution if and only if d | b. Hence also za = b (mod n) has solution
if and only if d | b. Also if (z9,yo) is a particular solution of ax + ny = b, the (z,y) is a solution of
ax + ny = b if and only if

+tn d ta
rT=x — an =yo—t-
0 d Y=Y d

for some ¢ € Z. Thus then z is a solution of za = b (mod n)if and only if x = xo + % for some
t € Z. We have

y xo+tZ=xzo+t (modn)

t/n

= t5 % (mod n)

<~ t

t' (mod d) — divide by %, (4.2.1)

So the solutions of ax = b (mod n) from exactly d congruence classes modulo n, namely [z¢ +
t5]n, 0 <t < d. O

We will now introduce two methods to find the solution of a linear congruence az = b (mod n).
Method 1:

Step 1: Compute d = ged (a,b). Check whether d divides b. If d does not divide b, the linear
congruence has no solution. If d divides b, continue with Step 2.

Step 2: So assume now that d | b. In view of 4.2.1 we can divide the linear congruence by d to
obtain an equivalent congruence
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b

%x =3 (mod %)
Step 3: In view of Step 2 we now assume that ged (a,n) = 1. Compute e = ged (a,b). Since

e | a and ged (a,n) = 1 we have ged (e,n) = 1. So in view of 4.2.2 we can divide by e and obtain an

equivalent congruence

Tr =

ol

oo

(mod n)

Step 4: If a = +1, then z is a solution of ax = b (mod n) if and only if x = +b (mod n) and
we are done. Otherwise continue with Step 5.

Step 5a: Find an integer ¢ such that ged (¢,n) = 1 and the remainder (or least absolute
remainder) r of ca when divided by n is smaller than |a|. Let s be the remainder of ¢b modulo n.
Then by 4.2.2 we obtain equivalent congruence

en=cn  (mod n)

and

r=s (modn)

To find ¢, one can either take some guesses or use the Euclidean algorithm to find a solution of
ax + ny = 1 and then use ¢ = x (which gives a remainder of 1 then ca is divided by n)
Instead of Step 5a one can also use

Step 5b: Find an integer ¢ such that ged (a,b + ¢n) # 1 and use the equivalent congruence
a=b+cn (modn)

Note that such a ¢ always exists: Since ged (a,n) = 1, the equation ny = —b (mod a) has a so-
lution. Choose ¢ to be a solution of this equation, then a divides b+ cn and so ged (a,b + cn) = |al.
For calculations by hand, it is best to take some guesses for ¢ rather than solving that equation.

After Step 5a or Step 5b go back to Step 3. Note that in both case (Step 5a and Step5b) the
absolute value of a will have decreased and so this procedure will find the solution in finitely many
steps.

Example 4.2.4. [ex:method 1] Solving 30z = 18 (mod 14) using Method 1

Step 1: ged (30,14) = 2 and 2 | 18. So there are solutions.
Step 2: Dividing by 2 we obtain

152=9 (mod 7)
Step 3 ged (15,9) = 3. Dividing by 3 we obtain:

5¢=3 (mod7)

Step 4 Since 5 # +1, we have to continue.
Step bb We choose ¢ =1 and add 1 -7 to 3 to obtain
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52 =10 (mod 7)
Step 3 ged (5,10) = 5. Divide by 5:

x=2 (mod T7)
Step 4 The solution is =2 (mod 7).

Method 2: Method 1 works well for small numbers, where one easily compute ged’s and take
good guesses in Step 5. Method 2 is a deterministic algorithm similar to the Euclidean algorithm
2.1.12

Observe first that ne = 0 (mod n) for all x in Z. So the linear congruence ax = b (mod n) is
equivalent to the system of two linear congruences

C_1: nx 0 (mod n)

Co: ax = b (mod n)

Suppose inductively that we already defined linear congruences Cy : rpx = by (mod n) for
—1 <k <. Ifr; #0, let Cij41 be the linear congruence obtain by subtracting g;41 times congruence
C;—1 from C;, where ¢;41 is the integer quotient of r;_; then divided by 7;. So 7;41 is the remainder
of r;_1 when divided by r;.

Let m be minimal with r,, = 0. Comparing with the Euclidean algorithm we see that r,,_; = d,
where dg ged (a,n). Note that the system (C;_1,C;) is equivalent to (C;, Ciy1). Since the linear
congruence axz = b (mod n) is equivalent to the system (C_1,Cp) its is also equivalent to the system
(Cm—17 Cm)t

Cm-1: dz = by_1 (mod n)
Cp : 0z = bn (mod n)

By 4.2.3 the latter has a solution if and only if d | b,,,—1 and n mod b,,. In this case 4.2.1 shows
that the solution is

bm—l n
(mod E)

Example 4.2.5. [ex:method 2] Solving 30z = 18 (mod 14) using Method 2.

14z = 0 (mod 14)
30z = 18 (mod 14)
(2=0) 14z = 0 (mod 14)
(s=2) 2z = 18 (mod 14)
(u=7 0z = -7-18 (mod 14)

The last congruence always holds. Dividing the second two last congruence by 2 we obtain the
solution:
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=9 (mod T7)

which of course is the same as

x=2 (mod7)

4.3 Solving Systems of Linear Congruences
Corollary 4.3.1. [lem and congruence] Let A be finite set of integers. and x,y € Z. then
x=y (moda) forallac A

if and only if
x=y (mod lem(A))

Proof. Note that the following are equivalent

T=y (mod a) forallac A
aly — x forallae A
Ay —z
lem(A)ly — = by (2.1.17)
T=y (mod lem(A))
O
Corollary 4.3.2. [unique congruence| Let ny,na,...,n; be non-zero integers and let a1, ag, . . . ay,
be any integers. Suppose that the system of congruences
z=a; (modn;) for 1 <i<k
has a solution. Then the solutions form a single congruence class modulo lem(ny,na, ..., ng)

Proof. Let xq is a solution of the system of congruences. = € Z is a solution if and only if z = a;
(mod n;) for all 1 <4 < k. Since xg = a; (mod p;), this is the case if and only if » = 2o (mod yn;

for all i. By 4.3.1 this holds if and only if x = 29 (mod lem(ny,na, ..., nk)). O
Theorem 4.3.3 (Chinese Remainder Theorem). [chinese] Let ny,na,...,n; be pairwise coprime
non-zero integers and let a1, as, .. .ar be any integers. Then the system of congruences

x=a; (modmn;) for1<i<k
has a solution and the solutions form unique congruence modulo ning ...ng.

Proof. We will first show that the system has a solution. For this put n =n;...n; and ¢; = nﬂb =
Ny ...Mi—1Mi41 ... Nk. Since n; is coprime to each nj, j # i, n; is also coprime to ¢;. Thus by 4.2.3
the equation ¢;x = a; (mod n;) has a solution d;. Put

To = c1dy + codo + ...+ cpdy
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We claim that zg is a solution of the system of congruence. Let 1 < 4,5 < k with ¢ # j. Since
n; | ¢; we have ¢;d; = o (mod n;). Also by choice of d;, ¢;d; = a; (mod n;). Thus

c=0+0+...404+a;+0+...0=a; (mod n;)

and

T is a solution.

Since the n; are pairwise coprime, lem(ng, no,...,ng) = ning...nk, Thus the second statement
follows from 4.3.2 O]

Example 4.3.4. [ex:chinese] Find all solutions of

x=2 (mod3), z=3 (modb), z=2 (mod7)

’/l1:3 ’/l2:5 n3:7
(11:2 a2:3 a3:2
c1=5-7=3> co=3-7=21 c3=3-5=15

35d; =2 (mod 3) | 21de =3 (mod 5) | 15d3 =2 (mod 7)
—d1 =2 (mod3) | da=3 (mod?5) d3 =2 (mod 7)
dy = —2 dy = 3 dg = 2

Soxg=-2-354+3-21+2-15=—-70+63+ 30 = 23 is a solution. 3-5-7 =521 = 105 and so
x is a solution if and only if

x =23 (mod 105)
Example 4.3.5. [ex:linear chinese] Find all solutions of
3r=4 (mod7), 5zx=13 (mod 19)

We will first solve each of the congruence by themselves , using Method 2 from above.

C_q 7r=0 (mod7) 192 =0 (mod 19)
Co 3r=4 (modT) 5z =13 (mod 19)
C; @=2 z=-8 (mod7)|g=4 —zr=-52 (mod19)
4 r=-1 (mod7) x=-5 (mod 19)
Co q@3=3 0r=7 (mod7)|¢g3=5 0r=38 (mod19)

So we have to solve the system of congruences

xr=-1 (mod7), z=-5 (mod19)

We use the method from the Chinese remainder theorem
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TL1:7 n2=19
0,12—1 a2:—5
61:19 62:7

19d; = -1 (mod 7) | 7de = =5 (mod 19)
—2d;y =6 (mod7) | 7de =14 (mod 19)
diy =-3 dy =2

Thus xg = (—3) - 1942 -7 = —57+4 14 = —43 is a particular solution. 7-19 = 133 and so x is a
solution if and only if
x=—43 (mod 133)
Theorem 4.3.6 (General Chinese Remainder Theorem). [general chinese| Let ni,na,...ny be
non-zero integers and aq, ..., ax arbitray integers. Then the system of congruence
x=a; (modn;),1<k

has a solution if and only if

a; =a; (mod ged(n;,n;)), foralll <i<j<k
In this case the set of solutions forms a single congruence class modulo lem(ny,na, ..., ng).

Proof. The second statement follows from 4.3.2. For the forward direction of the first stament let
xo be a solution of the system of congruence. Then for each 1 <i < j < n..
a; =z9 (modn;) and aj =x¢ (mod ny)

Since ged (n;,n;) divides n; and n; this gives

a; =xo (mod ged(n;,n;)) and a; =x¢ (mod ged (n;,nj))

Thus also

a;, =a; (mod ged(ng,n;))

For the backward direction of the first statement let P the set of primes which devide at least
one of the n;’s. Then there exist non-zero integers e;,, 1 <7 < k, p € P such that

a; = H pei?
peP
For p € P define e, = max(es, | 1 <4 < k) and pick 1 < i, <k with e, = e;,5,. Set b, = a;,. By
the Chinese Remainder Theorem the system of congruences
r=b, (modp®),peP

has a solution, say x¢. We will show that x is also a solution of the original system of congruences.
For thislet 1 <i <k and p € P. Then
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onbp

and since e;, < e, also

(%)

By assumption

To = CLiP

a; = aip
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(mod p®r)

(mod p®r)

(mod ged (ng,n;,))

Note that p®* divides n; and since e;, < e, = e;,p, p“? also devides n;,. Thus

a; = CL,L‘p

Together with (*) this gives

To = a;

(mod p®7)

(mod p®i7)

for all p € P. Note that lem(p®»,p € P) is Hpeppeip =n;. Thus 4.3.1 gives

To = a;

(mod n;)

This holds for all 1 < ¢ < k and so zo is indeed a solution of x = a; (mod n;),1 <i < k. O

Example 4.3.7. [ex:general chinese]

T=5H

(mod 12) and z = 11

(mod 18)

12 =223,18 =2-3% ged (12,18) = 2-3 = 6,lem(12, 18) = 2232 = 36

Since 11 — 5 = 6 is divisible 6, we see that the system of linear congruence has a solution. 22|12

and 32]18, so the system is equivalent to

T=5

and so to

r=1

(mod 4) and = = 11

(mod 4) and x =2

(mod 9)

(mod 9)

We use the algorithm from the Chinese remainder theorem to solve the system

a; =1
c1=9
9d; =1 (mod 4)
di =1 (mod 4)

d =1

as = 2
=4
4dy =2 (mod 9)
8dy =4 (mod 9)
—ds =4 (mod 9)
dy =—4
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So

cidy+cdy=9-14+4-—4=9-16= -7

is a solution. This x is a solution if and only if

x=-7 (mod 36)

4.4 Polynomial congruences

Let f € Z[z] and n a non-zero integer. In this section we provide an algorithm to solve the polynomial
congruence
f(x)=0 (mod n)

It follows from 4.1.8, that if x( is a solution, then also any number congruent to zg modulo n is
a solutions. So the set of solutions is a union of congruence classes modulo n.

We first consider the case n = p®, where p is a prime and e € Z*. Observe that if z; is a solution
of f(z) = 0 (mod p?), then x; is also a solution of f(z) =0 (mod p'~!). This allows an inductive
approach:

Given a solution z; of f(x) =0 (mod p*) we need to find all solutions z;,; € Z such that

(%) f(@iz1) =0 (mod p™*') and ;11 =;  (mod p)’.

Unfortunately our inductive approach does not work for ¢ = 0 and we therefore assume that we
are somehow able to solve the congruence f(z) =0 (mod p). For small primes p, this can be done
by computing f(7) for all 0 < i < p.

Suppose now that ¢ > 1. Since z;4+; = x; (mod p*)

Tip1 = x; + kip’

for some k; € Z.
Let f =Y ", aa! with m € N and a; € Z. Note that

l
) l .
xé-{-l = (z; + kjip'L)l — Z <t> kfpltl‘i t

t=0

If t > 2, then it > 2i >4+ 1 and so p* =0 (mod p**1). Thus
(1
[ toit I—t — 1 g g -1 i+1
i = Z (t) kip“a; " = a; + kip'lx, (mod p*™7)
t=0
and so

flein) = Silomriy o ( )
Sitoan(xh +kp'aih) )
= (Zimowal) +kip' (X2 alh?fl) (mod p*1)

fla) + k() ( )
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Since f(z;) =0 (mod p’) we have f(x;) = ¢;p* for some g; € Z. Thus

f(@it1) = 0 (mod p**t)
gip’ + kop' f'(zi) =0 (mod p**)
qi + ki f' () =0 (mod p)
ki f' () =-q (mod p)

So (*) holds if and only of

() kif (z;) = —q¢; (mod p)
So there are three cases to consider:
Case 1 f'(z;) 20 mod p

Then k; is uniquely determined by (
(*) modulo p*t1.

**) modulo p and so there z;41 is uniquely determined by

Case 2 f'(z;) =0 mod p and ¢; Z0 (mod p).
Then (**) does not holds for ant k; and so also (*) does not hold for any x;41.

Case 3 f'(z;) =0 mod p and ¢; =0 (mod p).

Then (**) holds for all k; and so there are (modulo p) p choices for k; which fulfill (**). So any
241 with 2,41 = ; (mod p?) fulfills (**) and there are (modulo p**1) p choices for x;, 1 which fulfill

(*)-

Note that z; 2 1 (mod p) and so by 4.1.8 f'(z1) = f'(z;). So (**) is equivalent to

(% * %) kif'(x1) = —¢; (mod p)
So it suffices it compute f’(x1)
Example 4.4.1. [ex:polynomial congruence] Find all solutions of 2 —x?>+4x+1 =0 (mod 5°)

Put f(z) = 2® — 22 + 42 + 1. We start with the congruence

f(z)=0 (mod 5)

We have
f0) = 0—02+4-0+1 =1 (mod 5)
fay = 1¥-12+4+4-1+1 =5 (mod 5)
f2) = 25 -2244.241 =13 (mod 5)
f(=2) = (-2° - (-2 +4-(-2)+1 =-19  (mod5)
f(=1) = (-1 —-(-1)2+4-(-1)+1 =-5 (mod 5)



4.4. POLYNOMIAL CONGRUENCES 37

So the solutions of f(z) =0 (mod 5) are

1 =1 (mod5)and ;1 =—1 (mod 5)

Before proceeding, let’s compute:

fl(x) =32% —224+4=32>—-22x -1 (mod 5)
Thus f/(1)=3—-2-1=0 (mod 5) and f'(-1)=3+2—-1= -1 (mod 5), We record:

f/(1)=0 (mod5)and f'(—1) = -1 (mod 5)
We now compute all solutions of

f(z)=0 (mod 5%)
Let o = x1 + 5k1 and f(x1) = 5g1. We need to solve

kif'(z1) = —q1  (mod 5)
If 21 =1, then f(z1) =5=1-5and f(xz1) =0 (mod 5). Thus ¢; =1 and we get

k1-0=-1 (mod 5)
This has no solution.
If 2y — 1, the f(x1) = —-5=—-1-5and f(x1) = —1 (mod 5). Thus ¢; = —1 and we get
k- (=1)=—(-1) (mod 5)
Thus k1 = —1 (mod 5) and so z2 = x1 + 5k; == —1 + 5(—1) = —6 (mod 25). So f(z) =
(mod 5%) has a unique solution modulo 52 namely
3= —6 (mod 5%)

We are now able to compute all solutions of

f(x)=0 (mod 5%)

We have 22 = —6, 23 = 2 + 25k2, f(22) = (- 6)3 — (—6)2+4(—6)=1=-216—-36—24+ 1=
—215 — 60 = —275 = (—11)25. So ¢z = —11. Also f/(—6) = f'(—1) = —1 (mod 5). So the
congruence ks f'(x2)
equiv — g2 (mod 5) is

—ko = —(—11) (mod 5)
and so kg = —11 = —1 (mod 5). So z3 = x5 + 25ky = —6 — 25 = —31 (mod 53)

So f(z) =0 (mod 52) has a unique solution modulo 5% namely

r3=-31 (mod 5%)

Solving f(z) =0 (mod n) for an arbitrary n € Z":
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If n is not a prime power, write n = p{*...p;*. Then solve the equation f(z) = 0 (mod p{*).
Say i1, ...z, are the solutions. Then for each 1 < j; <r;, 1 < i < k use the Chinese Remainder
Theorem to solve

r =5, (modpf),1<i<k

to obtain the rirg ...y solutions of f(x) =0 (mod n).



Chapter 5

Groups

5.1 Basic Properties of Groups

Definition 5.1.1. [def:binary operation)]

(a) [a] A binary operation on a set S is a function * : S x S — T. We denote the image of (a,b)
under x by a b or ab.

(b) [b] A binary operation % : S x S — T is called

(a) [a] closed if axbe S foralla,be S.
(b) [b] associative if its closed and a * (b*c) = (axb) x ¢ for all a,b,c € S.
(¢) [c] commutative if a xb="bx*a for all a,b € S.

(c) [c] Let * be a binary operation on the set S. An identity for x is an element e € S with
axe=a=¢exa foralla€Ss.

(d) [d] Let = be a binary operation on S and e an identity for *. Let a and b € S. Then b is called
an inverse of a with respect to x if axb=e =b+*a. If a has an inverse in S then a is called
invertible with respect to *.

(e) [e] Let x be a binary operation on the set G. Then (G, x) is called a group if
(i) [i] * is closed;
(i) [ii] = is associative;

(i) [iii] * has an identity e in G; and

(iv) [iv] each element a € G is invertible with respect to *.

(f) If] A group (G,x) is called abelian if * is commutative.

(N, +) is closed, associative, commutative and has an identity. But 0 is the only element with
an inverse.

(Z,+) is a abelian group.

(N, —) is not closed, not associative, not commutative and has no identity. (so we can’t even talk
about inverses)

Let R* be the set of non-zero real numbers. Then (R*,-) is a group.

39
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Lemma 5.1.2. [unique identity] Let x be a binary operation on the set S with and identity e.
(a) [a] e is the only identity of *.

(b) [b] Ifa €S is invertible and x is associative, then a has a unique inverse in S. We will denote

the unique inverse by a~ .

Proof. (a) Let f be an identity in S. Then ef = e since e is an identity and ef = f since f is an
identity. So e = f.
(b) Let b and ¢ be inverse of a. Then

b=eb=(ca)b=c(ab) =ce =c

Lemma 5.1.3 (Cancellation Law). [cancellation] Let G be a group and a,b,c € G. Then

ab = ac
~— b=c

<= ba =ac

Proof. Suppose ab = ac. Then a~!(ab) = a~!(ac) and so (a~ta)b = (a"ta)c, eb = ec and b = c.
If b = ¢, then clearly ab = ac. So the first two statements are equivalent. Similary, the last two
statement are equivalent. O

Corollary 5.1.4. [eq in group] Let G be a groups and a,b € G. Then
(a) [a] The equation ax = b has a unique solution in G, namely x = a~'b.
() ] (@) =a.

(c) [c] (ab)~t=b"ta"1t.

Proof. (a): By the Cancellation Law, axz = b if and only if a~'(az) = a~'b and so if and only if
x=a"'b.
(b) By definition of a1,

and so

(c) (ab)(b~ta™t) :'((ab)lfl)a*1 = (a(bb™1))a"t = (ae)a™! = a"! = e = (ab)(ab)~! and so by
(a) b= ta=! = (ab)~L. O

Definition 5.1.5. [defisubgroup] Let G be a group and H a subset of G. Then H is called an
subgroup of G and we write H < G provided that

(i) [a] e€ H;
(i) [b] abe€ H for alla,be H; and
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(iii) [c] a=t € H for alla € H

Note that if H is a subgroup of G, then H together with * |« g is a group.
For n € Z let nZ = {nm | n € Z}. Then nZ is subgroup of Z with respect to addition. Also
a € nZ if and only if n|a.

Definition 5.1.6. [def:cosets| Let G be a group and H < G

(a) [a] The relation =5 on G is defined by a =g b if ab=! € H.

(b) [b] Forae H, Ho={ha|h € H}. Ha is called the right coset of H in G containing a.
(c) [c] G/H={Ha|ae€G}.

Consider for example the subgroup nZ of (Z,+). Let a,b € Z. Then the inverse of b with respect
of 7 +7 is —b. So

a=pzb
— a+(-b)enZ
— a—benZ
= nla —b
<— a=,b

Lemma 5.1.7. [equiv h] Let G be a groups and H a subgroup of G. Then =g is an equivalence
relation of G.

Proof. Let a,b,c € G. Then aa™' =e € H and so a = a. So =p is reflexive.
If a =p b, then ab™! € H and so also (ab=1)"! € H. Now (ab=1)"!' = (b7})"la=! = ba! and
so ba~! € H and b = a. Thus = is symmetric.
Suppose that a = b and b =g c. Then ab~! € H and bc=! € H. Thus (ab=!)(bc™! € H. Since
(ab™ M (be™) = ((ab™H)b)e™! = (a(b™'b))c™! = (ae)c™ =ac™!

we have ac™! € H and so a =g ¢. Thus =p is transitive and hence an equivalence relation. O]

Theorem 5.1.8 (Lagrange’s Theorem). [lagrange] Let G be a groups and H a subgroup of G.
Then

G| = |G/H| - |H|
So if G is finite, then |H| divides |G]|.

Proof. Since each element of G lies in exactly one equivalence class of =g and G/H is the set of
equivalence classes of =g we have

Gl= Y IT|

TeG/H

We will show that |T'| = |H| for all T € G/H. Indeed, let g € G with T'= Hh and define

a:H— Hg,h — hg
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If t € T, then by definition Hg, t = hg for some h € H and so t = «(h). Thus a(h) =t and « is
onto. let h,k € H with a(h) = a(k). Then hg = kg and so by the Cancellation Law, h = k. Thus
a is 1-1.

Since « is 1-1 and onto, |H| = |T'|. Thus

Gl= > ITI > |H|=|G/H]| |H|

TeG/H TeG/H

Definition 5.1.9. [def:iorder| Let G be a group and g € G.

(a) [z] Forn € Z% define g™ inductively by ¢° = e and g"T' = gbg. Also define g~™ = (g~ )™.
(b) [a] (g):={g"|n € Z}. {(g) is called the subgroup of G generated by G.

(¢) [b] G is called cyclic if G = (h) for some h € G. Such an h is called a generator for G.

