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Chapter 0

Set, Relations and Functions

0.1 Logic

In this section we will provide an informal discussion of logic. A statement is a sentence which is
either true or false, for example

1. 1+41=2
2. v/2 is a rational number.

3. m is a real number.

4. Exactly 1323 bald eagles were born in 2000 BC,

all are statements. Statement and are true. Statement is false. Statement is probably
false, but verification might be impossible. It nevertheless is a statement.

Let P and () be statements.

“P and @7 is the statement that P is true and @ is true.

“P or Q7 is the statement that at least one of P and @ is true.
So “P or Q)7 is false if both P and Q are false.

“not P’ (pronounced ‘not P’ or ‘negation of P’) is the statement that P is false. So not P is true
if P is false. And not P is false if P is true.

“P = Q" (pronounced “P implies Q) is the statement “not P or Q7. Note that “P— Q" is
true if P is false. But if P is true, then “P=—=- Q” is true if and only if Q is true. So one often uses
the phrase “If P is true, then Q is true” or “if P, then Q” in place of “P—= Q"

“P<= Q" (pronounced “P is equivalent to Q”) is the statement “(P and Q) or (not-P and
not-Q)”. So “P<= Q” is true if either both P and Q are true or both P and Q are false. So one
often uses the phrase “P holds if and only if Q holds”, or “P if and only if Q” in place of “P<=- Q”

One can summarize the above statements in the following truth table:

5
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P|Q|notP |not@ | Pand @ | Por@Q |notPor@Q | P=—Q | Q = P | not P and not @
T|T F F T T T T T F
T|F F T F T F F T F
F|T T F F T T T F F
F|F T T F F T T T T
P | Q | not(not P and not Q) | (P and Q) or (not P and not Q) | P < @
T|T T T T
T|F T F F
F\|T T F F
F|F F T T

P| Q| notQ=notP | (P= Q) and (Q = P) | not(not P)
T|T T T T
T|F F F T
F|T T F F
F | F T T F

The above truth table shows that P or @ is equivalent to not(not P and not Q). So we could
have used this equivalence to define the statement P or () as not(not P and not Q).

The contrapositive of the statement P —> () is the statements not ) = not P. From the
above truth table, the contrapositive not Q = not P is equivalent to P =—> @. Indeed, both are
equivalent to “not P or Q”.

The contrapositive of the statement P <= () is the statements not P <= not (). From the
above truth table, the contrapositive not P <= not @) is equivalent to P <= Q.

The converse of the implication P = @ is the statement ) = P. The converse of an
implication is not equivalent to the original implication. For example the statement if x = 0 then x
is an even integer is true. But the converse (if z is an even integer, then x = 0) is not true.

The above truth table shows that the statement P <= @ is equivalent to the statement (P —
Q) and (Q <= P).

The above truth table shows that the statement not(not P) is equivalent to the statement P.

Theorem 0.1.1 (Principal of Substitution). Let ®(z) be formula involving a variable x. If d is an
object. let ®(d) be the formula obtained from ®(x) by replacing all occurrences of x by d. If a and
b are objects with a = b, then ®(a) = ®(b).

Proof. This should be self evident. For an actual proof and the definition of an formula consult your
favorite logic book. O

Example 0.1.2. Let ®(x) = 2% + 3z + 4.
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If a = 2, then

a>+3a+4=22+3-2+4

Notation 0.1.3. Let P be a statement involving the variable x. Then Yx(P) is the statement that
P is true for all objects x. Jx(P) is the statement that there exists an object x such P is true.
Most of the time we will use “for all x: P”’ for Vx(P) and “there exists x with P” for Jx(P).

For example Vo (z+x = 2z) is a true statement, while Vz (22 = 2) is a false statement. 3z(2? = 2)
is a true statement, while 3z(2? = 2 and x is an integer) is false.

0.2 Sets

First of all any set is a collection of objects.

For example
Z:={..,-4,-3,-2,-1,-0,1,2,3,4,...}

is the set of integers. If S is a set and x an object we write € S if = is a member of S and = ¢ S
if « is not a member of S. In particular,

(%) For all z exactly oneof z€S and ¢S holds.

Not all collections of objects are sets. Suppose for example that the collection B of all sets is a
set. Then B € B. This is rather strange, but by itself not a contradiction. So lets make this example
a little bit more complicated. We call a set S is nice, if S ¢ S. Let D be the collection of all nice
sets and suppose D is a set.

Is D a nice?

Suppose that D is a nice. Since D is the collection of all nice sets, D is a member of D. Thus
D € D, but then by the definition of nice, D is not nice.

Suppose that D is not nice. Then by definition of nice, D € D. Since D is the collection of nice
sets, this means that D is nice.

We proved that D is nice if and only if D is not nice. This of course is absurd. So D cannot be
a set.

Theorem 0.2.1. Let A and B be sets. Then
(A:B) = (forallx:(xGA)<:>(x€B))

Proof. Naively this just says that two sets are equal if and only if they have the same members. In
actuality this turns out to be one of the axioms of set theory. O

Definition 0.2.2. Let A and B be sets. We say that A is subset of B and write A C B if
forallz: (x € A) = (z € B)

In other words, A is a subset of B if all the members of A are also members of B.

Theorem 0.2.3. Let A and B sets. Then A= B if and only if AC B and B C A.
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Proof.

A=B
= r€EA<—zceB — 0211
< (r€eA=uzeB)and(z€ B=z€ A) — Rule of Logic: [A.1.1|[19) :(P<:>Q)
= ((Pz@) and(Q:>P))

<— ACBand BCA —definition of subset
O
Theorem 0.2.4. Let © be an object. Then there exists a set, denote by {x} such that
(t € {x}) = (t = x)
Proof. This is an axiom of Set Theory. O

Theorem 0.2.5. Let S be a set and let P(x) be a statement involving the variable x. Then there
exists a set, denoted by {s € S| P(s)} such that

(t c{ses| P(s)}) — (t € S and P(t))
Proof. This follows from the so called replacement axiom in set theory. O

Note that an object ¢ is a member of {s € S | P(s)} if and only if ¢ is a member of S and the
statement P(t) is true For example

{reZ|2®>=1}={1,-1}.
Notation 0.2.6. Let S be a set and P(x) a statement involving the variable x. Then “for all

x €8 : P(x)” is the statement “for all z : (x € S) = P(x)”. Also “there exists x € S with P(x) is
the statement “there exists x with ((fc € S) and P(:c))

Theorem 0.2.7. Let S be a set and let ®(z) be a formula involving the variable x such that ®(s)
is defined for all s in S. Then there exists a set, denoted by {®(s) | s € S} such that

(t e{P(s) | s € S}) = ( There exists s € S with ¢t = @(s))
Proof. This also follows from the replacement axiom in set theory. O

Note that the members of {®(s) | s € S} are all the objects of the form ®(s), where s is a
member of S.

For example {2z | x € Z} is the set of even integers.

We can combined the two previous theorems into one:

Theorem 0.2.8. Let S be a set, let P(x) be a statement involving the variable © and ®(z) a formula
such that ®(s) is defined for all s in S for which P(s) is true. Then there exists a set, denoted by

{<I>(s) | s € S and P(s)} such that
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<t € {@(s) | s €S and P(s)}) — <There exists s € S with (P(s) and ¢t = @(8)))

Proof. Define

(%) {(I)(s) |s€ S and P(s)} - {«1»(3)) |se{res| P(r)}}
Then
te {@(s) |s€ S and P(s)}
— te {cb(s) |se{res| @(r)}} By (+)
= there exists s € {r € S| P(r)} with ¢t = ®(s) 027
<= there exists s with (s € {r € S| P(r)} and t = ®(s) | definition of ‘there exists s €’ see
<= there exists s with (s € S and P(s)) and t = ®(s) | 23]
<= there exists s with [ s € S and (P(s) and t = @(5)) Rule of Logic: (P and (@ and R))
— ((P and Q) and R)
= there exists s € S with (P(s) and t = @(s)) definition of ‘there exists s €’ see
O

Note that the members of {®(s) | s € S and P(s)} are all the objects of the form ®(s), where s
is a member of S for which P(s) is true.
For example

{2n|n € Z and n* = 1} = {2, -2}
Theorem 0.2.9. Let A and B be sets.
(a) There exists a set, denoted by AU B and called ‘A union B’, such that
(reAUB)<= (zx€Aorz € B)

(b) There exists a set, denoted by AN B and called ‘A intersect B’, such that

(reANB) <= (xr€ Aand z € B)

(¢) There exists a set, denoted by A\ B and called ‘A removed B’, such that
(x€ A\B) <= (x€ Aand x ¢ B)

(d) There exists a set, denoted by O and called empty set, such that
Forallz: z¢0



10 CHAPTER 0. SET, RELATIONS AND FUNCTIONS
(e) Let a and b be objects, then there exists a set, denoted by {a,b}, that

z€{a,b} <= (x=aorx=0>)

Proof. () This is another axiom of set theory.
(]ED Applying [0.2.5| with P(z) being the statement “z € B” we can define

ANB={z€ A|z e B}
Applying with P(z) being the statement “z ¢ B” we can define

A\B={zecA|z¢B}

@ One of the axioms of set theory implies the existence of a set A. Then we can define

0=A\A
(€) Define {a,b} = {a} U {b}. Then
z € {a,b}
= z € {a} U {b} — definition of {a, b}

< ze{atorze{b} —()
= r=aorz=>b 024

Exercises 0.2:
#1. Let A be a set. Prove that () C A.
#2. Let A and B be sets. Prove that AN B = BN A.

0.3 Relations and Functions

Definition 0.3.1. Let a, b and ¢ be objects.

(a) (a,b) = {{a},{a,b}}. (a,b) is called the (ordered) pair formed by a and b. a is called the first
coordinate of (a,b) and b the second coordinate of (a,b).

(b) (a,b,¢) = ((a,b),c). (a,b,c) is called the (ordered) triple formed by a,b and c.
Theorem 0.3.2. Let a,b,c and d be objects. Then
((a,b) = (e, d)) = (a =cand b= d)
Proof. See Exercise 0.3F1] O

Theorem 0.3.3. Let A and B be sets. Then there exists a set, denoted by A x B, such that

(r € Ax B) <= There exist a € A and b € B with x = (a,b)
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Proof. This can be deduced from the axioms of set theory. O
Definition 0.3.4. Let A and B be sets.

(a) A relation ~ between A and B is a triple (A, B, R), such that R is a subset of A x B. Let a
and b be objects. We say that a is in ~-relation to b and write a ~ b if (a,b) € R. Soa~bisa
statement and

a ~ b if and only if (a,b) € R
(b) A relation on A is a relation between A and A.
(¢) Let ~= (A, B, R) be a relation. A is called the domain of ~ and B is called the codomain of ~.

Im ~={b€ B| there exists a € A with aRb},

Colm ~={a € A| there exists b € B with aRb}
Im ~ is called the Image of ~ and Colm ~ the coimage of ~.

(d) A function from A to B is a relation F between A to B such that for all a € A there exists a
unique b in B with aFb. We denote this unique b by F(a) (or by Fa). So

Forallaec Aandbe B: b= F(a) < aFb
F(a) is called the image of a under F. If b = F(a) we will say say that F maps a to b.
(e) We write “F : A — B is function” for “A and B are sets and F is a function from A and B” .

(f) Let F : A — B be a function and C a subset of A. Then F|C] = {F(c) | ¢ € C}. So
Im F = F[A].

Suppose for example that A = {1,2,3} and B = {4,5,6}.

Put R ={(1,4),(2,5),(2,6)}. Then ~= (A, B, R) is a relation from A to B with 1 ~ 4, 2 ~ 5
and 2 ~ 6. But ~ is not a function from A to B. Indeed, there does not exist an element b in R
with (1,b) € R. Also there exist two elements b in R with (2,b) € R, namely b =5 and b = 6.

Put S = {(1,4),(2,5),(3,5)}. Then F = (A4, B, S) is the function from A to B with F(1) = 4,
F(2) =5 and F(3) =5.

Note that if F' = (A, B, R) is a function then Im F' = {F(a) | a € A} and Colm F' = A.

Notation 0.3.5. A and B be sets and suppose that ®(x) is a formula involving a variable x and if
a € A, then ®(a) is in B. Put R = {(a,®(a)) | a € A} and F = (A,B,R). Then F is a function
from A to B. We denote this function by
F:A— B,a— 9(a).
So F' is a function from A to B and F(a) = ®(a) for all a € A.

For example

F:R%R,T*}Tz.

denotes the function from R to R with F(r) = r2 for all r € R.
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Theorem 0.3.6. Let f : A — B and g : C' — D be functions. Then f = g if and only if A = C,
B =D and f(a) = g(a) for all a € A.

Proof. By definition of a functions, f = (A, B, R) and g = (C, D, S) where R C AxBand S C CxD.
Thus applying twice

f=gifandonlyof A=C,B=D and R=S.

= If f = g, then the Principal of Substitution implies, f(a) = g(a) for all a € A. Also by ,
A=C and B=D.

<=: Suppose now that A =C, B =D and f(a) = g(a) for all a € A. By it suffices to show
that R = 5.
Let a € Aand b € B.
(a,b) € R
afb —definition of afb
b= f(a) —the definition of f(a)
b=g(a) — since f(a)=g(a)
agb —definition of g(a)

11111

(a,b) € S —definition of agb

Since A = C' and B = D, both R and S are subsets of A x B. Hence each element of R and S is
of the form (a,b),a € A,b € B. It follows that € R if and only if z € S and so R = S by O

Definition 0.3.7. Let R be a relation between A and B,
(a) R is called 1-1 (or injective) if for all b € B there exists at most one a in A with aRb.
(b) R is called onto ( or surjective) if for all b € B there exists at least one a € A with aRb.

(¢) R is called a 1-1 correspondence ( or bijective) if for all b € B there exists a unique a € A with
aRb and for all ¢ € A there exists a unique d € B with cRd

O

Lemma 0.3.8. (a) Let f be a relation between A and B. Then f is a 1-1 correspondence if and
only if f is a 1-1 and onto function.

(b) Let f: A— B be a function. Then f is 1-1 if and only

Foralla,ce A:  f(a)=f(c) = a=c
(c) A relation f between A and B is onto if and only if Im f = B.

Proof. @ Follows easily from the definition and we leave the details to the reader.
@ Observe that the following statements are equivalent”
fis 1-1.
For all b € B there exists at most one a € A with afb.
For each b € B there exists at most one a € A with f(a) = 0.
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if a,c € A with f(a) = f(c) then a = c.

By definition Im f C B. Thus Im f = B if and only of B C Im f Since Im f = {f(a) | a € A},
B C Im f if and only if for all b € B there exists a € Im f with afb, and so if and only if f is
onto. O

Definition 0.3.9. (a) Let A be a set. The identity function id4 on A is the function

ida:A—Aja—a

So ida(a) = a for all a € A.
(b) Let f: A— B and g : B — C be function. Then go f is the function

gof:A—C,a— g(f(a)

So (go f)(a) =g(f(a)) for all a € A.

Exercises 0.3:

#1. Let a,b,c,d be objects. Prove that

((a, b) = (c, d)) = ((a =¢) and (b= d))
#2. Give an example of an 1-1 and onto relation which is not a function.

#3. Let F' = (A, B, R) be a relation. Put

S ={(b,a) e Bx A|(a,b) € R} and G = (B, A,S)

Note that G a relation between B and A. Also, if a € A and b € B, then bGa if and only if aF'b.
Show that F' is a function if and only if G is 1-1 and onto.

#4. Let A and B be sets. Let A; and Ay be subsets of A and By and Bs subsets of B such that
A:Al UAQ,AlmAQZQ, B:B1U32 and BlmBQZQ. Let st :Al *)Bl andﬂ'QiAQ‘)Bg be
bijections.(Recall that a bijection is a 1-1 and onto function.) Define

m(a) ifa€ A

m:A— B,a—
{7‘(2(0,) if(ZEAQ

Show that 7 is a bijection.

#5. Prove that the given function is injective

(a) f:Z—Z, f(z) = 2.
(b) f:R— R, f(z) = 2.
(©) [:Z—Q fx)==.
(d) f:R >R, f(z) = -3z +5.

#6. Prove that the given function is surjective.
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fR—=R, f(z) =25
f:Z—=7, f(x)=x—4.
f:R—=R, f(x)=-3z+5.
(d) f:

#7. (a) Let f : B — C and g : C — D be functions such that g o f is injective. Prove that f is
injective.

Zx7—Q, f(a,b) =% when b# 0 and f(a,b) =0 when b = 0.

(b) Give an example of the situation in part (a) in which g is not injective.

0.4 The Natural Numbers and Induction

sec:natural
A natural number is a non-negative integer. N denotes the set of all natural numbers. So

N=1{0,1,2,3...}

We do assume that familiarity with the basic properties of the natural numbers, like addition,
multiplication and the order relation ‘<’.
A quick remark how to construct the natural numbers:

0=0

1= {0} = 0uU {0}
2 ={0,1} =1U{1}
3=1{0,1.2} =20U{2}
4=1{0,1,2,3} =3U{3}

n+1=4{0,1,2,3,...,n} =nU{n}

Definition 0.4.1. Let S is a subset of N. Then s is called a minimal element of S if s € S and
s<t foralltes§.

The following property of the natural numbers is part of our assumed properties of the integers
and natural numbers. (see Appendix [C)

Well-Ordering Axiom: Let S be a non-empty subset of N. Then S has a minimal element

Using the Well-Ordering Axiom we now provide an important tool to prove statements which
hold for all natural numbers:

Theorem 0.4.2 (Principal Of Mathematical Induction). Suppose that for each n € N a statement
P(n) is given and that:
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(i) P(0) is true.
(i1) If P(k) is true for some k € N, then also P(k+ 1) is true.
Then P(n) is true for all n € N.

Proof. Suppose for a contradiction that P(ng) is false for some ng € N. Put

(1) S:={seN| P(s) is false}

Then ny € S and so S is not empty. So by the Well-Ordering Axiom [C.4.2] S has a minimal element
m. So by definition of a minimal element

(2) meSandm<sforallse S

By (i) P(0) is true and so 0 ¢ S and m # 0. Thus k := m — 1 is a non-negative integer and
k<m. If k€S, then (2) gives m < k, a contradiction. Thus k ¢ S. By definition of S this means
that P(k) is true. So by (i), P(k+1) is true. But k+1 = (m — 1) + 1 = m and so P(m) is true.
But m € S and so P(m) is false. This contradiction show that P(n) is true for all n € N. O

Lemma 0.4.3. Letn € N and S be a set with exactly n elements. Then S has exactly 2" subsets.

Proof. For n € N, let P(n) be the statement
P(n): If Sis a set with exactly n elements, then S has exactly 2™ subsets. elements.

If n = 0, then S = ). So S has exactly one subset, namely §. Since 2° = 1 we see that P(0)
holds.

Now suppose that P(k) holds and let S be a set with k + 1 elements. Fix s € S and put
T =5\ {s}. Then T is a set with k elements.

Let A C S. Then either s € A or s ¢ A but not both.

Suppose that s ¢ A. Then A C T. By the induction assumption, 7" has 2 subsets and so there
are 2% subsets of A with s ¢ A.

Suppose that s € A. Then A = {s} U B for a unique subset B of T, namely B = A\ {s}. By the
induction assumption there are 2F choices for B and so there exists 2¥ subsets of S with s € A.

Since the number of subsets of A is the number of subsets of A not containing s plus the number
of subsets of A containing s we conclude that A has 2% + 2% = 2¥+1 gubsets. Thus P(k + 1) holds.

We proved that P(0) holds and that P(k) implies P(k + 1) and so by the principal of induction,
P(n) holds for all n € N. O

Theorem 0.4.4 (Principal Of Complete Induction). Suppose that for each n € N a statement P(n)
is given and that

(i) If k € N and P(i) is true for all i € N with i <k, then P(k) is true.

Then P(n) is true for all n.

Proof. Let Q(n) be the statement that P(7) is true for all 4 € N with ¢ < n. Since there does not
exits 1 € N with 7 < 0 we have

Q(0) is true.
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Suppose now that Q(k) is true, that is P(i) is a true for all i € N with ¢ < k. Then by (), also
P(k) is true. Hence P(7) is for all ¢ in N with ¢ < k4 1. Thus Q(k + 1) is true. We proved
2°.  If Q(k) is true for some k € N, then also Q(k + 1) is true.

From , and the Principal of Mathematical Induction, Q(n) is true for all n € N. Let
n € N. Then Q(n + 1) is true and since n < n + 1, P(n) is true. O

One last version of the induction principal:

Theorem 0.4.5. Suppose r € Z and for all n € Z with n > r, a statement P(n) is given. Also
assume that one of the following statements holds:

1. P(r) is true, and if k € Z such that k > r and P(k) is true,then P(k + 1) is true.
2. If k € Z with k > r and P(3) holds for all i € Z with r <1i < k, then P(k) holds.
Then P(n) holds for all n € Z with n > r.

Proof. For n € N let Q(n) be the statement P(n + r). If (1) holds we can apply to Q(n) and
if holds we can apply to Q(n). In both cases we conclude that Q(n) holds for all n € N.
So P(n + r) holds for all n € N and P(n) holds for all n € Z with n > r. O

Exercises 0.4:
#1. Prove that the sum of the first n positive integers is H(T'TH)
Hint: Let P(k) be the statement:

k(k+1)

14+2+...+k= 5
#2. Let r be a real number,  # 1. Prove that for every integer n > 1,

n_1
1—|—T+r2+...r"_1:r .
r—1

#3. Prove that for every positive integer n there exists an integer k with 2271 +1 = 2k
#4. Let B be a set of n elements.

(a) If n > 2, prove that the number of two-elements subsets of B is n(n — 1)/2.

(b) If n > 3, prove that the number of three-element subsets of B is n(n — 1)(n — 2)/3L

#5. What is wrong with the following proof that all roses have the same color:

For a positive integer n let P(n) be the statement:
Let A be a set containing n roses. Then all roses in A have the same color.

