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Preface

These are the Lecture Notes for the class MTH 416 in Fall 2012 at Michigan State University.
The Lecture Notes will be frequently updated throughout the semester.
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Chapter 1

Coding

I.1 Matrices

Definition I.1. Let I and R be sets.

(a) An I-tuple with coefficients in R is a function x : I — R. We will write x; for the image of i under x and
denote x by (x;)ies. x; is called the i-coefficient of x.

(b) Let n € N, where N = {0,1,2,3,...,} denotes the set of non-negative integers. Then an n-tuple is an
{1,2,...,n}-tuple.

Notation 1.2. Notation for tuples.

1.
a b ¢ d

0O ~ 1 3

W=

denotes {a, b, c,d}-tuple with coefficients in R such that

1
xX,=0,xp=m,x.=1and x; = 3

We denote this tuple also by

a|0
b|n
X
c|1
dll
2.
y=(a,a,b,c)

denotes the 4-tuple with coefficients in {a,b,c,d,e, ... 7} such that
yi=a,y2=a,y3=bandy, =c
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We will denote such a 4-tuple also by

Definition 1.3. Let I, J and R be sets.

(a) An I x J-matrix with coefficients in R is a function M : I x J — R. We will write m;; for the image of (i, j)
under M and denote M by [m;;)ic;. m;; is called the i j-coefficients of M.
jeJ

(b) Let n.m € N. Then an n x m-matrix is an {1,2,...,n} x {1,2,...,m}-matrix.
Notation 1.4. Notations for matrices

1. We will often write an I x J-matrix as an array. For example

M|x y z
a0 1 2
b1l 2 3
c |2 3 4
d|3 4 5

stands for the {a,b,c,d} x {x,y,z} matrix M with coefficients in Z such that mg, = 0, Mgy = 1, my, = 1,
Mo, =4, ...

2. n x m-matrices are denoted by an n x m-array in square brackets. For example

M:
4 5 6

denotes the 2 x 3 matrix M withmy; = 0,mp =2, my; =4, my3 =6,....
Definition L.5. Let M be an I x J-matrix.
(a) Letiel. Thenrowiof M is the J-tuple (m;;) je;. We denote row i of M by Row;(M) or by M;.
(b) Let je J. Then column j of J is the I-tuple (m;;)e;. We denote column j of M by Col;(M)

Definition 1.6. Ler A be I x J-matrix, B an J x K matrix and x and y J-tuples with coefficients in R. Suppose
J is finite.

(a) AB denotes the I x K matrix whose ik-coefficient is

> aijbje

jeJ
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(b) Ax denotes the I-tuple whose i-coefficient

is

Za,-jxj

jeJ

(c) xB denotes the K-tuple whose k-coefficient is

(d) xy denotes the real number

> Xjbj

jeJ

> XY

jeJ
Example 1.7. Examples of matrix multiplication.
Bla B v ¢
Alx y z
) . x 010
1. Given the matrices g |0 1 2 and
1 0 0 1
b1 2 3
x| 1 1 00

Then AB is the {a,b} x {a@,(,,5} matrix

2. Given the matrix 2 x 3-matrix A =
1 2

Then Ax is the 2-tuple

AB|a B v O
0

2
and the 3-tuple x = | 1 | Then
3
1

3
5

3. Since we may represent tuples also as rows, (2)) can be restated as:

Given the matrix 2 x 3-matrix A =
1 2

Then Ax is the 2-tuple

2
and the 3-tuple x = (0,1,1). Then
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Alx y z
] ) a b
4. Giventhematrix 4 | Q 1 2 andthetupleuy:———
2 -1

b|1 2 3

Then uA is the {x,y, z}-tuple
X y z
-1 0 1

5. Given the 4-tuples x = (1,1,2,-1) and y = (-1, 1,2, 1). Then

xy=3

1.2 Basic Definitions

Definition I.8. An alphabet is a finite set. The elements of an alphabet are called symbols.