(d) [c] We say that g has finite order if there exists n € Z* with g" = e. In this case the smallest
such n is called the order of g and is denoted by |g|. If no such n exists we say that g has infinite
order and write |g| = oo.

(e) [d] Cn=(Zn,+).
By Homework 2, C), is a group and [1], has order n. Thus C,, = ([1],,) and so C,, is a cyclic
group.
Lemma 5.1.10. [order n] Let G be a group, g € G and k,l € Z. Then
(a) [a] g**'=g"d".
(b) [b] (g")t=g7".
(c) le] g =(g")".
(d) [d] (g) is a subgroup of G.
Proof. (a) and (b) If | = 0, then gF*! = gk = gke = gF¢¥ = gFgl.

Suppose [ = 1 and k& > 0. The by definition g*¥*! = ¢**! = g*¢g = g*¢'. Suppose | = 1 and
k= —1. The g**' = g'=1 = g% = g7 1g = ¢g*¢'. Suppose | =1 and k < —1. Then

—k—1 —(k+1) _ k+1 _ K+l

9" =g"g=("")Mg=("") "9 lg=(g7") 9=y
Suppose (a) holds for some [ > 0. Then using the “1=1” case twice:

g 9 =g =(4"¢"g = ¢"(d'9) = g"¢'""
So (a) holds for I + 1 and so by the principal of induction, for all [ € N and all k € Z.

We conclude that for all [ € N, g7lg! = g7 *! = g' =eandso (¢') ' =g 'and (¢7)) ' =¢' =
g~ (=D Thus (b) holds.

Suppose that | < 0. Then

k+(1+1) _ (k)41

gFH(gh ™t = ghtigt = gD+ = gh

and multiplying with g’ from the right give g**! = gFg!. Thus (a)lso holds for negative I.
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(c) If I = 0, both sides are equal to e. Suppose (c) holds for some positive [ € N. Then

gk(l+1) _ gkl+k _ gkl +gk _ (gk)l % (gk)l _ (gk)l+1
and so (c) holds for all [ € N. If [ < 0, then

=) =) T =TT =TT =Y
(d) Let a,b € (g). Then a = g¢* and b = a' for some k,l € Z. Since e = ¢°, e € {g).
ab=g*g' = g"* € (9) and a=! = (¢*)"! = g% € (g). Thus (g) is indeed a subgroup of G. O

Lemma 5.1.11. [order n ii] Let G be a group and g € G an element of finite order n. Let k,l € Z.
(a) [a] g* =g' < k=1 (mod n).
(b) [b] ¢* =e <= nlk.
k| _ n
(c) If] 19" = ged(kn) °
Proof. (a) Suppose first that k =1 (mod n). Then k =1 + mn for some m € Z and so
L,m

=g'(g")" =glem" =4".
-k

gk _ gl+mn
Suppose next that g* = ¢' (mod n). Then e = g~*g! = g'=*. let r be the remainder of | — k
when divided by n. Then ! — k =r (mod n) and 0 < r < n. By the first paragraph

gr — glfk —e.
Since n is the smallest positive integer with ¢ = e and since ¢" = e and r < n, r cannot be a
positive integer. Thus r = 0. Hence k — 1 =0 (mod n) and so k =n (mod n).
(b) g* = e iff g* = ¢° iff k =0 (mod n) iff n|k.
(c) Put d = ged (k, n).

(g") =e
— gMl=e
=  nlkl by (b)
= ak
= = since ged (%,%) =1
and so |g¥| = 2. O

Definition 5.1.12. [def:thom] Let G and H groups and f : G — H a function.
(a) [a] f is called a homomorphism (of groups) if f(ab) = f(a)f(b) for all a,b € G.
(b) [b] f is called an isomorphism if f is a 1-1 and onto homomorphism.

(c) [c] We say that G is isomorphic to H and write G = H if there exists an isomorphism from G
to H.

Lemma 5.1.13. [order n iii] Let G be a group and g € G an element of finite order n. Then
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(a) [a] (g) = C,.
(b) o] lgl =g)l.
(c) [c] (9)={e,9,9° ..,9" '}

Proof. (a) Define

a:Cp —(g), [k]n — gk

We will show that « is well-defined isomorphism of groups.
Let k,l € Z. Then

[k]n = [l]n
<~ k=1 (modn)
= 9" =g by (a)
The forward direction shows that « is well-defined; and the backward direction that « is 1-1. By
definition of (g) each element of (g) is of the form g* and so « is onto. We have
a([Kn + [lln) = o[k +1]n) = 6" = g*¢' = a((k]n)a([l])
and so « is an homorphism. This shows that « is an isomorphism and so (Cy,) = (g).

(@)
(b) We have |g| =n = [Cy,| = [(g).

(c) By (a) e,9,9%,...g" ! are n pairwise distinct elements. By (b), (g) has exactly n elements
and so (c) holds. O

Corollary 5.1.14. [lagrange for elements| Let G be a finite abelian group and g € G. Then g
has finite order, |g|’|G\ and ¢!l = e for all g € G.

Proof. By Lagrange’s Theorem (g) divides |G| and by 5.1.10 |g| = |{g)]. O
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The group U,, of units in Z,

6.1 Fermat’s Little Theorem
Definition 6.1.1. [un] Let n € Z*.

(a) [a] Then U, = {[a]n | a € Z,gcd (a,n) = 1}.
(b) [b] ¢(n) = |Un|.

For example Us = {[1]6, [5]6} and ¢(6) = 2.
Us = {[1],[3], 5], [7]} and ¢(8) = 4

Lemma 6.1.2. [zn*| Letn € Z™.

(a) [a] (Un,-) is an abelian group.

(b) [b] a* =V for alla € Z and k,l € N with k =1 (mod ¢(n)).

(c) [c] (BEuler’s Theorem) a®™ =1 (mod n) for all a € 7 with ged (a,n) = 1.

Proof. (a) Let a,b € n with ged (a,n) =1 = ged (b,n). Then also ged (ab,n) =1 and so [a] - [b] € U,
for all [a], [b] € U,,. Thus U, is closed with respect to -.

Since multiplication in Z is commutative and associative, multiplication in U, is also commutative
and associative.

[1] is an identity element,

Since ged (a,n) = 1, the equation

ar =1 (mod n)

has a solution ¢. Then [a][c] = 1 = [c][a] and so [a] is invertible. U, is a group. (b) By 5.1.14, |[a]|
divides |U,| = ¢(n). So k =1 (mod ¢(n)) implies k =1 (mod |[a]|) Hence (a) follows from 5.1.11(a).
(c) follows from (a) O

Since ¢(8) = 4 and 102 =2 (mod 4), 512 =52 =25 =1 (mod 8).
Lemma 6.1.3. [little fermat] Let p be a prime.
(¢) [a] Up=A{lnlp |ptn}={[1];[2,....[p = 1]}

45
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(b) [b] é(p) =p—1

(c) [c] n*¥ =n! (mod p) for alln € Z and k,1 € N with k =1 (mod p — 1) and p{n,
(d) [d] (Fermat’s Little Theorem) n?~! =1 (mod p) for all n € Z with p{n.
(e) [e] n? =n (mod p) for alln € Z.

Proof. Let n € Z. Since p is a prime ged (n,p) = 1 iff p{ n. So (a) holds.

By (a) ¢(p) = |Upy| =p — 1. (c) and (d) follows from 6.1.2(b), (c) and (b).

To proof (e), let n € Z. if p /n, then by (c), n?~! = 1 (mod p) and multiplying with n gives
n? =n (mod p). If p|n. The n =0 (mod p) and so also n? =0 (mod p). So again (e). holds. O

Example 6.1.4. [ex:fermat 1] Compute 11'2 modulo 13 and 5°7 modul0 17

By Fermat’s Little Theorem 112 = 1 (mod 13).
Since 67 = 3 (mod 16) we have modulo 17:

57=5=25.5=8.5=40=6 (mod 17)
Example 6.1.5. [ex:fermat 2| Find all solutions of 13 + 27 + 23+ 2 +1 =0 (mod 5):

We compute in Zs:

e+ 2"+ 20 +2 =0
— 2+ 234+22+2 =0
= 422 +2r+2 =
0: 0+04+0+3 £0
1: 1414242=6 #0
2: 84444+42=18 #0
—2: —8+44-442=-6 #£0
—1: —1+1—-2+2 =0

Thus '3 + 27 + 2% + 2 +1 =0 (mod 5) if and only if z = —1 (mod 5).
Lemma 6.1.6. [21-1] Let I and m be coprime positive integers. Then 2! —1 and 2™ —1 are coprime.

Proof. Let d = ged (2l —1,2™m — 1). Then

(%) 2'=1 (mod d)and 2™ =1 (mod d)

Since d is odd, [2]4 € Uy. Let e be the order of [2]q € Uy. From 5.1.11(b) and (*) we conclude
that e | [ and e | m. Since ged (I,m) = 1 this gives e = 1. Thus 2! = 1 (mod d) and d|1. Thus
d=1. O

Lemma 6.1.7. [unique order 2] Let A be a finite Abelian group with a unique element t of order

2. Then
[TAa=t

acA
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Proof. Let a € A. Then a = a~! iff a® = ¢ iff @ has order 1 or 2 and so iff a = e or a = t. So we can
find elements ay,ao, ..., a; such that

A={e,t,ar,a;t as,a;5",.. .ak,alzl}
and each element of A is listed excatly once. Thus

Ha:e~t~a1'af1~...~akoa;1
a€A

and so

II=¢
O

Lemma 6.1.8. [order 2| Let p be an odd prime. U, has exactly one element of order 2, namely
(=1

Proof. Let a € Z. Then

a®>=1 (mod p)

pla®—1

pl=(a+Da—1)
pla+lorpla—1

a=-1 (modp)ora=1 (modp)

Since [1], has order 1, [—1], is the unique element of order 2. O
Lemma 6.1.9. [wilson| Let n € Z with n > 1. Then n is a prime if and only if (n — 1)! = —1
(mod n).

Proof. Suppose first n = p for a prime p. If p=2. Then (p —1)! =1 = —1 (mod n). Suppose that
p is an odd prime. Then by 6.1.8, [—1], is the unique element of order 2 in U, and so by 6.1.7

H a=[-1

acUp,

Since U, = {[1]p, [2]p, - - - [p — 1]} this says

p2lp-.-[p— 1, =[-1]p
and so
(p—1!'=-1 (mod p)

Suppose next that (n — 1)! = —1 (mod n) and let m | n with 1 < m < mn. Then (n —1)! = -1
(mod m) and m is one of the factor of (n—1)!. hence (n—1)! =0 (mod m). Thus —1 =0 (mod m),
m|1and m =1. Son is a prime O
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Lemma 6.1.10. [sqrt -1] Let p be an odd prime. Then
22 +1=0 (mod p)
has a solution in Z if and only if p=1 (mod 4).

Proof. Let k = %. Then p = 2k + 1 and since p is odd, k is a positive integer.

Suppose first that 22 +1 =0 (mod p) for some x € Z. Then 22 = —1 (mod p) dp J[ x. Thus
by Fermat’s Little Theorem 6.1.3, xP~! = 1 (mod p). Since 2P~ = 22 = (22)F = ( 1)* (mod p)
we conclude that (—1)¥ =1 (mod p). Since p is odd, this implies that k is even. So k = 2I for some
l€eZandp=2k+1=4l+1. Thus p=1 (mod 4).

Suppose next that p = 1pmod4. By Wilson’s Theorem

(p—D!'=-1 (mod p)
1-2-...-k-k+1-...-p—2-p—1=-1 (mod p)
1-2-...-k-p—k-...-op—2-p—1=-1 (mod p)

1-2-...-k-—k-...-=2-=1=-1 (mod p)
(-0%1-2-...-k-k-...-2-1=—1 (mod p)
(=D)*(EN?= -1 (mod p)

Since p = 1 (mod 4), k is even. Then (—1)* = 1 and so (k!)2 = —1 (mod p). Hence = = k! is an
solutions of 22 + 1 (mod p). O

Consider p = 13. Then k& = 6 and

6l=1.2-3-4-56=(2:6)-(3-4)-5=-1--1-5=5 (mod 13)
So z =5 is a solution of 2 + 1 =0 (mod 13). Indeed 5% = 25 = —1 (mod 13)

6.2 Pseudo Primes and Carmichael Numbers

Definition 6.2.1. [def:pseudo prime| Let n € Z such that n > 1 and n is not a prime. Then

(a) [a] n is called a Carmichael number if

a”=a (mod n)

for all integers a.

(b) [b] n is called a pseudo prime if
2" =2 (mod n)

We claim that 341 is a pseudo prime. Indeed 341 = 11 - 31 and so 341 is not a prime. Also
2341 = 2 (mod 2) if and only if 234! =2 (mod 11) and 234! =2 (mod 31). Since 341 =1 (mod 10)
we have 234! = 22 = 1 (mod 11). Since 341 = 330 + 11, 341 = 11 (mod 3)0 and so 2341 = 211 =
25.2°.2=1-1-2=2 (mod 31). So indeed 341 is a pseudo-prime. The next lemma now shows
that there are infinite many pseudo primes:

Lemma 6.2.2. [pseudo primes| Let n be a pseudo prime. Then 2™ — 1 is a pseudo prime. In
particular, there are infinitely many pseudo primes
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Proof. By 3.3.5 since n is not a prime, also 2" — 1 is not prime. Since n is a pseudo prime, 2" = 2
(mod n) and so 2" = nk + 2 for some k € Z. By 3.3.2, 2" — 1 divide 2"% — 1. Hence 2"F =1
(mod 2™ — 1). Thus modulo 2" — 1

22" =1 — gnk+l —9nk9 — 9 (mod 2" — 1)
So 2™ — 1 is indeed a pseudo prime. O

Definition 6.2.3. [def:squarefree] n € Z is called a square free if 1 is the only positive integers
m with m? | n.

Observe that an integer large than 1 is square free if and only if its a product of distinct primes.

Lemma 6.2.4. [carmichael] Suppose n is a square free integer, n > 1 and p—1 | n— 1 for all
prime divisors p of n. Then n is a prime or a Carmichael number.

Proof. Let n = pip2...px, where each p; is a prime. Since n is square free, p; # p; for all 1 < i <
j < k. Thus lem(p1,p — 2,...¢r) = n and

a”=a (mod n)

for all a € Z if and only if

an

a (mod p;)

forallaeZ and all 1 <7 < k.
By assumption p; — 1 |n—1 and son =1 (mod p;). Thus by 6.1.3(c) a™ = a* for all a € Z and
all 1 <i < k. If n is not a prime, we conclude that n is a Carmichael number. O
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Chapter 7

Units in Rings

7.1 Basic Properties of the Group of Units

Definition 7.1.1. [defiunit] Let (R,+,-) be a ring identity 1. Then a € R is called a unit if there
exists b € R with ab= 1= ba. U(R) denotes the set consisting of all the units in R.

Lemma 7.1.2. [unit] Let R be a ring with identity. Then for each unit a in R there exists a unique

element b € R with ab =1 and a unique element ¢ € R with ca = 1. Moreover b = ¢. This unique

elements of R is called the inverse of R and is denoted by a™'.

Proof. By definition of a unit there exists an element with d in R with ad = da = 1. Now let b and
¢ be any elements in R with ab =1 = ca. Then

b=1b= (ca)b =c(ab) =cl =¢
With d in place of ¢ we see that b = d and with d in place of b we also get a = d. O
Lemma 7.1.3. [u(r)] Let (R,+,) be a ring with identity. Then (U(R),-) is a group.

Proof. Let a,b € U(R). Then (ab)(b=ta™!) = (a(bb™1))a™t = (al)a™! = aa~! = 1 and similarly
(b=ta=1)(ab) = 1. Thus ab € U(R) and so U(R) is closed under multiplication.

Since R is a ring, multiplication is associative.

Since 1-1 =1, 1 is a unit. So 1 € U(R) and so U(R) has an identity with respect to multiplication.

Let a € U(R). Then aa™! =1 =a"'a. So a is an inverse of a=! and a~! € U(R). Thus a has a
multiplicative inverse in U(R).

We verified the four axioms of a group and so (U(R),-) is a group. O

Lemma 7.1.4. [znm] Let n and m be positive integers with ged (n,m) = 1. Then

Ly =2l X Lo, aS TINGS

Proof. Define

a:Z — Ly X Lmya — ([a]n, [a]m)-

We have

o1
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ala+b) = ([a+ b, [a+ blm)

([a)n + [Bln; [alm + [blm) = ([]n; [a]m) + ([l [blm) = a(a) + a(b)

and

a(a-b) = (la-bln, [a-blm) = ([aln - [bn, [a]m - [blm) = ([aln, [alm) - ([bn, [blm) = a(a) - a(b)

Thus « is a ring homomorphism
Let a € Z. Then

a € ker o
ala) =0
([a]n, [a]m) = ([0, [0]m)
[a]n = (0] and [a]m = ([0]m)
nla and mla
nmla since ged (n,m) =1

a = knm for some k € Z

[ A A

a € nmZ.
Thus ker & = nmZ. Hence by the First Isomorphism Theorem for Rings:

Lo = Z/nmZ =7/ kera 2 Im «

In particular, | Im o] = |Zpm| = nm.
Since Ima < Zy, X Zy, and |Zy, X Zy,| = nm we conclude that Im o = Z,, X Z,,,. Thus

Ly, = Loy X Loy,
O

We remark that we just obtained a new proof for the Chinese Remainder Theorem. Since « is
onto for any b, ¢ € Z there exists x € Z with ([z],, []m) = ([0]n, [c]m), that is with 2 = b (mod n)
and = ¢ (mod m). Also since ker & = nmZ, this = is unique modulo nm.

Lemma 7.1.5. [iso and units| Let R and S be rings with identity.
(a) [a] Let a: R — S be an isomorphism of rings. Then
B:U(R) = U(S),r — a(r)
is a well defined isomorphism of multiplicative groups.

(b) [b] U(Rx S)=U(R) x U(S).
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Proof. (a): Let r € R.
We claim that r is a unit in R if and only if «(r) is a unit in S. So suppose that r is a unit.
Then rt = 1 = tr for some t € R. Thus

a(r)a(t) =a(rt) =a(l) =1
and similarly a(t)a(r) = 1. Thus «a(¢) is a unit with inverse a(r).

Since a~! is an isomorphism from S to R, a similar argument shows that if a(r) is unit in S
with inverse say u, then r is unit in R with inverse a~!(u).

This completes the proof of the claim. In particular, a(r) € U(S) for all r € U(R) and so 3
is well-defined. Since « is a ring homomorphism, 3 is a group homomorphism. The map U(S) —
U(R),s — a~!(s) is the inverse of 3 and so 3 is a bijection. Thus 3 is an group isomorphism and
(a) holds.

(b): Let r € Rand s € S. Then

(r,5) € U(R x 8)

<= there exists (u,v) € R x S with (r,s) - (u,v) = (1,1) = (u,v) - (r,s)
= there exist u € R,v € S withru=1=wur and sv =1 =wvs
— r € U(R),s € U(S)
— (r,s) € UR) x U(S)
O
Lemma 7.1.6. [unm]| Let n and m be positive integers with ged (n,m) = 1. Then
(a) [a] Upm = U, X Uy, as abelian groups.
() [b] B(nm) = B(n)d(m).
Proof. (a) By 7.1.4 we have Zy,, & Z,, X Z, as rings. Thus by 7.1.5
Unim = U(Znm) = U(Zy, % Zn) = U(Z) X U(Zn) = Up X Uy
(b) é(rm) = [Unmn| 2 1Un % Una| = Ul [Unn| = 6(m)(m). =
Lemma 7.1.7. [phin]
(a) [a] Let p be a prime and e a positive integer. Then ¢(p¢) = p¢ —p*~1 = p~(p —1).
(b) [b] Letn > 1 be a integer and suppose n = pi'ps? ...py*, where p1,...,py are pairwise distinct

primes and ey, ea,...e, are positive integers. Then
¢(n) =pi (1 = Dp3 (2 = 1) i T (o — 1)

Proof. (a) Note first that ¢(p®) = |Upe| = {[a]pe | 0 < a < p°, ged (a,p®) =1}. Let 0 < a < p°. Then
ged (a, p®) # 1 iff pla iff @ = pb for some 0 < b < p°~1. So among the p® integers a with 0 < a < p®,
there are p°~! integers with ged (a,p®) # 1. Thus ¢(p°) = p¢ — p¢~*

(b) From 7.1.6(b) and induction we have

¢(n) = ¢(p1")d(P) - - (p")
and so (b) follows from (a). O
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7.2 Public key cryptography

We define a code to be bijection f from a set W to a set V. Given a code f, then a decoding of f
is the inverse function f=! of f..

Examples:

W =V={AB,C,-, 7},
f:tA—-BB—C,....,Z— A
ff':'A—-ZB—-AC—B,...Z =Y.

W set of sequence of 5 symbols found on a regular keyboard,
f(5152835455) = 5385525154
[ (tatatstats) = tatstitsty

W =V = Zag
flx)y=az+1.
fl=z-1

W = V = ZQG
flz)=5x+3
fH @) = =5(z - 3)

paprime, 1 <e<p—-1,V=27Z,=W,

flx) = z°

what is g7 We need z = f~1(f(z)) = 9. Since 2! = 2% (mod p). if eg =1 (mod p — 1), we
can choose g to be a solution of ex =1 (mod p—1) .

In a secret code f is only known to the sender and receiver. But this requires secretly sharing
information between the sender and receiver.

In a public code f(x) is know to the public, but f~!(z) is only know to the receiver. For this to
work in must be impossible to computer the inverse of f(x). (At least computing the inverse must
take to long to be useful.)

Let n, k be positive integers with ged (k, ¢n) = 1 and consider the function f : U,, — U,,z — z*.
To decode f we need to find an integer [ such (2*)! = z for all € U,. By Euler’s Theorem 6.1.2(c)
we just need kl =1 (mod ¢(n)). Computing the inverse of k modulo ¢(n) is easy. But computing
¢(n) is not easy. Indeed to find ¢(n) we has to compute the prime factorization of n which does
take a very long times to do. So f is a good candidate for a public code. One chooses a few big
prime pi,pa,...pr, Computes the n = p1,pa...pk, chooses a number k coprime to ¢(n) and then
publicizes n and k. Essentially this works, since multiplying numbers is very fast, but factorizing
numbers is very slow.

7.3 The structure of the groups U,

In this section we investigate the structure of the groups U,. In particular, we will determine for
which n, U, is cyclic.
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Definition 7.3.1. [def:primitive] An element a € U, is called primitive if U,, = (a)

Observe that U, has primitive element if and inly of U, is cyclic. Also a € U, is primitive if and
only if |a| = ¢(n).

Notation 7.3.2. [sum dn] Let f : Z+ — R be a function. Then
D @)= > fm)
d|n deZ+|d|n

Lemma 7.3.3. [sum phi n] Let n € ZT. Then
D o) =n
d|n

Proof. Let D ={d e Z* |d|n}, S={1,2,3,...,n} and d € D put Sqg = {s € S| ged(s,n) = Z}.
Let s in S. The s lies in a unique Sy namely

SESd@d:m

So it suffices to prove that |Sq| = ¢(d).

a €Sy
— 1 <a<mn,ged(a,n)=5%
“— a:b%,lgbgd,gcd(b%’n):%

— a=b21<b<dgd(bd =1 divide by g Homework 1 #5

Hence |Sy4| = ¢(n). O

Lemma 7.3.4. [order in up] Let p be a prime and d a positive divisor of p — 1. Then U, has
ezactly ¢(d) elements of order d. In particular U, has ¢(p — 1) primitive elements and U, is cyclic.