Ifn =1, then A only contains on rose and so certainly all roses in A have the same color. Thus
P(1) is true.

Suppose now that P(k) is true, that is whenever B is a set of k roses then all roses in B have
the same color. We need to show that P(k + 1) is true. So let A be any set of k + 1-roses. Let x
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and y be distinct roses in A. Consider the set X = A\ {x} (that is the set of roses in A different
from x). Then X is set of k roses. By the induction assumption P(k) is true and so all roses in X
have the same color. Similarly let Y = A\ {y}, then all roses in' Y have the same color. Now let z
be a rose in A distinct from x and y. Since z is distinct from x, z € X; and since z is distinct from
Yy, z €Y. We will show that all roses in A have the same color as z. Indeed let a be any rose in A.
If a # x, then both a and z are in X and so a has the same color as z. If a = x then both a and z
are in 'Y and so again a and z have the same color. We proved that all roses in A have the same
color as z. Thus P(k + 1) is true.

We proved that P(1) is true and that P(k) implies P(k +1). Hence by the Principal of Mathe-
matical Induction, P(n) is true for all m. Thus in any finite set of roses all the roses have the same
color. So all roses have the same color.

#6. Let x be a real number greater than —1. Prove that for every positive integer n, (1+z)™ > 14 nx.

0.5 Equivalence Relations

Definition 0.5.1. Let ~ be a relation on a set A (that is a relation between A and A). Then
(a) ~ is called reflexive if a ~ a for all a € A.

(b) ~ is called symmetric if b ~ a for all a,b € A with a ~ b.

(c) ~ is called transitive if a ~ ¢ for all a,b,c € A with a ~ b and b ~ c.

(d) ~ is called an equivalence relation if ~ is reflezive,symmetric and transitive.

Definition 0.5.2. Let a,b be integers, then we say that a divides b and write a | b if there exists an
integer k with b = ak.

For example 2 | 4, but 31 7.

Definition 0.5.3. Let A and B be sets and P(x,y) a statement involving the variables x and y.
Put R = {(a,b) € Ax B| P(a,b)} and F = (A, B, R). Note that F is a relation on between A and
B and

Forallac Aandbe B: aFb<= P(a,b)
F is called the relation between A and B defined by

aFb <= P(a,b)
Definition 0.5.4. Let n € Z.
(a) = (mod n)’ is the relation on Z is defined by
a=b (modn) <= nla-0b
(b) If a =b (mod n) we say that a is congruent to b modulo n.

Example 0.5.5. Congruence modulo 2, 0 and 1.
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Since 2 divides 6 — 4 we have 4 = 6 (mod 2). Since 2 does not divides 8 — 3 we have 3 % 8
(mod 2). If a and b are integers, then a = b (mod 2) if and only if b — a is even and so if and only
if either both a and b are even, or both a and b are odd.

Since k - 0 = 0 for all integers k, 0 is the only integer divisible by 0. Thus a = b (mod 0) if and
only if 0 divides b — a, if and only if b — a = 0 and if and only if a = b.
We showed
a=b (mod0)<=a=0b

Since m = m - 1, 1 divides all integers. Thus 1 | b — a for all integers a and b and so

a=b (modl)forall abeZ
Lemma 0.5.6. Let n € Z. Then relation = (mod n) is an equivalence relation on 7.

Proof. We have to show that = (mod n) is reflexive,symmetric and transitive. Let a,b,c € Z.
Reflexive: Sincea—a =0 =0-n we see that n | a—a and so ¢ = a (mod n). Thus = (mod n)
is reflexive.

Symmetric: Suppose that a =b (mod n). Then n | (¢ — b) and so a — b = nk for some k € Z.
Thus b —a = —(a — b) = —(nk) = n(—k). Son |b—a and b = a (mod n). Thus = (mod n) is
symmetric.

Transitive: Suppose that ¢ =b (mod n) and b = ¢ (mod n). Then n moda—bandn|b—c
and so there exists k,l € Z with a — b = nk and b — ¢ = nl. Thus

a—c=(a—b+(b—c)=nk+nl=n(k+1)
Hence n | a — c and a = ¢ (mod n). Thus = (mod n) is transitive. O

Definition 0.5.7. Let ~ be an equivalence relation on the set A and let n € Z.

(a) For a € A we define [a]. :={b€ A|a~b}. We often just write [a] for [a]~. [a]~ is called the
equivalence class of a with respect to ~.

(b) A/ ~={la]~ | a € A}. So A/~ is the set of equivalence classes with respect to ~.

(c) Leta € Z. Then [a], is the class of = (mod n)’ corresponding to a. [al, is called the congruence
class of a modulo n.

(d) Z, =7Z/'a=0b (mod n)'. SoZ, ={[a], | a € Z} is the set of congruence classes modulo n.
Example 0.5.8. Congruence classes modulo 2, 0 and 1.

Let a,b € Z. By a = b (mod 2) if and only if either a and b are even or a and b are odd.
Thus

[a]2 = {n € Z | n is even} if a even, and [al2 = {n € Z | n is odd} if a odd
So

Zo = {{n €Z|niseven}, {ne€Z|nis odd}} - {[O]Q, [1]2}
By a =b (mod 0) if and only if a = b.
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So

[a]o = {a}
and

Zoz{{a}|an}
By a="b (mod 1) for all a,b. Thus

So
[alo =Z
and
7y = {Z}
Remark 0.5.9.

Suppose P(a,b) is a statement involving the variables ¢ and b. Then we say that P(a,b) is a
symmetric in a and b if P(a,b) is equivalent to P(b,a). For example the statement a +b = 1 is
symmetric in a and b. Suppose that P(a,b) is a symmetric in a and b, Q(a,b) is some statement
and that

(%) For all a,b: P(a,b) = Q(a,b)
Then we also have
(xx) For all a,b: P(a,b) = Q(a,d)
Indeed since (*) holds for all a,b we can use (*) with b in place of a and a in place of b. Thus

For all a,b: P(b,a) = Q(b,a))

Since P(b,a) is equivalent to P(a,b) we see that (**) holds. For example we can add —b to both
sides of a + b = 1 to conclude that a = 1 — b. Hence also b =1 — a ( we do not have to repeat the
argument. )

Theorem 0.5.10. Let ~ be an equivalence relation on the set A and a,b € A. Then the following
statements are equivalent:

(a) a~b. (c) [a] N [b] # 0. (e) a € [b]
(b) b€ la]. (d) [a] = [0]. (f) b~a.

Proof. (@) = (b):  Suppose that a ~ b. Since [a] = {b € A | a ~ b} we conclude that b € [a].

(b) = (d): Suppose that b € [a]. Since ~ is reflexive, b ~ b and so b € [b]. Thus b € [a] N []
and [a] N [b] # O

() = (d): Suppose [a] N [b] # B. Then there exists ¢ € [a] N [b].

We will first show that [a] C [b]. So let d € [a]. Then a ~ d. Since ¢ € [a], a ~ ¢ and since ~ is
symmetric, ¢ ~ a. Since a ~ d and ~ is transitive, ¢ ~ d. Since c € [b], b ~ c. Since ¢ ~ d and ~ is
transitive, b ~ d and so d € [b]. Thus [a] C [b].
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Since statement is symmetric in @ and b, we conclude that also [b] C [a]. We proved that

[a] C [b] and [b] C [a] and so [a] = [b] by [0.2.3]

Since a is reflexive a € [a]. So [a] = [b] implies a € [b].
From a € [b] and the definition of [b], b ~ a.
Since ~ is symmetric,b ~ a implies a ~ b. O

Exercises 0.5:
#1. Let f: A — B be a function and define a relation ~ on A by
unv = f(w) = f(o).
Prove that ~ is an equivalence relation.

#2. Let A = {1,2,3}. Use the definition of a relation (see[0.3.4(a)) to exhibit a relation on A with the
stated properties.

(a) Reflexive, not symmetric, not transitive.
(b) Symmetric, not reflexive, not transitive.

d

)
)
(¢) Transitive, not reflexive, not symmetric.
(d) Reflexive and symmetric, not transitive.
)

(e) Reflexive and transitive, not symmetric.
(f) Symmetric and transitive, not reflexive.

#3. Let ~ be the relation on the set R* of non-zero real numbers defined by

a
a~b < 3 € Q.
Prove that ~ is an equivalence relation.

#4. Let ~ be a symmetric and transitive relation on a set A. What is wrong with the following ‘proof’
that ~ is reflexive.:

a ~ b implies b ~ a by symmetry; then a ~ b and b ~ a imply that a ~ a by transitivity.



Chapter 1

Arithmetic in Z

1.1 The Division Algorithm
sec:division

Theorem 1.1.1 (The Division Algorithm). Let a and b be integers with b > 0. Then there exist
unique integers q and r such that

a=bg+1r and 0 <r <b.

Proof. We will first show that ¢ and r exist. Put

S:={a—bxr|x€Zand a—bx >0}

We would like to apply the well-ordering Axiom to S, so we need to verify that S is not empty.
That is we need to find x € Z such that a — bx > 0.

If a > 0, then a — b0 = a > 0 and we can choose x = 0.

So suppose a < 0. Let’s try x = a. Then a — bx = a —ba = (1 — b)a. Since b > 0 and b is an
integer, b > 1 and so 1 — b < 0. Since a < 0, this implies (1 — b)a > 0 and so a — bx > 0. So we can
indeed choose = = a.

We have proved that S is non-empty. Note that every element of S is a non-negative integers and
so S C N. Thus the Well-ordering Axiom shows that S has minimal element . So r € S and
r < s for all s € S. Since r € S, the definition of S implies that there exists ¢ € Z with r = a — bgq.
Then a = bg + r and it remains to show 0 < r < b. Since r € S, r > 0. Suppose for a contradiction
that » > 6. Then » — b > 0. Since

r—b=(a—bg) —b=a—blg+1)

we conclude that » — b € S. Since b > 0 we have r — b < r, but this is a contradiction since r is a
minimal element of S.
This shows the existence of ¢ and r. To show the uniqueness let ¢,r, ¢ and 7 be integers with

(a:bq+rarld0§r<b) and (a:b(j+fand0§F<b)

We need to show that ¢ = ¢ and r = 7.
From a = bg + r and a = bq + 7 we have

21
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bq+r =>bq+r7
and so
(%) blg—q)=r—r

Multiplying 0 < r < b with —1 gives 0 > —r > —b and so

—-b< —r<O0.

Adding the inequality
0<r<b

yields

—b<rT—-1r<b

Using (*) we conclude

“b< =blg—q)<b
Since b > 0 we can divide by b and get

-1<qg—qgx1
The only integers strictly between —1 and 1 is 0. So ¢ — ¢ = 0 and thus ¢ = g. Thus (*) gives
7 —r=">b(qg—¢) =b0 =0 and thus 7 = r. O

Corollary 1.1.2 (Division Algorithm). Let a and ¢ be integers with ¢ # 0. Then there exist unique
integers q and v such that
a=cqg+rand0<r <]

Proof. See Exercise 1.1. O

Definition 1.1.3. Let a and b be integers with b # 0. Let q,r be the unique integers with a = bq+r
and 0 < r < |b|. Then r is called the remainder of a when divided by b and q is called the integral
quotient of a when divided by b.

Exercises 1.1:

#1. Let a and ¢ be integers with ¢ # 0. Proof that there exist unique integers ¢ and r such that

a=cqg+rand 0<r <.

#2. Prove that the square of an integer is either of the form 3k or the form 3k + 1 for some integer k.

#3. Use the Division Algorithm to prove that every odd integer is of the form 4k + 1 or 4k + 3 for some

integer k.

#4. (a) Divide 52, 72, 112, 152 and 27?2 by 8 and note the remainder in each case.

(b) Make a conjecture about the remainder when the square of an odd number is divided by 8.

(¢) Prove your conjecture.

#5. Prove that the cube of any integer has be exactly one of these forms: 9k, 9k + 1 or 9% + 8 for some

integer k.
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1.2 Divisibility
Lemma 1.2.1. Let a and b be integers.

(a) a and —a have the same divisors, that is

bla < b —a
(b) If b|a and a # 0, then 1 < |b| < |al.
(¢) If a # 0, then a has only finitely many divisors.

Proof. @ We will first show
(*y Ifb|a, then b| — a.

Suppose that b divides a. Then by definition of “divide” there exists k € Z with a = kb. Thus
—a = —(kb) = (—k)b. Since k € Z also —k € Z. Thus the definition of “divide” shows that b divides
—a.
Suppose next that b divides —a. By (*) (applied to —a in place of a), b divides —(—a). Since
—(—a) = b this means b | a.

So b divides a if and only if b divides —a.

(]ED Suppose a # 0 and that b | a. Then a = kb for some k in Z. Since 0b = 0 and a # 0 we have
k # 0 and since k is an integer |k| > 1. Since |b| > 0 this gives |k||b| > 1|b| = |b|. Hence

b < |bf < |K[[b] = [kb] = |a]

Also since a = kb and a # 0, b # 0 and so [b| > 1. Thus (b)) is proved.
Suppose a # 0 and let b be divisor of a. By (b)), |b| < |a| and so —|a| < b < |a|. Thus b is one
of —|a|,—|a|+1,—|a| +2,...,-1,0,1,...,|a| — 1, |a| and so a has at most 2|a| + 1 divisors. O

Definition 1.2.2. Let a, b and d be integers.
(a) d is called a common divisor of a and b provided that d | a and d | b.

(b) d is called a greatest common divisor of a and b provided that

(i) d is a common divisor of a and b; and

(ii) if ¢ is a common divisor of a and b then ¢ < d.

Lemma 1.2.3. Let a and b be integers, not both 0. Then a and b have a unique greatest common
divisor. We denote the unique greatest common divisor of a and b by ged(a, b).

Proof. We may assume that a # 0. Then by [1.2.1{|c]), @ has only finitely many divisors. Thus a and
b have only finitely many common divisors. Let ¢1,c¢a,..., ¢, be the common divisors of a and b
such that

c1<cp<c3<...<cCp.

Then ¢, is the unique greatest common divisor. O

Lemma 1.2.4. Let a,b,c,u and v be integers and suppose that c is a common divisor of a and b.
Then ¢ divides au + bv. In particular, ¢ divides a + b, au, —au, a + bv, au — bv and a — bv.
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Proof. Since ¢ is a common divisor of a and b we have ¢ | a and ¢ | b. So by definition of ‘divide’
there exist k,l € Z with a = kc and b = lc. Thus

au + bv = (kc)u + (lev) = (ku + lv)e

Since k,l,u and v are integers, also ku + [v is an integer. So the definition of ’divide’ shows that
¢ | au+ bo.
Choosing special values for u and v proves the second statement:

u v | au+bu

1 1 a+b
u 0 au
—u| 0 —au

1 v a+ bv

u | —v | au—bv

O

Lemma 1.2.5. Let a,b,q and r be integers with a # 0 orn # 0 and a = bg+ r. Then ged(a,b) =
ged(b, r).

Proof. Let d = ged(a,b) and e = ged(b,r). Then d divides a and b and so by d divides
r = a — bq. Hence d is a common divisor of b and r. Thus d < e by the definition of gcd.

Since e = ged(b,r), e divides b and r. So by e divides a = bq + r. Thus e is a common
divisor of @ and b and so e < d. We have proved d < e and e < d and so e = d. O

Theorem 1.2.6 (Euclidean Algorithm). Let a and b be integers not both 0 and let E_1 and Eq be
the equations

Eq{ : a = al + b0

Ey : b = a0 + bl

Let i € N and suppose inductively we already defined equation Ey,—1 < k <1 of the form
Ey : ry = axx + byg -
Suppose r; # 0 and let t;11,qi+1 € Z with

Tic1 = TiGiy1 + tipr and [tig1| < |ril.

(Note here that such t;+1,q;41 exist by the division algorithm
Let E;11 be the equation of the form r,11 = ax;11 + by;41 obtained by subtracting q;11-times
equation E; from E;_1. Then there exists m € N with rp,—1 # 0 and r,,, = 0. Put d = |rp,—1].

(a) Ti,xp,yx € Z for all k € Z with —1 < k < m.

(b) d is the greatest common divisor of a and b.
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(¢) Tm—1=axm—1~+bym—1 and d = ax + by for some x,y € Z.

Proof. For k € Z with k > —1, let P(k) be the statement that 7,z and y are integers and if
k> 1, then |rg| < |rg—1]-

By the definition of Ey and F; we have r_1 = a,z_1 = 1,y_1 = 0,79 = b,z = 0 and yo — 1.
Thus P(—1) and P(0) hold. Suppose now that ¢ € N, that P(k) holds for all k € Z with —1 < k <4
and that r; # 0. We have

Ei 1 @ rmio1 = awio1 + by
E’i : T = ax; + byz

and subtracting ¢;+1 times F; from F;_; we obtain

B @ i1 =1y = a($¢—1 - inqz‘+1) + b(yi—l - l‘iqz‘ﬂ)-
Hence
Titl = Vi1 — Tiqit1 = tig1
LTi41 = Tj—1 — TiGi41
and

Yi+1 = Yi—1 — TiGi+1-
By choice, ¢;4+1 and ;11 are integers. By the induction assumption, x;, z;_1,y;—1 and y; are integers.
Hence also 741, z;+1 and y;+1 are integers. Also |r;41] = |tiy1| < |ri] and so P(i 4 1) holds. So by
the principal of complete induction P(n) holds for all n € Z with n > —1 (for which E,, is defined).
In particular, (a)) holds and |ro| > |r1| > |ro| > |r3| > ... > |r;| > .... Since the r;’s are integers,
we conclude that there exists m € N with r,,_1 # 0 and r,,, = 0.
From Ti—1 = Tiqi+1 + ti+1 = Tiqi+1 + Ti+1 and we have ng(Ti—la 7‘1') = ng(’l"i7 ’I"i+1) and so

ged(a, b) = ged(r_q, 1) = ged(ro,m1) = ... = ged(rm—1, 7m) = ged(rm-1,0) = [rm-1]| = d.
So @ holds.
The first statement in is the equation E,,_1. If rp,—1 > 0, then d =rp,—1 = axpm—1 + bYm—1
and if r,,—1 < 0, then d = —rp,—1 = a(—2p—1) + b(—Ym—1) and so holds. O

Example 1.2.7. Let a = 1492 and b = 1066. Then

E_y: 1492 = 1492 - 1 + 1066 - 0

Ey : 1066 = 1492 - 0 + 1066 - 1

By 426 = 1492 - 1 + 1066 - -1 |E_, — Ey
Es: 214 = 1492 - -2 + 1066 - 3 By — 2B
Es: 212 = 1492 - 3 + 1066 - —4 By — B,
Ey: 2 = 1492 - -5 + 1066 - 7 By — Ej
Es: 0 |Es  — 106E,

So ged(1492,1066) = 2 and 2 = 1492 - —5 4+ 1066 - 7.
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Theorem 1.2.8. Let a and b be integers not both zero and d := ged(a,b). Then d is the smallest
positive integer of the form au + bv with u,v € Z.

Proof. By the Euclidean Algorithm [T[:2.6] d is of the form au + bv with u,v € Z. Now let e be any
positive integer of the form e = au + bv for some u,v € Z. Since d = ged(a,b), d divides a and b.
Thus by d divides au 4+ bv = e. Hence shows that d < |e| = e. Thus d is the smallest
possitive integer of the form au 4 bv with u,v € Z. O

Corollary 1.2.9. Let a and b be integers not both 0 and d a positive integer. Then d is the greatest
common divisor of a and b if and only if

(i) d is a common divisor of a and b; and
(i) if ¢ is a common divisor of a and b, then ¢ | d.

Proof. Suppose first that d = ged(a, b). Then (i) holds by the definition of ged. By d=ax+by
for some z,y € Z. So if ¢ is a common divisor of a and b, then shows that ¢ | d. Thus (i)
holds.

Suppose next that ({i) and holds. Then d is a common divisor of @ and b by . Alsoifcis a
common divisor of a and b, then by (i), ¢ | d. Thus by [1.2.1] ¢ < |d| = d. Hence by definition, d is
a greatest common divisor of a and b. O

Theorem 1.2.10. Let a,b integers not both 0 with ged(a,b) = 1. Let ¢ be an integer with a | be.
Then a | c.

Proof. Since ged(a,b) =1, shows that 1 = az + by for some z,y € Z. Hence

¢ =lc = (az + by)c = alcz) + (be)y.
Note that a divides a and be and so by a also divides a(cz) 4 (¢b)y. Thus a | c. O

Exercises 1.2:

#1. If a | b and b | ¢, prove that a | c.

#2. If a| cand b | ¢, must ab divide ¢? What if ged(a,b) = 17

#3. Let a and b be integers, not both zero. Show that ged(a,b) = 1 if and only if there exist integers

u and v with ua + vb = 1.

#4. Let a and b be integers, not both zero. Let d = ged(a,b) and let e be a positive common divisor

of a and b.

(a) Show that ged(2, 2) =4

e

(b) Show that ged(%,2) = 1.

#5. Prove or disprove each of the following statements.

(a) If 21 a, then 4 | (a® — 1).
(b) If 2t a, then 8 | (a? — 1).
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#6. Let n be a positive integers and a and b integers with ged(a,b) = 1. Use induction to show that
ged(a, b™) = 1.

#7. Let a, b, c be integers with a,b not both zero. Prove that the equation ax + by = ¢ has integer
solutions if and only if ged(a,d) | c.

#8. Prove that ged(n,n + 1) = 1 for any integer n.
#9. Prove or disprove each of the following statements.
(a) If 21 a, then 24 | (a® —1).
(b) If 2{a and 3 1 a, then 24 | (a® — 1).
#10. Let n be an integer. Then ged(n + 1,n%> —n+1) =1 or 3.

#11. Let a,b, ¢ be integers with a | bc. Show that there exist integers b, ¢ with b | b,¢|cand a= be.

1.3 Integral Primes

Definition 1.3.1. An integer p is called a prime if p ¢ {0,£1} and the only divisors of p are 1
and +p.

Lemma 1.3.2. (a) Let p be an integer. Then p is a prime if and only if —p is prime.