Example L9. (a) A={A,B,C,D,...,X,Y,Z, U} is the alphabet consisting of the regular 27 uppercase letters
and a space (denoted by L).

(b) B ={0, 1} is the alphabet consisting of the two symbols 0 and 1
Definition LI.10. Let S be an alphabet and n a non-negative integer.

(a) A message of length nin S is an n-tuple (sy,...,s,) with coefficients in S. We denote such an n-tuple by
5182 ... Sy. A message of length n is sometimes also called a string of length n.

(b) @ denote the unique message of length 0 in S.
(c) S" is the set of all messages of lengthnin S.

(d) S* is the set of all messages in S, so

S* :S()US] US2US3U...USkU...
Example I.11. /. ROOMuC206WHUISUNOWUA216WH is a message in the alphabet A.
2. 1001110111011001 is a message in the alphabet B.

3. B = {2}, B' = B={0,1}. B*>=1{00,01,10,11}, B® = {000,001,010,011.100,101,110,111}, and
B* = {@,0,1,00,01,10,11,000,...,111,0000....,1111,...}

Definition 1.12. Let S and T be alphabets.

(a) A code c for S using T is a 1-1 function from S to T*. So a code assigns to each symbol s € S a message
c(s) in T, and different symbols are assigned different messages

(b) The set C = {c(s) | s € S} is called the set of codewords of c. Often (somewhat ambiguously) we will
also call C a code. To avoid confusion, a code which is function will always be denoted by a lower case
letter, while a code which is a set of codewords will be denoted by an upper case letter.
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(c) A code is called regular if the empty message & is not a codeword.
Example 1.13. /. The function c : A — A such that
A-DB—-EC-F,.. . . W-ZX->AY—>BZ-Cu—uU
is a code for A using A. The set of codewords is C = A.

2. The function ¢ : {x,y,z} — B* such that

x—>0,y—>01,z—> 10
is a code for {x,y,z} using B. The set of codewords is C = {0,01, 10}.

Definition I.14. Let c: S — T* be a code. Then the function ¢* : S* — T* defined by

c*(s152...80) =c(s1)c(s2)...c(sn)

forall sy...s, €S is called the concatenation of c. We also call ¢* the extension of c. Often we will denote
c* by c rather than c. Since c is uniquely determined by c* and vice versa, this ambiguous notation should
not lead to any confusion.

Example L.15. 1. Let c: A > A* be the code from . Then c((MTH)=PWK.

2. Letc:{x,y,z} = B* be the code from . Then c(xzzx) = 010100 and c(yyxx) = 010100.

So xzzx and yxx are encoded to the same message in B.

Definition L.16. A code ¢ : S — T* is called uniquely decodable (UD) if the extended function ¢ : S* — T*
is I-1.

Example L.17. (a) The code from[[ I3|[I) is UD.

(b) The code from is not UD.

I.3 Coding for economy

Example 1.18. The Morse Alphabet M has three symbols o, — and ®, called dot, dash and pause. The Morse
code is the code for A using M defined by

A B C D E F G H 1
-0 —e00e® —-e—00 —eed ® e—00 ——e0 eeee(d 000
J K L M N 0 P 0 R
o———® -e-O e—ee® ——-0 -0 - e——00 ——0e—0O e—e®
S T U Vv w X Y Z u
Y YIo) -® 60— 000-0O 6—-0O -—-00-0O -06——-0O ——eo lo]o)
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I.4 Coding for reliability

Example L.19. Codes for {Buy, Sell} using {B, S }.
1. Buy — B, Sell — S.

2. Buy — BB, Sell - SS.

3. Buy — BBB, Sell - SSS.

4. Buy - BBBBBBBBB, Sell - SSSSSSSSS.

.5 Coding for security

Example 1.20. Let k be an integer with 0 < k < 25. Then cy is the code from A — A obtained by shifting each
letter by k-places. U is unchanged. For example the code in[[ I3|[1), is c3.