Proof. Let Qg = {a € U, | |a] = d} and put ¢(d) = |Q4|. We will first show that

1°. [1]  4(d) = 0 or ¢(d) = ¢(d).

We may assume that ¢(d) # 0 and so there exists a € Q(d). Then (a*)¢ = (a?)? = 1 for all
0 < i < d and so each a’ is a root of the polynomial ¢ — 1 in Zy[z]. By 5.1.11(a), a’ # o’ for
0 <i<j<pandsince z? — 1 has at most d roots in Z,, So {a’ | 0 < i < p} is a complete set of
roots of 2% — 1. Since every element of 4 is a root of 2% — 1 we conclude that

Qq={a"|0<i<p,la'|=d}

From 5.1.11(c) we have |a’| = m and so |a’| = 1 if and only if ged (i, d) = 1. Hence

Qq={a"|0<i<p,ged(i,d) =1}
and so ¥(d) = |Q4] = ¢(d). Thus (1°) holds.
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2. (2] Ty v(d)=p-1

Let a € U, and d = |a|. Since a?~! =1, d | p — 1. Hence each of the p — 1 elements of U, lies in
exactly one of the sets 4, d | p— 1. Thus (2°) holds.
From (2°) and 7.3.3 we have

S wd=p-1= Y 6()
d|lp—1 d|lp—1

By (1°) 9(d) < ¢(d) for all d | p — 1 and it follows that 1(d) = ¢(d) for all d | p — 1. O

Lemma 7.3.5. [order mod pn| Let a, n and p be integers with n positive and p a prime. Suppose
ged (a,n) =1 and p|n. Then

(a) [a] Let d = |[a]n|, the order of [a], in Uy. Then |[alpn| is either d or dp.
(b) [b] Let m € Z* with a™ =1 (mod n). Then a?™ =1 (mod pn).

Proof. (a) Let f = |[a]pn|. Then a/ =1 (mod pn) and so also a/ =1 (mod n). Thus d | f.
Since a? =1 (mod n), a® = 1 + kn for some k € Z. Thus by the binomial theorem

¥ = (a®)? = (1 +kn)P =3 (7;) (kn)' = 1+ pkn + i (7;) kini

=0 =1

Observe that pn divides pkn and since p|n, it also divides n? = n’~n for all i > 2. Thus a® =1

(mod pn) and so f | dp. Since d | f, this implies 5 | p. Since p is a prime we conclude that 5 =1

or pand so f =d or d = dp.
(b) Since ¢™ =1 (mod n), d | m. Thus dp | pm and so by (a) |a|p, | pm and so a?™ =1
(mod pn).

Lemma 7.3.6. [primitive elements] Let p be an odd prime and a € 7Z.
(a) [a] If [a]p is a primitive element in Uy, then [al,2 or [a + pl,2 is a primitive element of Upyz.

(b) [b] If [a]y2 is a primitive element in Uy, then |alye is a primitive element of Upe for all e € Z
with e > 2.

Proof. (a) Since [a], is a primitive element, [a], has order p — 1. Thus by 7.3.5, [a],2 has order p —1
or (p — 1)p. In the latter case we are done. So suppose [a],> has order p — 1. Thus

(%) a?l=1 (mod p2)

Note that

p—1
—1 o
(a+pPt=a"t+(p—1)a?p++ E (p ; )apllplap1 =1+(p—1a"? (mod p)?
=2

Since p# 2, ptp—1. Also pfa and so pta?~2. Thus (a+p)P~! # 1 (mod p)? and so [a + pl,2
does not have order p— 1. Since [a + p|, = [a], has order p—1, 7.3.5, implies that [a + p], has order
(p — 1)p. Hence [a + pl,2 is primitive and (a) is proved.
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(b) Thus clearly holds for e = 2. Suppose inductively that it holds for e. Then [a],e has order
(p—1)p°~! and thus
alP~1r"" #1 (mod p®)
On the other hand 4.1.5(c) applied to n = p°~1,

e—2

aP~ VP =1 (mod p¢Y)
Thus

a®=DP T 1 4 e
with k € Z and p 1 k. Thus

e—1

aP—1p = (1+kp b

L phpe™! 4 (B)k2p2) 4 30 () ket
Lt kpe + B k2p?e=t 4 00, ()kip!e)

Sincee>2,2e—1=(e+1)+(e—2)<e+1landfori>3,i(e—1)>3(e—1)=e+2e—3>
e+4—3>e+1. Thus

a®= VP =1 4 kpe (mod p*)

Since p 1 k this implies aP=OP £ (mod p)*! and |[alye| # (p — )p~'. Since |[a]ye| =
(p — 1)p°~! we conclude from 7.3.5 that

lalpess| = (p = D)p*~'p = (p — 1pttD!
Hence (b) holds for e + 1 and so for all e > 2. O

Corollary 7.3.7. [upe cyclic| Let p be an odd prime and e a positive integer. Then Upe is cyclic.

Proof. We just need to show that Uy has a primitive element. By 7.3.4, U, has a primitive element.
Thus by 7.3.6(a), U, has a primitive element and so by 7.3.6(a), Upe has a primitive element for all
e > 2. O

Example 7.3.8. [ex:primitive] Find a primitive element in Use

Consider U7y = {1,2,3,4,5,6}. 23 =8 = 1 in U7 and so 2 is not a primitive element. Let d be the
order of 3 in Uz. Then d divides ¢(7) =6 andsod =2,30r6. 32=9=2#1and 3% =2-3=6# 1.
So d is neither 2 nor 3. Hence 3 is a primitive element in U;.

In Uy we have 3* =81 = —17 and so 3° = —51 = —2 and 3% = —6. Hence 3 does not have order
6 in U9 and so by 7.3.5 3 has order 42. Thus 3 is a primitive element of U9 and so also in Use for
allec Z™T.

Lemma 7.3.9. [exp u2e] Let e be an integer with e > 3. Then =1 for all a € Use.

Proof. Us = {#+1,+3}, (£1)! =1, (£3)2 =9 =1 and a®> = a®° ~ =1 for all a € Uss. Thus the
statement holds for e = 3.

Suppose inductively that a2~ =1 (mod 2¢) for all a € Z with ged (a,2) = 1. Then by 7.3.5(b),
a® ' =1 (mod 2¢*1) and so the statement also holds for e + 1. O
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Notation 7.3.10. [not:exactly divide] Let p, e, a be integers with p a prime and e > 0. We write
p°lla if p°lp but pt* fa.

Lemma 7.3.11. [order 5 u2e| Let e € Z with e > 2.
(a) [a] 275* " — 1.
(b) [b] [[Blo| =2°72.

Proof. (a) 4]|5 — 1 and so (a) holds for e = 2. Suppose inductively that 2e\|52672 —1. We

—1 _ 1 _ (525—2)2 _ 1 _ (52672 _ 1)(52872 + 1)
Since 52" +1=12"" 4+ 1=2 (mod 4), 2|[5 " + 1. Hence 2°!||5*" — 1 and (a) also hold for
e+ 1

(b) By 52" =1 (mod 2)¢ and so |[5]s| divides 262, For e = 2 this gives |[5]s = 1. If € > 2,
then by (a) applies to e — 1, 2¢71|52°° — 1, s0 2¢ /52" " — 1 and 52°° # 1 (mod 2°). Thus (b)
holds. 0

52

Definition 7.3.12. [defiexponent| Let G be a group. We say that G has finite exponent if the
exists n € Z1 with g" = e. In this case the smallest such n is denotes is called the exponent of G
and is denoted by exp(G).

If no such n exists we say that G has infinite exponent and write exp(G) = co.

Note that C,, has exponent n and (Z,+) has infinite exponent.
Corollary 7.3.13. [exp u2e ii] Let e € ZT.
(a) [a] Ife <2, then exp (Use) =271 and Use is cyclic.
(b) [b] Ife >3, then exp (Use) = 272 and Use is not cyclic.

Proof. Uy = {1} has exponent 1 = 2'7! and is cyclic. Uy = {£1} has exponent 2 = 227! and is
cyclic.

Suppose e > 3, then by 7.3.9, exp (Use) < 2°72 and by 7.3.11 exp (Use) > 2¢2. Thus exp (Use) =
2¢72 In particular Us- has no element of order 2°~! and so is not cyclic. O

Proposition 7.3.14. [ab] Let G be a finite abelian group and A and B subgroups of G. Suppose
that

(i) [i] AnB={e}.
(ii) [ii] |A[-[B|=|G|.
Then G =2 A x B.
Proof. Define a: A x B — G, (a,b) — ab. Then for a,c € A, b,d € B:

a((a,b)(¢, d)) = a((ac,bd)) = (ac)(bd) = (ab)(cd) = a((a,b))a((c, d))

and so « is a homomorphism.

Suppose a((a,b)) = a((c,d)). Then ab = cd and so also ¢~ta = db~!. Since A is a subgroup of
G, c ta € A and since B is a subgroup of G, db=* € B. So c"ta =db~! € A x B = {e} and thus
cla=e=db!. It follows that a = ¢, b = d and o is 1-1.
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In particular

|a(A x B)| = |Ax B| = |A] x |B| = G

Since G is finite this implies a(A x B) = G and so « is onto.
We proved that « is a 1-1 and onto homomorphism and so an isomorphism. Thus AxB = G. O

Lemma 7.3.15. [u2e| Let e € ZT.
(a) [a] Ife<2, then U, = C..
(b) [b] Ife>3, then U, = Cy x C52.

Proof. (a) Uz ={[1]2} = C1 and Uy = {] £ 1]4} = ([-1]4) = Co.

(b) Suppose € > 3. Let A = ([—1]ac} = {[£1]2c} = Cy and B = {[5]a¢). By 7.3.11 [5]2c has order
2¢=2 and so |B|] = 2¢72? and B = Cye—2. Also |A] = 2 and so |A||B] = 2¢71 = ¢(2°) = |Uge|. Let
[d]2e € AN B the d = 5™ (mod 2°) for some m € N and so d =1 (mod 4). Since —1 # 1 (mod 4),
we conclude d # —1 (mod 2°¢). Since [d]2e € A this gives [d] = [1]ae. Hence AN B = {[1]}2c. Thus
7.3.14 gives Uze 2 A X B = Cy X Cge-2. O

Lemma 7.3.16. [exp] Let G be a finite group.

(a) [a] exp(G) = lem({|g||g € G}).

(b) [b] Letn € Z. Then g" = e for all g € G if and only if exp(G)|n.
(c) [e] exp(G)|IG].

Proof. (a) and (b): Let n € Z. Then

n

gt=e forall g e G
= |g|’n forallg e G by 5.1.10(Db)
= lem({lgl|lg € G})|n
The smallest positive integer fulfilling the last equation is lem({|g||g € G}) and so (a) holds.
Since |g|’|G\ for all g € G, (b) follows from (a) and 2.1.17(b)

(¢): By 5.1.14 ¢l¢l = ¢ for all g € G and so (c) follows from (b). O
Lemma 7.3.17. [order coprime] Let G an abelian group and ¢1,...gn, € G be elements of finite
order. Let d =1lcm(|g1],]g2|,---,|g9n]) and g = g192...gn. Then
(a) [a] g=1.

(b) [b] If ged (|gil,|g;]) =1 for all <i < j <n, then |g| = d.

Proof. (a) Let 1 <i < n. Then |g;||d and so g/ = e. Since G is Abelian we conclude that

gt =glgs...gn=c¢
(b) Put f = lem(|ga|,--.,|gn|)s b = g2...gn and ¢ = |g|. Then (g1h)¢ = 1 and hf = 1. Thus
g6 = (h°)"1. Put k = g5. Then k19l = (gl"Ne = ¢ and &/ = ((hF)¢))~! = e. So |k| divides
lg1] and f. But |g1| and f are coprime. Hence |k| = 1 and so gf = e. Hence |gl||c and so also

d =1lem(|g1],|g2l,- - - |gnl)|c. Since g? = e, we also have c|d. and thus ¢ = d. O
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Corollary 7.3.18. [char cyclic] Let G be a finite abelian group, then G is cyclic if and only
expG = |G].

Proof. If G is cyclic, then G has an element of order |G| and so exp G = |G]|.
Suppose next that expG = |G|. Let |G| = pi'...p*, where pi,...p; are distinct primes and

[hil
e; € Z. Since exp G = lem({|g||g € G},), there exists element h; € G with p*|||h;|. Put g; = hrit
Then |g;| = pj'. Put ¢ = g1g2...gx. Then by 7.3.17 g has order pi*...pf* = |G| and so G is
cyclic. O

Lemma 7.3.19. [order direct product| Suppose G = Gy x Gy x ... Gy for some k € Z* and
some groups Gj.

(a) [a] Let g; € G; for 1 <i<k. Then

[(91: 91, - - - -gr)| = lem(|g1], |g2l, - -, [g])
(b) [b]
exp(G) = lem(exp(G1), exp(Ga), . .. ,exp(G))
Proof. (a)
g"=e
<= (91,92,---,98)" = (e,e,...,¢€)

= gl =egs=2...,g} =e+= |gl|’n7 \gg\|n,...|gk||n
— 1CH1(|gl|, |92|7 ) ‘gk:|)|n

Thus (a) holds.
(b) expG = lem({lgl|lg € G}) = lem({lem(|gul, |g2],- -, |gxl) | 91 € g1 € G, g € Gi}) =

1cm(1crn({|gl|’gl € Gi}),... ,1cm({|gl||gl € Gy,...,})) =lem(exp(Gy),exp(Ga), . . . ,exp(Gk)) -

Lemma 7.3.20. [cyclic| Let A and B be finite groups. Then A x B is cyclic if and only if |A| is
cyclic, |B| is cyclic and ged (|Al,|B]|) = 1.

Proof. By 7.3.18 G if cyclic if and only of exp(G) = |G|. Also

exp(A x B) = lecm(exp A, exp B) = exp Aexp B < |A||B|

ged (exp A,expB) — 1
and
[Ax B| = |A]|B|
Thus
|A x B| = exp(A x B) if and only if |exp A| = |A|, exp B = |B| and ged (|4, |B]) = 1. O

Theorem 7.3.21. [structure of un] Let n € Z" and let n = 2°°p7* ... p* where py,...py are
pairwise distinct odd primes, eg € N and p1,...px € ZT. Then

(a) [a] Ifeo <1, then Up = Cpeay 1y X ... X Cka_l
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(b) [b] Ifeo =2 then U, = CQ X Cpfl(zh—l) X...x(C e —1

P T (pr—1)"

(c) le] Ifeo =3, then Uy = Cz x Cyeg—2 X Cper(y 1y X ... x C

P pr—1)
(d) [d] U, is cyclic if and only if n = 1,2,4,p¢ or 2p¢, where p is an odd prime and e € Z+.

Proof. By 7.1.6 and induction

e
Un = Ugeo X Upil X Up::

By 7.3.7 U,e: is cyclic for all 1 < i < k. Since |U,ei| = ¢ (p$*) = pS* ' (p; — 1) we conclude and

i p;*
S0 Up:i = Cp:i_1(m71).
Also by 7.3.15, |U1| = |Ua| = 1, Uy = Cs and Uzeo = Co X Cyeq—2 for eg > 3. Thus (a), (b) and
(¢) holds.
By 7.3.20 (and induction) U, is cyclic if and only the factors listed in (a), (b), (¢) have coprime
orders. But each of the factors has even order. So U, is cyclic if and only if U, has at most one
factor. In case (a), we conclude that U, is cyclic if and only if £ <1 and so n =1, n = 2, p{* or

2p7t. In case (b) U, is cyclic if and only if k = 0, that is n = 4 and in case (c) U, is never cyclic. O
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Chapter 8

Quadratic Residue

8.1 Square in Abelian Groups

Lemma 8.1.1. [basic hom] Let o : G — H be a homomorphism of groups and a. Then
(a) [a] a(e)=e.
(b) [b] a(a™!)=ala)™

Proof. (a) a(e) = a(ee) = ale)a(
a(aa™!) = a(e) = e and so a(a™?

e) and multlplymg with a(e)~! gives a(e) =e. (b) ala)a(a™!) =
)=a(a)"t. b O
Lemma 8.1.2. [ker and img] Let o : G — H be a homomorphism. Putkera = {g € G | a(g) = e}
and Ima = {a(g) | g € G}. Then ker « is a subgroup of G and Im « is a subgroups of H.

Proof. Since a(e) = e, e € kera. Let a,b € kera. Then a(ab) = a(a)a(b) = ee = e and a(a™!) =
a(a)™ = e =e. Hence ab € ker and a™! € ker . So ker « is a subgroup of G.

Since a(e) = e, e € Ima. Let s,t € Ima. Then s = afa) and t = a(b) for some a,b € G. Thus
st = a(a)a(b) = ( b) and s~ = a(a)_l = a(a)~!. Hence st and s~! are in Im« and so Im « is a
subgroup of G. O

Lemma 8.1.3. [coset and hom] Let oo : G — H be a homomorphism of groups and h € H.
(a) [a] If a(x) = h has a solution in G, then the solutions form a coset of ker o in G.

(b) b] If h € Ima, then a(x) = h has |ker o solutions. If h ¢ Ima, then a(x) = h has no
solutions.

(c) [c] |H|=|kera||Imal.
Proof. (a) Let a be a fixed solution of «(z) = h and let b € G. Then

Preny

be (kera)a

63
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So the set of solutions of «(z) = h is the coset (ker @) a.

(b) Since | (ker @) a| = | ker a], (b) follows from (a).

(¢c) Each a € G is the solution of exactly one of the equations a(z) = h, h € Ima. (namely
the equation a(xz) = a(a)). By (b) each of whose equations has exactly |ker | solutions. Hence
|G| = |ker o - | Im af. O

Definition 8.1.4. [def:i and q] Let A be an abelian group. Then Q(A) = {a® | a € A} and
T(A):={a€ A|a*=c¢}.

Lemma 8.1.5. [qi=g] Let A be a finite abelian group and b € A. Define a: A — A,a — a®. Then
(a) [2] « is a homomorphism.

(b) [a] Q(A)=kera and T(A) = Ima. In particular, Q(A) and T(A) are subgroups of G.

(¢c) [b] x2 =0b has a solution in A if and only if b € Q(A).

(d) [c] Ifbe Q(A), then the solutions of 2 =b in A form a coset of T(A) in A.

(e) [d] The numbers of solutions of x> = b is either 0 or |T(A)|.

(1) le] 141 = 1QA)] - IT(A)!.

Proof. (a) a(ab) = (ab)? = a?b? = a(a)a(b). (b) a € ker a iff a(a) = e iff a? = e iff a € T(A).
a € Ima iff a = a(b) for some b € A, iff a = b? for some b € A iff a € Q(A).
(c) Follows from the definition of Q(A).
(d),(e) and (f) now follow from 8.1.3 applied to the homomorphism « : a — a?. O

Lemma 8.1.6. [q of cyclic] Let A be a cyclic group of finite order n generated g.

(a) [a] Suppose that n is even. Let a € A and i € Z with a = g*. Then following are equivalent

1. [a] i is even
2. [b] a€{g?
3. [c] a€Q(A)
4. [d] a® =1

(b) b] Q(A) = (¢g*) ={a€ Ala® = e} is cyclic of order % and T(A) = (g%) is cyclic of order 2.
(c) [c] Suppose n is odd. Then Q(A) = A and T(A) = {e}.

Proof. (a) Suppose i is even. Then a = ¢° = (¢%)7 € (g?).
Suppose a € {g?). Then a = (g?)? for some j € Z and so a = (¢7)? € Q(A).
Suppose a € Q(A)). Then a = b? for some be Aandsoa? =b*% =b" € e Since |b]||A] = n.
Suppose a? = e. Then ¢g'% = (¢°)% = a? —eandson|zf Thus2|zand11seven

)
(b) By (a) Q(A) = (¢®) = {a € A | a? = e}. Since g% has order e = 3 Q(A) is cyclic of
order . Thus T'(A) has order 4|

a oy = % = 2. Also gZhas order % =2 and so T(4) = (¢%).
(c) Let a € T(A). Then a® = ¢ and so |a|[2. Also |a| | n and so |a| is odd. Thus |a|] = 1 and
a=e. SoT(A) = {e}, |Q(A)]| = 7745 = |4] and Q(A) = A. O

3

m\:\s

Lemma 8.1.7. [q and t for direct products] Let Ay, A, ... Ay be abelian groups and A = Ay X
Ay x ... Ar. Then
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(a) [a] Q(A) =Q(A1) x Q(A2) x ... Q(A)
(b) [b] T(A) =T(Ay) x T(As) x ... T(A)

Proof. (a)
Q(A) = {(a17a27...,ak)2|(a1,a2,...ak)€A1X...Al}
= {a},a3,,...a}) | a1 € A1,...a € Ay}
= {bl,bg, .. .,bk) | b, € Q(A1),b2 S Q(AQ), BN TANS Q(Ak)}
= Q(A1) X Q(A2) x ... x Q(Ax)
(b)
T(A) = {(a1,a2,...,a)) € Ay x ... x Ay | (a1,09,...ar)* = (e,e,...,€)}
= Ha,a9,...,q)) €A x ... x Ay |al =e,a5 =e,...,a; = e}
= {(ay,az,...,ax) | a1 € T(A1), a0 € T(A2),...,ar € T(Ax)}
= T(A;) xT(A2) x...xT(Ag)
O
Definition 8.1.8. [defign] If G is a group and n € Z%, then G* =G x G x ...G
—_—————
n—times
Lemma 8.1.9. [tun]| Let n be a positive integer and write n = 2°°p* ... pt* where 2,p1, ..., pi are

positive integers and eg € N and ey, ...e, € ZT. Put

k ifeogl
m=<k+1 if€0:2
k+2 if€023

Then T(U,) = CP

Proof. By 7.3.21 U, & Ay X ... A, where each A; is a cyclic group of even order. Thus T(A;) = Cy
by 8.1.6 and hence

So 22 =1 (mod n) has 2™ solutions. How to find these solutions:

Case 1: n = p°, p an odd prime, e € Z*. Then |T(U,,)| = 2 and there are two solutions. Namely
x = =1 (mod p°)

Case 2: n=2%¢e¢cZ™ .
If e = 1, one solution: x =1 (mod 2)

If e = 2, two solutions: = £1 (mod 4).
If e > 3, four solutions: z = +1,4(1 +2°71) (mod 2°)
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Case 3 The general case, n = 2°p7* ... p*

For each 0 < i < k, use the previous two cases to compute find all the solutions of z? = 1
(mod p;*) Lets say x;1,... %, are the solutions. Then for each tuple (so,...sx) with 1 < s; < r;
use the Chinese Remainder Theorem to find a solution of

T =z, (modpj’), 0<i<k
Example 8.1.10. [ex:x2=1] Find all solutions of x> =1 (mod 20).

We have 20 = 4 - 5. The solutions of 22 = 1 (mod 4) or # = £1 (mod 4) and the solutions of
2?2 =1 (mod 5) are x = £1 (mod 2)0. Now

xz = 1 (mod4) and =z = 1 (modb) <= =z = 1 (mod 20)
r = 1 (mod4) and 2 = -1 (mod 5) <= =z = 9 (mod 20)
x = -1 (mod4) and =z = 1 (mod5) <= =z = -9 (mod 20)
x = -1 (mod 4) and 2 = -1 (mod 5) <= z = -1 (mod 20)

So the solutions of 22 =1 (mod 20) are z = £1,+9 (mod 20).