(b) Let p be a prime and a an integer. Then either (p | a and ged(a,p) = |p|) or (p 1 a and
ged(a,p) =1).

(c) Let p and q be primes with p | q. Then p=q orp= —q.

Proof. () We have p ¢ {0, +1} if and only if —p ¢ {0,£1}. Also {£1,+p} = {£1,£(-p)} and by
p and —p have the same divisor. Thus the following statements are equivalent:

p is a prime
p ¢ {0,41} and the only divisors of p are +1 and +p.
—p ¢ {0,£1} and the only divisors of —p are £1 and +(—p).
—p is a prime.

So @ holds.

() Let d = ged(a,p). Then d | p and since d is prime, d € {£1,+p}. Since d is positive we
conclude
(*) d=1 ord=]|p

Case 1: Suppose p | a. Then |p| is a common divisor of a and p and so d > |p| and d # 1. Thus
by (*) d = |p| and so (b)) holds in this case.

Case 2: Suppose p { a. Then also |p| t a and so ged(a,b) # |p|. Hence by (*) ged(a,b) = 1 and

also holds in this case.

Suppose p and ¢ are primes with p | ¢. Since ¢ is a prime we get p € {1, +q}. Since p is
prime, p ¢ {+1} and so p € {£q}. O

Theorem 1.3.3. Let p be an integer with p ¢ {0,£1}. Then the following two statements are
equivalent:
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(a) p is a prime.
(b) If a and b are integers with p | be, then p | a or p | b.

Proof. Suppose p is prime and p | ab for some integers a and b. If p { a, then by ged(p,a) = 1.

Since p | ab,|1.2.10|implies p | b. So p | a or p | b.
For the converse, see Exercise 1.3#2] O

Corollary 1.3.4. Let p be a prime integer, n a positive integer and ai,as,...a, integers with
plaias...a,. Then p|a; for somei € Z with 1 <i < n.

Proof. The proof is by induction on n. If n = 1, then p | a; and so Corollary holds with i =
1. Suppose now that the Corollary holds for n = k and let aq,as...axy1 be integers with p |
aias . ..agag+1. Put @ =aq...a; and b = agy1. Then p | ab and so by plaorp|b Ifp]|a,
then p | a ...ay and so by the induction assumption, p | a; for some i € Z with 1 <i < k. If p | b,
then p | ag+1. In either case p | a; for some i € Z with 1 <4 < k + 1. Thus the Corollary holds for
n==k+1.

The Principal of Induction now shows that the Corollary holds for all positive integers n. O

Lemma 1.3.5. Let n be an integer with n > 1. Then the following statements are equivalent:
(a) n is not a prime.
(b) There exists a € Z with a|n and 1 < a < n.
(c) There exist a,b € Z withn =ab, 1l <a<mn and 1 <b < n.
(d) There exist a,b € Z withn =ab, a > 1 and b > 1.
(e) There exist a,b € Z with n = ab, a <n and b < n.
Proof. We will first prove
Let a and b be positive integers with n = ab, then
(i) @ > 11if and only if b < n.
(ii) b > 1if and only if a < n.

Since a is positive, we have a > 1 if and only if % < 1, if and only if 2 < 7 and if and only if
b < n. By symmetry, b > 1 if and only of a < n.

(&) = ([@): Suppose that n is not a prime. Since n > 1, n ¢ {0,+1} and the definition of a
prime shows that there exists a divisor m of n with m ¢ {1, £n}. Put a = |m|. Then also a is a
divisor of n, a is positive and a # 1 and a # n. Since a divides n, implies 1 < |a| < |n|. As a
and n are positive this gives 1 < a < n. Together with a # 1 and a # n we get 1 < a < n.

@ = : Suppose a € Z with a | n and 1 < @ < n. Then by definition of divide, n = ab for
some b € Z. Since n and a are positive also b is positive. By , since 1 < a we have b < n and
since a < n we have 1 < b. So (i) holds.

== : If holds, then @ holds for the same a and b.

(d) = (€): Suppose there exist a,b € Z with n = ab, a > 1 and b > 1. Then gives a < n
and b < n. So @ holds.

@ = @: Suppose now that n = ab with a,b € Z and a < n and b < n. Then a is a divisor
of n and a # n. Since b < n, gives a > 1 and so a # 1, Since a and n are positive also a # —1
and a # —n. So a is a divisor of n other than +1, +n and the definition of a prime shows that n is
not a prime. O
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Theorem 1.3.6. Let n be integer n with n > 1. Then there exists a positive integer k and positive
Primes pi1,P2, - - ., Pr With

n=pip2...Pk-

Proof. The proof is by complete induction on n. So let m be an integer with m > 2 and suppose
that the theorem is true for all integers n with 1 < n < m.
Suppose first that m is a prime. Then the the theorem holds for n = m with k£ = 1 and p; = m.
Suppose next that m is not a prime. Then by there exist integers a and b with n = ab,
1 <a<nandl < b< n. By the induction assumption there exist positive integer ¢ and j and
primes p1,...,pi, qi....q; witha=p;...p; and b =¢q;...¢q;. Thus

m=ab=0p1...0:q1...;.

The Theorem now holds for n = m with k =i+ j and p;; = ¢; for all [ € Z such that 1 <1 < j.
By the Principal of Complete Induction, the theorem now holds for all integers n with n > 2. O

Theorem 1.3.7 (Fundamental Theorem of Arithmetic,FTA). Let n be an integer with n > 1. Then
n is a product of positive primes. Moreover, if

n=piPps...Px and N = q1q2...q,

where k,1 are positive integers and pi, ... Pk, q1,---q are positive primes. Then k =1 and ( possibly
after reordering the pis and q}s)

pP1=4q1,p2 =42,...,Pk = (k-

In more precise terms: There exists a bijection 7 : {1,2...,k} — {1,2,...,1} with p; = qx(;) for all
1<i<k.

Proof. By n is a product of positive primes. The proof of the second statement is by complete
induction on n. So let m be an integer with m > 1 and suppose that the FTA holds for all integers
n with 1 < n < m. Suppose also that

(*) m=pips...pr and m = q1¢2 . .. q,

where k, [ are positive integers and p1, ... pg, q1,- .. q; are positive primes.
Since p; and ¢; are primes, p; # 1 and ¢; # 1. Since p; and ¢; are positive we conclude

() p; >1foralll <i<kandg; >1foralll<j <L

Suppose first that m is a prime. Then [[.3.5] shows that m is not the product of two integers

larger than one. Hence (*) and (**) imply k =1 = 1. So p1 = m = ¢; and the FTA holds for n = m.
Suppose next that m is not a prime. Then p; # m # q; and so k > 2 and [ > 2.

Since m = (p1 ...pk—1)pr we see that py divides m. So py divides ¢; ...¢q and thus by

Pk | ¢; for some 1 < j < [. Since p; and g¢; are primes, m gives pi = ¢j or pr, = —g;. Since py

m m

and g; are positive, p, = g;. Reordering the ¢;’s we may assume that p, = ¢;. Put u = T oar
Then by (*)
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(s % %) U=pip2...Pr—1 and u = qi1q2 ... q_1.

By (**) pi > 1. Thus u = 2* < m and by (***) u > 1. Hence 1 < u < m and so by the
induction assumption the FTA holds for n = u. Thus £ — 1 =1 — 1 and, possibly after reordering,
PL=q1,.--,Pk—1 = qgr—1. Then also k =1 and py = ¢; = qx. So the FTA holds for n =m

The Principal of Complete Induction now shows that the FTA holds for any integer n with
n > 1. O

Exercises 1.3:

#1. Let p be an integer other than 0,4+1. Prove that p is a prime if and only if it has this property:

Whenever r and s are integers such that p = rs, then r = £1 or s = +1.

#2. Let p be an integer other than 0,+1 with this property

(*)  Whenever b and c are integers with p | be, then p | b or p | ¢. Prove that p is a prime.

3. (a) List all the positive divisors of 35! where s,t € Z and s,t > 0.
#3. (a) P ; :

(b) If r,s,t € Z are positive, how many positive divisors does 2"3%5¢ have?

#4. Prove that ged(a,b) = 1 if and only if there is no prime p such that p | a and p | b.

#5. Prove or disprove each of the following statements:

(a) If p is a prime and p | a®> + b% and p | ¢® + d?, then p | (a® — c?)
(b) If p is a prime and p | a® + b? and p | ¢ + d?, then p | (a® + ¢?)

(c) If pis a prime and p | a and p | a® + b2, then p | b

#6. Let a and b be integers. Then a | b if and only if a® = b3.

7. Prove or disprove: Let n be a positive integer, then there exists p, a € Z such that n = p + a? and
# p p ger, j22 D

either p =1 or p is a prime.



Chapter 2

Congruence in Z and Modular
Arithmetic

2.1 Congruence and Congruence Classes
Let a,b and n be integers. Recall that the relation ‘= (mod n)’ on Z is defined by

a=b (modn) <= mnla—0>b

By [0.5.6] ‘= (mod n)’ is an equivalence relation on Z. Recall also that [al,, is the equivalence
class of ‘= (mod n)’ with respect to a. So

[al, ={b€Z]a=b (modn)}.

Theorem 2.1.1. Let a,b,n be integers with n # 0. Then the following statements are equivalent

(a) a =b+nk for some integer k. (h) a € [b],.

(b) a —b=nk for some integer k. (i) b=a (mod n).

(¢) nla—b. () n|b—a.

(d) a=b (mod n). (k) b—a =nl for some integer L.

(¢) b€ [an. (1) b=a+ nl for some integer [.

(f) laln OV [Pl # 0. (m) a and b have the same remainder when di-
(9) [aln = [b]n. vided by n.

Proof. @ — @ :Add a to both sides of .

@ = :  Follows from the definition of ‘divide’.

() = () - Follows from the definition of ‘= (mod n)’.

By [0.5.6) ‘= (mod n)’ is an equivalence relation. So Theorem implies that (d))-(j) are
equivalent. So @ is equivalent to (a))-(c).

Since @ is symmetric in a and b we conclude that is also equivalent to (E])—.

31
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Let r; and 7o be the remainder of a and b when divided by n. Then for i = 1,2 we have r; € Z,
0 <r; < |n| and there exists ¢; € Z with a = ng; + 1 and b = ngs + ro.

— @: Suppose (@ holds. Then ry = r9 and b — a = (ngs + r2) — (nq1 + r1) =
n(g2 — q1) + (r2 — 1) = n(g2 — q1). So (b) holds with k = g» — .

@ = : Suppose a = b+nk for some integer k. Then a = (ngs +7r2) +nk = n(ga+ k) + 2.
Since g + k € Z and 0 < r5 < |n|, we conclude that ro is the remainder of a when divided by n. So
ry = re and holds. O

Corollary 2.1.2. Let n be positive integer.

(a) Let a € Z. Then there exists a unique v € Z with 0 < r < n and [a], = [r]n, namely r is the
remainder of a when divided by n.

(b) There are exactly n distinct congruence classes modulo n, namely

[0],[1],[2],.-.,[n — 1]
(¢) |Z,| = n, that is Z,, has exactly n elements.

Proof. (ED Let a € Z, let r be the remainder of a when divided by n and let s € Z with 0 < s < n.
Since s = 0n + s and 0 < s < n, s is the remainder of s when divided by n. By [a]n = [s]n if
and only a and s have the same remainder when divided by n, and so if and only if r = s.

(o) By definition each congruence class modulo n is of the form [a],,, with a € Z. By (d)), [a], is
equal to exactly on of

[0, [1],12],...,[n - 1].

So (]ED holds.
Since Z,, is the set of congruence classes modulo n, follows from @ O

Example 2.1.3. Determine Zs.
Zs = {[0)5, 115, 1215, 35, [4]5 } = {05, 115, [2]5, [~2]s, [=1]5 }

Exercises 2.1:
. (a) Let k be an integer with k =1 (mod 4). Compute the remainder of 6k + 5 when divided by 4.

(b) Let r and s be integer with » =3 (mod 10) and s = —7 (mod 10). Compute the remainder of
2r + 3s when divided by 10.

If a,m,n € Z with m,n > 0, prove that [a™]3 = [a"]2
If p > 5 and p is a prime, prove that [p] = [1] or [p] = [5] in Zs.

Find all solutions of each congruence:
(a) 2z =3 (mod 5) (b) 3z =1 (mod 7)
(¢) 6z =9 (mod 15) (d) 6z =10 (mod 15)

If a =2 (mod 4), prove that there are no integers ¢ and d with a = ¢® — d?.
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#6. If [a] = [1] in Z,,, prove that ged(a,n) = 1. Show by example that the converse is not true.
#7. (a) Show that 10" =1 (mod 9) for every positive integer n.

(b) Prove that every positive integer is congruent to the sum of its digits mod 9. [for example,
38 =11 (mod 9)].

2.2 Modular Arithmetic
Theorem 2.2.1. Let a,a,b,b and n be integers with n # 0. Suppose that
[a]n = [a]n and [bln = [b]-
Then
[a+ 0], = [@+ D], and [abl,, = [@b],.

Proof. Since [a],, = [a], and [b], = [b],, we conclude from that @ = a + kn and b = b + In for
some k,l € Z. Hence

a+b=(a+kn)+ B+In)=(a+b)+ (k+Dn.
Since k + 1 € Z,[2.1.1] gives

[a+ by = [@+ D],
Also

a-b=(a+kn)(b+In) = ab+ (ak + kb+ kin)n,
and since ak + kb + kin € Z 2.1.1] implies

In view of the following definition is well-defined.

Definition 2.2.2. Let a,b and n be integers with n # 0. Then
[a], ® b, =[a+b], and [a], ® [b], = [ab],.
The function
Zp XLy — 2y, (A,B) > ADB
1s called the addition in Z,, and the function
Zp X2y — 2y, (A,B) - AGB
is called the multiplication in Z,,.

Example 2.2.3. Compute [3]s ® [7]s and [123]212 @ [157]212.
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Bls © [7ls = [3- 11]s = [21]s = [5]s
Note that [3]s = [11]s and [7]s = [~1]s. So we could also have used the following computation:
[11]s © [=1]g = [11- —1]s = [-11]s = [5]s

Theorem [2.2.7] ensures that we will always get the same answer, not matter what representative
we pick for the congruence class.

[123]212 D [157]212 = [123 + 157]212 = [280]212 = [68]212
Note that [123]212 = [—89]212 and [157]212 = [—55]212. A]bO

[—89]212 @ [—55]212 = [—89 — 55]212 = [—144]212 = [68]212
Warning: Congruence classes can not be used as exponents. We have
[24]5 = [16]3 = [1]5 and [2']3 = [2]s
So [2%]3 # [2!]3 even though [4]3 = [1]3. So we cannot define [a]:[gb]3 = [a%]5.

Theorem 2.2.4. Let n be a non-zero integer and A, B,C € Z,,. Then

(o) A& B€Zy, [closure for addition].
(b)) Ao (BeC)=(AeB)aC. [associative addition]
(c) A B=B® A. [commutative addition]
(d) A 0], = A=][0], D A. [additive identity]
(e) There exists X € Z,, with A® X = [0],. [additive inverse]
(f) A® B € Z,. [closure for multiplication]
(90 Ao (BoC)=(AeoB)oC. [associative multiplication]

(h) Ao(B®C)=(A0B)®(A0C) and (A B)0C=(A0C)® (B6C). [distributive laws]
(i) Ao B=B0o A. [commutative multiplication]
G) lln.0A=A=A0[1], [multiplicative identity]

Proof. It d € Z we will just write [d] for [d],,. By definition of Z,, there exists integers a,b and ¢
with A = [a], B = [b] and C = [¢].

(a)) We have A® B = [a] @ [b] = [a + b]. Since a + b € Z we conclude that A @® B € Z,.

Using the definition of @ and the fact that addition in Z is associative we compute

Ao BaC) = [do(@ael) = [deb+d la+(b+c)] = [(a+b)+d
= [a+beld = (dep)eld = (AeB)acC.

Using the definition of @& and the fact that addition in Z is commutative we compute
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AeB = [dop] = [a+b] = [b+a=[]®[e=BaA
@ Using the definition of @& and the fact that 0 is an additive identity in Z we compute

A®[0] =[a] ®[0] = [a+ 0] = [a] = 4,
and
0] @ A=[0]& [a] = [0+a] = [a] = A

() Put X = [—a]. Then X € Z,. Using the definition of & and the fact that —a is an additive
inverse for @ in Z we compute

A® X =[a] ®[—a] = [a+ (—a)] = [0].

(f) Similarly to (a}) we have A® B = [a] ® [b] = [ab] and so A ® B € Z,.
(g) Similarly to (b)) we can use the definition of ® and the fact that addition in Z is associative
to compute

Ao (BoC) = [do(blol]) = [dofd = [a(be)] [(ab)c]
= [ab] © [¢] = (ob)oeld = (Ae@B)eC.
Using the definition of & and ® and the distributive law in Z we compute
Ao (BaC) = [a] ® ([b] @ [¢]) = [aJob+d = [a(b+ )]
= [ab + be] = [ab&fac] = ([a] ©[])& ([a] ©c])
= (AB)®(4A60C),
and similarly
(AeB)oC = ([a] ® [B]) @[] = [la+b O] = [(a+b)]
= [ac+ bc] = laded = (laold) e (b o)

= AeoC)e(BoO).
Similarly to we can use the definition of ® and the fact that multiplication in Z is
commutative to compute
AOB = [aob = [ab] = [ba]|=[)©[a] =BG A.

(ED Similarly to @ we can use the definition of ® and the fact that 1 is a multiplicative identity
in Z to compute

Ao (1] =[a ©[1] = [al] = [a] = 4,
and
NeoA=[1]0[d=[la]=[a=A4
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Notation 2.2.5. Let a,b,n be integers with n # 0. We will often just write a for [al,, a + b for
[a)n, ®[b]n and ab (or a-b) for [a]l, @ [b],. This notation is only to be used if it clear from the context
that the symbols represent congruence classes modulo n. Fxponents are always integers and never

congruences class.

Example 2.2.6. Compute 4+ 5 and 4-5 in Z7.

445=9=2 and 4-5=20=6

Example 2.2.7. Determine the addition and multiplication table of Zs.

+/10 1 2 3 4 01 2 3 4
0j0 1 2 3 4 0/j0 0 0 0 O
111 2 3 4 5 110 1 2 3 4
and
212 3 4 5 6 210 2 4 6 8
313 4 5 6 7 310 3 6 9 12
414 5 6 7 8 410 4 8 12 16
and after computing remainders when divided by 5:
+/0 1 2 3 4 01 2 3 4
0/j0 1 2 3 4 0/{0 0 0 0 O
111 2 3 4 0 110 1 2 3 4
and
212 3 4 0 1 210 2 4 1 3
313 401 2 310 3 1 4 2
414 0 1 2 3 410 4 3 2 1

Definition 2.2.8. Let n be a non-zero integer, A € Z,, and k € N. Then AF is inductively defined

by

A" =1[1], and AF'=4F0 A

So
A =((a0aea). . .04)oA

k—times
Lemma 2.2.9. Let n be a non-zero integer and k,l € N.

(a) Let a € Z. Then [a]k = [a*],.

(b) Let A,B € Z,,. Then (A® B)k = Ak & BF, AFl = Ak & Al and A =

(AF)".
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Proof. @ The proof is by induction on k. For k = 0, [a]® = [1] = [a"] and so @ holds for k = 0.
Suppose () holds for k, then
[a]**! = [a]* © [a] = [a"] © [a] = [a*a] = [a" 1],

and so @ holds for k£ + 1. So by the Principal of induction, it holds for all k£ € N.
() Choose a,b € Z with A = [a] and B = [b]. Using (a]) and the fact that (b)) holds for integers
in place of congruence classes we compute:

(A® B)* = ([a] © b)* = [ab]* = [(ab)*] = ["b"] = [a"] © b"] = [a]" © [b"] = A* © BF,

Ak+l _ [a]k-i-l _ [ak-‘rl] _ [akal] — [ak] ® [al _ [a}k ® [a]l — Ak @Al7

and

AM = [o]* = "] = [(a")'] = [a"] = ([a]")' = (4")'
O

A remark on the simplified notation for elements in Z,, (that is just writing a for [a],, ) Consider
the expression

2°+3.7  inZ,

It is not clear which element of Z, this represents, indeed it could be any of the following for
elements:

[2°+3-7,
2l @[3
2°]n ® (8]0 © 7))
2> & [3-7],
217 @ ([3]n © [7]n)
But thanks to Theorem and Theorem all these elements are actually equal. So our

simplified notation is not ambiguous. In other words, our use of the simplified notation is only
justified by Theorem and Theorem [2.2.9

Example 2.2.10. (a) Compute [1334767],.
(b) Compute [7]258.
(c¢) Determine the remainder of 53 - 7100 + 47 . 7™ 4+ 4. 73 when divided by 50.

()

[1334567]12 _ [13]%421567 _ [1]%421567 _ [134567]12 _ [1}12
In simplified notation this becomes: In Zq5, 13 = 1 and so

1334567 _ 134567 _ |
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Why is the calculation shorter? In simplified notation the expression
[1334567] 12 and [13]?121567

are both written as
1334567

So the step
[1334567]12 _ [13]213421567

is invisibly performed by the simplified notation. Similarly, the step

[1]?3567 _ [134567] 12

disappears through our use of the simplified notation.
@ In Z50 :
7198 — (72)99 — 4999 — (_1)99 — _1 — 49
In Z50 :

537190 4 47. 770 4 4.7 = 3.(7T2)%0 -3 (7). 74+4.-72.7
= 3.(=1)° =3 (-1)% - 744--1-7
=  3421-28=3-7=-4=46

Thus [53 - 7100 +47 .77 + 4. 73]50 = [46]50. Since 0 < 46 < 50, shows that the remainder
in question is 46.

Example 2.2.11. Find all solutions of 2> +2x 4+ 3 =0 in Zs.