This code is not very secure, in the sense that given an encoded message it is not very difficult to to
determine the original message (even if one does not know what parameter was used).
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Prefix-free codes

II.1 The decoding problem

Definition II.1. Let C be a code using the alphabet T.

(a) Leta,beT”. Then a is called a prefix of b if there exists a message r in T* with b = ar.
(b) Leta,beT*. Then ais called a parent of b if there exists r € T with b = ar.

(c) C is called prefix-free (PF) if no codeword is a prefix of a different codeword.

Remark IL.2. T be an alphabet and b =t ...t,, a message of lengthmin T.

(a) Any prefix of b has length less or equal to m.

(b) Let0<n<m. Thent,...t, is the unique prefix of length n of b.

(c) Ifm+0Q, thent, ...ty is the unique parent of b.

Proof. Leta = s51...s, be a prefix of length n of b. Then b = ar for some r € T* or length say k. Let
r=uy...ug. Thenb =sy...5,u;...ux. Thus m = n+k and n < m and (@) holds. Also ; = s; for 1 <i < nand
soa=t;...t, and (b) holds. If a is a parent then r € T, thatis k = 1 and n = m— 1. So (c) follows from (). O

Example I1.3. Which of the following codes are PF? UD?
1. Let C ={10,01,11,011}. Since 01 is a prefix of 011, C is not prefix-free. Also
011011 = (01)(10)(11) = (011)(011)

and so C is not uniquely decodable.

2. Let C ={021,2110,10001,21110}. Observe that C is prefix free.

This can be used to recover the sequence cy,c¢; ..., c, of codewords from their concatenation e = ¢j ... c,.
Consider for example the string

e =2111002110001

We will look at prefixes of increasing length until we find a codeword:

11
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Prefix | codeword?
%] no
2 no
21 no
211 no
2111 no
21110 yes

No longer prefix can be a codeword since it would have the codeword 21110 as a prefix.
So ¢; =21110.

We now remove 21110 from e to get

02110001

The prefixes are

Prefix | codeword?
%] no
0 no
02 no
021 yes
So ¢; =021. Removing 021 gives
10001

This is a codeword and so ¢3 = 10001. Thus the only decomposition of e into codewords is

2111002110001 = (21110)(021)(1001)
This example indicates that C is UD. The next theorem confirms this

Theorem I1.4. Any regular PF code is UD.

Proof. Letn,meNandcy,...,c,, dy,...,d, be codewords with
Cl...Cp = d] ...dm
We need to show thatn =m and ¢; = dj, ¢z = da,...,c, = d,. The proof is by complete induction on 7 + m.

Pute=cy...c,andsoalsoe=4d,...d,.
Suppose first that n = 0. Then e = @ and so d; ...d,, = &, By definition of a regular code each d; is not
empty. Hence also m = 0 and we are done in this case.
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So we may assume that n > 0 and similarly m > 0. Let k and [ be the lengths of c¢; and d, respectively.

We may assume that k < /. Since e = c; ...cy, ¢ is the prefix of length k of e. Also e =d, ...d, implies
that d, is the prefix of length [ of e. Since k < [ this shows that c¢; is the prefix of length k of d;. Since C is
prefix free we conclude that ¢; = d;. Since cic;...c, = did; .. .d,, this implies

cr...cp=dy...d,
From the induction assumption we conclude thatn —1=m—-1and ¢; =d>,...,c, = d,. O
Lemma ILS. (a) All UD codes are regular.
(b) Let c:S — T* be not regular. Then c is PF if and only if |S| = 1 and ¢(s) = @ for s € C.
Proof. Letc:S — T* be non-regular code. Then there exists s € S with ¢(s) = & for s € S. Thus
c*(ss) =20 =0 =c"(s).

and so ¢ is not UD and (a)) holds.