Definition 8.1.11. [def:lsym] Let a and n be integers and p a prime. Then
(a) [a] Qn=Q(Un) = {[t’]n | b€ Z,ged (b,n) = 1}.

0 if lalp = [0],
M) b (4) =21 ifld,€q,
-1 Zf [a]p ¢ Qp

In Uy; we have (£1)2 = 1, (£2)2 = 4, (£3)3 = 9, (£4)2 = 16 = 5 and (+5)% = 25 = 3. So
Q11 ={1,3,4,5,9} and

0 ifa=0 (mod 11)
(4)={1 ire=13459 (mod11)
-1 ifa=2,6,7,810 (mod 11)

Lemma 8.1.12. [Isym and primitive] Let g be an odd prime, g a primitive element modulo p and

i €N. Then
g ;
) = (—1)¢
(%)=

Proof. By 8.1.6 [¢'], € @, if and only if i is even and so if and only of (—1)* = 1. O

Lemma 8.1.13. [Isym mult] Let p be an odd prime and a,b € Z. Then

(-GG
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Proof. Suppose that p | a or p | b. Then also p | ab and both sides of equation in question are equal
to 0.

Suppose p{a and ptb and let g be a primitive element modulo p. The there exists i, j € Z with
a=g* and b= ¢ modulo p. Hence ab = ¢°¢g? = ¢**7 and so by 8.1.12

()= () o =ovew=(5)(5)- () )

Theorem 8.1.14. [ap] Let p be an odd prime p and a an integer. Then (%) =a"7 (mod p).

Proof. If p | a, then both side of the equation are equal to 0. So suppose p t a . Then [a], € U,,
[a], = ¢* for some primitive element g € U, and some i € Z and (%) = (-1)". Put h = ¢"= . Then
h has order 2 and so h = [—1],. Thus

O

Corollary 8.1.15. [-1 in gp] Let p be an odd prime, Then [—1], € Q, if and only if p =1 (mod 4).

Proof. We have

<*)—<WT (mod p)
So [—1] € @, if and only if 25+ is even and if and only if p =1 (mod 4). O

Corollary 8.1.16. [1 mod 4] There are infinitely many primes p with p =1 (mod 4).
Proof. Let p1,...p, be a primes with p; = 1 (mod 4). Define m = (2p1p2...px)? + 1. Since m is

odd, m is divisible by an odd prime p. Since m =0 (mod p) and m =1 (mod p);, p # P — i for all
1<i<n. Also m =0 (mod p) implies

2pr-..p)? = -1 (mod p)

and so [—1], € Q. Thus 8.1.15 gives p =1 (mod 4) and so we found another prime congruent to 1
module 4. O

Definition 8.1.17. [def:ah]| Let G be a group, a € G and H C G. Then aH = {ah | h € H}.

Lemma 8.1.18 (Gauss). [ap via p] Let p be an odd prime and P = {1,2,...,25}. Forz € Z
and X CZ put® = [z], and X = {[z], | # € X}. Let a € Z with ptp and put u = [aPN—P|. Then

(5)-ror
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Proof. In this proof, we will just write m for [m],. Note that —P = {—1,-2,..., —%} ={p-—
1,p—2,...%} and so PN—P =0 and U, = PU—P. Put H = (1) = (—1) < H. Let u,v € aP
with uH = vH. The u = +v and u = ax and v = ay for some x,y € P. Thus ax = +ay and so
2z = +y. Since PN —P = () this gives x = y and so also ax = ay. Thus is u = v and so the map
¢o :aP — Up/H,u— uH is 1-1. Since |aP| = |P| = 1?2;1 = |U2—p| = |Up/H|. ¢, is a bijection. Hence
also ¢; is a bijection and for each u € aP there exist a unique ¢ € P with uH = iH. Thus u = €;i
for a unique i € P and ¢; € H = {£i}. Thus aP = {¢;i |€ P}.
We now compute [],.,p v in two different ways:

H u:Hai:apT_le'

uea

u€aP ieP ieP
and
1 v=Tei=TTo 1T
u€aP ieP ieP  ieP
Thus

o7 = H e = (—1){i€Ple=—1}]
ieP
Observe that ¢; = —1 if and only if ¢;4 € —P and so

HieP|le=—-1}=|{iePleie—-P} =|{ucaP|ue —-P}=aPN—-P|=p
So

Corollary 8.1.19. [2p] Let p be an odd prime. Then [2], € Q) if and only if p = £1 (mod 8).

Proof. We apply Gauss’ Lemma with a = 2. Note that [2], € @, if and only if 4 is even.
Letlgigp;zl.,thenQSZiSp—landso

hence

-1 -1
ul2P N —P| = 2P\ (2PN P)| = pT - V4J
If p=1 (mod 4), then pr1 is an integer and so p = %. Then p is even if and only if 2 | ”4;1
and so iff 8 |p— 1 and iff p =1 (mod 8).
If p=3 (mod 4), then LPT_lJ =223 and p = 25 — 23 = PHL Qo 4 is even if and only if 8p+1
and iff p= —1 (mod 8). O
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Theorem 8.1.20. [quad rep| Let p and q be odd primes. Then

(a) [a] o
())-cn=r

(b) b] Ifp=1 (mod 4) or ¢ =1 (mod 4), then (%) = (%),
(c) [c] Ifp=3 (mod 4) and g =3 (mod 4), then (%) = - (1),

P

Proof. Put P = {1,2...,%} and @ ={1,2... qz;l} By Gauss’ Lemma

(q) = (—1)*, where u = [gP N —P|
p
For z € P,
[gz], € —P
= lqz], = [2]p for some z € —P
= qr =z +py for some z € —P and y € Z
= qr —py € —P for some y € Z
— f% <qr—py<0 forsomey€Z

Observe that y is uniquely determined by x. We will show that any such y is in ). Indeed

-1
pTqu—py<0

implies

-1
pszy—qx>0

and

-1
qa:+pT>py>O

Sincexﬁ%,
qx+%<q’%1+%:q+lp—l<q+l
- p 2 p 2

O<y<

Since y is an integer and ¢ is odd, this gives 1 <y < % and so y € Q). Also since qr — py is an
integer, —1)2;1 < qr — py if and only if =& < gz —py. So

p
uzl{(aay)GPXQl*§<qxfpy<0}\

Similarly



70 CHAPTER 8. QUADRATIC RESIDUE

(p) = (—1)" where v = [{(y,z) € Q x P | _% < py — qx < 0}

q
Note that
V:|{(93,y)6P><Q|0<qupy<g}|
Hence
g . E — (1 V(1Y — (1 tY — (1)t
(9)-(2) = orevr = e = -
where

t=u+v=|{(w,y)€P><Q|—g<qx—py<00r0<qw—py<%}\

Since ¢ and p are coprime, gz = py implies ¢ | y and so gz — py # 0 for all (z,y) € P x Q. Thus

p q
t=|{(fv7y)€P><Q|—§<qw—py<§}|

Define
I={(w.y) € Px Q|7 = qv—py}
and .
J={(z.y) e PxQlqzr—py =3}
Then

t=1Px Q=11
We will show that |I| = |J|. Define

p:RxR:(z,y) — (z',y)

where
’oo p+1 q+1
2y)=(———x,— —
(@) = (5 5 Y
Note that z and y are integers if and only of 2’ and 3 are integers.
Also
L<af <Pt
1 -1
= lshr o<y
= -Ikl< <1
— 1<z <2l

and
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117

Thus p(P x Q) =P x Q

@' —py >3
+1 +1
= 5 -2)-p(H -y =1
= Gorfoar- Y=
— —L>qz+py

Hence (x,y) € I if and only if (z/,y') € J. So p(I) = J and |I| = |J|.
Thus

p q
Hence (a) holds. Note that W = 221421 and both 251451, So %4@71) is odd, if and
only if both % and q;—l are odd and so if and only if both p and ¢ are congruent to 3 (mod 4).

Thus (b) and (c) hold. O
Lemma 8.1.21. [qpe] Let p be an odd prime, e € Z* and a € Z. Then [a]pe € Qpe if and if
[al, € Qp and if and only of (%) =1.

Proof. We may assume that p 1 a, since otherwise none of the three statement holds. Let g be
a primitive root modulo p¢. Then there exists i € Z* with a = ¢* (mod p°¢). Then also a = ¢*

(mod p). In particular, g is a primitive root modulo p. Hence applying 8.1.6(a) twice, we see that
alpe € Qpe if and only if ¢ is even and if and only if [a], € @,. By definition, the latter is equivalen
pe € Qpe if and only if 7 i d if and only if [a], € @,. By definition, the latter i ivalent

to (&) =1. O
Lemma 8.1.22. [q2e] Let e € N and a € Z.
(a) [a] Q2 = ([25]p¢)
(b) [b] [a]2 € Q2 if and only of a =1 (mod 2)
[
[

(c) [c] [als € Q4 if and only of a =1 (mod 4).
(d) [d] Ife> 3, then [a]zc € Q2e =a =1 (mod 8)
(e) [e] Put f =min{e,3}. Then [a]ac € Q2c =a =1 (mod 2)/

Proof. By the proof of 7.3.15, Use = {[£5%2¢ | i € N} and so Qa, = {[£5°]? | i € N} = ([25]¢).

Hence (a) holds. (b) and (c) are obvious.

Suppose [a]ze € Q2¢. Then by (a) a =1 (mod 8). So suppose that a =1 (mod 8), then a = €5
(mod 2°) for some i € N and € € {1,—1}. Since e >3, 1 = a = €5' (mod 8). Note that this implies
e =1and iis even. So a = (52)2 (mod 2¢) and [a]zc € Q2c. Thus (d) holds.

(e) follows from (b)-(d). O
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Lemma 8.1.23. [qn] Let ny,...,ng be pairwise coprime positive integers, n = ning...n; and
a € 7. Then
[a]n € Qn if and only if [a]n, € Qn, for all1 <i<k

Proof. This follows from the isomorphism

Up = Up, XUy, X...xUp,

[aln = ([al s -+ [alns)

and from

QUny X Upy X oo xUp,) = Qny X Qny X ... X Qn,
O

Lemma 8.1.24. [char a in qp| Leta € Z, n = 2°p{* ... pi* where 2,p1, ... py are pairwise distinct
primes, eg € N, and e; € Z* for 1 < i < k. Put e = min(eg,3). Then [a], € Qn, if and only if
a=1 mod 2¢ and (pi) =1forall<i<k.

Proof. By 8.1.23, [a],, € Qy, iff [a] i € Qei for all 0 < i < k. By 8.1.22, [a]2c0 € Q2eo if and only if
a =1 (mod 2°) and by 8.1.21, [a] i € Qe if and only if (pl) =1. O
Example 8.1.25. [ex: a in gqp] Is [73]1s0 € Q180 ?

180 =2%-3%-5.73=1 (mod 4), () =(3) =—1and (B)=(2)=(§) = () =-1. S0 T3is
not a square modulo 180.



Chapter 9

Arithmetic Functions

9.1 Dirichlet Products

Definition 9.1.1. [def:arith | An arithmetic function is a function f : ZT — C.
Example 9.1.2. [ex:arith]

1. 1] ¢:Z* — C,n — |U,|, the Euler function.

2. 2] 7:Z* —=C,n— Zd‘n 1, the number divisors of n.

3.8 0:2" -C,n— 2djn ds the sum of the divisors of n.

4. [4] w:ZT — C,n — 1, the unit function.

5. [6] N:ZT — C,n — n, the identity function.

6. 6] I:Zt—C,I(1)=1andI(n)=0ifn>1.

Definition 9.1.3. [def:mult] An function f is called multiplicative if its is arithmetic and f(nm) =
f(n)f(m) for all nym € Z* with ged (n,m) = 1.

Lemma 9.1.4. [mult]
(a) [a] u,N, ¢ and I are multiplicative.
(b) [b] If f and g are multiplicative functions, then fg is a multiplicative function.
(c) [c] If f is multiplicative function and n € N, then f™ is multiplicative function.
Proof. let n,m € Z1 with ged (n,m) = 1. (a): u(nm) =1=1-1=u(n)u(m)
N(nm)=mnm = N(n)N(M)
By 7.1.6 ¢(nm) = ¢(n)p(m).
If n=1and m =1, then nm = and I(nm) =1 = I(n)I(m). If n > 1 or m > 1, then nm > 1

and one of I(n) or I(m) is equal to 0. So I(nm) =0 = I(n)I(m). and so (a) holds.

(b) (fg)(nm) = f(nm)g(nm) = f(n)f(m)g(n)g(m) = f(n)g(n)f(m)g(m) = (fg)(n)(fg)(m)

(c) If n = 0, then f = u and so f° is multiplicative. Suppose that f™ is multiplicative,
Then f**t! = f7f. By the induction assumption, f" is multiplicative and by assumption f is
multiplicative. So by (b), f*! is multiplicative. O

73
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Definition 9.1.5. [def:dirichlet] Let f and g be arithmetic function. Then f x g is the arithmetic
function defined by

= fldg (%) = Y fldgle)
d|n de=n

f % g is call the Dirichlet product of f and g. It is also called the convolution of f and g.
Lemma 9.1.6. [basic:dirichlet] Let f, g, h be arithmetic functions.
(a) [a] frg=g=f.
(b) [b] (fxg)xh=fx(gxh).
(¢) el Ixf=f=f=I
Proof. (a)
(fxg)n) =Y fdgle) =D ge)f(d)= Y g(d)f(e) = (g9 [)(n)

de=n ed=n de=n

(Frg)xh)(n) = lgen(f *g)(d)h(e)
= Dde—n 2ve—alf(D)g(c))h(e)
= Dpee=n [ (0)(g(c)h(e))
= 2ban (0) e—q 9(c)h(€))
= (fx(gxh))(n)

(©) (Ix f)(n) =Yg, I@)f (5) = I(1)f(F) = f(n). So I« f=f. By (a) fxI=1Ixfandso
also fxI=f. O

2de=n (2Zpe=a(f(0)g(c))1(d))
2bee=n(f(D)g(c))R(e)
2 ba=n 2oce=a 1 (0)(g()h(e))
2 ba=n f(0)(g  h)(a)

Lemma 9.1.7. [identities] Let f be an arithmetic function.
(a) [d] (f*u)(n)=3,f(d).

(b) [e] usxu=r.

(c)[fl Nxu=o.

(d) [g] ¢xu=N

Proof. (a) (f xu)(n) =3y, f(d)u() =24 f(d).
(b): wxu(n) =3 g, uln) =24, 1 =7(n)
(©): (N xu)(n) 3 g, N(d) = > g, d = o(n).
(d) By 7.3.3, Zd‘n ¢(d) =n and so by (a), p*xu = N. O

Lemma 9.1.8. [easy mult] Suppose that f is a multplicative function. Then either f = 0 or
f) =1

Proof. Suppose f # 0. Then f(n) # 0 for some n € Z*. Thus f(n) = f(nl) = f(n)f(1) and so
f) =1 O



9.1. DIRICHLET PRODUCTS (0]

Lemma 9.1.9. [dirichlet and mult] Let f and g be arithmetic function. Suppose f is non-zero
and multiplictaive. Then g is multiplicative if and only if f * g is multiplicative.

Proof. We will prove the following:

1°. [1] Let n,m € Z* with ged (n,m) = 1. Suppose that for all divisors a of n and b of m with
(a,b) # (n,m) we have g(ab) = g(a)g(b). Then (f * g)(nm) = (f = g)(n)(f = g)(m) if and only if
g(nm) = g(n)g(m).

Note that any divisor  of nm can be unique written as x = ab where a is a divisor of n and
b is a divisor of m. So if nm = zy with z,y € Z%, then there exist unique a,b,c,d € Z* with
x = ab,y = cd, n = ac and m = bd. Moreover, ged (a,b) = 1 = ged (¢, d)

Thus
(fxg)nm) = > flx)gy)
= > f(@)g(y)
ab=xz,cd=y,ac=n,bd=m
= Y f(ab)g(cd)
ac=n,bd=m
= f()g(nm) + > f(a)£(b)g(c)g(d)
ac=n,bd=m,(c,d)#(n,m)
and

(fxg)(n)(fxg)(m) = (Z f(a)g(0)> ( > f(b)g(d)>
b

ac=n

fF)fF(M)g(n)g(m) + > fla)g(e) f(b)g(d)

ac=n,bd=m,(c,d)#(n,m)

Since f(1) = 1= f(1)f(1) we conclude that (1°) holds.
If g is multiplicative, (1°) shows that f x g is multiplicative. Suppose now that f * g is multi-
plicative, and inductively that g(ab) = g(a)g(b) for all a,b with ab < nm and ged (a,b) = 1. Then

(1°) shows that g(nm) = g(n)g(m) and so g is multiplicative. O
Corollary 9.1.10. [tau and sigma| Let n = p{'p5* ... p", where py,...,py are pairwise distinct
primes and e1,...ex € ZT.

(a) [a] T and o are multiplicative.
(b) 1b) 7(n) =Ly (ei +1)
(c) le] oln) =1L, (S5ior]) =1L, it

Proof. (a) Since u and N are multiplicative, so are 7 = u*xu and 0 = N * u.
(b) and (c): In view of (a) we only need to consider the case n = p°®, p a prime, e € N. Then the

divisors of p© or p?,0 < i < e. Thus p® has e + 1 divisors and o(p®) = >;_,p' = pi;_ll_l. O
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9.2 Perfect Numbers

Definition 9.2.1. [def:perfect] A positive integer n is called perfect if n = Zd‘m#n d.
Observe that n € ZT is perfect if and only of n = o(n) — n, that is o(n) = 2n.

Example 9.2.2. [small perfect] The first three perfect numbers

o(6)=0(2-3)=2=18=1 —3.4=-12=2.6.

2—-1 3-1
3_172_
o(28) =0(2%-7) = “i ff; 7-8=56=2-28
0(496) = (16 - 31) = =13 =1 = 2 .32 = 2. 496,

Lemma 9.2.3. [mersenne and perfect]| Let n be a positive even integer. Then n is perfect if and
only if n = 2P~1(2P — 1) where p is a prime such that 2P — 1 is a prime.

Proof. Suppose first that n = 2P~1(2P — 1) where p and 2P — 1 are primes. Then

o(n) = 2210__11 ((22pp__11)) 4:11 =@ =D =D A1) = (27 - 1)2 =20

and so n is perfect.
Suppose next that n is perfect.Since n is even, n = 2P~1q where p,q € Z* with ¢ is odd and
p > 2. Hence

w1
T 21

(%) 2°q =2n = o (27"q) = 0(27" Mo (q) o(q) = (2 = 1)o(q)

Thus 2P~ | ¢ and so ¢ = 2P~ 17 for some 7 € Z*. Substitution in (*) gives
2P(2P = 1)r = (2P — 1)o(m)

and so
o((2P = 1)r) =o(q) = 2Pr

Since (22 — 1)r and r are distinct divisors of (22 — 1)r we get that 2Pr = (22 — 1)r +r <
o((2P — 1)r)) = 2Pr. Hence (2P — 1)r and r are the only divisors of ¢ = (2P — 1)r. It follows that
r =1 and 2P — 1 is a prime. By 3.3.5 also p is a prime. [

9.3 The group of non-zero multiplicative functions

Definition 9.3.1. [def:inverse| Let f be an arithmetic function. We say f is Dirichlet-invertible
if there exists an arithmetic function g with f * g = I. Such a g is called an Dirchlet-inverse of f.

Lemma 9.3.2. [inverses] Let f be an arithmetic function. Then

(a) [a] The set of Dirichlet-invertible arithmetic function together with the Dirichlet product form
an abelian group.
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(b) [b] If f is Dirichlet-invertible, it has a unique Dirchlet-inverse, (which we will denote by f~—*).
7" can be computed inductively by

- L
SR
AR TP VG

(¢) [c] [ is Dirichlet-invertible if and only f(1) # 0.

(d) [d] Suppose f is multiplicative and non-zero. Then f is Dirchlet-invertible and f*~1 is multi-
plicative. In particular, the set of non-zero multiplicative functions is a subgroup of the group
Dirchlet-invertible functions.

Proof. (a) If f and g are Dirchlet invertible with inverse f’ and g’. Then f is the inverse of f’ and
g = [’ is the inverse of f * g. Since I is an idendity with respect to *, and * is associative and
commuative, (a) hold.

(b) This holds in any group.

(¢) Suppose f is Dirchlet invertible with inverse g. Then 1 = I(1) = (f x ¢)(1) = f(1)g(1) and

so f(1) #0.
Suppose now that f(1) # 0. Define the aritmetic function g by g(1) = ﬁ and inductively for

n > 1 by

1
g(n):*m > fld)gle)

de=n,e#n
Then (f x¢)(1) = f(1)g(1) = 1 and for n > 1,

(fxg)n)= > fldgle)= Y fld)gle)+ f(1) ! > fldgle) | =0

de=n de=n,e#1 f(l) de=n,e#n

andso fxg=1.

(d) By 9.1.8, f(1) = 1 and so by (¢), f is Dirichlet invertible. Since f* f~* = I and f and I are
multiplicative, we conclude from 9.1.9 then f~* is multiplcative. Also by 9.1.9, the set of non-zero
multiplicative function is closed under s’ and so (d) is proved. O

Definition 9.3.3. [def: fp]

(a) [a] Letp be a prime. Then the arithmetic function €, is define by €,(n) = e, where e € N with
pe|n.

(b) [b] Let f be a non-zero multiplicative function and p a prime. Define function f, : N — C is

defined by f,(e) = f(p°).
Note here that f,(0) = 1 for all primes p.
Lemma 9.3.4. [fp]

(a) [a] Let f be a non-zero multiplicative function. Then f(n) =[], fp(ep(n)). (Note here that
infinite product is defined, since €,(n) = 0 for almost all primes p and so fy(ep(n)) =1 for all
all primes p.
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(b) [b] Two non-zero multiplicative functions f and h are equal, if and only f, = h, for all primes
p.

(c) [c] Let g, : N — C , p aprime, be functions with g,(0) = 1. Define the arithmetic functions f
be f(n) =11, gp(€p(n)). Then f is multiplicative and g, = f,.

(d) [d] Let f and h be non-zero multiplicative functions. Then h* f = I if and only if

(x)  hple) = - Z_: hp(K) fp(e = k) = = (fp(e) + hp(1) fple = 1) + ...+ hy(e = 1) (1))
k=0

for all primes p and all e € ZT.

Proof. (a) -(c) are obvious.
For (d), note that hx f = I if and only if h = f~*. Since f~* is multiplicative this holds if and
only if hy,(e) = (f~*)p(e) for all primes p and all e € Z*. We have

ok —x p
(f7)p(e) = f7(p) ) Z f 7 Zf k) fp(e — k)
d|pe,d#p*
Note that h,(0) = 1 = f,;*(0) and inductively we see that hy(e) = (f~*),(e) for all primes p and
all e € Z* if and only if (*) holds. O

Example 9.3.5. [ex:fp] Let a € R. Compute (N*)~*
Put f = N%, so f(n) = n®. Then f,(k) = pk®. Let h = (N®)~*. Then h,(0) = 1.