All computation below are in Zs.
By Corollary Zs = {0,1,2,3,4}. Since 3 = =2 and 4 = -1, Zs = {0,1,2,—-2,—1}. We

compute
x |2 + 22 + 3
0,0 + 0 + 3 = 3
1 1 + 2 4+ 3 = 6 =1
2 8§ + 4 4+ 3 = 15 = 0
-2|-8 — 4 4+ 3 = -9 =1
-1/-1 - 2 4+ 3 = 0

So the solution of 23 + 2z +3=0inZs are r =2 and . = —1 = 4.

Exercises 2.2:
#1. Let n be a non-zero integer and A € Z,,. Show that A ® [0],, = [0].

#2. (a) Solve the equation 2% + x = 0 in Zs.
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(b) Solve the equation 22 + z = 0 in Zg.
(c) If p is a prime, prove that the only solutions of 22 + z = 0 in Z, are [0] and [p — 1].
. Solve the equations:
(a) 22 =1in Z, (b) z* =1in Zs
(c) 2> + 32z +2=01in Zg (d) 22 +1=0in Zj
(a) Find an element a in Z7 such that every non-zero element of Z; is a power of a.
(b) Do part (a) in Zs
(¢) Can you do part (a) in Zg?
. (a) Solve the equation 22 + z = 0 in Zs.
(b) Solve the equation 22 + z = 0 in Zg.
)

(c) If p is a prime, prove that the only solutions of 22 + 2 = 0 in Z, are [0] and [p — 1].

2.3 Cogruence classes modulo primes

Lemma 2.3.1. Let n,m € Z with n # 0. Then n | m if and only if [m], = [0],.

Proof. n | m if and only if n | m — 0 and so by 2.1.1]if and only [m],, = [0],.. O
Theorem 2.3.2. Let p be an integer with |p| > 1. Then the following statements are equivalent:
1. p is a prime.

2. For any A € Zy, with A # [0], there exists X € Z, with AX = [1],,.

3. Whenever A and B are elements in Z, with AB = [0],, then A =[0], or B = [0],.

Proof. Let m € Z. We will write [m] for [m],.

(1) = (@): Suppose p is a prime and let A € Z, with A # [0]. Then A = [a] for some a € Z.
Since [a] # [0], implies p { a. Since p is prime, [1.3.2]shows ged(a, p) = 1 and so by the Euclidean
Algorithm there exist u,v € Z with au + pv = 1. Hence implies [au] = [1]. By the
definition of multiplication in Z,, [a][u] = [au] and so [a][u] = [1]. Put X = [u]. Then X € Z, and
AX =1].

(2) = (3): Suppose holds and let A, B € Z,, with AB = [0]. Assume that A # [0]. Then
by (2)) there exists X € Z, with AX = [1]. We compute

0

X[0] — Exercise ]
X(AB) — Since AB =[0]

= (XA)B — associative multiplication
= [1]B - Since XA =[1]
= B — Since [1] is a multiplicative identity

We have proven that A # [0] implies B = [0]. So A = [0] or B = [0] and holds.
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(B) = (1): We will use Theorem|[1.3.3] namely p is a prime if and only if p | b or p | ¢ whenever
b and ¢ are integers with p | bc.
So suppose holds and let b and ¢ be integers with p | be. Then [be] = [0] by and thus

[b][c] = [bc] = [0]. implies [b] = [0] or [¢] = [0]. Hence by p|borb|c Thus by pisa
prime. O

Example 2.3.3. Verify Theorem[2.3.9 for p=4 and p = 5.

Note first that Condition [2.3.2)(2) in Theorem says that every row of the multiplication
table of Z,, other than Row 0 (that is the row corresponding to 0) contains 1.

Condition [2.3.2)(2) in Theorem says that 0 only appears in Row 0 and in Column 0 of the
multiplication table.
The multiplication table for Z4 and Zs are :

01 2 3 4
01 2 3

0j{0 0 0 0 O
00 0 0 O

110 1 2 3 4

Zg: 1[0 1 2 3 Ls -

2|0 2 4 1 3
210 2 0 2

310 3 1 4 2
310 3 2 1

410 4 3 2 1

Row 2 of the table for Z, does not contain a 1. Also the entry in Row 2, Column 2 is 0. Moreover
4 is not a prime. So for p = 4 none of the three statements in Theorem holds.

Each row, other than Row 0 of the table for Zs contains a 1. Also 0 only appears in Row 0 and
in Column 0. Moreover, 5 is a prime. So for p = 5 all of the three statements in Theorem [2:3:2] hold.

Corollary 2.3.4 (Multiplicative Cancellation Law). Let p be a prime and A, B,C € Z, with A #
[0],. Then AB = AC if and only if B=C.

Proof. <—: 1If B =C then AB = AC by the principal of substitution.

=—: Now suppose that AB = AC. By there exists X € Z, with AX = [1],. We compute

AB = AC
= X(AB) = X(AC) - Principal Of Substitution
= (XA)B = (XA)C - associative multiplication,twice
= (AX)B = (AX)C - commutative multiplication,twice
= [1],B = [1],C — Since AX =[1],
= B=C — Since [1], is a multiplicative identity

Example 2.3.5. Verify that the Cancellation Law holds in Zs, but does not hold in Z4.
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Let A, D € Z,, with A # [0],. The Cancellation law says if B, C' € Z,, with D = AB and D = AC,
then B = C. So there exists at most one C € Z, with AC' = D. In terms of the multiplication table
this means that now entry appears more than once in Row A of the multiplication table.

Note that 2 appears twice in Row 2 of the multiplication table of Z,, namely in Column 1 and
Column 3. Indeed 2-1=2=2=6=2-31in Z4 but 1 # 3 in Z4. So the Cancellation Law does not
hold for Z,.

Except for Row 0, each of row of the multiplication table of Z5 contains each of the congruence
classes 0,1,2,3 and 4 exactly once. So the Cancellation law holds in Zs.

Corollary 2.3.6. Let p be a prime and A and B in Z, with A # [0],.
(a) There exists a unique X € Z, with AX = [1],,.
(b) There exists a unique Y € Z, with AY = B, namely Y = XB.

Proof. By there exists X € Z, with AX = [1],. Thus AX # [0],. Since A[0], = [0], by exercise
2.2l#1| we conclude X # [0],. Let Y € Z,. Then

AY =B
X(AY)=XB — Multiplicative Cancellation Law
(XA)YY = XB — associative multiplication
(AX)Y = XB — commutative multiplication
1],Y = AB  — Since AX = [1],

11ttt

Y =AB — Since 1 is a multiplicative identity

So Y = X B is the unique element in Z, with AX =Y. Thus @ holds.
The case B = [1], shows that X[1], = X is the unique element in Z, with AX = [1],. So @
holds. O

Example 2.3.7. (a) Solve the equation 2x =1 in Zs.
(b) Solve the equation 2x = 1 in Zg.
(c¢) Solve the equation 2x = 4 in Zg.
(@): In Zs: 2-3=1. So 22 =1 if and only if 3(2z) = 3- 1 and if and only if z = 3.
@ and : ByZG =1{0,1,2,3,4,5}. We compute
z [0 1 2 3 4 5
2z |0 2 4 6 8 10
2¢ |10 2 4 0 2 4

So 2x = 1 has no solution in Zg , but 2z = 4 has two solutions, namely x = 2 and x = 5. The
second solution is explained by the facts that 5 =243 and 2-3=6=0andso2-5=2-2..

Exercises 2.3:
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#1. How many solutions does the equation 6z = 4 have in
(a) Z7 (b) Zg (C) Zg (d) Zlo

#2. Let a,b and n be integers with n # 0 and ged(a,n) = 1. Let u and v be integers with au+mnv = 1.
Put A = [a],, and B = [b],.

(a) Show that [a], ® [u], = [1].
(b) Show that there exists a unique X in Z,, with A © X = B, namely X = [ub]s,.
(¢) Show that there exists Y € Z,, with B®Y = [1], if and only if ged(b,n) = 1.
#3. Let a,b,n,m € Z with n # 0 and m # 0. Prove each of the following statements:
(a) [a], = [b]» if and only if [maly,, = [Mmb]mn.
(b) [a]n = [b], if and only if there exists r € Z with 0 < r < |m| and [a]nm = [0+ ™) nm.-
(¢) Suppose that [a], = [b]n, m | @ and m | n. Then m | b.

Remark 2.3.8. Let n be a non-zero integer and A,B € Z,,. The preceding two exercises give rise
to a method to solve the equation A® X = B in Z,:

Choose a,b € Z with A = [a],, and B = [b],. Also let X = [z], with x € Z. So the equation
A® X = B becomes [az], = [b]n.

Use the Euclidean Algorithm to compute d = ged(a,n) and u,v € Z with au + nv = d.

If dt b, then A® X = B does not have a solution. Indeed, if X = [x], were a solution, then
[ax], = [b]n. Note that d | a and d | n. So also d | ax and thus by Exercise 3(c) d | b, a
contradiction.

Suppose now that d | b. Put a =5, b= % and n = %5. Then a = ad,ax = axd, b = bd and n = id.
-

b
Thus by Ezercise 3(a) [ax]s = [b)a if and only if [ax], = [b

Dividing ua+vb = d by d gives ua+vb = 1. So by Exercise 2(b), [ax]s = [b]n has a unique solution
in Zzn, namely [z]z = [ubls.

By Ezercise 3(b), [x]i = [ubla if and only if [x], = [ub + ity for some r € Z with 0 < r < d. So
X in Zy is a solution of A® X = B if and only if X = [ub+ rn], for some r € Z with 0 < r < d.
In other words, the solutions of A® X = B are
[wbl, , [ub+n], , [ub+2al, , ... , [ub+(d—2)al, , [ub+ (d—1)7),
#4. Solve the following equations:

(a) 12z =2 in Zlg. (d) Tx =2 in ZQ4. (g) 25z = 10 in Z65-

(b) 3l =1in Zso. (e) 34x =1 in 297. (h) 21z =17 in Z33.

(C) 27r =2 in Z40. (f) 152 =9 in Zlg.
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Rings

3.1 Definitions and Examples
Definition 3.1.1. A ring is a triple (R, 4+, ) such that
(i) R is a set;

(i) + is a function (called ring addition ), RX R is a subset of the domain of + and for (a,b) € RXR,
a + b denotes the image of (a,b) under +;

(iii) - is a function (called ring multiplication), R X R is a subset of the domain of - and for
(a,b) € Rx R, a-b (and also ab) denotes the image of (a,b) under -;

and such that the following eight axioms hold:

(Ax1) a+b€eR foralla,be R; [closure for addition]
(Ax2) a+ (b+c)=(a+b)+c forallabceR; [associative addition]
(Ax3) a+b=b+a foralla,be R. [commutative addition]
(Ax 4) there exists an element in R, denoted by Or and called ‘zero R’, [additive identity]

such that a +0r = a =0gr + a for all a € R;

(Ax 5) for each a € R there exists an element in R, denoted by —a [additive inverses]

and called ‘negative a’, such that a + (—a) = Og;

(Ax 6) ab € R for all a,b € R; [closure for multiplication]
(Ax 7) a(bc) = (ab)c for all a,b,c € R; [associative multiplication]
(Ax 8) a(b+c) =ab+ ac and (a + b)c = ac+ be for all a,b,c € R. [distributive laws]

In the following we will usually just “Let R be a ring” for “ Let (R,+,-) be a ring.”
Definition 3.1.2. Let R be a ring. Then R is called commutative if

(Ax 9) ab=ba for all a,b € R. [commutative multiplication]

43
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Definition 3.1.3. Let R be a ring. An element 1g in R is called an (multiplicative) identity in R
of

10) 1p-a=a=a-1g for alla € R. [multiplicative identity]
Example 3.1.4. (a) (Z +,-) is a commutative ring with identity.

(b) (Q,+,-) is a commutative ring with identity.

(c) (R,+,-) is a commutative ring with identity.

(d) (C,+,-) is a commutative ring with identity.

(e) Let n be a non-zero integer. Then (Z,,®,®) is a commutative ring with identity.

(f) (2Z,+,-) is a commutative ring without a multiplicative identity.

(9) Let n be integer with n > 1. Then set M, (R) of n x n matrices with coefficients in R together
with the usual addition and multiplication of matrices is a non-commutative ring with identity.

Example 3.1.5. Let R ={0,1} and a,b € R. Define an addition and multiplication on R by

+ 10 1 0 1
00 1 and 010 O
111 a 110 b

For which values of a and b is (R, +,-) a ring?

Since 1 needs to have an additive inverse, R will not be a ring if a = 1.

Suppose now that a = 0.

If b =1, then (R, +,-) is (Z2,®, ®) with the regular addition and multiplication and so R is ring,.

If b = 0, then xy = 0 for all z,y € R. It follows that Axioms 4-8 holds. Axiom 1-4 holds since
the addition is the same as in Zs. So R is a ring.

In both cases R is commutative. If b = 1, then 1 is an identity. If b = 0, R does not have an
identity.

Example 3.1.6. Let R = {0,1} Define an addition and multiplication on R by

B0 1 0|0 1
0|1 0 and 0]0 1
110 1 111

Is (R,B,0) a ring?

Note that 1 an additive identity, so Og = 1. Also 1g is an multiplicative identity. So 1z = 0.
Using the symbols Or and 1 we can write the addition and multiplication table as follows:

and
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Indeed, most entries in the tables are determined by the fact that O and 1 are the additive and
multiplicative identity, respectively. Also 1 H1g =0H0=1=0g and 0 J0g =11 =1=0pg.
Observe now that new tables are the same as for Zs. So (R,H, ) is a ring.

Theorem 3.1.7. Let R and S be rings. Define an addition and multiplication on R x S by

(r,s) + (Tla S/) = (r+ T/v s+ Sl)

(r,s)(r',s") = (rr',ss)
for all v, € R and s,s' € S. Then
(a) R x S is a ring;
(b) Orxs = (Or,0s);
(¢) —(r,s) = (—r,—s) forallr € R,s € S;
(d) if R and S are both commutative, then so is R X S;
(e) if both R and S have an identity, then R x S has an identity and 1pxs = (1g, lg).

Proof. See Exercise 3.1F2] O

Exercises 3.1:

#1. Let E = {0,e,b,c} with addition and multiplication defined by the following tables. Assume
associativity and distributivity and show that R is a ring with identity. Is R commutative?

+10 e b ¢ 0 e b ¢
010 e b c 0/{0 0 0 O
ele 0 ¢ b el0 e b ¢
blb ¢ 0 e b0 b b O
clec b e 0 c|0 ¢ 0 ¢

#2. Prove Theorem [3.1.7}

3.2 Elementary Properties of Rings

Lemma 3.2.1. Let R be ring and a,b € R. Then (a +b) + (—b) = a.

Proof.
(a+b)+(-b) = a+(b+(-b) —(Ax2)
= a+0g
= a



46 CHAPTER 3. RINGS

Theorem 3.2.2 (Cancellation Law). Let R be ring and a,b,c € R. Then

a=1>b
<— c+a=c+b
<— at+c=b+c

Proof. “First Statement =—> Second Statement’: Suppose that a = b. Then ¢+ a = ¢+ b by the
Principal of Substitution [0.1.1

“Second Statement == Third Statement’: Suppose that c+a = c+b. Then applied to
each side of the equation gives a +c=b+ c.

“Third Statement = First Statement’: Suppose that a + ¢ = b+ ¢. Adding —c to both sides
of the equation gives (a + ¢) + (—¢) = (b+ ¢) + (—¢). Applying to both sides gives a =b. O

Definition 3.2.3. Let R be a ring and ¢ € R. Then ¢ is called an additive identity of R if
a+c=a=c+a foralla € R.

Corollary 3.2.4 (Additive Identity Law). Let R be a ring and a,c € R. Then the following three
statements are equivalent:

a = OR
— c+a = c
< a+c = ¢

In particular, O is the unique additive identity of R.

Proof. Put b =0g. Then by|(Ax 4)|{c+b = c and b+ ¢ = 0. Thus by the Principal of Substitution:

a = Op <— a = b
c+a = c = c+a = c+b
at+c = ¢ = at+c = b+c
So the Corollary follows from the Cancellation Law [3:2.2] O

Definition 3.2.5. Let R be a ring and ¢ € R. An additive inverse of ¢ is an element a in R with
c+a=0g.

Corollary 3.2.6 (Additive Inverse Law). Let R be a ring and a,c € R. Then

a = —c
<= c+a = Op
<— a+c = Og

In particular, —c is the unique additive inverse of c.
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Proof. Put b = —c. By ¢+ b=0g and so by b+ ¢ = 0g. Thus by the Principal of
Substitution:

a = —c > a = b
c+a = Og = ct+a = c+b
a+c = Op = a+c = b+c
So the Corollary follows from the Cancellation Law O

Definition 3.2.7. Let (R,+,-) be a ring and S a subset of R. Then (S,+,-) is called a subring of
(R, +, ") provided that (S,+,-) is a ring.

Theorem 3.2.8 (Subring Theorem). Suppose that R is a ring and S a subset of R. Then S is a
subring of R if and only if the following four conditions hold:

(I) O € S.
(IT) S is closed under addition (that is : if a,b € S, thena+b € S);
(III) S is closed under multiplication (that is: if a,b € S, then ab € S);

(IV) S is closed under negatives (that is: if a € S, then —a € S)

Proof. =>: Suppose first that S is a subring of R. Then |[(Ax 1)|for S shows that holds.
Similarly, [(Ax 6)| for S shows that holds.
By for S there exists 0g € S with 0g + 0s = 0s. So by

(*) 05 = OR.

Since 0g € S, (ED holds.
Let s € S. Then by for S, there exists t € S with s +¢ = 0g and so by (*), s+t = Og.
Thus by t = —s. Since t € S this gives —s € S and holds.

<=: Suppose — holds.

Since S is a subset of R, S is a set and S x S is a subset of R x R. Hence Condition (i) of the
definition of a ring holds for S. Also since R x R is a subset of the domains of + and -, S x S is a
subset of the domains of + and -. Thus Conditions (ii) and (iii) of the definition of a ring hold for
S.

From we conclude that |(Ax 1) holds. Clearly |(Ax 2)| and [(Ax 3)| for R imply [(Ax 2)| and
(A 3] for S.

Put 0g = Og. Then () implies 05 € S. for S now follows from for R.
Let s € S. Then s + (—s) € 0g = 0g and by (iv), —s € S. Thus|(Ax 5)| holds for S.

From () we conclude that [[Ax 6)] holds for S.
Clearly [(Ax 7)|and |(Ax 8) for R imply |[(Ax 7)|and [(Ax 8)|for S.
So|(Ax 1){(Ax 8)[hold for S and so S is a ring and thus a subring of R. O

Example 3.2.9. (a) Z is a subring of Q, Q is a subring of R and R is a subring of C.
(b) Let n € Z. Put nZ = {nk | k € Z}. Then nZ is subring of Z.

(c) {[0]4,[2]4} is a subring of Zy.
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@ holds since Z, Q and R are rings.

(]ED We will verify the four conditions from the Subring Theorem.
Observe first that since nZ = {nk | k € Z},

(*) a€nz = there exists k € Z with a = nk

Let a,b € nZ. Then by

(%) a =nk and b =nl
for some k,l € Z.
(I): 0 =n0 and so 0 € nZ by (*).

(I0): a+b 2 nk +nl=n(k+1). Since k+1 € Z, (x) shows a +n € Z. So nZ is closed under
addition.

(I11): ab D nknt = n(knl)). Since nkl € Z, (x) shows ab € Z. So nZ is closed under
multiplication.
(IV)—a .’ —(nk) = n(—k). Since —k € Z, () shows —a € Z. So nZ is closed under negatives.

We compute in Z4: 0z, = 0 € {0,2} and so Condition (I) of the Subring Theorem holds.

+ 10 2 10 2

z |0 2
010 2 0[]0 O and

—x |0 2
212 0 210 0

So {0, 2} is closed under addition, multiplication and negative. Thus {0, 2} is a subring of Z4 for
by Subring Theorem.

Definition 3.2.10. Let R be a ring and a,b € R. Then a —b:=a+ (—b).
Proposition 3.2.11. Let R be a ring and a,b,c € R. Then
(a) —OR = OR

(b) a—0gr =a.

(C) a'ORZOR:OR~a.

(d) a-(=b) = —(ab) = (—a) - b.

(e) =(—a) = a.

(f) a—b=0g if and only if a = b.

(9) —(a+0b) = (=a)+ (=b) = (—=a) —b.

(h) —(a—b)=(-a)+b=>b—a.

(i) (~a) - (=b) = ab.

(j) a-(b—c)=ab—ac and (a —b)-c=ac— be.
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If R has an identity 1g,
(k) (-1g)-a=—-a=a-(—1g).
Proof. (&) By [(Ax 4)]0g + 0r = Og and so the Additive Inverse Law Or = —0g.

(EI)(I—OR Def: - (1—|—(—OR) @ a—|—ORa.
@Wecompute

a~0Ra-(OR+OR)a'OR+a~OR,

and so the Additive Identity Law [3.:2:4] a - Og = Og. Similarly Og - a = Og.
@ We have

ab+a-(—b) a-(b+ (=) "L a.0p € g

So by the Additive Inverse Law [3.2.6) —(ab) = a - (=b).
() By [(Ax5)|, a + (—a) = O and so by the Additive Inverse Law a=—(—a).

a—b=0pg
<= a+(-b) =0 — definition of -
< a=-—(=b) — Additive Inverse Law
= a="b - @

(@)

(a+b)+ ((—a) + (~b)) (b+a)+ ((—a) + (~b) ((b+a) + (—a)) + (=)
B21

b+ (—b)

~—~
wj
e,
'
—~
|
S
~—
|
S

and so by the Additive Inverse Law —(a+0b)=(—a)+ (=b

@
~a=b " —rt) L ocarc B oo

B o0 Qa0 Ban

(El) a-(b—c) Dt - a-(b+(—c)) a-b+a-(—c) = ab+ (—(ac)) P ab — ac.
Similarly (a —b) - ¢ = ab — ac.

(k) Suppose now that R has an additive identity. Then

(Ax 10)

a+ ((—1g)-a) a+(—1g)-a g+ (—=1g))-a~—="0g-a

Hence by the Additive Inverse Law —a = (—1g) - a. Similarly, —a = a - (—1g).