If |S| > 1, then ¢ has at least two codewords. Since ¢(s) = @ is the prefix of any message we conclude
that S is not PF. This proves the forward direction in (b).
Any code with only one codeword is PF and so the backwards direction in (b) holds. |

II.2 Representing codes by trees

Definition IL.6. A graph G is a pair (V,E) such that V and E are sets and each elements e of E is a subset
of size two of V. The elements of V are called the vertices of V. The elements of E are called the edges of V.
We say that the vertex a is adjacent to b in G if {a,b} is an edge.

Example IL7. Let V = {1,2,3,4} and E = {{1,2},{1,3},{1,4},{2,3},{3,4}}. Then G = (V,E) is a graph

It is customary to represent a graph by a picture: Each vertex is represented by a node and a line is drawn
between any two adjacent vertices. For example the above graph can be visualized by the following picture:

]l ——2

Definition IL.8. Let G = (V,E) be a graph.

(a) Let a and b be vertices. A path of length n from a to b in G is a tuple (vo, vy, ...,v,) of vertices such that
a=vy, b=v, andv;_ is adjacent to v; for all 1 <i<n.

(b) G is called connected if for each a, b € G, there exists a path from a to b in G.
(c) A path is called a cycle if the first and the last vertex are the same.

(d) A cycle is called simple if all the vertices except the last one are pairwise distinct.



14 CHAPTER II. PREFIX-FREE CODES

(e) A tree is a connected graph with no simple cycles of length larger than two.
Example I1.9. Which of the following graphs are trees?
1.

1 2
4 3
is connect, but
1 2
3

is simple circle of length three in G. So G is not a tree.

4 3

has no simple circle of length larger than two. But it is not connected since there is no path from 1 to 2.
So G is not a tree.
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is connected and has no simple circle of length larger than two. So it is a tree.

Example I1.10. The infinite binary tree

How can one describe this graph in terms of pair (V, E)?. The vertices are binary messages and a message
a is adjacent to message b if a is the parent of b or b is the parent of a.

V=B*and E = {{a,as}‘aeﬁ*,se [B} = {{a,b}

So the infinite binary tree now looks like:

/\
/N /N

ANANFARFA

a,b € B*,a is the parent of b}
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Definition IL.11. Let C be a code. Then G(C) is the graph (V, E), where V is the set of prefixes of codewords
and

E = {{a,b}| a,b € V,a is a parent ofb}
G(C) is called the graph associated to C.
Example IL.12. Determine the tree associated to the code C = {0,10,110,111}.

O/'\.
10/ \'
/\

110 111

Definition IL.13. Let G be a tree. A leave of G is a vertex which is adjacent to at most one vertex of G.
Theorem I1.14. Ler C be a code and let G(C) = (V, E) be the graph associate to C.

(a) Let ¢ € V be of length n. For 0 < k < n let ¢ be the prefix of length k of c. Then (co,c1,...,c,) is a path
Sfrom @ to ¢ in G(C).

(b) G(C) is tree.

(c) Let ¢ be a codeword. Then c is prefix of another codeword if and only if ¢ is adjacent to at least two
vertices of G(C).

(d) C is prefix-free if and only if all codewords of C are leaves of G(C).

Proof. @) Just observe that ¢; = ¢;_11; where ; is the i-symbol of ¢. Hence ¢;_; is adjacent to ¢; and (co, . .., ¢,)
is a path. Also cp = @ and ¢, = c.

(b) By (a) there exists a path from each vertex of G(C) to @. It follows that G is connected.

We prove next:

1°.  Let (ag,ai ...,an) be path in G(C) with pairwise distinct vertices of length at least 1. Let I; be length
of a; and suppose that ly < ;. Then for all 1 <i < m, a;_; is the parent of a;. In particular, l; = ly + i for all
0<i<manda;is aprefixofajforall 0 <i< j<m.