0

hp(1) = = " hp(k) fo(1 = k) = =Dy (0) f (1) = —p®

k=0

Z hp fp 2 - ) = _(hp(o)fp(2) + hp(l)fp(l) = _(p2a + (_papa)) =0

k=0

We claim that hy(e) = 0 for all e > 2. For e = 2 we already proved this, so suppose hy(k) = 0
for all 2 <k <e—1. Then

e—1

ho(e) = =D hy(k) fole = k) = —(hy(0)fp(€) + hp(1) fye — 1)) = —(p** + (—p)p“~ D) = 0

k=0
So
1 ife=0
hp(e) =q —p* ife=1
0 ife>2
Let n = p{'...p*¥ where p1,...,py are pairwise distinct primes. If e; > 2 for some 1 < i < k, then

hp,(e;) = 0 and so also h(n) = 0. So suppose that e; = 1 for all 1 <¢ < k. Then



9.3. THE GROUP OF NON-ZERO MULTIPLICATIVE FUNCTIONS 79

k l

h(n) =[] —pic = (D[] p)* = (-1)*n®
i=1 i=1

Thus

(N9)~*(n) = {(—1)’%“ if n is square free and k is the number of primes dividing n

0 if n is not square free

*

Definition 9.3.6. [def:moebius] p:=u"*. p is called the Mébius function.

Lemma 9.3.7. [moebuis| Let p be a prime and n,e € Z* with n,e > 2. Then
(a) (2] uxp=1I.

() ] p(1)=1.

(¢) bl g ud =0 and p(n) = =34, 4z, ().
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) Follows from (h) and w(1) = I(1) = 1.

) Follows from (h).

) Since u is multiplicative, this follows from 9.3.2(d).

)-(g) This is the special case @ = 0 in Example 9.3.5

) Follows from 9.3.5, (f) and (g). O

(e) [e] Ifp is aprime and e € Z7, then (f + u)(p°) = f(p°) — f(p°).

Proof. (a) If fxu =g, then g« p= (f*u)*xp= f*(u*xp)=f+I=f. Similarly, if f = g=* py,
then fxu=g¢. By 9.1.7, uxu=7, Nxu=0 and ¢ xu = N. Thus by (a), u=7*u, N=0c*pu
and ¢ = N xu. So (a)-(d) hold

(Fxm) ) = (ux N(p) = Zu(d)f(%e) = p() () + pu@) f") = F°) — F()

d|pe
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From (d) and (e) can be used to compute ¢: ¢(p¢) = N(p) — N(p¢~!) = p¢—p¢~ L =p~L(p—1).
Of course we already know this.
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The Riemann Zeta function and
Dirichlet Series

10.1 The Riemann Zeta function

Definition 10.1.1. [defizeta] ((s) = Y ", L. ( is called the Riemann Zeta function.

n=1
Lemma 10.1.2. [zeta converges] ((s) converges for all real numbers s with s > 1 and diverges

for all real numbers s with s <1. Moreover, lims_,o, ((s) = 1.

Proof. Suppose first that s > 1. We partition Z* into subintervals I, = {n € Z | 28 < n < 2~+1}.
Note that |I;| = 2F

1 1 ok 1 \"*
-3 T ()

nely nely

Since 0 < 57 < 1, we get ¢(s) = Y020 Y ner 7 < Yoneo (2%1)16 = 1_; and so ((s) converges

25—

by the comparison test.
Note that 1 < limg o ¢(s) < limg_, oo i =1 and so limg_, ((s) = 1.
25—1

Suppose next that s < 1. If s <0, then ni =n"%>1 and ((s) diverges. So suppose 0 < s < 1.
We partition ZT into the subintervals, J, = {n € Z | 2¥1 < n < 2*} and note that for k > 1,

|Jk| = ok—1,
We have
1 1 k=1 gk=1 1
> — > I
Z ns — Z (21@)3 (2k)s = 9k 2
neJg neJg
Since the constant series % diverges, also ((s) diverges. O

10.2 Evaluating ((2k)

To compute ((2k), where k is an integer, we will take to following formula from Analysis for granted:

81
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sinz:zH(l——) 1:[( n%z)

n#0
Taking the natural logarithm on both sides we obtain

0 2
Insinz =Inz -+ E In <1—§2)
n2mr

n=1

Differentiating both sides with respect to gives

1 J— 1 2z 1
——cosz = — + g = :7_2§ — ~
sin z z n:l — 5 27 z oyt nem* ] — e
Use the geometric series:
k o) 00 _
P 1 2 2k+1 52k—1
n?ml— 2 n27r2 § : n27r2 § : n2k+22k+2 § : n2k 2k
n2m k=0 k=1
and so
) . L, =l =
* cotz=—— E —_— = - =
P n2kn2k
k=1 k=1

We will now compute a second expression for cot z. We start with proving that

1 =2z
(**) cotz = —l+;m

where ¢ = /—1. Canceling the z and adding ¢ we have

—24

COtZ—i_Z:e—Q’Lﬁ

Multiplying with i(e=2% — 1)

(icotz —1)(e %= —1) =2

by Euler’s Formula, e'* = cosz 4+ ¢sinz and so e = cosx — ¢sinx. Thus

(icotz —1)(cos2z —isin2z — 1) =2

and

i1cot zcos2z 4 cot zsin2z —icot z —cos2z +1sin2z +1 = 2

So it suffices to prove:

cot zsin2z — cos2z = 1 and (cotz cos2z — cot z + sin2z)i = 0

cos z
sin z?

Using that cotz = sin2z = 2sinzcosz and cos2z = cos® —sin® z these two equations

transform to
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Cos z COS z

sin z cos z — cos? z + sin® z = 1 and ——— (cos® z — sin? 2) — + 2sinzcosz =0

sin z sin z sin z

2

Simplifying and multiplying the second equation with sin z gives

2 2

2cos2z —cos?z+sin?z =1 and cos? zcosz — coszsin? z — cos z + 2sin? cos z = 0

and

cos® z +sin® = 1 and (cos? z + sin® z) cos z — cos z = 0

Since cos? z + sin? z = 1, these last two equations are true and so (**) is proved.
Put t = —2iz. Then (**) reads

t '+1 t
cotz = —i 4+ —
zet —1
Let
t > Bm .,
(% % %) et_1:th
m=0

be the Taylor series for e% B,, is called the m/th Bernoulli number.

-

Then
1 B,, , ‘ (=29)" By, o1
t P - e 72 m __ N T T om
(% % *x) cotz = —i+ p, Ezo - (—2iz)™ = —i + gzo o z

We now compare the coefficient of 2™ =1 in (*) and (¥***)
For m =0 we get Bg = 1. For m =1, 7i72Bli:0andsoBlzf%. Form=2k+1>1 we
get Bog11 = 0 and for m = 2k > 2,
C(2k)  (—2i)%* By,

-2 2k 2k!

and so

1 k—122k—1 2k
cony = T2,

For example,

6
C2) =By, C(4) =3 Bu, and ((6) =

It remains to obtain a formula for the B,,’s. From (***) ¢t = (e! — 1) sz:o 1797:7!1 ™. We have
et =300 % andsoe' —1=3% % Thus

6-
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The coefficient of ¢" in the right hand side is

5 e = 2 (o)

m=0

We now compare that coefficient with the coefficient of ¢" in ¢. For r = 1 we obtain By = 1 and

for r > 1,
r—1 r
(C)pns
m=0 m
and so
1 r—2
B, 1=—- (T)Bm
r A= \m

For example By, = f% (g)B =—
Ba= =3 (Q)Bo+ (B) =5 (1- ) =3 —3 =}
)

Bi= =3 (VB0 + (B1+ (B2 + ()Ba) =4 (153 +10}) = 492380 —

10.3 Probability of being Co-Prime

In this subsection we compute the probability that two randomly chosen positive integers are co-
prime. More generally let p,, be the probability that ged (x,y) = n, where x and y are two random
integers. Then

(*) an =1

Now

ged (z,y) =n<=n|z,n|yand ged (%,%) =1
The probability that n | x is %, the probability that n | y is % and the probability that
ged (f 7) = 11is p;. Thus

Pn = ‘P11 =DP1—>5

1
n n2

S|

Substitution into (*) gives

oo
1223171n —plz =p1G(2
n=1

and so
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Since

we get
6
=R 0.608
T

So the probability that two randomly chosen positive integers are coprime is roughly 60%.

10.4 Dirichlet Series

Definition 10.4.1. [def:dirchlet series] Let f be a arithmetic function. Then

f(s) — Z f(Z)

n

is called the Dirichlet series of f.

Example 10.4.2. [ex:dirichlet series| Dirichlet series for u, N and I.

i) == To, M0 = Tk = ).
Jy(s) =2t NTE:L) =D et nE = 2met ﬁ =((s—1).
I(s)=y00  1m — 1 —q,

n=1 ns 11

Lemma 10.4.3. [series and convolution] Let f and g be the arithmetic function f, g and h. If
h = fx*g, then

Frg(s) = f()g(s)
for all s such that both f(s) and §(s) converge absolutely.

Proof.
floa) = L0y o)

= Yy A
n=1m=1
= nm= f n m

_ ;Z kks( )g(m)
> xqg)(k

_ ;(f )09

= Trg(s)
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Corollary 10.4.4. [series and inverse| If f is Dirichlet invertible, then ﬁ =f1l=1

Proof. From fx f=* = I we get fﬁ —J=1. 0

Example 10.4.5. [series for mu and phi] Dirichlet series for p and ¢:

—

-1 _ 1
=Uu =z=cC

¢*xu=N and so ¢ii = N and ¢(s)C(s) = ((s — 1). Thus ¢(s) = ¢(s)

=

10.5 Euler products

Definition 10.5.1. [def:completely mult] An arithmetic function f is called completely multi-
plicative, if f(nm) = f(n)f(m) for alln,m € Z*.

Theorem 10.5.2. [euler products] Let f be an arithmetic function such thaty -, f(n) is abso-
lutely convergent.

(a) [a] If f is multiplicative, then
Y fm)=]] (Z f(Pi)>
n=1 D i=0

(b) [b] If f is completely multiplicative, then
- 1
> 10 =1 (=)

Proof. (a) Let p; = 2 and inductively let pgy; be the smallest prime larger than pg. Put Ap =
{p7*...p}} | e1,ez,...,ex € N} and

P=]] (i f(zf"’))

i=1

We need to show that limy_.oc Py = > oo, f(n).
Since Y07 | f(n) is absolutely convergent we have

Py = YD) FeF(@08) - F(pir)
61i062i0 ek:O
= D> e pg)
e1=0e2=0 er=0
= > fn)
neAg

Note that n > py for all n € N\ Ay and so
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Pe=) [ =] fm)|< > IfI< > 1f(n)
n=1 n¢ Ay, n¢ Ay, n=pr+1
Since Y,,_, f(n) is absolutely convergent, lim,, .o > - |f(n)| = 0. Since limj_,oc pr = o0
this implies limg o0 |Pr — > vy f(n)| = 0 and so limy_.oo P, = >0 = f(n).

(b) Suppose that f is completely multiplicative, then f(p‘) = f(p)* and so

SRR i _ 1
Thus (b) follows from (a). O

Corollary 10.5.3. [hat and multiplicative| Let f be an arithmetic function and s € R such that
f(s) converges absolutely.

(a) la] If f is multiplicative, then f(s ( im0 pu )
f

(b) [b] If f is absolutely multiplicative, then f(s) =1], —For

Proof. If f is (completely) multiplicative, then also %n) is (completely) multiplicative. So 10.5.3

f(n) -

ns

in place of f. O

Example 10.5.4. [euler for u and mu] Since u is completely multiplicative and 4 = ¢, we have

P P°
Since p is multiplicative and y < * p i) =1- p—ls we have
. 1
fi(s) = H ==
» p

1
5

Observe that these two results match, since ((s) =

—~
P

10.6 Complex Dirichlet Series

In this section we consider the Dirichlet series f (s) of an arithmetic function, where we allow s to
be any complex numbers. Recall that n® for s € C and n € Z% is defined as e**". If s = a + ib
with a,b € R, then Re s := a.

Lemma 10.6.1. [abscissa] Let f be a arithmetic function. Then there exist o4(f) € RU{—00, 00}

such that f(s) is absolutely convergent for all s € C with Res > oq(f) and is absolutely divergent
for all s € C with Res < a4(f).

Proof. We will first show:

1°. [1]  Lets,5 € C withRed > Res. If f(s) is absolutely convergent, then also f(3) is absolutely
convergent,
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For this let s = a 4+ ib and § = a + ib with a.b,a,b € R. Then @ > a. Also |n®| = |[n®t?| =

|non®| = |n%e?®mn| = n% and so
)| _ 1l _ 1) _ )] _ | £
n® |n?| n® — no ns

Hence since Y0 | \’;(I”) is convergent also Y >, |f,5?)

Let R = {Res | s € C, f(s) is absolutely divergent }.

is convergent. Thus (1°) holds.

2°. [2] Let s € C such that Re s is not an upper bound for R. Then f(s) 18 absolutely divergent,

Since Re s is not an upper bound of R, there exists § € C with Res < Res and § is absolutely
divergent, If f (s) would be absolutely convergent, then (1°) would imply that also f (8) is absolutely
convergent. So (2°) holds.

If R =0, (that is f(s) is absolutely convergent for all s € R), put o4(f) = —oc. Then lemma
holds.

So suppose R # ). If R has no upper bound, put o,(f) = co. (2°) shows that f(s) is absolutely
divergent for all s € C and so the lemma hold in this case.

Suppose finally that R # () and R has an upper bound. Then R has a least upper bound o, (f).
Let s € C with Res < 04(f). Then Re s is not an upper bound for R and so by (2°) f(s) is absolutely
divergent. Now let s € C with Res > 0,(f). Since o,(f) is an upper bound for R, Re s ¢ R and so
f (s) is absolutely convergent. So again the Lemma holds. O

10.7 The Riemann Hypothesis

s € C is called a root of ¢ if {(s) = 0. Some known facts (which we will not prove)

e All negative even integers are roots of (, (these roots’s are called the trivial roots’s of ¢.)
e If s is a non-trivial root of ¢, then 0 < Res < 1.
e There are infinitely many roots s of ¢ with Res = %

Conjecture 10.7.1 (Riemann Hypothesis). [riemann hypothesis] If s is a non-trivial root of ,

then Res = %



Chapter 11

Sums of square

For k € ZT define Sy, := {23 + 23 + ... + 2% | x1,2a,... 2 € Z}. In this chapter we determine So,
figure out all possible ways to write an elements of Ss as the sum of two integral square and show
that Sy = N. So every non-negative integer can be written as the sum of squares of four integers.

11.1 Gaussian Integers and Sums of Two Squares
Definition 11.1.1. [def:gauss]
(a) [a] Z[i] :={a+bi|a,beZ} CC. Z[i] is called the ring of Gaussian intgers.

(b) [c] Forz = a+bi € Cwitha,b € R letT = a—bi and §(z) = a®>+b*>. The mapcc:C - C,x — 7T
is is called complex conjugation.

Lemma 11.1.2. [the elements in Z[i]] Z[i] is a subring of C containing 1.

Proof. Clearly 0 and 1 are in Z[i]. Since (a+bi)+(c+di) = (a+c)+(b+d)i and (a+bi)-(c+di) = (ac—
bd) + (ad+be)i, Z[i] is closed under addition and multiplication. Also —(a+bi) = (—a)+(—b)i € Z]i]
and so Z[i] is a subring of C. O

Lemma 11.1.3. [Properties of complex conjugation]

(a) [a] Complex conjugation is ring automorphism of C.

(b) [b] Restricted to Z[i], complex conjugation is a ring automorphism of Z[i]
(c) [c] 6(x)=2T and 6(zy) = 6(x)0(y) for all z,y € C.

(d) [d] Letx e C. Then 6(x) > 0 with equality if and only if x = 0.

(e) [e] d(x) €N for all z € Z][i]

Proof. (a) Since a +bi = a —bi = a + bi, cc is an inverse of cc and so complex conjugation is a
bijection. Let a,b,c,d € R. Then

at+bi+c+di=(a—bi)+(c—di)=(a+c)—(b+d)yi=(a+c)+ (b+d)i=(a+bi)+ (c+di)

89
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and

a+bi-c+di=(a—0bi) (c—di) = (ac+bd) — (ac+bc)i = (ac+ bd) — (ac+ be)i = (a + bi) - (¢ + di)

So cc is a ring homomorphism. Thus (a) holds.

(b) Observe that T € Z[i] for all € Z[i]. Thus the restriction of cc to Z[7] is its own inverse and
is ring homomorphism.

(c) Let © = a + bi with a,b € R. Then §(x) = a? + b® = (a + bi)(a — bi) = 27. Also

d(zy) = (xy)Ty = wyzy = (2T)(yy) = 6(x)3(y)-
(d) Clearly §(z) = a® +b? > 0 and 6(z) = 0 if and only if @ = b = 0 and so if and only if z = 0.
(e) Obvious. O
Lemma 11.1.4. [char s2] Sy = {6(2) | z € Z[i]} and Sy is closed under multiplication.

Proof. Sy = {a®+b* | a,b € Z} = {6(a+bi) | a,b € Z} = {6(2) | z € Z[i]}. Let n,m € Sz. Then
n = d(x) and m = d(y) for some z,y € Z[i]. Hence nm = §(x)d(y) = d(zy) € Sa. O

Lemma 11.1.5. [prime in s2] Let p be a prime with p # 3 (mod 4). Then p € Ss.
Proof. If p is even, then p =2 =124 12 € S,. So suppose p is odd.
1°. [0]  There exists m € Z" with 1 < m < p and mp € Ss.

Since p # 3 (mod 4) an dp is odd, we have p = 1 (mod 4). b8.1.15 [-1], € @, and so —1 =
u? + mp for some u,m € Z with 1 < u < p. Hence mp = u? + 11 € Sy. Since |u| < (p — 1)? we have
u? +1 < p? and so m < p.

2°. [1] Let m € Z" with mp € Sy and m < p. Then either m = 1 or there exists s € Z with
1§s<% and sp € Ss.

Let mp = af + a3 and choose b; € Z with a; = b; (mod m) and |a;| < 2. Then bf + b3 =
a? + a3 =pm =0 (mod m) and so b? + b3 = sm for some s € N. Note that

s (31 (3 -5

andsoO§s§%<m.

Suppose first that s = 0, then b; = by = 0 and so a; = 0 (mod m). Thus m divides a; and as
and so m? divides mp = a? + a3. Hence m | p. Since p is a prime and 0 < m < p we get m = 1. So
(2°) holds in this case.

Suppose next that s > 0. Put x = a1 — ias and y = by + ibs. Then have

spm? = (mp)(sm) = ((—a1)® + a3)(b] + b3) = 6(2)d(y) = 6(xy)

Since xy = (a1by + asb2) + i(a1ba — agby ), this gives

(%) (a1by 4 asbo)? + (arby — agby)* = spm?

Observe that modulo m:
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a1by + asbs = ajay + azas = sm =0 (mod m) and a1by — asb; = ajas —aza; =0  (mod m)

So dividing (*) by m? we obtain

a1b1 + a2b2 2 + a1b2 — CL2b1 2 —
m m b

Hence sp € S5 and so again (2°) holds.

Now let m € Z™ be minimal with mp € Ss. Then m < r < p and so (2°) shows that m = 1.
Thus p € S,. O

Corollary 11.1.6. [primes in s2] Let p be prime. Then p € Sy if and only of p =2 orp =1
(mod 4).

Proof. If p=2or p=1 (mod 4), then p € S by 11.1.5. So suppose p € Sy. Then p = a® + b? for
some a,b € Z. Then a?> = 0,1 (mod 4) and b*> = 0,1 (mod 4). Thus p=0,1,2 (mod 4). If p = 0,2
(mod 4), p is even and so p = 2. O

Lemma 11.1.7. [approximation by gaussian integers| Let x € C then there exist y € Z[i] with
oz —y) < 3.

Proof. Let © = x1 4+ x2¢ with x; € R. Then there exists y; € Z with |z; — y;| < % (Just round x; to
the nearest integer). Let y = y1 + yoi. Then
2 2
S =@ —nP+@-w?<(5) +(5) =5
—\2 2 2’
O

Lemma 11.1.8. [division alg for gauss| Let a,b € Z[i] with b # 0. Then there exist q,r € Z][i]
with

a=qb+r and §(r) < 4(b).

Proof. By 11.1.7 there exists ¢ € Z[i] with §($ —¢) < 1 < 1. Put 7 = a — gb. Then

3(r) = d(a— gb) = & <b“ _bqb> = 5(b)6 (% - q) < 5(b)
and

a=sb+r.

Lemma 11.1.9. [gauss euclid] Z[i] is a Fuclidean domain.

Proof. It is readily verified that Z[i] is an integral domain. By 11.1.3(d), §(a) = 0 if and only if
a=0. Let a,b € R with ab # 0, then a # 0. Thus d(a) > 1 and so d(ab) = d(a)d(b) > 4(b).
By 11.1.8 also the last property of an Euclidean domain holds. O
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Lemma 11.1.10. [units in gaussian integers| Let a be a Gaussian integer. Then the following
are equivalent:

(a) [a
(b) [b] 6(a) =1
[

(c) [c] a is one of 1,—1,i and —i.

| ais a unit in Z[i].

Proof. (a) = (b):  Suppose that ab = 1 for some b € Z[i]. Then §(a)d(b) = d(ab) = §(1) =
Since §(a) and §(b) are non-negative integers we conclude that 6(a) = 1.

(b) = (c): Let a = + iy with 2,y € Z. Then 22 + y? = §(a) = 1 and so {|z|,|y|} = {0,1}.
Hence either x =0 and y = +1 or y = 0 and z = £1. Thus a = £1, £i.

(¢) = (b): In each case §(a) = (£1)? + 02 = 1.

(b) = (a): ada =1 and a is a unit. O O

Lemma 11.1.11. [associates of gaussian integers| Let z,y € Z and put a = z + yi.
(a) [a] The associates of a in Z[i] are a = x + yi, —a = —x — yi,ia = —y + xi and —ia =y — zi.
(b) [d] The elements in Z[i] associate to a or @ are +x + yi and +y + xi.

(c) [b] Define Qo := {x +yi | z,y € R,z > 0,y > 0} and for 0 < r < 3 define Q, = i"1Qo.
If 0 # z € C, then z lies in exactly one of Q,’s. If a # 0, then each Q, contains exactly one
associate of a.

(d) [c] a~ @ if and only if one of the following holds

1. [a] a=a and a=r for somer € R.

2. [b] @=—a and a =i for somer € R.

3. [c] a=ia and a =7r(1 —1) for somer € R.
4. [d] @=—ia and a =r(1+1) for somer € R.

Proof. (a): Let b € Z[i]. By A.0.6(b) b ~ a if and only if b = ua for some unit » in Z[i] and so by
11.1.10 if and only if b is one of a, —a, ia, —ia. So (a) holds.
(b) The associates of a are listed in (a) . The associates of @ are

E:x—zy,—a——a——m—&—zy,m——za—y—i—m and —ia =1ia=—y —
and so (c¢) holds. (c) Note the

Q1:iQo:{fy+:L'i|z,yER,xZO,y>O}:{x+yi|x,y€R,x<O,y20},

Q=i ={-y+uzi|z,yecRz<0,y>0}={z+yi|z,y R,z <0,y <0},

and

QRQs=1Q:2={-y+zi|z,yeRx<0,y<0}={x+vyi|z,y e R,z >0,y <0},

Let 0 # z € C. Clearly there exists a unique r with z € @,.. If 0 < s < 3 then i* "a is the unique
associate of a contained in Q.