49
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Lemma 3.2.12. Let R be ring and a,b,c € R. Then

c = b—a
= ct+a = b
— a+c = b
Proof.
a+c = b

= cta b —|(Ax 3)|
= (c+a)+(—a) = b+ (—a) — Additive Cancellation Law [3.2.2]
— c = b—-a —[B27Iand Definition of b — a

O

Definition 3.2.13. Let R be a ring with identity and w € R. Then u is called a unit in R if there
exists an element in R, denoted by u™' and called ‘u-inverse’, with

wut = 1p = u .

If u is a unit, then any element v in R with wv = 1z = vu is called a (multiplicative) inverse of u.

Example 3.2.14. Find the units in Z, Q and Zg.

Units in Z: Let u be a unit in Z. Then wv = 1 for some v € Z. So u|l and so by
1 <|u| <1. Hence |u] =1 and £1 are the only units in Z.

Units in Q: If u is a non-zero rational number, then also % is rational. So all non-zero elements
in Q are units.

Units in Zg: By Zs = {0,1,2,3,4,5} and so Z¢ = {0,+1,£2,3}. We compute

0 1 £2 3
010 O 0 O
+1|0 +£1 £2 3
+2 |0 £2 £2 0
310 3 0 3

So 1 (that is 1 and 5) are the only units in Zg.

Lemma 3.2.15. (a) Let R be a ring and e and €' € R. Suppose that
(*) ea=a and (%) ae' =a

for alla € R. Then e = €. In particular, e is a multiplicative identity in R and a ring with
identity has a unique multiplicative identity.
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(b) Let R be a ring with identity and x,y,u € R with

(x%%) zu=I1pg and (k%) uy = 1g.

Then x = y. In particular, u is a unit in R and x is an inverse of u.

Proof. @
e o ee’ (2 e
(Ax 10) (***) [(Ax 7)] (F*E) (Ax 10)
= " lgy =" (zu)y = 2(wy) ="zlg =" "=

O

Theorem 3.2.16 (Multiplicative Inverse Law). Let R be a ring with identity and u,v € R. Suppose
u s a unit. Then

voo= u
= vu = 1lg
<= w = 1g

In particular, u™' is the unique inverse of u.

Proof. ‘First Statement = Second Statement’: Suppose v = u~!.

definition of u~!.

"Second Statement == Third Statement’: Suppose that vu = 1r. Since uu~! = 1g, [3.2.15
implies that v = ™! and so uv = uu~! = 1 by definition of 1.

"Third Statement == First Statement’: Suppose that uv = 1. Since u~'u = 1p, [3.2.15]implies
that u=! = v. O

Then vu = v~ 'v = 1 by

Lemma 3.2.17. Let R be a ring with identity and a and b units in R.

(a) a=t is a unit and (a=1)"! = a.

(b) ab is a unit and (ab)~! =b"ta"1t.

1

Proof. (EI) By definition of a™!, aa™' = 1z = a~'a. Hence also a 'a = 1g = aa~'. Thus o ! is a

unit and by the Multiplicative Inverse Law [3.2.16, a = (a=1)~!.
@ See Exercise 3.2 O

Definition 3.2.18. A ring R is called an integral domain provided that R is commutative, R has
an identity, 1gr # Or and

(Ax 11) whenever a,b € R with ab = 0g, then a = 0g or b = 0g.

Theorem 3.2.19 (Cancellation Law). Let R be an integral domain and a,b,c € R with a # Op.
Then

ab = ac
<= b = ¢
<

ba = ca
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Proof. ‘First Statement = Second Statement:’ Suppose ab = ac. By @, ab—ac=ab—ab =
Or and so by 3.2.11|. a(b — ¢) = Og. Since a # Or and R is an integral domain, b — ¢ = Og. Thus
by 3.2.11|¢f), b=c.
"Second Statement = Third Statement:” If b = ¢ then ab = ac by the Principal of Substitution.
"Third Statement = First Statement:” Since integral domains are commutative, ba = ca im-
plies ab = ac. O

Definition 3.2.20. A ring R is called a field provided that R is commutative, R has an identity,
lR 7& OR and

(Ax 12) each a € R with a # Og is a unit in R.

Example 3.2.21. Which of the following rings are fields? Which are integral domains?

(a) Z. (c) R. (¢) Zy. (9) Ma(R).
(b) Q. (d) Zs. (f) Zg. (h) Z,, p a prime.

All of the rings have a non-zero identity. All but My(R) are commutative. If a,b are non zero
real numbers then ab # 0. So (Ax 11) holds for R and so also for Z and Q. Thus Z,Q and R are
integral domains.

(&) 2 does not have an inverse. So Z is an integral domain, but not a field.

The inverse of a non-zero rational numbers is rational. So Q is a integral domain and a field.
The inverse of a non-zero real numbers is real. So R is a integral domain and a field.

(d) £1 are the only non-zero elements in Zs. 1-1=1and —1

cdot —1 =1. So +1 are units +1 - +1 = +1 # 0 and so Zs is an integral domain.

(&), (@: Let a € {2,3}. Let n,m € Z with [2]q = [n]2q = [m]2,. then m = 2n + 2ak for some
k € Z and so m is even. Thus [2]aq[n]2q # [1]24 and [2]a, is not a unit in Zs,. Hence Zsy, is not a
field. Since 2 -a = 2a = 0 in Zy, but neither 2 nor a are 0 in Zs,, Zs, is not an integral domain.

. . . . 0 1] |0 1 00
(g) M2(R) is not commutative. Also is not a unit and = . So

0 0 0 of |1 1 0 0
M, (R) fails all conditions of a field and integral domain, except for 1g # Og.
each non-zero element in Z, has an inverse. So Z, is a field. Let a,b € Z with
[a]p[b], = [0]p. Then by la]p, = [0], or [b], = [0],. Thus Z, is an integral domain.

Proposition 3.2.22. FEvery field is an integral domain.

Proof. Let F be a field. Then by definition, F' is an commutative ring with identity and 1p # Op.
So it remains the verify [(Ax 11)[in [3.2.18] For this let a,b € F' with

Suppose that a # Op. Then by the definition of a field, a is a unit. Thus a has multiplicative
inverse a~!. So we compute

0p 3.2.:1 a-! Op (;) o L. (ab) (a—l . CL) b

Sob= OF
We have proven that if a # Op, then b = 0p. So a = Op or b = Op. Hence holds and F
is an integral domain. O

Def::a_ 1p-b (Ax:10) b.
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Theorem 3.2.23. FEvery finite integral domains is a field.

Proof. Let R be a finite integral domain. Then R is a commutative ring with identity and 1 # Opg.
So it remains to show that every a € R with a # Og is a unit. Set S := {ar | » € R}. Define

f:R—=Sr—ar

Let b,c € R with f(b) = f(c). Then ab = ac and by the Cancellation Law b=c. Thus f is
1-1. By definition of S, f is also onto and so |R| = |S|. Since S C R and R is finite we conclude
R = S. In particular, 1z € S and so there exists b € R with 1z = ab. Since R is commutative we
also have ba = 1 and so a is a unit. O

Definition 3.2.24. Let R be a ring and a € R.
(a) Let n € Z+. Then a™ is inductively defined by a' = a and a™*! = a™a.
(b) If R has an identity, then a® = 1g.

(¢c) If R has an identity and a is a unit, then a=™ = (a=")" for allmn € Z+.

Exercises 3.2:

#1. Let R be a ring and a € R. Let n,m € Z such that a™ and a™ are defined. (So n,m € Z*, or R
has an identity and n,m € N, or R has identity, a is a unit and n,m € Z. ) Show that

(a) a™a™ = a™t™.
(b) a™™ = (a™)™.
#2. Prove or disprove:
(a) If R and S are integral domains, then R x S is an integral domain.

(b) If R and S are fields, then R x S is a field.

#3. Which of the following six sets are subrings of Ma(R)? Which ones have an identity?

(a) All matrices of the form _g g_ with r € Q.

(b) All matrices of the form _z I:_ with a,b,c € Z.
(¢) All matrices of the form _Z Z_ with a,b € R.
(d) All matrices of the form _Z 2_ with a,b € R.
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a 0

(e) All matrices of the form with a € R.
0 a
a 0

(f) All matrices of the form with a € R.
0 0

#4. Let Z[i] denote the set {a + bi | a,b € Z}. Show that Z[i] is a subring of C.
#5. An element e of a ring is said to be an idempotent if e? = e.
(a) Find four idempotents in M (R).
(b) Find all idempotents in Zs.
(c) Prove that the only idempotents in an integral domain R are Og and 1g.
#6. Let R be a ring and b a fixed element of R. Let T = {rb | r € R}. Prove that T is a subring of R.
#7. (a) If a and b are units in a ring with identity, prove that ab is a unit with inverse b=ta=1.

(b) Give an example to show that if a and b are units, then a=1b~! does not need to be the
multiplicative inverse of ab.

#8. Let R be a ring with identity. If ab and a are units in R, prove that b is a unit.

#9. Let R be a commutative ring with identity 1z # Ogr. Prove that R is an integral domain if and
only if cancellation holds in R, (that is whenever a,b,c € R with a # O and ab = ac then b = c.)

3.3 Isomorphism and Homomorphism

Definition 3.3.1. Let (R,+,-) and (S,®,®) be rings and let f : R — S be a function.
(a) f is called a homomorphism from (R,+,-) to (S,®,®) if

fla+b) = f(a)® f(b) [f respects addition]

and
fla-b) = f(a) ® f(b) [f respects multiplication]

for all a,b € R.

(b) f is called an isomorphism from (R,+,-) to (S,®,®), if f is a homomorphism from (R,+,") to
(S,®,®) and f is 1-1 and onto

(c) (R,+,-) is called isomorphic to (S,®,®), if there exists an isomorphism from (R,+,-) to
(S, ®,0).

Example 3.3.2. (a) f:Z — R,a — a is a 1-1 homomorphism, but not an isomorphism.
(b) g:Z — R,a — —a is not a homomorphism.

(c) Let R and S be rings. Then h : R — S,r — Qg is a homomorphism. Its not an isomorphism
unless R = {0r} and S = {0s}.
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(d) Let R be a ring. Then idgr : R — R,r — r is an isomorphism.

(e) Let n be a non-zero integer. The map [*|, : Z — Zy,a — [a], is an onto homomorphism, but is
not an isomorphism.

@) Let a,b € Z. Since a +b =a = b and ab = ab, f is homomorphism. f is 1-1, but not onto
and so @ holds.

() Let a,b € Z. Then g(a+b) = —(a+b) = —a+ (—b) = g(a) + g(b) and so g respects addition.

g(ab) = —(ab) and g(a)g(b) = (—a)(—b) = ab. Since ab # —ab for a # 0 and b # 0 we conclude
that g does not respect the multiplication, and so g is not a homomorphism.

Let a,b € R. Then g(a+b) =05 =05+ 05 = g(a) + g(b) and g(ab) = 0g = 0505 = g(a)g(b).
So g is a homomorphism. If g is 1-1 if and only if R = {Or} and g is onto if and only if S = {0s}.
So g is an isomorphism if and only if R = {Og} and S = {0g}.

@ Obvious.

By definition of addition and multiplication in Z,, [a + b], = [a], @ [b], = [a + b],, and
[an), = [a]n, © [b]n. So [#], is a homomorphism. Since [n], = [0], and n # 0, [%], is not 1-1. By
definition of Z,,, every element of Z,, is the form [a],, with a € Z and so [*],, is onto.

Example 3.3.3. The function

f:C— Mz(R),r+ st —

is a 1-1 homomorphism.

Let a,b € C. Then a =r + si and b =7 + § for some r,s,7,5 € R. So

f(a+b) - f((r+si) + (f+§z'))

and
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flav) = p((r+siy(7+5i)
= (7 = 53) + (5 + s7)i)
rT—85  rS+sT

—(r§+4sr) rr—s§

r s r 5
- —s r||—-s5 7T
= flr 4+ si) f(F+ i)
= fa)f(b).
So f is a homomorphism. If f(a) = f(b), then
r s T8
-5 r - -5 T

andsor=7and s =8. Hence a=r+si=7+ 5 =band so f is 1-1.

Notation 3.3.4. (a) ‘f : R — S is a ring homomorphism’ stands for (R,+,-) and (S,®,®) are
rings and f is a ring homomorphism from (R,+,-) to (S,®,®).’

(b) Usually we will use the symbols + and - also for the addition and multiplication on S and so the
conditions for a homomorphism become

fla+b) = f(a)+ f(b) and f(ab) = f(a)f(b)

Remark 3.3.5. Let R = {r1,ra,...,r} be a ring with n elements. Suppose that the addition and
multiplication table is given by

+ | T Tn T T Tn

1 ail cee Ay ce. Q1n 1 bll blj bln
A and M :

T a;1 ce Aij e Qin T3 b“ ce bZJ e bin

Tn | Gni  -.. Qpj ... Qpp Tn | bnt .. bnj ... bpn

Sor; +rj =a;; and r;r; =b; for all1 <i,7 <n.
Let S be a ring and f : R — S a function. Forr € R put v’ = f(r). Consider the tables A’ and
M’ obtain from the tables A and M by replacing all entries by its image under f:
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] T Ty, 1 T Ty
/ ! / / / / / /
Tyl ay ... ay .. aly, b e by b,
. : : : : : : .
A and M':
/ / ! / /! / / /
L I R ¢ R ril by e b by,
/ / !/ / / / / /
LR I T I T | Oy oo DLy o by,

(a) f is a homomorphism if and only if A’ and M’ are the tables for the addition and multiplication
of the elements 1, ...,7y, in S, that is r; + 1% = aj; and rir; = b}, for all 1 <i,j <n.

(b) fis 1-1 if and only if i, ... 7l are pairwise distinct.

(c) f is onto if and only if S = {r{,rh, ..., 7}

(d) f is an isomorphism if and only if A’ is an addition table for S and M’ is a multiplication table
for S.

Proof. @ f is a homomorphism if and only if

flatb)=a+b and f(ab) = f(a)f(b)
for all a,b € R. Since R = {ry,...,r,}, this holds if and only if

flri+ry)=fri)+ f(ry) and  f(rir;) = f(ri) f(ry)

for all 1 <4,j < n. Since r; +r; = a;; and r;7; = b;; this holds if and only if

flaiz) = f(ri) + f(ry) and  f(byy) = f(ri) f(ry)
Since f(r) = r’, this is equivalent to
a;; =r;+7r; and b =)

fis 1-1 if and only if for all a,b € R, f(a) = f(b) implies a = b and so if and only if a # b
implies f(a) # f(b). Since for each a € R there exists a unique 1 < i < n with a = r;, f is 1-1 if
and only for all 1 <4,j <n, i # j implies f(r;) # f(r;), that is i # j implies r; # r7.

f is onto if and only if Imf = S. Since R = {r1,...,r}, Im f = {f(r1),..., f(rn)} =
{ri,...,r}. So f is onto if and only if S = {r{,...,r}.

@ Follows from @—.

Example 3.3.6. Let R be the ring from example|3.1.60. Then the map

fZRg)ZQ,Og)[l]Q,lg) [0]2

is an isomorphism.
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The tables for R are

H| |0 1 Lo 1
0|1 O and 0|0 1
110 1 1]1 1
Replacing 0 by [1]2 and 1 by [0]z we obtain
1 (0] [ (0]
[z | [0]2 [ and  [1]p | [1]z [0]> -
[0)2 | ]2 [0]2 [0]2 | [0]2 [0]2

Note that these are addition and multiplication tables for Zy and so by f is an isomorphism.
Lemma 3.3.7. Let f: R — S be a homomorphism of rings. Then
(a) f(Or) = 0s.
(b) f(—a) = —f(a) for all a € R.
(¢) fla—>)= f(a)— f(b) for all a,b € R.
If R has an identity and f is onto, then
(d) S is a ring with identity and f(1r) = 1g.
(e) If u is a unit in R, then f(u) is a unit in S and f(u=') = f(u)~1.
Proof. @ We have
F(OR) + 70R) 2" f(0r +08) =T f(0n)

So by the Additive Identity Law f(0R) = 0s.
@ We compute

fla) + 7(=a) 2" fa+ (~)) B=T pop) B o,
and so the Additive Inverse Law f(=a) = —f(a).
()

Def —

fla=0) PE" flat (=0) "= fa)+ f(=b) 2 fla)+ (~f0) " fla) - fO).
@ It suffices to show that f(1g) is an identity in S. For this let s € S. Then since f is onto,
s = f(r) for some r € R. Thus

f hom (Ax 10)
s-f(Ar) = f(r)f(1r) =" f(rlg) =
and similarly f(1g)-s. So f(1g) is an identity in S.

(E[) Let u be a unit in R. It suffices to show that f(u~!) is an inverse of f(u).

flr)=s,

P st " ) B s @ .
Similarly f(u=!)f(u) = 1lg. Thus f(u™') is an inverse of f(u), f(u) is a unit and f(u=1!)
flu)=t.

[
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Example 3.3.8. Find all onto homomorphisms from Zg to Zo X Zs3.
Let f : Zg to Zo X Z3 be an onto homomorphism. For a,b € Z let
[a] =[als,  fla] = f([als), and [a,b] = ([a]2, [b]s).

Since [1] is the identity in Zg and [1,1] is the identity in Zs x Zz we get from [3.3.7((d)) that
7111 = [1,1]. Similarly, by B3E), £[0] = [0,0]. So

f10] = [0,0]

fi)=111]
R =+ =+ ] =110+ [11] = 2,2] = 0,2]
fBl=fR2+1=7F21+ ] = [2,2] + [1,1] = [3,3] = [1,0]
flA] =B+ 1 =fBl+ fl1] = 3,3+ [1,1] = [4,4] = [0,1]
fBl = flA+1] = fl4] + fl1] = [4,4] + [1,1] = [5,5] = [1, 2]

By 2.1.2| Zs = {[0]. [1], (2], (3], [4]. [5]}, Z2 = {[0]2,[1]2} and Zz = {[0]s, [1]5, [2]5}. Hence f is

unique and

Ly X L3z = {(I,y) | x € Lo,y € ZS} = {[070]7 [Ov 1]7 [072]ﬂ [130]7 [17]‘]ﬂ [132]}

and we conclude that f is 1-1 and onto. Moreover

(%) flr] =[r,r] forall 0 <r <5

We will show that the function f : Zg — Zy x Z3 defined by (*) is a homomorphism. For this we
first show that f[m]| = [m,m] for all m € Z. Indeed, by the Division Algorithm, m = 6¢g + r with
¢,r € Z and 0 < r < 6. Then by 2.1.1] [m]g = [r]¢ and since m = 2(3q) +r = 3(2q) +r, [m]2 = [r]
and [m]s = [r]3. So [m] = [r], [m,m] = [r,r] and

(%) flm] = flr] = [r,r] = [m, m].

Note also that by the definition of addition and multiplication in the direct product Zs x Zs:

(3 % %) [n4+m,n+m]=[n,m|+ [n,m] and [nm,nm]= [n,m][n,m)
Thus
flntm) S o mon+m] ) m) + m) S p) + £im),
and
fivm] = ) = [y m(n,m) S pinl £,

So f is a homomorphism of rings. Since f is 1-1 and onto, f is an isomorphism and so Zg is
isomorphic to Zo X Zs.

Example 3.3.9. Show that Z4 and Zo X Zs are not isomorphic.
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Let R = Zo X Zs. Since x 4+ x = [0]2 for all € Zy we also have

(@,9) + (z,y) = (z + 2,y +y) = ([0]2, [0]2) = Or.
for all z,y € Zs. Thus

(*) r+r=0g

for all » € R. Let S be any ring isomorphic to R. We claim that s + s = Og for all s € S. Indeed,
let f: R — S be an isomorphism and let s € S. Since f is onto, there exists r € R with f(r) = s.
Thus

s+5=f0) + 1) "= fr ) 2 f0R) 0s
Since [1]4 + [1]4 = [2]4 # [0]4 we conclude that Z, is not isomorphic to Zg X Zs.

Corollary 3.3.10. Let f : R — S be a homomorphism of rings. Then Im f is a subring of S.
(Recall here that Im f = {f(r) | r € R}).

Proof. Tt suffices to verify the four conditions in the Subring Theorem Observe first that for
se S,

(%) selmf <= s = f(r) for some r € R

Let z,y € Im f. Then by (*) x = f(a) and y = f(b) for some a,b € R.

I) ByB.37[) f(0r) = 0s and so 0g € Im f by (*¥).
M) a+y=fla)+f(b) "2 fla+b). By[[Ax D]a+b € R. So f(a+b) € Im f and z+y € Im f
) wy=f(a)f(b) "™ f(ab). By[[Ax 6)ab € R. So f(ab) € Im f and zy € Im f by (¥).

I
IV) By[B37[®), —z = —f(a) = f(—a) . By[(Ax5)]—a € R. So f(—a) € Im f and —z € Im f
). O

o~ o~

by

N~~~

by
Definition 3.3.11. Let R be a ring. For n € Z and a € R define na € R as follows:
(i) 0a = 0p.
(ii) If n > 0 and na already has been defined, define (n + 1)a = na + a.

(iii) If n < 0 define na = — ((—n)a).

Exercises 3.3:

#1. Let R be ring, n,m € Z and a,b € R. Show that
(a) la =a. (¢) (n+m)a =na+ ma. (e) n(a+b) =na+ nbd.
(b) (-1)a = —a. (d) (nm)a = n(ma). (f) n(ab) = (na)b = a(nb)
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#2. Let f: R — S be a ring homomorphism. Show that f(na) = nf(a) for all n € Z and a € R.
#3. Let R be a ring. Show that:
(a) If f:Z — R is a homomorphism, then f(1)? = f(1).

(b) Let a € R with a? = a. Then there exists a unique homomorphism g : Z — R with g(1) = a.

a b
#4. Let S = a,b € Zs p. Given that S is a subring of My(Zs). Show that S is isomorphic
b a+?d

to the ring R from Exercise

#5. (a) Give an example of a ring R and a function f : R — R such that f(a 4+ ) = f(a) + f(b) for
all a,b € R, but f(ab) # f(a)(f(b) for some a,b € R.