Since ay is adjacent to ay, either one of ay and a; is the parent of the other. Since [y < /; we conclude that
ap is parent of a;. Soif m = 1, @) holds. Suppose m > 2. Since a, # ag and qay is the parent of ay, a; is
not the parent of a;. Since a, is adjacent to a; we conclude that a; is the parent of a,. In particular, /; < [,.
Induction applied to the path (ay,...,a,) shows that a;_; is a parent of ¢; for all 2 < i < m and so the first
statement in
rf 1 is proved.

The remaining statements follow from the first.

Now suppose for a contradiction that there exists a simple circle (vo,vy,...,v,) in G(C) with n > 3. Let
I = mingg;<, 1(v;) and choose 0 < k < n such that 1(v;) = L.

Assume that 0 < k < n. Then we can apply to the paths (vg,...,v,) and (vg, vi1,...vp). It follows
that vy, is the prefix of length [ + 1 of v, and v;_; is the prefix of length [/ + 1 of vy. Since (vo,...,v,) is a
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circle we have vy = v, and we conclude that v;_; = vi4;. Thus impliesk—1=0andk+1=n. Son=2,a
contradiction.

Assume next that £ = 0 or k = n. Since vy = v, we conclude that vy and v, have length [. By applied
to (vo,v1), v1 has length [+ 1 and by applied to (v, Vy—1,...,v1). vy haslength [+ (n—1). Thusn—-1=1
and again n = 2.

So G(C) has no simple circle of length at least three. We already proved that G(C) is connected and so
G(C) is a tree.

: Suppose first that a, b are distinct codewords and a is the prefix of b. Let I = 1(a). Let ¢ be the prefix
of length / + 1 of b. Then a is the parent of c. Since c is prefix of the codeword b, ¢ € V. So c is adjacent to
a. By definition of a code, a # @ and so a has a parent d. Then d isin V, d is adjacent to a and d # c. So a is
adjacent to at least two distinct vertices of G(C).

Suppose next that a is a codeword and « is adjacent to two distinct vertices ¢ and d in V. One of ¢ and d,
say c is not the parent of a. Since a is adjacent to c, this means that a is a parent of c. Since cis a V, c is the
prefix of some codeword b. Since a is the parent of ¢, a is a prefix of b and a # b. So a is the prefix of another
codeword.

(d) C is prefix free if and only if no codeword is a prefix of another codeword and so by (a) if and only
if no codewords is adjacent two different vertices of G(C), that is very codewords is adjacent to at most one
vertex and so if and only if each codeword is a leave. O

II.3 The Kraft-McMillan number

Definition IL.15. Let C be a code using the alphabet T.
(a) C is called a b-ary code, where b = |T|.

(b) Let i be a non-negative integer. Then C; is the set of codewords of length i and n; = |Cy|. So n; is the
number of codewords of length i.

(c) Let M be the maximal length of a codeword. (So ny + 0 and n; = 0 for all i > M). The M-tuple n =
(no,n1,...,ny) is called the parameter of C. More generally if N > M we will also call (ng,ny,...,ny)
the parameter of C.

(d) The number

M
n; ny  np ny
K=) —=ny+—+—=-+...+—
Z b0 bM
is called the Kraft-McMillan number associated to the parameter (ng,ni,...,ny) and the base b, and

also is called the Kraft-McMillan number of C.
Example IL.16. Compute the Kraft-McMillan number of the binary code C = {10,01,11,011}.
We have Cy = {}, C; = {}, C2 ={10,01, 11} and C3 = {011}. So the parameter is (0,0, 3, 1) and

1 1

K:0+9+§+7:6Jr :7
2 4 8 8 8

Lemma I1.17. Let C be a code with Kraft-MacMillan number K using the alphabet T. Let M be a positive

integer such that every code word has length less than N. Let D be the set message of length M in T which

have a codeword as a prefix. Then
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(a) |D| < KbM.
(b) IfC is PF,

D| = bMK.
(c) If C is PF, then K < 1.