(d) We have @ ~ a if and only if @ € {+a, +ia}. a =@ if and only if (d:1) holds. If a = —a if and
only if (d:2) holds. @ = ia if and only if x — iy = —y + iz and so if and only if x = —y and if and
only if a = r(1 — ) for some r € R, and so if and only if (d:3) holds. Applying complex conjugation,
we conclude tat @ = —ia if and only if (d:4) holds O
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Lemma 11.1.12. [gaussian primes] Let a be a Gaussian prime. Then there exists a unique prime
p with a | p. Moreover, one of the follwing holds:

1. [a] p=3 (mod 4), d(a) =p?, @~ a~p, and p is a Gaussian prime.
2. [b] p=1 (mod 4), §(a) =p, @~ a»p, and p is not a Gaussian prime.
3. [c] p=2,6d(a)=p,a~an»pandp is not a Gaussian prime.

Proof. Since §(a) is a positive integer, d(a) = p1pa ... p, where each p; is a prime. Since 6(a) = aa,
a divides d(a). Since a is a Gaussian prime we conclude from A.0.9(b) that a | p; (in Z[i]) for some
1 <i < n. So there exists a prime p with a | p.

Since a | p we have p = ab for some b € Z[i] and so

(%) p? = d(p) = 6(ab) ""E 5(a)5(b)

Thus §(a) divides §(p) = p* in Z. Since a is not a unit, 11.1.10 implies that d(a) > 1 and so
d(a) € {p,p*}.

In particular, p is the only prime with alp in Z[i].

If 6(a) = p? we get §(b) = 1. So by 11.1.10 b is a unit and a ~ p. Since a is a Gaussian
prime, A.0.7(h) implies that p is a Gaussian prime. Suppose that p Z 3 (mod 4). Then by 11.1.6
p = 22 + y? for some z,y € Z. Hence p = (z + iy)(x — iy). Since p is a Gaussian prime, p is
irreducible and so = + iy or x — iy is a unit. But then by 11.1.10, 1 = 22 4+ y? = p, a contradiction.
Thus p = 3 (mod 4). Since a ~ p, 11.1.11(d) shows that @ ~ a and so (1) holds in this case.

If §(a) = p then also §(b) = p. So by 11.1.10 b is not a unit. It follows that p is not irreducible
and so by A.0.8 p also not a Gaussian prime. Let a = x + iy with 2,y € Z. Then p = §(a) = 2% +y?
and so by 11.1.6 p # 3 (mod 4).

If p = 2, then a = £1 + 4 and so by 11.1.11(d) @ ~ a and (3) holds. Suppose @ ~ a. Since
d(a) = p, 0(a) is not square and so a ¢ Z and a ¢ Zi. Thus 11.1.11(d) shows that a = r(1 & 7) for
some 7 € R. Since a € Z[i], 7 € Z. Also p = §(a) = 2r? and since p is a prime we get r = £1 and
p=2.Soif p=1 (mod 4), then @ » a and (2) holds. O

Corollary 11.1.13. [primes and gaussian primes| Let p be a prime. The one of the following
holds.

1. [a] p=2, 2 isnot a Gaussian prime, 1+i is a Gaussian prime with 14+i ~ 1 +i and 2 ~ (1414)2.
2. [b] p=1 (mod 4) and there exists a Gaussian prime o with p=0(c) = 00 and o » G.
3. [c] p=3 (mod 4) and p is a Gaussian prime.

Proof. Since every non zero, non unit in Z[¢] is a product of Gaussian primes, there exists a Gaussian
prime ¢ with o|p. Now apply 11.1.12. O

Theorem 11.1.14. [s2] Let n € Z* and write

k l
n=2° HP?S H‘Itt
s=1 t=1

where 2,D1,P2, -, Pk, q1,q2, - - - q are pasrwise distinct primes, e € N, ps = 1 (mod 4), e, € ZT,
q: =3 (mod 4) and fy € Zt. For 1 < s <k let 0, be Gaussian prime dividing ps.
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(a) [a] n~ (140 Ty 0872 [l aff
(b) [b] n €Sy if and only if f; is even for all 1 <t <.

(c) [c] Leta,b€ Z and suppose n € So. Then a® + b? = n if and only if

k !
It
a+1b=19(1+1)° H obagee b H a4
t=1

s=1

for some g € Z with 0 < g < 3 and bs € Z with 0 < bs < e,.

(d) [d] Let m = H];:l pS and suppose n € Sa. Then the number of pairs (a,b) € Z x Z with
a? +b% =n is 47(m).

Proof. Observe that 2 ~ (1 +14)? and ps = §(0,) = 0405.

k 1
n o~ (141)2 H 05T, H g;' is the Gaussian prime factorization of n
s=1 t=1
and so (a) holds.
Let y € Z[i] such that y divides n in Z[i]. Then any Gaussian prime dividing y also divides n
and so is associate to one of 1 414, o4, 05 and ¢;. Thus y is associate to

k l
z = (1+1)% H obeggcs qut
s=1 t=1

where ag, b, ¢i,dy are in N with ag < e, by < es,¢; < e; and dy < fy.
We compute 0(y):

s=1 t=1 s=1 t=1
k l k k
= (1+0)(1 =)™ [[(0.55)" @z00) [ [(@ra)™ =2* [ [ ol [[ it
s=1 t=1 s=1 t=1

The uniquess of prime factorization in Z now show that §(y) = n if and only if

(*) a=¢€; bs+tcs=e€51<s<k; and fi=2d;,1<t <]

In partiuclar, there exists y € Z[i] with d(y) = n if and only of f; is even for all 1 < ¢ <. Thus
(b) is proved.

Note that a and d; are uniquely determined by (*); there are es + 1 choices for by (namely by
is an arbitray integer with 0 < b; < e;) and ¢, is uniquely determined once b is choosen (namely
¢s = es — bs). So there are

k
H(es +1)

choices for z. Note that this number is equal to 7(m).
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Since y ~ z, y = 9z for some 0 < g < 3. So we found all y € Z[i] with §(y) = n:

k 1
1—|—ZGH 5T H%

s=1

Thus (c) holds. In particular, there are 47(m) such y’s and so (d) is proved. O
Lemma 11.1.15. [compare z and zi]
(a) [a] Leta,b,c€Z. Then a|b+ ci in Z[i] if and only if a | b and a | ¢ in Z.
(b) [b] Leta,beZ. Thena|b inZ if and only if a | b in Z][i]

Proof. (a) a | b+ ci in Z[i] iff there exist d,e € Z with b+ ¢i = a(d + ei), iff there exists d,e € Z
withb=ad and c=ae iff a | b and a | ¢ in Z.
(b) This follows from (a) applied with ¢ = 0. O

Definition 11.1.16. [def:is*2] S5 = {a® + b | a,b € Z | ged (a,b) = 1}.
Before determining the elements of Sy, we will describe ged (a, b) in terms of a + ib.

Lemma 11.1.17. [gcd gauss| Let aq,a2 € Z and pul z = a1 + iag. Let 2% be the largest power of
2 dividing a;.

(a) [a] If e # eq, then ged (2,%Z) = ged (a1, a2).
(b) [b] Ife; = ey, then ged (2,2) = ged (aq,az) (1 +14).
(c) [c] gcd(a,b) =1 if and only if ged (2,Z) € {1,1 +4}.

Proof. Put d = ged (a1, a2) and ¢ = ged (2,%). Since d divides a1 and ag, 11.1.15(a) shows that d
divides z and z in Z[i]. Thus d | ¢ in Z[i] and so ¢ = fd for some f € Z][i]. Since ¢ | z and ¢ | Z we have
¢|z+7zand ¢ |i(z —z). Therefore e | 2a; and e | 2a. It follows that fd = e | ged (2a1,2a2) = 2d
and so f|2. Since 2 ~ (1 +4)? and 1 + i is a Gaussian prime, f is associate to 1,1 + i or 2. If
f ~ 2, then 2d ~ fd divides z and so by 11.1.15(a), 2d | a1 and 2d | as. But this contradicts
ged (a1,a9) = d. Thus f ~ 1 or 1+ 4. Hence ged (2,Z) = d(1 4 4) if d(1 4 4) divides z and Z, and
ged (2,Z) = d otherwise. Note that d(1 + ¢) divides z if and only if d(1 4 ¢) = d(1 — 4) divides Zz.
Since d(1 4 ¢) and d(1 — @) are associate, we conclude that d(1 + ¢) divides z if and only if d(1 + )

divides z and Z. Since (1+i)(1—i):2wehave%+i:1;i and
z (a1 +iag)(1—4) ar+ax  ar—ax 1/ a2> 1 /aq ag)
diri) 2d =it =g () i (T

Since d divides a; and a3, we conclude that ( 5 € Z[d] if and only if &4 = 22 (mod 2). Note that

min(ey, e2) is the largest power of 2 dividing d. If e; = ez, then both % and % are odd and (a)
holds. If e; # ez, the one of % and “ is even and the other is odd, so (b) holds.
(c) follows immediately from (a) and (b) O

Corollary 11.1.18. [primitive sum of squares]

(a) @] Letn € Z*. Then n € S if and only if n is neither divisible by four nor by a prime
congruent to 3 modulo 4.
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(b) [b] Letn € S; and let a,b € Z with n = a® + b* and ged (a,b) = 1. Write
k !
n=2° Hpg‘s Hqtt
s=1 t=1

where 2,p1, P2, -, Pk, q1, G2, - - - Q1 are pairwise distinct primes, e € N, py =1 (mod 4), e; € Zt,
gt =3 (mod 4) and f; € Z*. For 1 < s <k let 0, be Gaussian prime dividing p;. Then a + bi
is associated to

k
(L+a) [T we
s=1

where for 1 < s <k, us € {05,05}.

Proof. We may assume that n € Sy and let a,b € Z with a? + > = n. Put 2 = a + bi. By 11.1.17
ged (a,b) = 1 if and only if ged (2,%) € {1,1 4 ¢}. Choose notation as in 11.1.14. So

k l
ft
2=aq + Zb ~ (1 + Z)e H Ugs?ses—bs Hqt2t
s=1 t=1
Thus
k l 1
Z~ (1 -+ i)e H O-:s*bso.fsbs H qt2
s=1 t=1
and
k . . ! ft
ged (2,2) ~ (1414)° H o_;mn(bs,es—bs)o.—smm(bs,es—bs) H th
s+1 t=1

Hence ged (a,b) = 1 iff ged (2,2) € {1,144} iff e < 1, min(bs,es —bs) =0 and [ =0 iff e < 1,
bs € {0,e5} and I = 0.

Thus there exist a,b € Z with n = a? 4+ b? and ged (a,b) = 1 if and only if e < 1 and [ = 0. That
is iff 4 { n and there does not exists a prime ¢ with ¢ =3 (mod 4) and ¢ | n.

Suppose now ged (a,b) = 1. Then b € {0,e5}. Put pus = 05 if by = 5 and ps =75 if e = 0. In

either case o%7;% % = ;% and since [ =0

k
a+ib~ (1440 ] wee

s=1

So (b) is proved. O

Observe that if n = a® + b? and d = ged (a, b), then == (%)2 + (3)2 and ged (%, %) =1. So

we can compute all pairs (a,b) with n = a® + b* as follows: For each d € ZT such that d* | n and d
e It

is divisible by als] Hizl q,> , use 11.1.18 to write m = 7z as the sum of the squares of two coprime

integers and then multiply each of the two integers with d.

Example 11.1.19. [ex:s2] Let n = 2555112, Find all a,b € N with a®> +b*> =n and a < b.
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Let d € Z* such that d* | n and m := J5 € S3. Then d | 225?11, 41 % and 11 | %. Thus 4 | d,
11 |d and so d = 44 - 5% with 0 < z < 2. Hence m = 2 - 5Y, where y =5 — 2z € {5,3,1}.

Observe 5 = 12 + 22 and so 0 = 1 + 2i is a Gaussian prime dividing 5. Let a,b € Z with
n = a?+ b? and ged (a,b) = 1. Then n = d?*m = (da)? + (db)?. Put z = a + ib. Then by 11.1.18, z
or Z is associate to (1 +4)o¥. Note that 02 = (14 24)(1 +2i) = (1 —4) + (2 + 2)i = —3 + 4i.

For 2 = 2 we have d = 52-44 = 1100, m = 2-5 = 10, (1+4)o = (141)(14+2i) = (1-2)+(2+1)i =
—1+43i. 10=12+ 32 and
n = 1100% + 33002.

For x = 1 we have d = 5-44 = 220, m = 2-5% = 250, (1+i)o® = (1+i)00? = (—1+3i)(—3+44)
(3-12)+ (—4—9)=—9 —13i ~ 9+ 137, 250 = 92 + 132 and

n = 19802 + 28602.

For z = 0 we have d = 44, m = 2-5° = 10-5* = 6250. (14i)o® = (1+i)030? ~ (9+13i)(—3+4i) =
—27 — 52 + (36 — 39) = —79 — 3i ~ 79 + 3i. 6250 = 32 + 792 and

n = 132% + 34762.

11.2 Sum of Four Squares

Lemma 11.2.1. [s4 s4] Fori =1 and 2 let a;,b;,c;,d; € R. Then

(af+b] +ci+dP)(a5+b5+c3+d3) = aras + biba + crea + dydy)?

2
aics + bida — crag — dibg)?

( )
(a1b2 — bras — c1de + dyc2)
( )
( )

ayda — bica + c1by — dias
Proof. The product on the left hand side is equal to
aja3 + aib3 + aic3 + aib3 + biaj + bib3 + bick + bid3
+c2a2 + b3 + 2 + Ad3 + d2ai + d3b3 + d3c: + d3d>
The right hand side is equal two
a?a? 4 b33 + c2c3 + did3 + 2a1b1a2bs + 2a1c1a2¢2 + 2a1d1asda 4+ 2bicibaca + 2b1dibads + 2c1dicads
+aib3 + bia3 + cidj + dics — 2a1biazbs — 2a1c1bads 4 2a1dibaco 4 2b1crasds — 2bidiazca — 2c1dicads
+aich +b3d3 + cia3 + dib3 + 2a1bicade — 2a1ciasce — 2a1dibacy — 2biciasds — 2b1d1badz + 2¢1d1azbs
+aids + bic3 + cib3 + dia3 — 2a1bicads + 2a1c1bads — 2a1d1azds — 2bicibaco + 2bidiazcy — 2c1diasbs
and so the lemma holds. |
Corollary 11.2.2. [s4 closed] Sy is closed under multiplication.

Proof. This follows immediately from 11.2.1. O
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Theorem 11.2.3. [s4=n] S; = N, that is is every non-negative integer is the sum of the squares
of four integers.

Proof. We have 0 =02 4+024+02402 € S, and 1 =12+ 0%+ 024+ 0% € S,. Any integer larger than
1 is a product of primes, so in view of and in view of 11.2.2 it suffices to show that every prime p is
contained in Sy. 2 =124 12 + 02 + 02 € S4. So we may assume that p is odd.

1°. [1]  There exists m € Z with 1 <m < p and mp € Sy.

Let K := {a* | a € Z,} = Q, U {[0]}. Then |[K| = [Q,| +1 =21 +1=12E > 2 Pyt
L=1[-1,-K={[-1-n%,|ne€Z} Then |L| = |K|> L. Thus |K|+|L| > p = |Zy| and so
KNL#(. It follows that there exist u,v € Z with u?> = —1 —v? (mod p) and so u? +v2 +1 =mp
for some m € Z. Without loss |u| < £ and |v| < &. Thus

2 2 2
mp:u2+v2+1§<g) +<‘g> +1:p5+1<p2
and so 1 < m < p. Since mp = u? +v? + 11 + 0%, mp € Sy and (1°) holds.

2°. [2] Letm €Z with1 <m < p with pm € Sy. Then either m =1 or there exists s € Z with
1<s<mandsp€Sy.

Pick ai, bl, Ci, d1 € 7Z with

(*) mp = ai +b; + cf +di
For = € {a,b, c,d} pick 23 € Z with |z3] <& and 3 = 1 (mod m). Then

aa+bi+catdi=al +ba+ci+di=pm=0 (modm)

and so

(%) sm = a3 + b3 + c3 + d3
for some s € Z.

Case 1. [s=0]  Suppose that s = 0.

Then x5 = 0 for all 2 € {a,b,c,d}. Hence x; = 0 (mod m) and so m? | 2. Therefore m? divides
a? +b? + ¢ +d? = mp. It follows that m | p. Since 1 < m < p and p is a prime, this gives m = 1
and so (2°) holds in this case.

Case 2. [sodd] s>1 andm is even

Since |Zs| = 2 < 4, at least two of aq, by, ¢; and d; are congruent modulo 2. So we may assume
that a; = b; (mod 2). Thus a; + b = 0 (mod 2). Also k* = k (mod 2) for all k € Z. Since m is
even, (*) gives

Ozmpza%er?qcherf£a1+b1+cl+dlzcl+d1

Hence also co = ds (mod 2).
We compute
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a1 + by 2 a; — by cl+d1 2 2a%—|—2b%—|—26%—|—2d% mp
2 )" T - 1 ~ 2

Thus %p € Sy and (2°) holds with 's = 3’
Case 3. [sodd] s>1 andm is odd.

Since m is odd, % is not an integer and so || < % for all z = a,b, c,d. Thus (**) gives

2
sm<4(%) =m?

and so s < m.
Observe that

a1ag + biby +cicog +dids = al+ b+ +d3 = mp=0 (mod m)
aiby — bras —cido +dica = a1by —bia; —cidy +dics = 0 (mod m)
aice + bldg — C1a9 — d1b2 = aic1 + bldl —Ci1a1 — dlbl = 0 (mod m)
aids — bico + c1bgs —dias = a1dy — bicp + by —diag = 0 (mod m)
Using 11.2.1 we have
spm® = (sm)(pm) = (af +b% +cf +d7) : (a3 +b3 + 3 + d3)

= (a1a2 + b1by + c1c0 + d1d2)2 + (a1b2 —bias — c1da + d102)2
+ (a1ca+bidy — cras — dlb2)2 + (a1dy — bica + c1be — d1612)2

Dividing by m? we obtain

sp =

m

(a1¢12+b152+0102+d1d2)2 =+ (a1b2—b1a2—01d2+d102)2
m

a1catbida—cias—dibs )2 arda—bicotciby—dias |2
+ o )"+ m )

Thus sp € Sy and since 1 < s < m, (2°) also holds in this case.

By (1°) we can choose m € Z mininimal with 1 < m < p and mp € Sy. (2°) now shows that
m=1and p € Sy. O

Example 11.2.4. [ex:s4] Use the proof of 11.2.3 to write 11 as the sum of squares of four integers.
We have in Zq1,
K = {02, (£1)%, (£2)%, (£3)?, (£4)?, (£5)%} = {0,1,4,9,16 = 5,25 = 3}
and

L=—(1+K)={-1,-2-5-10,-6,—4} = {10,9,6,1,5,7}
So KNL=1{1,5,9}. Let’s choose 5 € K N L. Then
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4> =5=-1-4% (mod 11)
and
42442 +1240°=33=3-11
Som =3 and m > 1 and m is odd. So we are in Case 3 of 11.2.3. We have
ap=4=1 (mod 3) and so az =1
by =4=1 (mod 3)and so by =1
c1 =1 (mod 3)and so ¢ =1

dy =0 (mod 3)and so by =0

Thus
as+bidci+di=1+14+1+0=3=1-3=1-m
So s =1.
_ _ aras+bibateicotdids )2 arbo—bras—cidotdics 2
11 = Sp = ( m ) + ( m )
ayco+bida—cias—dybs \ 2 ayda—bicatciby—dias )2
+ o )+ m )
_ 4-144-141-140-0\2 41-4.1-1.040-1)2
= ( : )+ 3 )
4.144-0—1-1-0-1)2 4-0—4-141.1-0-1)2
+ 3 )+ 5 )

= 32+ 0%+ 1%+ (—1)?
So

11=32+12+12+40



Chapter 12

Fermat’s Last Theorem

Fermat’s Last Theorem: Let a,b,c and n be positive integers with n > 3, then

a +b° £

Fermat wrote this theorem on the margin of his copy of Diophantos’ Arithmetica around 1637,
Fermat did not give a proof, but just stated that the margin was too small to fit the proof. It took
320 years until Andrew Wiles finally gave a proof in 1993. In this chapter we will prove a couple of
special cases of Fermat’s last theorem.

Let m be a divisor of n with m > 3. Then n = ml for some | € Z* and a™ + b™ # c" becomes
(@)™ + (b)™ # ()™. So if the Fermat’s Theorem holds for m in place of n it also holds for n.
Observe that every integer large than 3 is divisible by 4 or by odd prime. So it suffices to prove
Fermat’s last theorem for n = 4 and for n an odd prime.

If a® +b" = " and p is a ;L)rime dividing two of numbers a, b and ¢, then p also divides the

n n
third and (%) + (%) = (f}) . So it suffices to prove Fermat’s last theorem for a,b and ¢ being

pairwise coprime.

12.1 a?+ b2 =2

Definition 12.1.1. [def:pythagorean triple] A triple (a,b,c) is called a primitive Pythagorean
triple if

(i) 1i] a,b and c are pairwise coprime integers.
(ii) [ii] a®+b* = .
(1) [iii] a is odd.

Note here that if @ and b are coprime integers, then a or b is odd. So condition (iii) can always
be achieved by interchanging a and b if necessary.

Theorem 12.1.2. [pythagorean triples| Let a, b and ¢ be integers. Then the following are equiv-
alent:

101
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(a) [a] (a,b,c) is a primitive Pythagorean triple.

(b) [b] There exist coprime positive integers u and v with u > v, u #Z v (mod 2) and

a=u?—v% b=2uv and c = u®+v?
Proof. (a) = (b):  Suppose (a) holds. By 11.1.18 ¢? is neither divisible by 4 nor by a prime
congruent to 3 modulo 4. Thus ¢ is odd and ¢ = Hle p¢s, where the py’s are primes congruent
to 1 (mod 4) and e, € Z*. For 1 < s < k let o, be a Gaussian prime with o5 | ps. Then
= H’;Zl o2¢:5,%¢ and so by 11.1.18 a + ib is associate to H];:l w?: where us € {05,075} Put
p=TI"_, pe and let p = 2 + yi with 2,y € Z. Then a + ib is associated to p? = 2% — y® + 2xyi
and so {a,b} = {|z? — y?|,|2zy|}. Since a is odd, b = 2|z||y| and a = |z* — y?|. Let u = max(|z|, |y|)
and v = min(|z|,|y|. Then a = u? —v? and b = 2uv. Hence ged (u,v) divides a and b. Since
ged (a,b) = 1, this gives ged (u,v) = 1. Since ps = psfi; we have ¢ = Hszl(usm)es and so
c=pup = 2% +y% =u?+v2. Since ¢ is odd, u Z v (mod 2) and so (b) holds.
(b) = (a):  Suppose (b) holds. We compute

a® + b = (u® — %)% + (2uwv)? = u* — 2u*0? + vt 4 4u?0? = ut 4 2u0? ot = (WP 0?2 =2

Since u Z v (mod 2), a is odd, b is even and c¢ is odd. Suppose p is a prime dividing two of a, b
and c¢. Then it divides all three and hence p is odd and p divides (LT-H = u? and St = v2. So p
divides u and v, a contradiction to ged (u,v) = 1. Thus a,b and ¢ are pairwise coprime and (a, b, ¢)
is a primitive Pythagorean triple and (a) holds. O

Example 12.1.3. [ex:pythagorean triples] Compute the Pythagorean triple associated to u = 6
and v =5.

a=u?—-v2=36—-25b=2uv=2-6-5=060and ¢ = u? +v% = 36 + 25 = 61.