(b) Give an example of a ring R and a function f : R — R such that f(ab) = f(a)f(b) for all
a,b € R, but f(a+0b)# f(a)+ (f(b) for some a,b € R.

a 0
#6. Let L be the ring of all matrices in My(Z) of the form with a,b,c € Z. Show that
b ¢

a 0
the function f : L — Z given by f = @ is a surjective homomorphism but is not an

isomorphism.

#7. Let n and m be positive integers with n = 1 (mod m). Define f : Zp, — Zpm, []m — [20]nm.
Show that

(a) f is well-defined. (That is if z,y are integers with [z],, = [y]m, then [zn]nm = [yn]nm)
(b) f is a homomorphism.
(¢) fis1-1.
(d) If n > 1, then f is not onto.
#8. Let f: R — S be a ring homomorphism. Let B be a subring of S and define
A={reR| f(r) € B}.

Show that A is a subring of R.

3.4 Associates in commutative rings

Definition 3.4.1. Let R be a commutative ring and a,b € R. Then we say that a divides b in R
and write a|b if there exists ¢ € R with b = ac O

Lemma 3.4.2. Let R be a commutative ring and r € R. Then Og|r if and only of r = Og.

PT’OOf. By 3.2.11, OR:OR~OR and so OR|OR.
Suppose now that r € R with Og|r. Then there exists s € R with » = Ogrs and so by |3.2.11)(c|),
T = OR. O



62 CHAPTER 3. RINGS

Lemma 3.4.3. Let R be a commutative ring and a,b,c € R.

(a) | is transitive, that is if a|b and b|c, then alc.

(b) alp <= a|(=b) == (=a)|(=b) <= (—a)[b.

(¢) If alb and alc, then a|(b+ ¢) and a|(b—¢).

(d) If alb and alc, then a|(bu + cv) and a|(bu — cv) for all u,v € R

Proof. (@) Let a,b,c € R such that a|b and blc. Then by definition of divide there exist r and s in
R with

(1) b=ar and c¢=bs
Hence
c ) bs ) (ar)s (Ax?) a(rs)

Since R is closed under multiplication, rs € R and so alc by definition of divide.
@ We will first show

(2) alb = al(—b) and (—a)|b

Suppose that a divides b. Then by definition of “divide” there exists r € R with b = ar. Thus

=) TI0 o) and = o I (g

By —r € R and so a|(—b) and (—a)|b by definition of “divide”. So (2) holds.

Suppose alb. Then by (2), a|(=b).

Suppose that a|(—b), then by (2) applied with —b in place of b, (—a)|(=b).

Suppose that (—a)|(=b). Then by (2) applied with —a and —b in place of a and b, (—a)| — (=b).
By [3.2.11)(¢), —(—b) = b and so —alb.

Suppose that (—a)[b. Then by (2) applied with —a in place of a, —(—a)|b. By[B.2.11f), —(—a) =
a and so alb.

Suppose that a|b and a|c. Then by definition of divide there exist r and s in R with

(3) b=ar and c=as
Thus

b+c @ o + as LB a(r+s) and b—c D ar— qs 220 a(r —s)

By|(Ax 1)land |(Ax 5)} R is closed under addition and subtraction. Thus r+s € Rand r—s € R
and so alb + ¢ and a|b — c.

Suppose that alb and a|c and let u,v € R. By definition, b | bu and ¢ | cv and so by (&) a|bu
and a|cv. Thus by (), a|(bu + cv) and a|(bu — cv). O
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Definition 3.4.4. Let R be an commutative ring with identity and let a,b € R. We say that a is
associated to b, or that b is an associate of a and write a ~ b if there exists a unit v in R with
au = b.

Example 3.4.5. (a) Let n € Z. Find all associates of n in Z.
(b) Find all associates of 0,1,2 and 5 in Zp.

(a) By :3.2.14 the units in Z are £1. So the associates of n are n - +1, that is +n.
(b) By [2.1.2)Z1p = {0,1,2,3,4,5,6,7,8,9} and so Zyo = {0, +1,+2, +3, +4,5}.
We compute

n ‘O +1 £2 +3 +4 5
gcd(n,lO)‘lO 1 2 1 2 5

and so by [2.3[l#2] the units in Z1y are =1 and +3.
So the associates of a € Zig are a - =1 and a - 3, that is +a and +3a. We compute

a | associates of a | associates of a, simplified
0 +0,£3-0 0

1 +1,43-1 +1,43

2| 42,43.2 42,44

5 +5,43-5 5

Lemma 3.4.6. Let R be a commutative ring with identity. Then the relation ~ (’is associated to’)
is an equivalence relation on R.

Proof. Reflexive: Leta € R. By (Ax 10), 1g = 1glg and alg = a. Hence 1 is a unit and a ~ a.
So ~ is reflexive.

Symmetric: Let a,b € R with a ~ b. Then there exists a unit v € R with au = b. Since u is
a unit, v has an inverse u~!. Hence multiplying au = b with u™' gives

(Ax 10)

-1

bu = (aw)u Ax 2] = a(uut) L alp

By [3.2.17 »~! is a unit in R and so b ~ a. Thus ~ is symmetric.

Transitive: Let a,b,c € R with a ~ b and b ~ ¢. Then au = b and bv = ¢ for some units u and

v € R. Substituting the first equation in the second gives (au)v = ¢ and so by a(uv) = c.
By uv is a unit in R and so a ~ ¢. Thus ~ is transitive.

Since ~ is reflexive, symmetric and transitive, ~ is an equivalence relation. O
Example 3.4.7. Determine the equivalence classes of ~ on Zig.

Note that for a € Zg, [a]~ = {b € Z10 | a ~ b} is the set of associates of a. So by Example

0. = {0}
1. = {&1,43}
2. = {£2,+4}
[5]

~ = {5
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Since each element of Z1y lies in one of these four classes, these are all the equivalence classes of
~ in ZIO-

Lemma 3.4.8. Let R be a commutative ring with identity and a,b € R with a ~ b. Then alb and
bla.

Proof. Since a ~ b, au = b for some unit u € R. So alb.
By [3.4.6] the relation ~ is symmetric and so a ~ b implies b ~ a. Thus, by the result of the
previous paragraph applied with a and b interchanged, b|a. O

Lemma 3.4.9. Let R be a commutative ring with identity and r € R. Then the following three
statements are equivalent:

(a) 1R ~T.
(b) rlir
(c) There exists s in R with rs = 1g.
(d) r is a unit.
Proof [B):  Since 1 ~r, gives 7|1g.
Follows from the deﬁmtlon of ‘divide’.
Since R is commutative rs = 1g implies sr = 1g. So 7 is a unit.
By (Ax 10), 1gr = r. Since r is a unit this gives 1z ~ r by definition of ~. [
Lemma 3.4.10. Let R be a commutative ring with identity and a,b,c,d € R.
(a) If a ~ b and ¢ ~ d, then alc if and only if bld.
(b) If ¢ ~ d, then a|c if and only if a|d.
(c) If a ~ b, then a|c if and only if blc.

Proof. @

=: Suppose that alc. Since a ~ b, gives bla. Since alc and | is transitive (3.4.3|f]) we
have b|c. Since ¢ ~ d, gives c|d. Hence by transitivity of |, b|d.

<=: Since ~ is symmetric, the same argument as in the ‘=" case works.

(b) Since a ~ a, this follows from (a)) applied with b = a.
(c) Since ¢ ~ ¢, this follows from (ja) applied with ¢ = d. O

Definition 3.4.11. Let R be a commutative ring. The relation ~ on R is defined by a ~ b if and
only if alb and bla.

Exercises 3.4:
#1. Let R =Zq».
(a) Find all units in R.
(b) Determine the equivalence classes of the relation ~ on R.

#2. Let R be a commutative ring with identity. Prove that:
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(a) = is an equivalence relation on R.
(b) Let a,b,c,d € R with a &~ b and ¢ = d. Then alc if and only if b|d.
#3. Let n be a positive integer and a,b € Z. Put d = ged(a,n) and e = ged(b,n). Prove that:

(a) [a]n‘[d]n inZ,.

(¢) Let r,s € Z with 7|n in Z. Then [r]n“s]n in Zj, if and only if r|s in Z.
(d) [d]n|[€]n in Z, if and only if d|e in Z.

(e) [a]n|[b]n in Z, if and only if d|e in Z.

(f) [d]n = [e]n if and only if d = e.

(g) [a)n = [b], if and only if d = e.

#4. Let R be an integral domain and a, b, ¢ € R such that a # 0p and ba|ca. Then b|c.

3.5 The General Associative Commutative and Distributive
Laws in Rings
Definition 3.5.1. Let R be a ring, n a positive integer and ai,as,...a, € R.
a) For k € Z with 1 <k <n define b a; inductively by
=1
(i) 23:1 a; = ai; and
(i) Zfif a; = (Zf:1 ai) + Ak41-

S0 Z?:l a; = ((~-~((a1 + az) +a3) +...+an_2> +an_1> + a,.

(b) Inductively, we say that z is a sum of (a1,...,a,) in R provided that one of the following holds:

1.n=1and z = a;.

2. n > 1 and there exist an integer k with 1 < k < n and x,y € R such that x is a sum of
(a1,...,ax) in R, y is a sum of (ax4+1,ak42,...,0n) in R and z =z +y.

(c) Hle a, 18 defined similarly as in (@), Just replace <> 7 by T[” and 4+ by .

(d) A product of (a1,...,a,) in R is defined similarly as in (#]), just replace ‘sum’ by ’product’ and
4+7 by ‘, 7.

We will also write a1 + as + ...+ ap, for > a, and aras . ..a, for [[\ a;,

Example 3.5.2. Let R be a ring and a,b,c,d € R. Find all sums of (a,b,c,d).
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a is the only sum of (a).

a + b is the only sum of (a,b).

a+ (b+c) and (a + b) + ¢ are the sums of (a, b, ¢).

a+ b+ (c+d),a+((b+c)+d),(a+b)+ (c+d),(a+ (b+¢))+dand ((a+b)+c)+d are the
sums of (a, b, c,d).

Theorem 3.5.3 (General Associative Law). Let R be a ring and a1, as, .. .,a, elements of R. Then
any sum of (a1, as,...,a,) in R is equal to Y., a; and any product of (a1, as,...,a,) is equal to
I a

Proof. See|[D.1.3| O
Theorem 3.5.4 (General Commutative Law). Let R be a ring, a1,as,...,a, € R and

f:{2,...,n} = {1,2,...,n}
a 1-1 and onto function.
(a) 3oy ai = 35 gy
(b) If R is commutative, then [}, a; = [T\, asq).

Proof. See[D.2.2] O

Theorem 3.5.5 (General Distributive Law). Let R be a ring and a1, ...,an,b1,...,b;m € R. Then

n

i=1 \j=

Proof. See[D.3.2] O



Chapter 4

Polynomial Rings

4.1 Addition and Multiplication

Definition 4.1.1. Let R and P be a rings with identity and x € P. Then P is called a polynomial
ring with coefficients in R and indeterminate x provided that

(i) R is subring of P.
(i) ax = za for all a € R.
(iii) For each f € P, there exists n € N and fo, f1,..., fn € R such that

n
f=Y"fa™
i=0
(iv) Whenever n,m € N with n <m and fo, f1,---, fns 90y - -, gm € R with

n m
7 7
1=0 =0

then f; = g; for all0 <i <mn and g; = 0g for alln <i < m.
Theorem 4.1.2. Let P be a ring with identity, R a subring of P, x € P and f,g € P. Suppose that
(i) ro = ar for allr € R;
(ii) there exist n € N and fo,..., fn € R with f =37, fiz*; and
(iii) There exist m € N and go,...,g9m € R with g =" g;x".

Put f; =0g fori>n and g; = 0r fori>m. Then

max(n,m)

(@) f+g= > (fi+tg)a'

=0
n m _ n+m min(n,k) n+m [ k
) fg=>_ (D figiz" | =" S figeei | b= ( fiQk—i) a*.
i=0 \j=0 k=0 \i=max(0,k—m) k=0 \1i=0

67
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Proof. (ED Put p = max(n,m). Then f; = 0r = g; for all i > p and so

p
() f= Z fix" and g= Zgzml
i i=0

Thus

(i fir®) + (o 9iz’) = ()
P o (fix' + gixt) — General Commutativity Law [3.5.4]
S o(fi+gi)at — |(Ax 8)

So (a]) holds.
(b) We will first show that

() ax" = z2"a

f+g

for all @ € R and n € N. Indeed for n = 0 we have

az® De;aco a-1p (Ax:10) a (Ax:10) 1p-a Deixo xoa,
So (**) holds for n = 0. Suppose (**) is true for n = k. Then
ef o mk+1 X kk T n= <
agh+t  PeroL a(z¥x) (ax®)ax () for m=k (zFa)x 2*(ax)
X er o $k+1
® zF(za) A (zFz)a Def of rFtlq

So (**) holds for n = k+ 1 and so by the Principal of Mathematical Induction, (**) holds for all
n € N.
We now can compute fg.

n m
fg = ( fw> (e - @ ana
i=0 j=0
n m
= Z Z fiz'g;a? — General Distributive Law
i=0 \ j=0
n m
= Z Zfigjlﬁlxj — (%%)
i=0 \ j=0
n m
= Z Z fingiH — 'zl = 2" by Exercise B2J[#]]
i=0 \ j=0
n+m min(k,n)
= Z Z fige—_iz" — Substitution k =7+ j and so j = k — 1,

k=0 \i=max(0,k—m)
0<j<m,s0o —m<i—k<0,k—m<i<k

General Commutativity Law [3.5.4

n+m min(k,n)

= Z Z figi—i | #¥ — General Distributive Law B.5.5]

k=0 \i=max(0,k—m)
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If0<i<k—m,then k—i>mand gp_; = 0g. Also f; =0g for n < i < k. Thusbym.7
figk—; = 0g for 0 < i <k —m and for n < i < k. So also the last equality m(]E[)holdb

Definition 4.1.3. Let R be a ring with identity.
(a) R[z] denotes the polynomial ring with coefficients in R and indeterminate x constructed in|F.3.1}

(b) Let f € Rlz] and let n € N and ag, a1, ...a, € R with f =Y 1 a;x". Leti € N. Ifi <n define
fi =a;. If i > n define f; = Or. Then f; is called the coefficient of 2% in f.(Observe that this
is well defined by

(¢) N* :=NU{—o0}. For n € N* we define n+ (—o0) = —o0 and —oco +n = —oco. We extend the
relation ' <’ on N to N* by declaring that —oo < n for all n € N*.

(d) For f € R[z], deg f is the minimal element of N* with f; = Og for all i € N with i > deg f. So
degOr = —oc0 and if f =Y i, fix® with f,, # 0, then deg f = n.

(e) If deg f € N then lead(f) is the coefficient of x9°8 in f. If deg f = —o0, then lead(f) = Og.
Lemma 4.1.4. Let R be ring with identity and f € R[x].

(a) f=0g if and only if deg f = —oco and if and only if lead(f) = Og.

(b) deg f =0 if and only if f € R and f # Og.

(¢) f € R if and only if deg f <0 and if and only if f =lead(f).

(d) f= Zdegf fiz®. (Here an empty sum is defined to be Op)

Proof. This follows straightforward from the definition of deg f and leadf and we leave the details
to the reader. O

Theorem 4.1.5. Let R be a ring with identity.
(a) 1r = 1R
(b) If R is commutative, then also R[x] is commutative.

Proof. @ Let f € P and put n = deg f. Note that by (Ax 10) 1z = 1z1p = 1g2°. Also by (Ax 10)
for R f;1r = f; and so by

f-1p= (Z fi-Ti) 1p = Z(filR)xi = Zfixi =f
i=0

i=0 i=0
Similarly, 1z - f = f and so 1g is an identity in R[z].
(b) Since R is commutative, f;g; = f;g; for all relevant ¢, j. So

n—+m 7
fa Z <Z fkgz'—k) x*  — Theorem E 1.2

=0

n+m 7

Z (Z gikfk) z'  — R commutative
=0

n+m

Z Zgjfi,j z'  — Substitution: j =i —kandsok=1i—j
i=0 \j=0

= gf — Theorem
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We proved that fg = gf for all f,g € R[z] and so R[z] is commutative. O
Lemma 4.1.6. Let R be a commutative ring with identity and f,g € Rlx]. Then

(a) deg(f +g) < max(deg f,degg).
(b) Ezactly one of the following holds.

1. deg(fg) = deg f + deg g and lead(fg) = lead(f)lead(g).
2. deg(fg) < deg f + degg and lead(f)lead(g) = Og.

Proof. (a) By, ftg=10m (fi 4 gi)xt and so (f +g)x = O for k > max(deg f, deg g).
Thus () holds.

If f= OR or g = 0g we get fg = Og, deg(fg) = —oo = deg f + deg g and lead(fg) = Or =
lead(f)lead . So (b:1]) holds in this case.
So Suppose f# OR ;é g and put n = deg f and m = degg. By [4.1.2{(b)),

n+m max(k,n)

fg= Z Z fign—i | =*.

k=0 \i=max(0,k—m)

Thus (fg)rx = Og for kK > n + m and so deg fg < n + m. Moreover, for k = n + m we have
max(0,k —m) =n and min(n, k) =n. So (f¢)ntm = fngm = 1ead(f)1ead( ).
If lead(f)lead(g) # Og, then (b:I]) holds and if lead(f)lead(g) = O, (b:2)) holds. O

Theorem 4.1.7. Let R be field or an integral domain. Then

(a) deg(fg) = deg f + degg and lead(fg) = lead(f)lead(g) for all f,g € R[x].

(b) deg(rf) = deg f and lead(rf) = rlead(f) for allr € R and f € R[z] with r # Og.
(¢) R[x] is an integral domain.

Proof. By Theorem [3.2.22| any field is an integral domain. So in any case R is an integral domain.
We will first show that

(*) If f,g € R with lead(f)lead(g) = Og then f =0g or g = Op.

Indeed since R is an integral domain, lead(f)lead(g) = Or implies lead(f) = 0 or lead(g) = Og.
414 now implies f = Og or g = Og.

() Suppose (@) is false. Then holds for some f,g € R[z]. So deg fg < deg f + degg
and lead(f)lead(g) = Og. (*) implies f = Og or g = Or. Hence fg = Ogr and deg(fg) = —o0 =
deg f + deg g, a contradiction. So @ holds.

By |4.1.4]degr = 0 and leadr = r. So (@ follows from @

(<)

c) By 4.1.5, R[z] is a commutative ring with identity 1z. Note that 1g[, = 1r # Or = Og[y).
Let fg € R[z] with fg = Og. Then by () lead(f)lead(g) = lead(fg) = lead(0g) = Og and by (*),
f=0g or g =0g. Hence R[z] is an integral domaln O

Theorem 4.1.8 (Division Algorithm). Let F' be a field and f,g € F[z] with g # 0p. Then there
exist uniquely determined q,r € F[x] with

f=g9+7r and degr <degg.
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Proof. Fix g € F[z] with g # 0p. For n € N let P(n) be the statement:
P(n): If f € Flz] with deg f < n then there exists ¢, r € F[z] with f = gg+r and degr < degg.

Let k € N such that P(n) holds for all n € N with n < k. We will show that P(k) holds. So let
f € Flz] with deg f < k. Put m = degg. If & < m, then P(k) holds for f with ¢ = 0g and r = f.
So we may assume that k& > m. Since g, # O and F' is a field, g,, is a unit in F. Define

(1) fe=rf—g g, fra®m

Since g has degree m and g;.! fyz*~™ has degree k — m, 4.1.7(a)) shows that g - frg,,'z*~™ has
degree m + (k — m) = k. Since f has degree at most k we conclude that f has degree at most k.
The coefficient of 2* in f is fr — gmfegmt = fx — fu = Op. Thus f has degree less than k& and so
deg f < k — 1. By the induction assumption, P(k — 1)-holds and so that there exist ¢ and 7 € F[z]
with

(2) f=9Gd+7 and degT < degg.

We compute

fo= f+g frgptah—m - (1)
= (93+7) +g- frgn'a"™ —(2)
= (93+9- frgn'ahm) +7
= g (q+ frgptatm) 7

Put ¢ = ¢+ frg,'2*~™ and r = 7. Then by (3), f = qg + r and by (2), degr < degg. Thus P(k)
is proved.

By the Principal of Complete Induction we conclude that P(n) holds for all n € N. This
shows the existence of ¢ and r.

To show uniqueness suppose that for ¢ = 1,2 we have ¢;,r; € F[z] with

(4) f=g9q+r; and degr; <degg
Then
991 + 711 =gq2 + T2
and so
(5) g- (@ —q)=r1—r

Suppose g1 — g2 # 0p Then deg(q; — ¢2) > 0 and so

() 5 (4)
degg < deg g + deg(q1 — g2) 2 deg(g - (g1 — q2)) © deg(r; —r2) < degy.

This contradiction shows ¢; — g2 = O and by (5) also 1 — ry = 0p. Hence by [3.2.11)(f) ¢1 = ¢
and r| = ra. O

Definition 4.1.9. Let F be field and f,g € Flx] with ¢ # Op. Let q,r € F[z] be the unique
polynomials with
f=g9gg+7r and degr <degg

Then r is called the remainder of f when divided by g.
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Note that the above proof gives a concrete method to compute ¢ and r, called long division of
polynomials. For example the following calculations determines ¢ and r for f = 2% 4+ 23 — 2 + 1 and
g=a?—x+1in Zs[z].

22 - x + 1
22 —z+1 |2 + 23 -z + 1
R A T
-z - 22 - z 4+ 1
— 23+ 22 - 2
x? + 1
2 - x 4+ 1

So the remainder of z* + 22 — z + 1 when divided by 2% — x + 1 in Z3[x] is .