Proof. (a) Let ¢ be a codeword of length i. Then any message of length M in T is of the from cr where r is
a message of length M — i. Note that where are b~/ such messages and so there are exactly b~ message of
length M which have c as a prefix. It follows that there are at most ;5™ ' message of length M which have a
codeword of length i as a prefix. Thus

M M
D[ <Y np" " ="y b7 = MK
i=0 i=1
(b) Suppose C is prefix-free. Then a message of length M can have at most one codeword as a prefix. So
the estimate in () is exact.
Note that the numbers of message of length M is 5*. Thus |D| < b™ and so by (b), ¥ K < b™. Hence
K<1. O

Theorem IL.18. Let b and M be integers with M > 0 and b > 1. Let n = (ng,ny,...,ny) be tuple of non-
negative integers such that K < 1, where K is the Kraft-McMillan number associated to parameter n and the
base b. Then there exists a b-ary PF code C with parameter n.

Proof. The proof is by induction on M. Let T be any set of b-elements.

Suppose first that M = 0. Thenng =K < 1. If ng=01let C = {} and if ng = 1 let C = {@}. Then C is a PF
code with parameter n = (ng).

Suppose next that M > 1 and that the theorem holds for M — 1 in place of M.

Put K = ;" %. Then

B+ _ k<
b
and so
~ ny ny
(*) K:K_beﬁl—beSI
By the induction assumption there exists a PF code C with parameter (ng,n;,...,ny_1). Let D be the set

of messages of length M in T which have a codeword from C as a prefix. By |D| = bM K. Multiplying
(*) with bM gives bMK < b — ny. Thus |D| < b™ - n,, and so n,, < b - |D|. Since b is the number of
messages of length b™, b — |D| is the number of messages of length M which do not have a codeword as a
prefix. Thus there exists a set D of message of length M such that |D| = ny, and none of the messages has a
codeword from C as a prefix. Put C = Cu D.

We claim that C is prefix-free. For this let a and b be distinct elements of C.

Suppose that @ and b are both in C. Since C is PF, a is not a prefix of b.

Suppose that a and b are both in D. Thena and b have the same length and so a is not a prefix of b.

Suppose that a € C and b € D. Then the choice of D shows that a is not a prefix of b.

Suppose that a € D and b € C. a has larger length than b and so again a is not a prefix of b.

Thus C is indeed PF.

If a is a codeword of length i with i < M, then a is one of the n; codewords of C of length i. If a is a
codeword of length at least M, then a is one of the n,,-codewords in D and a has length M. Thus the parameter
of C are (ng,m1,...,ny-1,ny) and so C has all the required properties. ]
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II.4 A counting principal
Lemma I1.19. Letc:S — T* andd: R — T* be codes. Define the function cd : S x R — T* by
(cd)(s,r) =c(s)d(r)
forall s e S,reR. Also let C and D be the set of codewords of ¢ and d, respectively, and define
CD={ablacC,beD}

Then cd is a code if and only for each e € CD, there exists unique a € C and b € D with e = cd. In this
case CD is set of codewords of cd.

Proof. Let s € S and r € R. Since c is a code, ¢(s) is not the empty message and so also c(s)d(r) is not the
empty message. Hence (¢d)(r,s) # @ for all (s,r) € S xR.
Thus cd is a code if and only of c¢d is 1-1. We have

Imecd = {(cd)(s,r)| (s,r)eS xR} = {c(s)d(r)| seS,re R} = {ab|a eC,de D} =CD

In particular, CD is the set of codewords of cd.
Moreover, cd is 1-1 if and only if for each e € CD there unique s € S and r € R with e = ¢(s)d(r). Since
c and d are 1-1, this holds if and only if for each e € CD there exist unique a € C and b € D withe =ab. O

Definition I1.20. Let C be a code with parameter (ng,ny,...,ny). Then
Oc(x) =ng+nyx+ x> + ...+ X"
is called the generating function of c.