12.2 a*+b* =2

Theorem 12.2.1. [n=4] If a,b,c are positive integer, then a* + b* # 2. In particular, Fermat’s
Last Theorem holds for n = 4.

Proof. Let a,b,c be a counter example with ¢ minimal. If p is prime dividing, two of a, b and c,
then p divides all three and p? divides ¢, thus

a\* b\ ! c\?

_ + (= ==

p p p
contradiction the minimality of ¢. Thus a, b, c are pairwise coprime and we may assume that a is
odd. Thus by 12.1.2 there exist coprime positive integers u and v with u > v, u Z v (mod 2) and
(1) a? = u? — 0% b* = 2uv, and ¢ = u? + 02

Thus a? 4+ v? = u2. Since u and v are coprime and a is odd, we conclude from 12.1.2 that there
exists coprime positive integers @, with @ > o, @ Z ¢ (mod 2) and
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(2) a=1u%—v%v=2u0, and u = @® + o*

(3) b? = 2uv = 4av(a® + %)

Since v and v are coprime, 24? and @2 + 92 are coprime. Since also % and ¥ are coprime we
. _ - . . 2 -
conclude that @,7 and @* + 92 are pairwise coprime. By (3) (4)” = a9(@* + ©2). Hence 3.1.7(b)

shows that each if the three coprime factors have to be square. So there exist a, b, ¢ in in Z with

a=a%0="0% and W2+ 0> =

Thus
a4 +64 — (a}2) _|_ (62)2 — aQ +62 — 52
Note that
< (@) =@+ = <uP+0v=c
and we obtained a contradiction of the minimal choice of c. O

12.3 a?+ b =¢P

Suppose aP + bP = P where p is an odd prime and a, b, c are positive integers. Since p is odd,
(=) = —cP and aP + P + (—p)" = 0.
Thus Fermat’s Last Theorem for an odd prime p is equivalent to

al + b7 4+ P #0.

for all non-zero integers a,b and c¢. This formulation has the advantage that it is symmetric in a, b
and c.
The proof of Fermat’s Last Theorem for odd primes splits into two cases.

Case I of Fermat’s Last Theorem p divides none of a, b and c.
Case II of Fermat’s Last Theorem p divides ezactly one of a, b and c.

In this section we will rule out Case II of Fermat’s Last Theorem for certain primes p. The next
Lemma makes sure that the conditions we will make on the primes is fulfilled for many primes.

Lemma 12.3.1. [q=2p+1] Let g and p be odd primes with ¢ = 2p+ 1. Then

(a) [a] Ifa €Z then a? =0,1,—1 (mod q).

(b) [b] Ifa? +b” + c? =0 (mod q) for some a,b,c € Z then q divides one of a,b, c.
(c) [c] Ifa€Z, then p# a? (mod q).
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Proof. (a) If ¢ | a, the a = 0 (mod ¢). So suppose ¢ f a. Then Fermat’s Little Theorem implies
a? ! =1 (mod ¢) and so
(aP)*=a’’=a?” =1 (mod q)

Thus a? = +1 (mod ¢) and (a) holds.

(b) Suppose that g divides none of a, b and ¢. Then a? # 0 (mod ¢). and so by (a), a?,b? and
cP all are congruent to +1 modulo g. Thus aP + bP + P is congruent to £1 or +3 modulo ¢. Since
g=2p+1>2-3+1> 3, we conclude that a? + b? + ¢ £ 0 (mod q).

(c) Note that 0 < p—1 < p <p+1 < g and so ¢ divides none of p — 1,p and p + 1. Thus
p#1,0,—1 (mod g). Hence (c) follows from (a). O

A prime p such that also 2p + 1 is a prime, is called a Sophie Germain prime. The first seven
Sophie Germain primes are 2, 3, 5, 11, 23, 29, and 41. Among the first 100,000 primes there are
9,667 Sophie Germain primes. It is conjectured that there are infinite many Sophie Germain primes.

Lemma 12.3.2. [an+bn] Let a,b and n be integers with n odd. Define
n—1

fo i L XL — Z,(a,b) = > (=1)fa'b" " =0 —a" P4 a0 — L+ a?b" T — a4 b
=0

Then

(a) [d] fu(a,b) = fu(b,a).

(b) [a] a™ +b" = (a+b)fn(a,b).

(c) [b] Ift is an integer with a+b=0 (mod t), then f,(a,b) =nb"~! (mod t).
(d) [e] Ift is an integer with b =0 (mod t), then f,(a,b) =a™"! (mod t).

(e) [c] Ifa and b are coprime, then ged (a + b, fr(a,b)) divides n.

Proof. (a)
fn(a,b) = Z(—l)’a‘b”‘l‘l s Z(—l)"‘l_Ja”_l_JbJ n— Leven Z(—wbﬂan—l—ﬂ = fu(b,a).
i=0 j=0 j=0

(b) Just apply the formula b — a” = (b—a) 27"~ b'a®'~* to —a and b in place of a and b:

n—1
@b = b — (—a)" = (b— (—a)) 3 6" (—a)l = (b+ a)fula,b)
=0

(c) Since a+b=0 (mod t), —a =b (mod t) and so

n—1 n—1 n—1
fala,b) =D (=a)" =D "pp T =Y " p = pb" ! (mod 1)
=0 i=0 =0

(d) Since b =0 (mod t),b" 17 =0 (mod t) forall0 < i < n—1andso f(a,b) = (—1)""ta" 10 =
a™ ! (mod t).
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(e) Put t = ged (a + b, frn(a,b)). Then f,(a,b) =0 (modt) and a +b =0 (mod t). Hence (c)
gives
(%) 0= fu(a,b) =nb"' (mod t)

Suppose p is a prime dividing ¢ and b. Since t | f,(a,b), (b) implies p | a™ + b™. So p divides
(™ 4 b") — b = a™ and p divides a and b, a contradiction. Hence ¢ and b are coprime. By (*)
t|nb"! and so t | n. O

Theorem 12.3.3 (Sophie Germain). [fermat for prime| Let p be an odd prime and suppose there
exists an odd prime q such that the following two statements hold:

(i) [i] If a? +b° + c? =0 (mod q) for some a,b,c € Z, then g divides one of a,b, c.
(i) [ii] If a € Z, then p # aP (mod q).
If a,b and c are integers coprime to p, then
a? +bo" +cP #£0

Proof. Suppose for a contradiction that a,b and ¢ are integers coprime to p with

(1) al + b 4+ =0.
As usual we may assume that a, b and ¢ are pairwise coprime.
Define f, as in 12.3.2. Then by 12.3.2(b)
(2) (—a)P =—=a? =P+ P = (b+c)fp(b,c)
Put t = ged (b + ¢, fp(b, ¢)). Since b and ¢ are coprime, 12.3.2(e) implies ¢ | p. By (2) ¢t | bP +¢P =
—aP. Since ged (a, p) = 1 we conclude that ¢ = 1. Thus
(3) b+ ¢ is coprime to f,(b,c).

From (2), (3) and 3.1.7 we conclude that there exist integers r and v with

(4) b+c=rP, fp(b,c)=uP, and —a = ru.

By symmetry in a, b and c, there also exist integers s,t,v and w with

(5) at+c=5", fpla,c)=2P, and —b = sv,
and
(6) a+b=1t", fp(a,b) =wP, and —c=tw.

We now consider the above equations modulo ¢. From (1) modulo ¢ and the assumption (i) we
conclude that ¢ divides one of a,b and c¢. Without loss ¢ divides c. Observe that
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P+ +(—t)P=rP+s?P—tP=0b+c)+(a+c)—(a+b)=2¢c=0 (mod q)

and so by (i), ¢ must divide one of 7, s and ¢t. If ¢ divides r, then ¢ also divides b = 7P — ¢, a
contradiction since b and ¢ are coprime. By symmetry, ¢ does not divide s and so ¢ divides t. Hence
q divides a +b =t? and so a + b =0 (mod ¢). Thus by (6) and 12.3.2(c),

(7) w? = fp(a,b) =pb*~ ! (mod q)

and since ¢ =0 (mod q), (4) and 12.3.2(d) give

(8) uP = fp(b,c) = =1 (mod q)

If ¢ divides u, it also divides a = —ru. But this is a contradiction, since ¢ divides ¢ and a and ¢
are coprime. Thus there exist an integer @ with uit = 1 (mod ¢) and so by (8) b*~taP = (uit)P = 1
(mod ¢). Hence

vp o pep D p1p
(wa)? = wPa? = pbP~ @ =p (mod q)

But this contradicts (ii). O



Chapter 13

Continued Fractions

13.1 The Continued Fraction of a Real Number

Definition 13.1.1. [def:simple sequence of real] Let « be a real number. We will inductively
define k € Z U {oo} and the (finite or infinite) sequences of real numbers

()it,  (Ba)izb  and  (qn)kZ4

as follows:

and if o, has already been defined put

qn = LanJ and 671 = Opn — (n-
If B, =0, put k =n+1 and so all terms of the three sequences have been defined.
If B, # 0, put a1 = ﬂi and proceed inductively.
If the inductive definition does not terminate in finitely many steps put k = oo

k—1

The sequence (qy)r_y s called the simple sequence associated to cv.

Lemma 13.1.2. [simple sequence of real] Let a € R and use the notation from 13.1.1 Let 0 <
n < k. Then

(a) [a] gn €Z,0< 8, <1 and o, = qn + B = qn
(b) [b] Ifn+1<k, then a, = qn + —— ~ g, + —

QAn+1 dn+1

(c) [c] If n>1, then B,—1 >0, a, > 1 and g, > 1.
(d) [d] If1<k< oo, then gx—1 > 1.

Proof. (a) We have ¢, = |ay,] and so ¢, € Z and ¢, < ay, < gy + 1. Since 8, = o, — ¢, we get
0< B, <1and a, =q, + Bn-
(b) Since n+ 1 < k, a4 is defined and a1 = ﬁ% So (b) follows from (a).

(¢) Since 1 < n < k, B,—1 # 0 and so by (a) 0 < 8,1 < 1. Thus «a,, = Bnl_l > 1 and
Gn = |an| > 1. (d) Since k < 00, Bx—1 = 0 and 80 qx—1 = ag—1. Since k — 1 > 0, (c) gives agp_1 > 1
and so (d) is proved. O

107
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In view of the preceeding lemma we have

1 1
a=ap=¢o+ — =g+ —
a qn

Example 13.1.3. [ex:continued fraction of sqrt 2] Compute the simple sequence associated to

V2.
Let o = /2. Then qo = L\/ﬂ =1and so Gy = V2 — 1. Thus

B VZ-1 (V2-1)(V2+1) 2-1
HenceqlzLOzlJ:L\/éJrlJ:2and51:a17q1:(ﬁ+1)72:\@71:50
It follows that oy = a1 =v2—1, 3 =By =+v2—1and ¢; = ¢; = 2 for all i > 1. Thus

1
V2=1+ -
2+
2+ !
2+ !
2+...
The first few approximations for /2 are
11+1 21+ ! 1+1 1+2="Tand 1+ ! 1+ ! 1+5 il
SRR 575 , L 2 Tnw
2 T *5
2+ =

13.2 Simple Sequences

Definition 13.2.1. [def:continued] Let k € NU {oo} and (qo)ﬁ;é = q0,q1,---Gn,--. be sequence
of k real numbers such that q¢; > 1 for all1 < i < k. For 0 <n <k define [qo,q1, - - -, qn] inductively

by
[q0] = a0

and if n >0

[quqlv"‘vqn] =qo+
[Q17QQ7"'aQ1’L]
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The sequence

[qO]a [QOaCh], [QO7Q1aCI2]a sy [q03q17 o 7Q’n]7 e

is called the continued fraction associated to qo,q1,q2 - - -, Gn-

If this sequence converges we denote its limit by

[qn]ﬁ;% or [q()? q1,425---54n; - - ]

Suppose in addition that q, € Z for all 0 < n < k and that if k is finite and k > 1, then
qx—1 > 1. Then (qn)ﬁ;é is called a simple sequence and its continued fraction is called a simple
continued fraction.

Note that

[90,q1,- - qn] = qo +

q +

q2 +

Lo
qn—2 1

dn—1 + —

n

Lemma 13.2.2. [alphai for alpha] Let o € R and let (¢,)*25,(8,)520 and (o) ) be as in
13.1.2. Then

(a) [a] (gn)"Z% is a simple sequence.
(b) [b] Forall0<i<j<k, a=1[qqit1,---,q—-1,0].
(C) [C] For allO§j<k‘,a:[qo,ql,...,qj,l,aj].

Proof. (a) By 13.1.2(a), ¢, € Z for all n € N. By 13.1.2(c), g, > 1 for all n € Z*, and by 13.1.2(d),
gr—1 > 1if 1 <1 < 00,50 (gn)5 is indeed a simple sequence.

(b) The proof is by induction on j —i. If j —i =0, then ¢ = j and «; = [«;] and so (b) holds in
this case. So suppose that j —i >0 and so i <i+1<j <k. By 13.1.2(b) and induction

1 1
o = ¢ + =q; + =[G Gig1s - - - -Qj—1, Q5]
Qi1 [Gi+1,- -5 qj-1, 5]
(c) Since a = ap, this is the special case i = 0 of (a). O

Lemma 13.2.3. [alt def continued] Let (g,)"Z1 be a simple sequence and let 0 < | < n < k.
Then

[QO7QI7~-~>C]£—17 [qlaql+17"'qu]] = [q07q15"'7qn]

Proof. If | = 0 there is nothing to prove.
So suppose | > 0 and assume inductively that [q1, ... q—1,[q, @i+1,---qn]] = 91,92, -, Gn]. Then
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[quqlw'qu} = q0+m

1
9+ [q1,92,--,q1-1,[q1---,qn]]

[q07QIa s qi—1, [(Zl>Ql+1a .. Qn]]

Lemma 13.2.4. [basic continued] Let (¢,)"Z{ be a simple sequence. Inductively define

a2=0,a1=1,8,41 = Gni10n +ap_1,-1<n<k-1

and
bo=1,b1= 07bn+1 = QnJrlbn +bp1,-1<n<k-1

Let o be a real number with o > 1.
(a) [c] an € Z and b, € Z for all =2 < n < k.

(b) [d] The first few terms of (an)Z;l_2 and (bn)ﬁ;l_2 are

Qp : 0 1 g qgo+1 g2q190+ G2+ qo
bp: 1 0 1 7 gaq1 + 1
(c) [a] [d0,a1, - s 0] = 52522 for alln > —1.

(d) [b] [q07q17~ . qn] = % fOT all n > 0.

Proof. (a) Observe that a_s,a_1,b_2,b_1 € Z. Since ¢, € Z for all n € N, (a) follows by induction
on n.

(b) Readily verified.

(¢) For n = —1 the left hand side is [a] = a. The right hand side is z:éfr? = «. Hence (c) holds
for n = —1. Suppose (c) holds for n, then

13.2.3
[0, 0y Gns1:0) =T g0y Gy [dnr1, )] = (05 Gy Gugr + 2]

(Gny1+LE)antan_1 _ AGnt1an+an+aan_1
(@nt1+2)bp+bn_1 aqnt1bn+bn+ab, 1

a(gntrantan—1)+an Qany1Fan
a(gnt1bn+bn_1)+bn - abny1+bn

So (c) also hold for n + 1.
(d) Let n > —1. Applying (c¢) with a = g,41 in (c) gives

[qo @ Gns G 1] _ Qn+10n + Qp—1 _ An+1
’ ’ P Q7L+1bn + bn—l b7L+1

So (d) holds for all n > 0. O

Lemma 13.2.5. [between)|
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(a) [a] Let x,y,s,t be real number with s+t =1, 0 < s,t < 1 and x # y. Then tx + sy lies strictly
between x and y, that is either x < st +ty <y ory < sz +ty < x.

(b) [b] l;let a,b,c,d be real numbers with b and d positive and ¢ # 5 Then ‘;jrrg lies strictly between
% and 5.

Proof. (a) We may assume that = < y. Then

r=(s+tlr=srt+tr<sr+ty<sytty=(s+t)y=y.

(b) Note that % = b_%d% + ﬁﬁ. Also b_%d + b_%d = 1 and so (b) follows from (a).

Lemma 13.2.6. [converge]| Let (qn)ﬁ;é be a simple sequence.
(a) [a] Forall =2 <n<k—1, aybyi1 — any1by, = (—1)"H1
(b) [b] Forall =2 <n <k, ged (an, by) = 1.

(¢c) [c] =1<b_1=0<by=1<by and foralll <n <k, n<b, <bpii.

(d) [f] Forall0<n <k, 9 — fnt1 o GO

bn bn+1 b'n,b’n.+1

a a a. a2, a2n+41 a a a
(e) [d] e <p << << <<l <L <<

(f) le] All infinite simple continued fractions converge.

Proof. (a) a—2b_1 —a_1b_2=0-0—1-1=—-1=(-1)"1. Also

anbn+1 - an+1bn - an(QnJrlbn + bnfl) - <Qn+1an + anfl)bn - _(anflbn - anbnfl)
So (a) is true by induction.
(b) Follows from (a).
(c) By 13.2.4(b), -1 <0=b_1 <1=1bp < ¢ = by. Suppose n > 1, b, > n and b,—1; > 0 ( and
observe that this is true for n = 1) then

bn+1 = Qn+1bn + bnfl > qn+1bn 2 bn Z n

Thus (c) holds by induction on n.
(d) By (c), by, # 0 # bpy1. So (c) follows from (a) by dividing by bpbp41.

(e) By (d) 3¢ — 3+ = —landso {2 < ¢ Let n > 1. By (e) §= # 3°=+. Also

Ont1 _ Qnt1Qn + Gn—1
bn+1 Qn-l—lbn +bp_1

and so by 13.2.5(b), 3 lies strictly between 1232 = g2 and $2=*. (e) now follows by induction.

n41 dn+1
(f) By (d) and (c) |%: — Zzii — bnb1n+1 < n(n1+1). Let n < m < k. By (e) ‘;—: is between ‘g—: and
7L Thus
n+1
Gn _ Gm| |80 _ Qo !
by b |~ | bn bn+1 N n(n + 1)

Hence ()72 is a Cauchy sequence and so converges. O
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Lemma 13.2.7. [alpha i] Let (qn)ﬁ;é be a simple sequence. Put o; = [qn]Z; Then
(a) [a] o =][gi,...,q5-1,05] for all0 <i<j<k.

(b) [c] [gi,...,q;] =1 foralll <i<j<k.

(c) b] a; >1 foralll <i<k.

Proof. (a) If k is finite, this follows from 13.2.3. So we may suppose k = co. Since a; = [oy], (¢)

holds for ¢ = j. By induction on j — i assume that a; 41 = [git1,...,¢j—1,0;]. Then
. . 1
a; = lim[g,qiy1,...,q) = lim (¢ + ————
l—o0 l—o0 [Qi-‘rla aql]
_ 1 _ , 1
= Gty [Gi+1,- -] 4T an
l—o0
1
= Gt gooaed = (@) a1, ]

(b) Since [¢;] = ¢; > 1, (b) holds for ¢ = j. So suppose i < j and by induction on j — 4 that
[qi+1, . qj] S 1. Then ﬁ > 0. Thus
1
[Gi+1,-- -4,

(c) Let 1 <i < k. By (c), [¢is---,q;] > 1 and so also o = lim; o0 [gi,...,q;] > 1. If i <k —1,
then by (a) a; = [¢i, @it1] = ¢ + %ﬂ >q; > 1. Ifi=k—1, then a,_; = qx_1 > 1 by definition of
a simple sequence. N

Lemma 13.2.8. [simple of limit] Let (qn)ﬁ;é be a simple sequence and put o = [qn]ﬁ;é. Then
(qn)ﬁ;é is the simple sequence associated to c.

Proof Define «; = [qn]nfi and let (ql)Z —o be the simple sequence associated to «. So there exist
&, Bi 1€Rw1thao—a al—qﬁ—@ and 3; € [0, )fora110<z<k Moreover, if 0 < i < k — 1,
then ﬂl # 0 and &;41 = F and if k is finite, then 51@ . =0

Let 0 < i < k. We will first show

1°. [1]  Suppose i < k and o; = &;. Then
(o) [a] ai = G-
(b) b] Ifi<k—1,theni+1<kand diy1 = Gir1-

(¢c) [c] Ifi=k—1, then k = k.

Suppose ¢ < k — 1. Then by 13.2.7(b), &; = a; = [q;, viy1] = @i +

and so %ﬂ < 1. It follows that §; = ¢; and 3; = a1+

By 13.2. 7(b), Qi1 > 1

a+1

Qip1 = [;i = Q41
Suppose that i =k — 1. Then &_1 = ap_1 = [qn]ﬁ;}%l = qx—1. Thus gy—1 = q;, Br—1 = 0 and
k = k. so (1°) is proved.

2°. [2] Let 0 <i<k. theni<k and o; = &;.
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Note that (2°) holds for i = 0. So (2°) follows from (1°) and induction on i.
If k is finite, then by (2°) we can apply (1°) to i = k — 1 and so k = k. If k is infinite, (2°)
shows that & > i for all i € N and so k = co. In either case (1°) and (2°) now show ¢, = g, for all

0 <i <k and so that (¢,)"Z8 = ((jn)ﬁ:(l). O
Lemma 13.2.9. [rational-finite] Let a € R and (qn)fl;é the associate simple sequence.

(a) [a] If k is finite, then a is rational and o = [q,]*Z}.

(b) [b] « is rational if and only if k is finite.

Proof. Let (a,)FZ8 be as in 13.1.1.

(a )Supposek;isﬁnite Then 8,1 = 0 and so ax—1 = qx—1+Br—1 = qt—1 € Z. For 0 < i < k—1,
a; = ¢; + 7~ and downwards induction on 4 shows that o; € Q for all 0 < ¢ < k. Thus a = ap € Q.
By 13.2.2 ‘o= lq0s - qk—2,ak—1] = [qo,- - -, qr—1] and so (a) holds.

(b) If k is finite, o is rational by (a). Suppose next that « is rational and say o = 7 with
x €L,y € LT,

By the division algorithm, x = qy + r with ¢,r € Z and 0 < r < y. Then

wetr= 257 -

If = 0, then the continued fraction of « is (go) and so is finite. Also o = g = [qo].
So suppose r # 0. Then

1 1
o = — = =
! B a—qo

y
-

<3| =

Since 0 < r < y we conclude by induction on y that the simple sequence of «; is finite. Observe
that the simple sequence associated to a is (qn)ﬁ;ﬁ and so k is finite. O

Lemma 13.2.10. [irrational] Let o € R\ Q. Then the continued fraction associated to o converges
to a.

Proof. Let (qn)’;;é and (an)n o be as in 13.1.1 By 13.2.9, k = co. Let 0 < n < oo By 13.2.2(c),
a=[qo,...,Gn, ny1] and so by 13.2.4(a),

Ap10n + Ap—1

a:[qoa"'vqnvan+1]:a+1b +b 1'
n n n—

So by 13.2.5, a lies between §= and 3"=. By 13.2.4(d), the sequence (§*)p%, is the continued
fraction associated to o and so by 13.2. 6(f) converges to some @ € R. Then & = lim, .o > =

limy, o0 22 o =1 Slnce a lies between §= and . this gives @ = & and the lemma is proved. O

13.3 Periodic Simple Sequences

Notation 13.3.1. [not: perlodlc] In this section, (q,)EZ4 is simple sequence, a; := [ga)"Z} and
o = «ag. Note that by 13.2.8 (qn) _0 is the simple sequence associated to a.