Exercises 4.1:
#1. Perform the indicated operation and simplify your answer:
(a) Bzt + 223 —42? + 2 +4) + (42® + 2 + 42 + 3) in Zs[z].
(b) (x+1)3 in Zs[z].
(c) (x —1)® in Zsx].
(d) (2% — 3z +2)(22% — 42 + 1) € Z7[x].
#2. Find polynomials g(x) and r(z) such that f(z) = g(z)q(z) + r(x) and degr(z) < deg g(x).
(a) f(z) =3z*—22% +62%2 —x+2and g(z) = 2% + 2+ 1 in Q[z].
(b) f(z) =2 —7x+1 and g(z) = 22? + 1 in Q[z].
(c) f(x)=22*+2%2 -2+ 1 and g(v) = 22 — 1 in Zs[x].
(d) f(z) =42* + 223 4+ 622 + 42 + 5 and g(z) = 322 + 2 in Z;[z].

#3. Let R be a commutative ring. If a,, # Og and ag + a1z + ... + a,z™ is a zero-divisor in R[z], then
a, is a zero divisor in R.

#4. (a) Let R be an integral domain and f, g € R[z]. Assume that the leading coefficent of g is a unit
in R. Verify that the Division algorithm holds for f as divident and g as divisor.

(b) Give an example in Z[z] to show that part (a) may be false if the leading coefficent of g(z) is
not a unit.[Hint: Exercise 4.1.5(b).]
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4.2 Divisibility in F[z]

In a general commutative ring it may or may not be easy to decide whether a given element divides
another. But for polynomial over a field it is easy, thanks to the division algorithm:

Lemma 4.2.1. Let F be a field and f,g € Flz] with g # 0r. Then g divides f in F[z] if and only
if the remainder of f when divided by g is Op.

Proof. =>: Suppose that g|f. Then by Definition f = gq for some ¢ € Flz]. Thus f =
gq + 0p. Since deg0r = —oo < degg, Definition shows that O is the remainder of f when
divided by g¢.

<=: Suppose that the remainder of f when divided by g is 0p. Then by Definition [T.1.3]
f =gq+ 0p for some ¢ € F[z]. Thus f = gq and so Definition shows that g|f. O

Lemma 4.2.2. Let R be a field or an integral domain and f,g € R[x]. If g # Op and f|g, then
deg f < degg.

Proof. Since flg, g = fh for some h € R[z]. If h = Og, then by [3.2.11f[c), g = fh = fOr = Og,
4.1.7]

contrary to the assumption. Thus i # Og and so degh > 0. Thus by [4.1.7|(a),

deg g = deg fh = deg f + degh > deg f.

Lemma 4.2.3. Let F be a field and f € Flx]. Then the following statements are equivalent:

(a) deg f = 0. (c) fllp. (e) [ is a unit.

Proof. (e = (b):  See [4.1.4{(b)

@ . Suppose that f € F and f # Op. Since F is a field, f has an inverse f!
T hen f z] and ff~! = 1p. Thus f|1F by definition of ‘divide’ and . holds.

and @ == @ See
Since f is a unit, 1p = fg for some g € Flx]. So by [4.1.7|(a)) deg f + degg =
deg( fg —deg 1F —Oandsoalsodegf degg = 0. O

Lemma 4.2.4. Let F be a field and f,g € F|x]. Then the following statements are equivalent:

(a) f~g. (c) deg f = degg and f|g.
(b) flg and g|f. (d) g~ f

Proof. @ == (]ED: See

1) = (\): Suppose that f|g and g|f. Assume first that g = O, then since g|f, we get from
2|that f = 0F and so () holds in this case.

Asaume next that g 7& OF Since flg, |4 implies deg f < degg. Since g # O and fl|g, we
conclude from the contrapositive of |3 - that f #0p. As g|f |4.2.2 n implies degg < deg f. Thus
deg g = deg f and holds.
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= @: Suppose that deg f = deg g and f|g. If f =0, then degg = deg f = —o0 and so
g =0p and f ~ g. Thus we may assume f # Op. Since f|g, g = fh for some h € F[z]. Thus by

4.1.7|(al), deg g = deg f + degh. Since f # 0r we have degg = deg f # —oo and so degh = 0. Thus
by [4.2.3] h is a unit. So g ~ f by definition of ~.

(d) => (a):  This holds since ~ is symmetric by O
Definition 4.2.5. Let F be a field and f € Flx].

(a) f is called monic if lead(f) = 1p.

(b) If f # Op then f :=1lead(f)~'f is called the monic polynomial associated to f. If f = Op put
f=0p.

Lemma 4.2.6. Let F be a field and f,g € Flx].

(a) If f and g are monic and f ~ g, then f = g.

(b) If f #0p, then f is the unique monic polynomial with f ~ f.

(c) deg f = deg f.

(d) f~ g if and only if f = g.

Proof. @ By definition of f ~ g, fu = g for some unit v in F. Hence

1p 9 xmonic lead(g) fuzg lead(fu) lead(f)u / monie lru (A 10) U

and sou =1p and g = fu = flp = f. §
(b) By 4.1.74(b), lead(f) = lead(lead(f)~'f) = lead(f) "ead(f) = 1p. So f is monic. Since

lead(f)~! is a unit, f ~ f. Suppose g is a monic polynomial with ¢ ~ f. By ~ is an
equivalence relation and so transitive. Since g ~ f and f ~ f we get g ~ f. Thus by (a), g = f.

@ If f = Op, then also f = 0p and holds. If f # Op, then by (b)), f ~ f and so by
deg f = deg f.

@ Suppose that f = 0p. Then f ~ g if and only if g = 0p and so if and only if § = 0 and if
and only if f = §. So @ holds in this case.

So we may assume f # Op and (similarly), g # Op. Then by @, f and § are monic and g ~ §.
Since ~ is an equivalence relation, we conclude that f ~ ¢ if and only if f ~ §. Since ¢ is monic,
the latter holds by @) if and only if f = g. O

Definition 4.2.7. Let F be a field and f,g € Flz].
(a) h € Flz] is called a common divisor of f and g provided that h|f and h|g.
(b) Let d € Flx]. Then d is called a greatest common divisor of f and g provided that

(i) d is a common divisor of f and g.

(ii) If ¢ is a common divisor of f and g, then degc < degd.
Theorem 4.2.8. Let F be a field and f,g € F|x] not both zero.

(a) There exists d € Fx] such that degd is minimal with respect to

(i) d # Op, and
(i) d = fu+ gv for some u,v € Flx].
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(b) If e is a common divisor of f and g in F|x] then e|d.
(¢) d is a greatest common divisor of f and g.

Proof. (@): Put S = {fu+gv | u,v € Flz]} and S* = S\ {0p}. Note that f = flp + g0p € S
and g = fOp + glp € F. Since f # O or g # Or we conclude that S* is not empty. By the Well
Ordering Axiom {deg h|h € S*} has a minimal element m. Let d € S* with degd = m. Then

(1) d e S* and degd < degh for all h € S™.

Since d € S*, d € S and so there exist u,v € F[z] with

(2) d= fu+ gv.

So @ holds.
[): Let e € Flz] with e|f and e|g. Then [B.4.3)(d) gives e|fu + gv and so by (2), e|d.

: We will first show that

3) dlf.

By the Division Algorithm there exists ¢ and r € Flz] with f = dg + r and degr < degd.
Thus r = f — dq and so by (2)

r=f—(futgv)-q= [ (lp —ug)+g-(vq).

Hence r € S. Since degr < degd, (1) implies r ¢ S*. Since all non-zero elements of S are contained
in S* this means r = 0p. So d | f by

Similarly to (3) we get

(4) dlg.

Let e be a common divisor of f and g. Then by (b)), e|d and so by dege < degd. By (3)
and (4), d is a common divisor of f and ¢ and so (] holds. O

Corollary 4.2.9. Let F be a field and f,g € F[z] not both zero. Let d be as in ,
(a) Let e € Flz]. Then e is a greatest common divisor of f and g if and only if e ~ d.
(b) If e and é are greatest common divisors of f and g then e ~ €.

(c) Let e be a greatest common divisor of f and g. Then dege = degd and there exist s and t in
Flz] with e = fs+ gt.

(d) d is the unique monic greatest common divisor of f and g.
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Proof. (ED Suppose first that e is a greatest common divisor of f and g, Then [4.2.8(a), e|d. Since
both e and d are greatest common divisor, dege < degd and degd < dege. Hence degd = dege

and by {.24] e ~ d.

Suppose next that e ~ d. Since d|f and d|g, implies that e ~ f and e ~ g. So e is a
common divisor of f and g. Since e ~ d, gives degd = dege. So if h is a common divisor of f
and g, then dege = degd > degh and so e is a greatest common divisor of f and g.

Let e and € be greatest common divisors of f and g. Then by @ e~dand én~d. By
~ is an equivalence relation and so e ~ é.

(c) By @ e ~ d and so degd = dege by Moreover, e = dz for some unit z in F[z]. By
d d = fu+ gv for some u,v € F[z] and so e = du = (fu+gv)z = [ (uz) +g- (vz). So () holds
with s = uz and t = vz.

@ Let e be a monic polynomial. By @, e is a greatest common divisor of f and g if and only
if e ~d. By this holds if and only if e = d. O

Definition 4.2.10. Let F be a field and f,g € Flx].

(a) If f and g are not both O, then ged(f, g) denotes the unique monic greatest common divisor of
fandg.

(b) f and g are called relatively prime if f and g are not both O and ged(f,g) = 1p.

Corollary 4.2.11. Let F be a field and f,g € Flx]. Then f and g are relatively prime if and only
if there exist u,v € Flz] with fu+ gv=1p.

Proof. =: Suppose that f and g are relatively prime. Then f and g are not both 0r and
ged(f,g) = 1p. So by [4.2.9(c) there exist u,v € F[z] with fu+ gv = 1p.

<=: Suppose that there exist u,v € F|x] with fu+ gv = 1p. Since 1r # Op this implies that
f and g are not both Op. Also deglp = 0 < degh for any non-zero h € F[z]. So by lpisa
greatest common divisor of f and g. Since 1r is monic, 1p = ged(f, g). O

Proposition 4.2.12. Let F be a field and f,g,h € Flx]. Suppose that  and g are relatively prime
and flgh. Then f|h.

Proof. Since f and g are relatively |4.2.11] shows that there exist w,v € Flz| with fu+ gv = 1p.
Multiplication with h gives (fu)h + (gv)h = h and so (using the General Commutative Law)

[ (uh) + (gh)-v=nh.
Since f divides f and gh, now implies that f|h. O

Lemma 4.2.13. Let F be a field and f,g,h € Flx] such that f and g are not both Op. Let d be a
greatest common divisor of f and g. Then h is a common divisor of f and g if and only if h is a
divisor of d.

Proof. Suppose first that h is a common divisor of f and g. By , d = fu+ gv for some
u,v € F[z] and thus by hld.

Suppose next that h|d. By definition of ‘greatest common divisor’, d|f and d|g. Since ‘divide’ is
transitive by we get h|f and h|g. So h is a common divisor of f and g. O

Lemma 4.2.14. Let F be a field and f,g,f,g in F[x]. Suppose f and g are not both Op and also

[ and g are not both Op. Then ged(f,g) = ged(f,g) if and only if the common divisors of f and g
are the same as the common divisors of f and g.
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Proof. Put d = ged(f, g) and d= ng(JE’ g)-

—>: Suppose d = d. Then

The set of common divisors of f and g in F|x]
= The set divisors of d in F[z] -4.2.13
= The set divisors of d in F[z] - Since d = d.

The set of common divisors of f and § in Flz] [4.2.13

<=: Let S be the set of common divisors of f and g and suppose that S is also the set of
common divisors of f and §. By definition d = ged(f, g) is the unique monic polynomial in S of
maximal degree. Since S is also the set of common divisors of f and g, =ged( 1, g) is also the unique
monic polynomial in S of maximal degree. Thus d = d. O

Lemma 4.2.15. Let F be a field and f.9.f.g¢€ F[z]. Suppose that f and g are not both O, and
that f and g are not both Op. Then

(a) If f ~ f and g ~ g, then ged(f, g) = ged(f, 9).
(b) ged(f,9) = ged(f, §) = ged(f, §) = ged(f, 9)-
Proof. @ Since f ~ f, f and f have the same divisor (see @D Similarly, g and g have the

same divisors. Hence the common divisors of f and g are the same as the common divisor of f and

g. Sol4.2.14| shows that gf:d(f, g) = g;cd(f7 g)-
(o) By 12.6){d) f ~ f and g ~ g. Since ~ is reflexive, f ~ f and g ~ g. So (b)) follows from
three applications of @

O
Lemma 4.2.16. Let F' be a field and f,g,q,r € Flx] with f = gq+7r and g # 0p. Then ged(f, g) =
ged(g, 7).

Proof. By [£:2.14)it suffices to show that the common divisors of f and g are the same as the common
divisors of g and r.

So suppose e € F[z] with e|g and e|r. Then implies that e|gg + r1r and so e|f. Hence
e is also a common divisor of g and f.

Similarly if e € F[z] with e|f and e|g, then [3.4.3][d) implies that e|f - 1r + g - (—¢) and so e]r.
Hence e is also a common divisor of g and r. O

Theorem 4.2.17 (Euclidean Algorithm). Let F be a field and f,g € Flx] with g # O and let E_4
and Ey be the equations

E,l : f = fl + gOF
Ee : g = [f-0r + g-lead(g)_l’

Let i € N and suppose inductively we defined equations Ey,—1 < k <1 of the form

E, : rp = for + g-yk -
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where T, g, yr € Flx] and r; is monic. According to the division algorithm) let t;y1,qi11 € F[x]
with
rio1 = 1iQiy1 +tip1 and degt; 1 < degr;

Iftiv1 # Op, put uip1 = lead(t; 1)~ L. Let E;jy1 be equation of the form riv1 = f+Ziv1 + 9 Yit1
obtained by first subtracting q;y1-times equation E; from E;_1 and then multiplying the resulting
equation by u;41. Continue the algorithm with i + 1 in place of 1.

Ift;11 = 0p, defined=r;,u =x; and v =1y;. Then

ged(f,g9) =d = fu+gv
and the algorithm stops.
Proof. For i € N let P(¢) be the following statement:

1. For —1 < k < i an equation Fj, of the form ry = f -z + g - yp with g,z and y, € F[z] has been
defined;

2. for —1 < k < i the equation E} is true;
r; iS monic;

forall 1 <k <4, degry < rip_1; and
ged(f, 9) = ged(riz1, 74).

Putr_y = f,o_1 = 1p,y_1 = Op,70 = §,70 = Op and yo = lead(g)~!. Then for k = —1 and
k =0, Ej is the equation ry, = f- x4+ ¢g-yr and so holds for i = 0. Also F_; and FEjy are true, so
holds for ¢ = 0. g = § is monic and so (3) holds for ¢ = 0. There is no integer k with 1 <k <0
and thus holds for ¢ = 0. Also by

DA

ng(fa g) = ng(f7 g) = ng(T—la TO)
Thus P(0) holds. Suppose now that ¢ € N and that P(¢) holds. Then the equations
E,1 @ rioi = frxicr + gryi-1 and
E; N = [ + 9 ¥
are defined and true. Also ry, zx and yy are in F[z] for k =i — 1 and 4,
Since r; is monic, r; # Or and so by the Division algorithm there exist unique ¢;+1 and t;41 in
F[z] with

(%) ri—1 = 1:q; + t;11 and degt; 11 < degr;

Thus by {4.2.16| ged(r;—1,7;) = ged(ri, tiy1). By in P(7), ged(f,g) = ged(ri—1,7:) and so

() ged(f, 9) = ged(ri, tiy1)

Consider the case that t;41 # Op. Subtracting ¢;+; times E; from F;_; we obtain the true
equation
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ri-1—Ti¢iv1 = f- (%‘71 - xiQiJrl) + g (yiq - yi(h‘+1)-

Put u; 1 = (leadt;;1)~!. Multiplying the preceding equation with ;.| gives the true equation

By (Ti—1 - Ti(h+1)uz‘+1 = f- (%’—1 - ﬂ?z‘(b+1)ui+1 + g- (yi—l - yiqi+1)ui+1~

Putting 7541 = (Ti—1 — 7iiy1)Uiv1, Tiv1 = (Tic1 — TiGir1)Uiv1 and yip1 = (Yim1 — YiGis1)Uit1
we see that F;1q is the equation ;41 = f - xj+1 + ¢ - ¥i+1 and 141,241 and y; 41 are in Flz]. So
and hold for 7 4+ 1 in place of 1.

By (*) we have ti+1 =Ti—1 — Tiqi+1 and so

71 M
Tig1 = (Tim1 — TiQit1)Uit1 = tip1Uip1 = tipilead(tipr) ™ = tig1.

Hence
(* * *) Ti+1 = tviJrl
Thus 741 is monic and (3] holds. Moreover,

skeskok . (*)

degriy1 = degt;y1 =degtp1 < degry,
and of P(i+ 1) holds.

Also
) - _ ()
ged(f,9) =" ged(rs, tita ged(riy tipr) = =" ged(ri, mit1)

and so in P(i + 1) holds. We proved that P(i) implies P(i + 1) and so by the principal of
induction, P(i) holds for all ¢ € N, which are reached before the algorithm stops. Note here that
Condition ensures that the algorithm stops in finitely many steps.

)

Suppose next that ¢;41 = Op. Then by (**)

ged(f, g) = ged(ri, tip1) = ged(ri, Op) =1
Note that last equality holds since r; is monic polynomial dividing r; and 0 and that by
any common divisor of r; and Op has degree at most degr;. So r; is monic common divisor of r;
and O of maximal degree, that is ged(r;, Op) = r;.
Also by P(i) the equation
Ei: ri=f-zi+g-y
is true. So putting d = r;,u = x; and v = y; we have
ged(f.g) =d = fu+gv
O

Example 4.2.18. Let f = 32* + 423 + 222 + 2+ 1 and g = 223 + 2% + 20 + 3 in Zs[z]. Find
u, v € Zolz] with fu+ gv =ged(f,g).
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In the following if @ in integer, we just write a for [a];. We have
lead(g)'=2"'=2"1.1=2"1.6=3

andsorg=§=39g=06x3+322+6x+9==a+322+2+4.

E_, : 32*+23+22°4+2+1 = f-1 + g-0
Ey 22 +322+x+4 = f-0 + g¢-3 )
3z

B +3x2+x+4|3z* + 423 + 222 + x + 1

3zt + 9z 4+ 322 + 2z
2

—x - + 1
Subtracting 3z times Ey from E_; we get
—2?—z+1 = f-1 + g -9z | E_1—Ey-3z
and multiplying with (—1)~! = —1 gives
E : 2?+z—-1 = f- -1 + g-4x

24+x—12 + 322 + 2z 4+ 4

202 + 2z + 4
222 4+ 2z — 2

Subtracting = + 2 times F, from Fj gives

1= 7 (0-(-DE+2) + g-(3-Mn)@+2)

and so

Ey : 1 = f-(z+2) + g-(2*4+22+3)

Since = + 2 is monic, this equation is E5. The remainder of any polynomial when divided by 1
is zero, so the algorithm stops here. Hence

ged(f,g)=1=f-(x+2)+g- (2% +22+3)

Exercises 4.2:

#1. Let F be a field and a,b € F with a # b. Show that = + a and = + b are relatively prime in F[z].
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#2. Use the Euclidean Algorithm to find the gecd of the given polynomials in the given polynomial ring.

(a) 2* — 2% — 22 +1 and 2% — 1 in Q[x].

(b)

(©)

(d)
)

25+ ot + 223 — 2% — 2 — 2 and 2* + 223 + 52 4+ 4z + 4 in Q[z].
2t + 322 4+ 22 + 4 and 2% — 1 in Zs[z].

d) 4z + 223 + 62% + 42 + 5 and 323 + 522 + 67 in Zq[x).

(e) x® —ix? + 4z — 4i and 22 + 1 in Cla].

(f) 2*+ 2+ 1and 22 + 2 + 1 in Zy[z].

#3. Let F be a field and f € F[z] such that f|g for every non-constant polynomial g € F[z]. Show
that f is a constant polynomial.

#4. Let F be a field and f,g,h € F[z] with f and g relatively prime. If f|h and g|h, prove that fg|h.

#5. Let F be a field and f,g,h € F[z]. Suppose that g # Or and ged(f,g) = 1p. Show that
ged(fh,g) = ged(h, g).

#6. Let F be a field and f,g € F[z] such that h is non-zero and one of f and g is non-zero. Let
d = gcd(f,g) and let f,§ € Flx] with f = fd and g = §d. Then ged(f,§) = 1r.

#7. Let I' be a field and f,g,h € Flz] with f|gh. Show that there exist g, h € Flz] with §|g, h|h and
f=gh.

4.3 Irreducible Polynomials

Definition 4.3.1. Let F be a field and f € F|x].
(a) f is called constant if f € F, that is if deg f < 0.
(b) Then f is called irreducible provided that

(i) f is not constant, and
(i) if g € Flz] with g|f, then
g~lp or g~ f.

(c) f is called reducible provided that

(Z) f 7& OF7 and
(i) there exists g € Flx] with

glf, g»1p, and g f.

Proposition 4.3.2. Let F be a field and O # f € Flx]. Then the following statements are
equivalent:

(a) f is reducible.

(b) f is divisible by a non-constant polynomial of lower degree.
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(c¢) f is the product of two polynomials of lower degree.
(d) f is the product of two non-constant polynomials of lower degree.
(e) f is the product of two non-constant polynomials.

(f) [ is not constant and f is not irreducible.

Proof. @ = (@: Suppose f is reducible. Then by Definition [4.3.1] there exist g € F[z] with
glf, g » 1p and g » f. Since g|f and f # Op we have g # Op (see|3.4.2)). Since g = 1p, now

shows that g ¢ F. Since g » f and g|f, implies deg f # degg. Also by 4.2.2[since g|f we have
degg < deg f and so degg < deg f. Thus g is a non-constant polynomials of lower degree than f.

Thus (]ED holds.