Example IL21. Compute the generating function of the code C = {01,10,110,1110,1101}.

nQ:O,m:O,n2:2, I”l3=], andn4:2
So
Oc(x) = 2x* + x* + 2x*

Theorem I1.22 (The Counting Principal). (a) Let ¢ and d be codes using the same alphabet T such that cd
is a code. Then

Qca(x) = Qc(x)Qu(x)

(b) Let ¢ be a UD-code. For positive integer r define ¢ inductively by ¢! = ¢ and ¢
code and

"+ = ¢"c. Then ¢’ is a

Oc (x) = O ()

Proof. Let (ng,...,nm),(Po,--->pu)s (qos--.,qv) be the parameter of ¢,d and cd respectively.

Let0<i<V.LetaeCandb e D. Then ab has length i if and only if a has length j for some 0 < j < i
and b has length i — j. Given j, there are n; choices for a and p;_; choices for b. Since cd is a code, a different
choice for the pair (a, b) yields a different ab. So

qi =nop; +mpj-1 +tnapi2+...+n,_1p1 +n;po.

Note that this is exactly the coefficient of x' in Q.(x)Q4(x) and so @) is proved.
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Since c is a UD code the extended function ¢* : §* — T* is 1-1. Observe that ¢” is just the restriction of ¢* to
S”. Soalso ¢” is 1-1 and thus ¢” is a code. Applying (a) r — 1 times gives

Qe (%) = Qeee () = Qe(%) Qe(x) - Qe () = Qo ().

r—times

r—times

ILS Unique decodability implies K < 1

Lemma I1.23. Let ¢ be a b-ary code with maximal codeword length M and Kraft McMillan number K. Then
(a) K <M+ 1andifcis regular, K < M.
(b) K =0 (3).

Proof. Since there are b’ messages of length i, n; < b’ and < 1. So each summand in the Kraft McMillan
number is bounded by 1. Note that there are M + 1 summand and so K < M + 1. If ¢ is regular, & is not a
codeword and ng = 0. So K < M in this case.

()
e ) o )

i=0 i=0
[m}

Lemma I1.24. (a) Letc:S — T* andd: R — T™ be codes such that cd is a code. Let K and L be the Kraft
McMillan number of ¢ and d, respectively. Then KL is the Kraft McMillan number of cd.

(b) Let ¢ be a UD-code with Kraft McMillan number K. Then the Kraft McMillan number of ¢ is K'.
Proof. (@) The Kraft McMillan number of cd is
1 1 1
-)=0.(- —) =KL
ch(b) Qc(b)Qd(b)
() follows from (a) and induction. o

Theorem I1.25. Let C be a UD-code with Kraft McMillan number K. Then K < 1.

Proof. Let M be the maximal codeword length of C. Then the maximal codeword length of C” is rM and -by
11.24([b) - the Kraft McMillan number of C” is K. By [[1.23| the Kraft-McMillan number is bounded by the
maximal codeword length plus 1 and so

K'<rM+1

forall r € Z*. Thus

rinK <In(rM +1) and InK < In(rM+1)
-

M
xM+1°

The derivative of x is 1 and of In(xM + 1) is L’Hopital’s Rule gives

M
lim *L - ¢

lim In(rM) _

r—oo r r—oo

andsolnK <0Oand K < 1. O
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Corollary I1.26. Given a parameter (ny,...,ny) and a base b with Kraft-McMillan number K. Then the
following statements are equivalent.

(a) Either|S|=1and (ng,...,ny) = (1,0,...,0), orthere exists a b-ary UD code with parameter (no, . . .,ny).
(b) K<1.

(¢) There exists a b-ary PF code with parameter (ny, ..., ny).