Definition 13.3.2. [def:periodic] A simple sequence (qn)k_1 1s called periodic if k = oo and there
erist | € N and m € ZV with ¢; = ¢;ym for alll <i < co.
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Lemma 13.3.3. [easy periodic] The simple sequence (qn)ﬁ;é is periodic if and only if a; = «;
for some 0 <l < j<k.

Proof. Suppose first that (qn)ﬁ;(l) is periodic. Then k = oo and there exists I € N and m € Z* with
@i = Qitm for all I <i < k. The (¢,)52; = (gn)pziym and SO p = Qi
Suppose next that a; = «; for some 0 <[ < j < k. Then

a2t = = o = [gal3 25

Hence by 13.2.8 [qn}fb;} and [qn]ﬁ;; both are equal to the simple sequence associated to a; = «;.

Thus (qn)ﬁ;ll = (qn)ﬁ;; In particular, those two sequences have length and so k — [ = k — j. Since
-1

I # j we conclude that k = oo. Moreover, ¢, = q,4(j—; for all I < n < k and thus (qn)ﬁ:0 is
periodic. O

Lemma 13.3.4. [qd] Let z € Q with z > 0 and v/z ¢ Q. Define define
Q2 ={z+yvz|z,y €Q}/
(a) [a] Q[v/7] is a subfield of R.
(b) [b] Letz,y, &,y € Q with x4+ y/z =&+ 9yy/z. Thenx =2 andy =7.
(c) [c] The map o : Q[/z] = Q[Vz],x +yv/z — x —y/z is a field automorphism.
Proof. Readily verified. O

Lemma 13.3.5. [periodic] (qn)fb;é is periodic if and only if & = x + y\/z for some x,y,z € Q
withy #0, 2> 0 and \/z ¢ Q.

Proof. Let 0 <[ < k. Then by 13.2.7(a) and 13.2.4(c)

Qa2 + aj—1

1 @ = 140,491, ---,41—-1, Q1] = .
(1) [90: 1 1—1, Q] bt bis

=: Suppose first that (¢,)22, is periodic. Then by definition of periodic, k¥ = co and so by
13.2.9, « € R\ Q. By 13.3.3 oy = v for some 0 <[ < j < oo. Thus by 13.2.7(a),
ap = [ql7 e 7qj715 a]] = [ql7 e aq‘jfla Oél]

and so by 13.2.4(c) applied to the simple sequence (gn+1)5>g

ro;+ S
o] =
ta; +u

for some 7, s,t,u € Z. Multiplying with ta; + u we get tozl2 + (u—r)ay —s = 0. So ¢ is the root of
quadratic polynomial with coefficients in Z. The quadratic formula now shows that oy € Q[v/] for
some z € Q.

Since Q[v/z] is a subfield of R and since the a;’s and b;’s are integers we conclude from (1) also
a € Q[/z]. Thus a = = + y/z for some x,y € Q. Since @ ¢ Q, y # 0 and /z ¢ Q. Since a € R,
z > 0.
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<=: Suppose next that « = = + y/z for some z,y,z € Q with y # 0, z > 0 and /z ¢ Q. Then
o € R\ Q and so by 13.2.9, k = oo. For u = z,y, 2 let u = {2 with u; € Z and us # 0. Since y # 0,
y1 # 0. Replacing 1 by —z; and x5 be —xo, if necessary, we may assume that zoys2o is positive

and 80 Tay?y220 = \/23yty3az2. Then

2 2 21 2 zlxgy‘fygz%
T @y [z Tyzrze (T2y7y222), /2 T1y1Ys2e + ) T2
+ j— =
22

a=— =
2.2 2,2
Y1y z2 Yiysz2

1 ;
T1y1Y322 + /T3yt Y 2120

)
Y1Y322

Put ¢y = 1191y322, d = 23yiy32120 and eq = yy3zo. Then ¢y, dy, eo € Z, eg # 0 and

Co+\/g

€o

aO:a:

Since o € R\ Q we get d > 0 and v/d ¢ Q. Note that ey divides ¢Z and dy. So eg | d—cZ. Inductively,
define

i d
Cit1 = qie; — ¢; and e; 1 = ﬂ
Qjq1
Then
i d )
(2) Q; = GtV for all + € N.
e
We will now show that
(3) ci€Z,e; €7 and e |d—c? foralieN

This is true for ¢ = 0 and suppose inductively it is true for ¢. Then g;,e; and ¢; are integers and so
also ¢; 11 is an integer. Note that o; = [¢;, 1] = ¢; + %H and so

it1 = (cir1 +Vd) = (i +Vd) (i —q)
= (Ciy1+ \/E)(ict\/a —qi) = (i1t \/a)ici_eiﬁﬁ
e d—c2
- WArenYhee o
Since ¢;+1 = gie; — ¢;, we have ¢;11 = —¢; (mod e;). Since e; divides d — c% we get d — sz+1 =

d— ¢ =0 (mod e;). Thus e; divides d — ¢7,,. We conclude that e;{1 is an integer and since
eip16; =d — ¢}y, ;41 divides d — ¢, ;. Thus (3) is proved.

Next we will show that almost all e; are positive. From (1) we get
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a(abi—1 +bi—2) = a1+ a;—o.
(abi—1 —ai—1)a; = —(abi_z—a;_2).
) _ _abi_2—a;_»
@i - abj_1—a;_1"
aj_2
) _ bio @by
Qg - T bioa af‘Zz‘—1 .
i—1

Let o be the automorphism of Q[v/d] with o(z 4+ yvd) = z — yv/d) for all z,y € Q (see 13.3.4).
Applying o to the last equation we obtain:

bi_y 0(@) — 52
(*) o(ai) =————~—a—-
bi—l O'(Oz) — bi,ll
Observe that
o(a) — =2 _
lim b _o@)-a
imoo(a) - 3= oa) -«
Thus there exists N € ZT with
ola) — 3= )
(%) a— >0 foralli>N.

Since b; is positive for all ¢ > 0, we conclude from (*) and (**) that o(ca;) < 0 for all i > N. As
a; > 1 for all ¢ > 0, this gives

0<Oli—0'(04i):

ci+\/a—ci_\/g:2ﬁ for all 7 > N.
€ € €

Thus e; > 0 for all # > N.
Hence 0 < eje;41 = d — ¢, and so
(4) 0<e;<dand ¢l <d foralli>N.

Thus for ¢ > N there are only finitely many choices for the pair (e;, ¢;) and so also only finitely many
choices for o;. Since there are infinitely many ¢ > IV this means that a; = a; for some NV <14 < j.
Thus by 13.3.3 the simple sequence (g,)5 is periodic. O

13.4 Pell’s Equation

Theorem 13.4.1 (Pell’s Equation). [pell] Let d € Z" and suppose d is not a square in Z*. Then
there exist positive integers x and y with

22 —dy? = 1.
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Proof. We use the notations introduced in the proof of 13.3.5 for a = v/d. By (1) and (2) in that
proof:

S

Vi = QiGi—1 + Gi—2 _ Ctl aj—1+ ai—2 _ (ci + Vd)ai—1 + eja;_o
b1 + b2 ctVdp p o (e Vd)biog +eibio

€

Multiplying with (Ci + \/&)@;1 ~+ e;b;_o gives

Vd ((Cz +Vd)bi_1 + eibif2) = (¢; + Vd)ai_1 + e;a;_s

and so

dbi—1 + (cibi—1 + eibi_2)Vd = (ciai_1 + eia;_s) + a;_1Vd.
Since vVd ¢ Q, we conclude from 13.3.4(b) that

db;—1 = cija;—1 + e;a;—2 and a;—1 = c;bj—1 + e;bi_o.

Subtracting b;_1-times the first equation from a;_1-times the second equation and using 13.2.6(a)
yields:

2 2

aj_; —bj_1d = a;—1cbi—1 +a;_1ebj_2 —bi_1cia,1 — bi_1e5052
_ _ -1, _ i
= —ei(ai—2bi—1 —a;—1bi2) = —(=1)""e; = (=1)"e;.

By (4) in 13.3.,5 0 < ¢; < d for all i > N. Hence {(—1)%; | i € N} is a finite set. So there exists
e € Z with e # 0 such that

a? — b?d =e
for infinitely many ¢ € N. By 13.2.6(b), gcd (@i, b;) = 1. Since (a;,b;) # (a;,b;) for i # j and we
conclude that the set
S = {(u,v) € Z* x Z" | u? — v?d = e, ged (u,v) = 1}

is infinite. Define the relation a on S by (uy,v1) & (ug,vs) if u; = us (mod e) and v1 = v9 (mod e).
This is an equivalence relation with at most e? equivalence classes. Since S is infinite, one of the
equivalence classes must by infinite. In particular, there exist distinct but equivalent (uy,v;) and
(UQ, ’UQ) in S.

Put
ULUy — dvqve ULV — ViU
r=—"———"andy= ——=-.
e e
We have
Uy — dvivy =ul —dvi=e=0 (mod e)
and

U1ve — ViU = ugv; —viu; =0 (mod e).
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So z and y are integers.
Also

B e L Bl Ut U N Pt ) PR

(& €

and so

2’ —y’d = (z +yVd)(z — yVd) = (z +yVd)o(z +yVd)

(u1 —v1Vd)( u2+v2f)0((u1 Ulf)(u2+v2f)) _ (u1—v1Vd) (w1 +v1Vd) (ug +v2vVd) (ug—v2V/d)
_ (“1 uld gu 71 d) _ % -1
It remains to show that 2 # 0 and y # 0. If z = 0 we get 1 = 22 —y?d = —y?’d < 0, a

contradiction. Suppose y = 0, then ujvy = vius. Since ged (uq,v1) = 1 this gives ug | us and vy | ve.
As ged (u2,v2) = 1 we also have uy | u; and vy | v1. The u; and v; are positive and so u; = vq
and ug = v, a contradiction to (uy,v1) # (ug2,v2). Thus = and y are non-zero and the theorem is
proved. O



Appendix A

Euclidean Domains

Definition A.0.2. [def:euclidean]

(a) [a] An integral domain is a commutative ring R with identity 1 # 0 such that for all a,b € R
with ab =0 we have a =0 or b = 0.

(b) [b] An Euclidean domain is an integral domain R together with a function 6 : R — N such that
for all a,b € R:

(i) [c] d(a) =0 if and only if a = Og;
(i1) [a] if ab # 0 then §(ab) > 6(b); and
(i) [b] if b# 0, then there exist q,r in R with

a=qgb+r and §(r) < 4(b).

Such a § is called an Fuclidean function.
Definition A.0.3. [def:divide int] Let R be an integral domain and a,b € R.
(a) [a] We say that a divides b and write a | b if b =ra for some r € R.
(b) [b] We say that a and b are associate and write a ~b if a | b and b | a.

(c) [e] We say that a is irreducible if a # 0, a is not a unit and a = be with b, ¢ € R implies that b
or c is a unit.

(d) [f] We say that a is a prime if a # 0, a is not a unit and a | be with b,c € R implies a | b or
alec.

Proposition A.0.4 (Cancellation Law). [int and cancel] Let R be an integral domain and a,b,c €
R with a # 0. Then

ab = ac
<= b = ¢
<— ba = ca
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Proof. Suppose ab = ac. Then ab — ac = 0 and so a(b — ¢) = 0. Since a # 0 and R is an integral
domain, b — ¢ = 0. Thus b = c.

If b = ¢ then clearly ab = ac.

Finally since R is commutative, ba = ca implies ab = ac. O

Lemma A.0.5. [easy unit] Let R be an integral domain and a € R. The the following are equiva-
lent

(a) [a] a is a unit.
(b) [b] a|l.
(c) [c] a~1.

Proof. Suppose a is a unit. Then ba = 1 for some r € R and so a | 1.
Suppose a | 1. Since a = la, 1| a and so a ~ 1.
Suppose a ~ 1. Then a | 1 and so ab =1 for some b € R. Thus «a is a unit. O

Lemma A.0.6. [unit and sim] Let R be an integral domain and a,b € R.
(a) [a] Ifb#0, then b ~ ab if and only if a is a unit.
(b) [b] a~bif and only if a = ub for some unit u in R.

Proof. (a) Suppose that a is a unit. Then ca =1 for some ¢ € R. Thus b = 1b = (ca)b = c(ab) and
so ab | b. Clearly b | ab and so b ~ ab.

Suppose that b ~ ab. Then b = c(ab) for some ¢ € R and so 1b = b = ¢(ab) = (ca)b. By the
Cancellation Law A.0.4, ca = 1. So a is a unit.

(b) Suppose first that a ~ b. Then b | @ and so a = ub for some u € R. If b # 0, then by (a) u is
a unit. If 5 = 0, then also a = 0 and a = 1b. So in both cases a = ub for a unit b in R.

Suppose next that a = ub for a unit u € R. Then b = u~'a. Hence a | b and b | a and so
a~b. O

Lemma A.0.7. [easy divide] Let R be an integral domain and a,b,c € R
(a) [a] Ifa|bandb]|c, thenalec.

(b) [b] Ifa|b anda|c, then for all s,t € R, a | sa + tb.

(c) [c] ~ is an equivalence relation.

(d) [d] Ifa~0b, then a|c if and only if a | c.

(e) e] Ifa~b, then c|a if and only if ¢ | b.

(f) [r] If a ~b, then a =0 if and only if b = 0.

(9) [s] If a~b, then a is a unit if and only if b is a unit.

(h) f] If a ~ b then a is a prime if and only if b is prime.

(i) [g] If a ~ b then a is a irreducible if and only if b is irreducible.
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Proof. (a) We have b = da and ¢ = eb for some d,e € R. Thus ¢ = eb = e(da) = (ed)a and so a | c.

(b) We have have b = da and ¢ = ea for some d, e € R. Thus sa+tb = s(da) +t(ea) = (sd+te)a
and a | sa + tb.

(c) Clearly ~ is reflexive and symmetric. Suppose a ~ b and b ~ ¢. Then a | b and b | ¢. So by
(a), a | c. Similarly ¢ | a and so a ~ ¢. Hence ~ is transitive.

(d) Suppose a | c. Since a ~ b, we have b | a and so by (a), b | c. Similarly b | ¢ implies a | c.

(e) Suppose ¢ | a. Since a ~ b, we have a | b and so by (a), ¢ | b. Similarly ¢ | ¢ implies ¢ ~ a.

[r] Obvious.

[s] @ is a unit if and only if @ ~ 1 and so if and only if b ~ 1 and if and only if b is a unit.

(h) Suppose a is a prime and d,e € R with b | de. Then by (d), a | de. Since a is a prime, a | d
or a|e. Thus by (d), b| dor b|e. Also since a is neither 0 nor a unit, b is neither 0 nor a unit and
so b is a prime.

(i) Suppose a is a irreducible and d,e € R with b = de. Let w be unit in R with a = ub. The
a = (ud)e and since a is a irreducible, ud or e is a unit. Hence d or e is a unit. or a | e. Also since
a is neither 0 nor a unit, b is neither 0 nor a unit and so b is a irreducible. O]

Lemma A.0.8. [primes are irreducible| Let R be an integral domain and a € R a prime. Then
a 1s irreducible.

Proof. By definition of a prime, a # 0 and a is not a unit. Suppose a = bc for some b, c € R. Since
a | a we get a | bc and so by the definition of a prime, a | b or a | ¢. Without loss a | b. Since a = be
we have b | a and so a ~ b and be ~ b. Since a # 0 we have b # 0. A.0.6(a) implies that ¢ is a unit.
So a is irreducible. O

Lemma A.0.9. [divide and irreducible] Let R be an integral domain and let p be a prime in R.
(a) [a] Suppose q in R is irreducible and p | q, then ¢ ~ p.

(b) [b] Suppose by, ba,...b, € R with p | biby...b, then p|b; for some 1 <i<mn.

(c) [c] Suppose by, ba,...b, € R are irreducible and p | bibs ... b, then p ~ p; for some 1 <i <n.

Proof. (a) Since p | ¢ we have ¢ = pa for some a € R. Since ¢ is irreducible either p or a is a unit.
p is not a unit and so a is a unit. Thus A.0.6(b) implies that ¢ ~ p.

(b) If n = 1, then p = by. So suppose n > 1 and put @ = by ...b,—;. Then b = ab,, and since
p|band pis a prime, p| a or p| b,. In the first case we conclude by induction on n, that p | b; for
some 1 <i <n—1. So (b) holds.

(c) By (b), p| b; for some 1 <i <n and so by (a), p ~ b;. O

Proposition A.0.10. [Uniqueness of prime factorizations| Let R be an integral domain and
a € R. Suppose that a = pipa ...pn and a = q1qz - . . ¢ where n,m € T, p; is a prime for 1 <i<n
and q; is a irreducible for 1 <i < m. Then n =m and after reordering the g;’s

P1~q1,pP2 ~q2,...,Pn ~ Qqn

Proof. Note that p, | a. Hence by A.0.9(c), p, ~ ¢; for some 1 < i < m. Without loss, i = m. Then
Dn ~ Gm and so up, = ¢, for some unit u € R.

Suppose m = 1. If n = 1 we are done. So suppose for a contradiction that n > 1. Then
(p1-- - Pn-1)Pn=0a=q1 = Gm and s0 ((p1 -..Pp—1)Pn ~ Pn. Thus by A.0.6, p1...p,—_1 is a unit and
so divides 1. Hence also p; divides 1 and so p; is a unit. A contradiction, since p; is a prime and so
not a unit.
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Suppose m > 1. Then ¢m—1¢m = @m-1(upn) = (Ugm-1)pn. By A.0.6 ugm—1 ~ Gm—1. SO uGm_1
and p,, are both irreducible. Replacing ¢,, by p, and ¢,,,—1 by ug,—1 we may assume that p, = ¢,.
Putb=p,...pp_1ifn>1and b=1if n = 1. Then

(¢1---@m-1)am =a= (P1-..Pn—1)Pn = bpy = bgim.
The Cancellation Law A.0.4 implies

q---gm-1=>.

Suppose that n = 1. Then b =1 and so ¢; is a unit, a contradiction as ¢; is irreducible.
Thus n > 1 and

pip2...-Pn—1=4q1-.--9m—1-

So by induction on n, n — 1 =m — 1 and after reordering

P1~q1,p2~q2,...,Pn—1 ~ qn-1-

Hence also n = m and since p,, = ¢, the proposition is proved. O

Lemma A.0.11. [divisor in Euclidean domains| Let R be an Euclidean domain. Let a,b € R
with a #0#0b and a | b.

(a) [a] d(a) <0(b).
(b) [b] a~bif and only §(a) = §(b).

Proof. (a) Note that b = ra for some r € R. Since b # 0 the definition of an Euclidean domain
implies §(b) > d(a).
(b) Suppose a ~b. Then a | b and b | a. By (a), §(a) < d(b) and §(b) < §(a). Thus §(a) = §(b).
So suppose that d(a) = §(b). Let ¢, € R with a = ¢gb+ r and §(r) < §(b). Then r = a — ¢b
and since a | b we conclude that a | r. If r # 0, then (a) implies that d(a) < d(r) < §(b) = 6(a), a
contradiction. Thus 7 =0 and b | a. So a ~ b.

O

Proposition A.0.12. [Euclidean domains are UFD] Let R be a Euclidean domain. Then every
non-zero, non-unit in R is a finite product of irreducible elements.

Proof. Let a € R be a non-zero and a non-unit. If a is irreducible we are done. So suppose a = bc
with neither b nor ¢ units. Then by A.0.6(a) a » b and a « ¢. Hence by A.0.11(b), é(a) # 6(b) and
d(a) # d(c). So by A.0.11(a), 6(b) < d(a) and 6(c) < 6(a). Thus by induction on d(a), b and c are
products of irreducible elements. Thus also a is. O

Definition A.0.13. [def:gcd int] Let R be an integral domain and a,b,d in R. Then we say that
d is a greatest common divisor of a and b and write d ~ ged (a, b) if

(a) [a] d|a and d|b; and
(b) [b] ifce Rwithc|a and c|b, then c|d.

Lemma A.0.14. [gcd is unique up to associates| Let R be an integral domain, a,b € R and d
any greatest common divisor for a and b. Let e € R. Then e is a greatest common divisor of a and

b if and only if d ~ e.
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Proof. Suppose first that e is a greatest common divisor of @ and b. Since d is a common divisor for
a and b and since e is a greatest common divisor d | e. By symmetry e | d and so d ~ e.

Suppose next that d ~ e. Then e | d. Since d | a and d | b we conclude that e | @ and e | b. Let
¢ € R with ¢| a and ¢ | b. Since d ~ ged (a,b), ¢ | d. Since d ~ e we have d | e and so ¢ | e. Thus e
is a greatest common divisor of a and b. O

Proposition A.0.15. [gcd in euclid] Let R be a Euclidean domain and a,b € R not both zero.
Let A = {sa+1tb|s,t € R,sa+tb#0}. Then A # (). Moreover if d € R, then d ~ gcd (a,b) if and
only if d € A and 6(d) < §(e) for all e € A. In particular, there exists greatest common divisor of a
and b.

Proof. Note that a = 1a + 0b and b = Oa + 1b. Since a # 0 or b # 0 we conclude that A # . In
particular, there exists d € A with §(d)-minimal. Let s,t € R with d = sa + tb.

Let ¢ € R with ¢ | a and ¢ | b. By A.0.7(b), ¢ | d.

Set ¢, € R with a = gd 4+ r and 6(r) < 6(d). Then

r=a—qd=a—q(ta+ sb) = (1 —qt)a+ (—qs)b.

If r # 0, then r € A and §(r) < §(d), a contradiction to the minimal choice of §(d). Thus r =0
and so d | a. Similarly d | b and so d ~ ged (a, b).

Noe let e by any greatest common divisor of ¢ and b. Then e ~ d and so e = ud for some unit u
in R. Hence e = (us)a + (ut)b and so e € A. Moreover, by A.0.11(b), 6(d) = d(e). O

Lemma A.0.16. [prime and divide int] Let R be an Euclidean domain and a,b,c € R with
ged (a,b) ~ 1 and a | be. Then a | c.

Proof. By A.0.15 there exist s,t € R with 1 = ra + sb. Thus

¢ =cl =c(ra—+ sb) = (cr)a + s(be)
Since a | a and a | be we conclude that a | c. O

Lemma A.0.17. [prime=irr| Let R be a Euclidean domain and a € R. Then a is a prime if and
only if a is irreducible.

Proof. Suppose first that a is a prime. Then by A.0.8, a is irreducible.

Suppose next that a is irreducible. Then a # 0 and «a is not a unit. Suppose b, ¢ € R with a | be.
Let d ~ ged (a,b). Then d | a and so a = de for some e € R. Since a is irreducible, d is a unit or e
is a unit.

Assume that d is a unit. Then ged (a,b) ~ 1 and so by 3.1.6 a | c.

Assume that e is a unit. Then d ~ a. Since d | b we get a | b.

We proved that a | b or a | ¢ and so a is a prime. O

Proposition A.0.18. [prime factors| Let R be a Euclidean domain and a € R. If a # 0 and a
is not a unit, then there exist primes pi,ps...pr in R with a = p1ps...pr. Moreover, this prime
factorization is unique up to reordering and associates.

Proof. By A.0.12 a is a product of irreducible elements. By A.0.17 all irreducible elements are primes
and so a is a product of primes. By A.0.10 prime factorizations are unique. O
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