Proof. By (a) implies (b). By (b) implies (c). Suppose c is a b-ary PF-code with parameter
(no,...,ny). If ¢ is regular, shows that ¢ is UD and @) holds. If ¢ is not regular, then @ is a codeword
and since c is prefix free, @ is the only codeword. So the parameter of ¢ is (1,0, ...,0) and again @) holds. O
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Chapter 111

Economical coding

III.1 Probability distributions

Definition II1.1. Let S be an alphabet. Then a probabilty distribution on S is an S -tuple with coefficients in
the interval [0, 1] such that
Z DPs = 1

seS

Notation IIL1.2. Suppose S is an alphabet with exactly m-symbols s1, s, . .., sy, and that

S1 2 ... Sy
t:
Hh th ... Iy
is an S -tuple.

Then we will denote t by (t1,...,ty). Note that this is slightly ambiguous, since t does not only depended
on the n-tuple (11,...,t,) but also on the order of the elements sy, ..., Sy.
Example II1.3.

(@)
woXx Z
p: 11 1
2 3 6

is a probability distribution on {w, x,y,z}.
(b) Using the notation from [[II.2{ Example (@) can be stated as: p = (%, %,O, é) is a probability distribution
on {w, x,y,z}. Note that p, = 1

(©) p= (%, %,0, é) is a probability distribution on {x,w, z,y}. Note that p, = %

(d)
A B c D E F G H 1
8.167% 1.492% 2.782% 4.253% 12.702% 2.228% 2.015% 6.094% 6.966%

23
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J K L M N o P 0 R
0.153% 0.747% 4.025% 2.406% 6.749% 7.507% 1.929% 0.095% 5.987%

S T U \%4 w X Y z u
6.327% 9.056% 2.758% 1.037% 2.365% 0.150% 1.974% 0.074% O

is a probability distribution on A. It lists how frequently a letter is used in the English language.

(e) Let S be a set with m elements and put p = (%)ses' Then p, = % for all s € S and p is probability

distribution on S. p is called the equal probability distribution on .

III.2 The optimization problem

Definition IIl.4. Let c: S — T* be a code and p a probability distribution on S .

(a) For s €S let y; be length of the codeword c(s). The S-tuple y = (yy)es is called the codeword length of
c.

(b) The average length codeword length of ¢ with respect to p is the number

L=p-y=Y pys

seS

To emphasize the depends of L on p and c we will sometimes us the notations L(c) and L,(c) for L

Note that the average codeword length only depends of the length of the codewords with non-zero prob-
ability. So we will often assume that p is positive, thatis p; >0 forall s€ S.

Example IIL5. Compute L if S = {s1, s2,53}, p = (0.2,0.6,0.2) and c is the binary code with

s1 >0, s —>10, s3—>11
Does there exist a code with the same codewords but smaller average codeword length?

We have y = (1,2,2) and so

L=p-y=(02,06,02)(1,2,2)=02-1+0.6-2+02-2=02+12+04=18

To improve the average length, we will assign the shortest codeword, 0, to the most likeliest symbol, s;:

s1=>01, 5,0, s3->11
Theny = (2,1,2) and
L=p-y=(0.2,0.6,0.2)(2,1,2)=02-2+06-1+02-2=04+0.6+04=1.4

Definition IIL6. Given an alphabet S, a probability distribution p on S and a class C of codes for S. A code
c in C is called an optimal C-code with respect to p if

Ly(c) < L,(2)

for all codes ¢ in C.
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Definition II1.7. Let y be an S -tuple of non-negative integers and b a positive integer.

(a) Let M = maxyes y, and for 0 < i < M let n; be the number of s € S with y; = i. Then (ny,...,n,) are
called the parameter of the codewords length y.

(D) Y ses b)% is called the Kraft McMillan numbers for the codeword length y to the base b.

Lemma II1.8. Let S be an alphabet, b a positive integer and y an S -tuple with coefficients in N. Let K be
the Kraft-McMillan number and (no, . . .,ny) the parameter for the codeword length y.

(a) Let ¢ be a b-ary code on the set S with codeword lengthy. Then (no, . ..,ny) is the parameter of c.
(b) K is the Kraft McMillan number of (no, ..., nuy)-

(c) Suppose there exists a b-ary code C with parameter (ny, ...,ny). The