(]ED = : Let g be a non-constant polynomial of lower degree than f with g|f. Then
degg > 0, degg < deg f and f = gh for some h € F[z]. Since f # O we conclude h # Op. By
4.1.7(a) deg f = deg g + degh and since degg > 0, degh < deg f. Thus holds.

() = @: Suppose f = gh with degg < degf and degh < degf. By deg f =
deg g + deg h. Since degg < deg f we conclude that degh > 0. So h is not constant. Similarly g is
not constant. Thus @ holds.

(d) = (¢: Obvious.

(e) = @: Let f = gh with neither g nor h constant. Then g|f. Since g is not constant, Lemma
gives g » lp. Since degh > 0 and deg f = degg + degh ([L.1.7()) we have deg f > degg.
Since g is not constant, degg > 0 and so also deg f > 0 and f is not constant. Also deg f # degg
and |4.2.4] gives g » f. Thus by Deﬁnition f is not irreducible. So @ holds.

= @: Suppose f ¢ F and f is not irreducible. Then by Definition there exists
g € Flx] with g|f, g » 1p and g = f. So by Definition f is reducible and (ja)) holds. O

Remark 4.3.3. Let F be a field.
(a) A non-constant polynomial in Fx] is reducible if and only if its is not irreducible.

(b) A constant polynomial in F|x] is neither reducible nor irreducible.

Proof. (@): This follows from [£.3.2|(a)), ().
(]ED: By definition irreducible polynomials are not constant and by reducible polynomials

are not constant. O

Lemma 4.3.4. Let F be a field and p € Flz] with p ¢ F. Then the following statement are
equivalent:

(a) p is irreducible.
(b) Whenever g, h € Flz] with p|gh, then p|lg or p|h.
(¢) Whenever g,h € F[z] with p = gh, then g or h is constant.

Proof. (&) = (B):  Suppose p is irreducible and let g, h € F[z] with p|gh. Put d = ged(p, g).
By definition of ‘ged’, d|p and since p is irreducible, d ~ 1p or d ~ p. We treat these two cases
separately.

Suppose that d ~ 1p. Since both d and 15 are monic we conclude from [£:2.6] that d = 1. So p

and g are relatively prime and, since p|gh, [4.2.12|implies p|h.
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If d ~ p, then since d|g, gives plg.

(b) = (d): Suppose (]ED holds and let g, h € F[x] with p|gh. Since ‘divide’ is reflexive, p|p and
so p = gh implies p|gh. From we conclude p|g or p|h. Since the situation is symmetric in g and
h we may assume p|g. Since p # Op and p = gh, g # Op. From p|g andwe have degp < degg.
On the other hand by , degp = deggh = degg + degh. Thus degg = degp and degh = 0.
So h € F.

(d) = @: Suppose hold. Then p is not a product of two constant polynomials in F[x].
So [4.3.2((b)) does not holds. Hence also does not hold, that is the statement ‘p ¢ F and p is
not irreducible’ is false. Since p ¢ F, this means that p is irreducible. O

Lemma 4.3.5. Let F be a field and p an irreducible polynomial in Flz]. If ai,...,a, € Flx] and
plaias ... an, then pla; for some 1 <i < n.

Proof. By induction on n. For n = 1 the statement is obviously true. So suppose the statment is
true for n = k and that pla; ... arak,1. By plai ... ag or plags1. In the first case the induction
assumption implies that pla; for some 1 < i < k. So in any case pla; for some 1 <i < k+ 1. Thus
the Lemma holds for k + 1 and so by the Principal of Mathematical Induction the Lemma
holds for all positive integer n. O

Lemma 4.3.6. Let F be a field and p,q irreducible polynomials in F[x]. Then p|q if and only if
p~aq.

Proof. If p ~ g, then p|q, by So suppose that p|g. Since g is irreducible, p ~ 1p or p ~ q.
Since p is irreducible, p ¢ F and so by p = 1lp. Thus p ~ q. O

Lemma 4.3.7. Let F be a field and f,g € F|z] with f ~ g. Then [ is irreducible if and only if g
is wrreducible.

Proof. =>: Suppose f is irreducible. Then f ¢ F and so deg f > 1. Since f ~ g, implies
degg = deg f > 1. Hence g ¢ F. Let h € F[z] with hlg. Since f ~ g, [3.4.10 implies h|f. Since f
is irreducible we conclude h ~ 1g or h ~ f. In the latter case, since ~ is transitive h ~g.
Hence h ~ 1g or h ~ g and so g is irreducible.

<=: Suppose g is irreducible. Since ~ is symmetric by we have g ~ f. So we can apply
the ‘=='-case with f and g interchanged to conclude that f is irreducible. O

Theorem 4.3.8 (Unique Factorization Theorem). Let F be a field and f € F[z] with f ¢ F. Then
(a) f is the product of irreducible polynomials in Fz].

(b) If n,m are positive integers and py,p2,...,Pn and qi,...qm are irreducible polynomials in F[z]
with
f=pip2...pn and f=qq...qm,

then n = m and possibly after reordering the g;’s,

b1 ~p1, P2~ Q2 ce+y  Dn ™~ dQn.

In more precise terms: there exists a bijection 7 : {1,...n} — {1,...m} such that

P1 ~d4r), P2 ~A4r2), -5 Pn ™~ qn(n)-
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Proof. (ED The proof is by complete induction on deg f. So suppose that every non-constant poly-
nomial of lower degree than f is a product of irreducible polynomials.

Suppose that f is irreducible. Then f is the product of one irreducible polynomial (namely
itself).

Suppose f is not irreducible. Since f ¢ F, shows that f = gh where g and h are non-
constant polynomials of lower degree than f. By the induction assumption both g and h are products
of irreducible polynomials. Hence also f = gh is the product of irreducible polynomials.

(b)) The proof of @ is by complete induction on n. So let k be a positive integer and suppose
that (b)) holds whenever n < k. Suppose also that

(%) f=pip2...0k and f=qq .. qm,

where m is a positive integer and p1,...,Dk, q1,. - - ¢m are irreducible polynomials in F[z].

Suppose first that f is irreducible. Then by f is not the product of two non-constant
polynomials in F[z]. Hence (*) implies k = m = 1. Thus p; = f = ¢1. Since since is reflexive we get
p1 ~ ¢q1 and so (b) holds for n = k in this case.

Suppose next that f is not irreducible. Then p; # f # ¢; and so k > 2 and m > 2.

Since f = (p1 . ..pr—1)pr We see that py divides f. So by (*) py, divides q; ... ¢m,. Hence by
Pi|g; for some 1 < j < m. By Pk ~ ¢j. Reordering the ¢;’s we may assume that py ~ ¢p,.
Then py, = ugy, for some unit v € F|x]. Thus

((upr)pz - - pe—1)Gm = (P1 -+ Pr—1)(UGm) = p1--. Pk = [ = (q1- - Gm—1)qm-
By 4.1.7(c) F[x] is an integral domain. Since ¢, # O, the Cancellation Law [3.2.19] gives

(upl)]?z «eePk-1=4q1.--4m—1-

Since u is a unit, up; ~ p1. Thus since p; is irreducible also up; is irreducible by By the
induction assumption k£ — 1 = m — 1 and we may reorder the ¢;’s such that

up1 ~qi, PpP2~4q2, ... Pk—1"~dk-1-

In particular, £ = m. Also since p; ~ up; and ~ is transitive, p; ~ ¢;. Thus

pP1~q, p2~q2 ... Pg—1"~Ggk-1,

Thus (b) also n = k. By the principal of complete induction, (b) holds for all positive integers
n. O

Exercises 4.3:
#1. Find all irreducible polynomials of
(a) degree two in Zs[z].
(b) degree three in Zs[z].
(c) degree two in Zs[x].

#2. (a) Show that 2 + 2 is irreducible in Zs[x].
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(b) Factor z* — 4 as a product of irreducibles in Zs[z].

#3. Let F be a field. Prove that every non-constant polynomial f in F[x]| can be written in the form
f =cpip2...p, with ¢ € F and each p; monic irreducible in F[z]. Show further that if f = dg; ... ¢
with d € F and each ¢; monic and irreducible in F[z], then m = n, ¢ = d and after reordering and
relabeling, if necessary, p; = ¢; for each i.

#4. Let F be a field and p € F[z] with p ¢ F. Show that the following two statements are equivalent:
(a) p is irreducible
(b) If g € F[z] then p|g or ged(p,g) = 1p.

#5. Let F be a field and let pyi, ps,...p, be irreducible monic polynomials in F[z] such that p; # p;

for all 1 <i < j <n. Let f,g € Fz] and suppose that f = pfpk? .. pkr and g = pltpl2 ... plr for

some kl,kg,...,knJl,lg...,ln e N.
(a) Show that f|g in F[z] if and only if k; <; for all 1 <i < n.

(b) For 1 <4 < n define m; = min(k;,;). Show that ged(f,g) = p7"'py?...pI"".

4.4 Polynomial function

Theorem 4.4.1. Let R and S be commutative rings with identities, « : R — S a homomorphism
of rings with a(1g) = 1g and let s € S.

(a) There exists a unique ring homomorphism «s : R[xz] — S such that as(x) = s and as(r) = a(r)

forallr € R.
deg f deg f
(b) Forall f =" fix' in Rz, as(f) = D al(fi)s".
i=0 1=0

Proof. Suppose first that 5 : R[z] — S is a ring homomorphism with

(%) Bx)=s and B(r)=a(r)
for all r € R. Let f € R[z].
Then
deg f .
8(f) = 8 fm) TTA[)
dcgz:O
= B(fiz')  —pB is a homomorphism
deg s
= B(f:)B(x)" —p is a homomorphism
izggf
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This proves (]ED and the uniqueness of as.

It remains to prove the existence. We use (]ED to define az. That is we define

deg f

as: Rlz] =S, [f— Z oz(fi)si

i=0
It follows that
as(z) = as(lgrz) = a(lg)s = 1lgs = s

and if r € R, then

as(r) = as(rz®) = a(r)s® = a(r)ls = a(r).

Let f,g € R[z]. Put n = max(deg f,degg) and m = deg f + degg.

as(f+g) = <Z fi+g)z ) — [A1.2[) applied with P = R|[z]
=0

n

- Z a(fi+ gi)s' — definition of g
i=0
= (a(fi) + oz(gl-)> 5! — Since « is a homomorphism
i=0

ng f ) dcgg ‘
= (Z a(fi)sl> + (Z a(gi)s’> —4.1.2(la) applied with R=S,P =S,z =s

i=0 i=0
= as(f) +as(g) — definition of a,, twice

as(fg) = (Z (Z figh—i ) - applied with P = R|x]

= a (Z JiGk—i — definition of «as
k i
k
= (Z a(fi)a(gr— Z)) k — Since « is a homomorphism
k=0 \=0

deg f degg .
= ( a(fi) ) Z a(gj)s’ —4.1.2(la) applied with R=5,P =S,z =3

=0 7=0
= as(f) - as(g) — definition of «as, twice

So ay is a homomorphism and the Theorem is proved. O

Example 4.4.2. Compute ay in the following cases:
1. R is a commutative ring with identity, S = R, a« = idr and s € R.

2. R is a commutative ring with identity, S = R[z], a(r) =r and s = x.
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3. R=17, n is an integer, S = Zy[x], a(r) = [r], and s = x.

deg f ] deg f '

H as(f) = Z a(fi)s' = Z fis'.
iy dmf

n al(f) =Y af)s'=>_ fa'=f
1=0 1=0

So a; is identity function on R[z].
Note first that by Example a:Z — Zylzx],r — [r], is a homomorphism. Also

deg f 4 deg f ]
as(f) =D a(fi)s' = Y [filaa’
1=0 =0

So a(f) is obtain from f by viewing each coefficient as congruence class modulo n rather than
an integer.

Definition 4.4.3. Let I be a set and R a ring.
(a) Fun(I, R) is the set of all functions from I to R.
(b) For o, 3 € Fun(I, R) define o+ B in Fun(I, R) by
(a+ B)(i) = afi) + B(i)
forallieI.
(¢) For o, B € Fun(I, R) define af in Fun(I, R) by
(@B) (i) = a(i)B(i)
foralliel.

(d) Forr € R define r* € Fun(I, R) by

foralliel.
(e) Fun(R) = Fun(R, R).
Lemma 4.4.4. Let I be a set and R a ring.
(a) Fun(I, R) together with the above addition and multiplication is a ring.
(b) 0% is the additive identity in Fun(I, R).
(c) If R has a multiplicative identity 1, then 13, is a multiplicative identity in Fun(I, R).
(d) (—a)(i) = —a(i) for all @ € Fun(I,R), i € I.

(e) The function 7 : R — Fun(I, R),r — r* is a homomorphism. If I # 0, than T is 1-1.
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Proof. Note that Fun(I, R) = X, ; R and so @—@ follows from
@ Let a,b € Rand i € I. Then

(a+b)*(7) a+bd — definition of (a + b)*

a*(i) + b*(i) — definition of a* and b*

= (a*+0b*)(i) — definition of addition of functions
Thus (a + b)* = a* + b* by and so 7(a + b) = 7(a) + 7(b) by definition of .
Similarly,
(ab)*(i) = ab — definition of (ab)*
= a*(i)b*(i) — definition of a* and b*
= (a*b*)(i) — definition of multiplication of function

Hence (ab)* = a*b* by and so 7(ab) = 7(a)7(b) by definition of 7.

Thus 7 is a homomorphism .

Suppose that I # 0 and 7(a) = 7(b). Then a* = b* and there exists i € I. So a = a*(i) = b*(i) =
b and 7 is 1-1. O

Notation 4.4.5. Let R be a commutative ring with identity and f € R[z]. For f = Z?i%f fizt €
F[z] define the function

ff*:R—R
by
deg f
ey =S g
i=0
forallr € R.

f* is called the polynomial function induced by f.
Letid : R — R,r — r be the identity function on R and for r € R let id, : R[x] — R be the

homomorphism from m Then by Example
for all f € Flz] and r € R.

Note that if f € R[x] is constant polynomial then the definitions of f* € Fun(R) in and in
{43 coincide.

The following example shows that it is very important to distinguish between a polynomial f
and its induced polynomial function f*.

Example 4.4.6. Determine the functions induced by the polynomials of degree at most two in Zs[x].

‘ f ‘0‘1‘x‘x—l—l‘xQ‘mg—&—l‘332—&—35‘332—&—954—1
ffoyjof1|o 1 0 1 0 1
ffyjof1]1 0 1 0 0 1

We conclude that x* = (22)*. So two distinct polynomials can lead to the same polynomial
function. Also (2% + 2)* is the zero function but 2% + z is not the zero polynomial.
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Theorem 4.4.7. Let R be commutative ring with identity.

(a) f* € Fun(R) for all f € R[x].

(b) (f +9)*(r) = f*(r) + g*(r) and (fg)*(r) = f*(r)g*(r) for all f,g € R[z] and r € R.
(¢c) (f+9)"=f"+g" and f*g" = [*g" for all f,g € Rlz].

(d) The function Rlz] — Fun(R), f — f* is a ring homomorphism.

Proof. () By definition f* is a function from R to R. Hence f* € Fun(R).

(bl
(f+9)*(r) = id(f+g)  — Definition of (f + g)*
= id,(f) +id,(¢g) - id, is a homomorphism
=  f*(r)+¢*(r) — Definition of f* and g*
and similarly
(fg)*(r) = id.(fg)  — Definition of (fg)*
= id,(f)id-(g) - id, is a homomorphism

= f*(r)g*(r) — Definition of f* and g*
Let r € R. Then

(F+9)(r) = f(r)+g7(r) - @)
(f*+g*)(r) — Definition of addition in Fun(R)

So (f+g)* = f*+ g*. Similarly

(fo)(r) = f(r)g*(r) — @)

(f*g*)(r) — Definition of multiplication in Fun(R)

and so (fg)* = f*g*.
@ Follows from . O

Lemma 4.4.8. Let F be a field, f € Fz] and a € F. Then the remainder of f when divided by
x—ais f*(a).

Proof. Let r be the remainder of f when divided by  — a. So r € Flz|, degr < deg(xz — a) and
there exists ¢ € F[z] with

(%) f=q (x—a)+r

Since deg(xz — a) =1 we have degr < 0 and so r € F. Thus

(xx) r(t)=r
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forall t € R.
a9 (¢ (x—a)+7)*(a) (¢- (- a))*(a) + r*(a)
P @ @@ T a4
22100 q¢*(a) - Op +r r.

O

Definition 4.4.9. Let R be a commutative ring with identity and f € R[z]. Then a € R is called a
root of f if f*(a) =Og.

Theorem 4.4.10 (Factor Theorem). Let F' a field, f € F[z] and a € F. Then a is a root of f if
and only if x — alf.

Proof. Let t be the remainder of f when divided by  — a. Then

x —alf
= t=0p — 2T
=  [(a)=0Fr -
<= aisaroot of f — Definition of root

Lemma 4.4.11. Let R be commutative ring with identity and f € R|x].

(a) Let g € Rlx]| with g|f. Then any root of g in R is also a root of f in R.

(b) Let a € R and g,h € R[z] with f = gh. Suppose that R is field or an integral domain. Then a
is a root of f if and only if a is a root of g or a is a root of h.

Proof. For the proof of @, note that if g|f, then there exists h € R[z] with f = gh. Let a € R.
Then

. o EETD . N
(%) f*(a) = (gh)*(a) ==" g"(a)h"(a).
If a is a root of g then ¢g*(a) = Og and so also g*(a)h*(a) = Or. Hence by (*) f*(a) = 0g and a
is a root of f. So @ holds.
If R is field then R is an integral domain by The same of course holds when R is an integral
domain and so (Ax 11) holds. Hence

a is a root of f

= f*(a) =0g — definition of root
— g*(a)h*(a) = Or -

= g*(a)=0r or h*(a)=0g (Ax 11)

= aisaroot of g or aisarootofh

— definition of root, twice
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Example 4.4.12. (a) Let R be a commutative ring with identity and a € R. Find the root of x —a
n R.

(b) Find the roots of x> — 1 in Z.
(c) Find the roots of x* — 1 in in Zs.

(&) Let b € R. The (z — a)*(b) = b —a. So b is a root of  — a if and only if b — a = O and if
and only if b = a.

@ 2?2 — 1= (x — 1)(x + 1). Since Z is an integral domain, [4.4.11| show that the roots of z? — 1
g

are the roots of x — 1 together with the roots of x + 1. So by (a]) the root of 22 — 1 are 1 and —1.
Since Zg is not an integral domain, the argument in (]E[) does not work. We compute in Zg

0?—1=-1,(x1) -1=1-1=0,(£2?-1=4-1=3,(+3)>=9-1=8=0,4-1=15=—1

So the roots of 22 — 1 are -1 and 4-3. Note here that (3—1)(3+1) =2-4 =8 = 0. So the extra
root 3 comes from the fact that 2 -4 = 0 in Zg but neither 2 nor 4 are zero.

Theorem 4.4.13 (Root Theorem). Let F be a field and f € F[z] a non-zero polynomial.
Then there exist a non-negative integer m, elements a1, ...,a, € F and q € F[x] such that

(a) m <degf.
) f=q-(z—a1) (x—az) ... (x—an).
(¢) q has no roots in F.
(d) {a1,as,...,an} is the set of roots of f in F.
In particular, the number of roots of f is at most deg f.

Proof. The proof is by complete induction on deg f. So let k¥ € N and suppose that theorem holds
for polynomials of degree less than k. Let f be a polynomial of degree k.

Suppose that f has no roots. Then the theorem holds with ¢ = f and m = 0.

Suppose next that f has a root a. Then by the Factor Theorem x — alf and so

(%) f=g-(x—a)
for some g € Flz]. By[f.1.7 deg f = deg g + deg(x — a) = degg + 1 and so deg g = k — 1. Hence by
the induction assumption there exist a non-negative integer n, elements a1, ...,a, € F and g € F[z]
such that

(i) n < degg.

)
(i)
(i)

)

g=q-(x—a1)-(x—az)-...-(x —ayp)
q has no roots in F.
{

(iv) {a1,as9,...,a,} is the set of roots of g.
Put m=n+1and a,, =a. Then m =n+1 (S) degg+1=(k—1)+1=Fk=degf and so
holds. From f=g-(z—a)=g- (x — ap) and we conclude that (b)) holds. By (i), (c) holds.
Let be F. Since f =g (x —am), shovvs that b is a root of f if and only if b is a root of g
or g is a root of z — a,,. Using we conclude that b root of f if and only if b € {a;,as,...a,} or
b— a;, =0p and so if and only if b € {aj,as...,an,a,} = {a1,...,an}. Thus also @ holds. O
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We have seem in example 4.4.12f|c) that 22 — 1 has four roots in Zg, namely +1 and £3. So in
rings without (Ax 11) a polynomial can have more roots than its degree.

Lemma 4.4.14. Let F be a field and f € Flx] with deg f > 2. If f is irreducible, then f has no
T0015.

Proof. See Lemma 1 on the Solutions of Homework 10 O

Lemma 4.4.15. Let F be a field and f € F|x] with deg f = 2 or 3. Then [ is irreducible if and
only if f has no roots.

Proof. See Corollary 2 on the Solutions of Homework 10. O

Exercises 4.4:

#1. Let F be a field and f € F[z] with deg f > 2. If f is irreducible, then f has no roots.

#2. Let F be a field and f € F[z] with deg f = 2 or 3. Then f is irreducible if and only if f has no

roots.

#3. Let F be an infinite field. Then the map F[z] — Fun(F), f — f* is 1-1 homomorphism. In

particular, if f and g in F[z] induced the same function from F to F, then f =g.

#4. Show that z — 1p divides a,2™ + ...a12 + ag in F[z] if and only if ag + a1 + ...+ a, = 0.

#5. (a) Show that 27 — z induces the zero function on Zr.

(b) Use @ and Theorem [4.4.13|to write 27 — z is a product of irreducible monic polynomials in Zr.

#6. Let R be an integral domain and n € N Let f, g € R[z]. Put n = deg f. If f = 0g define f* = 0g

and my = 0. If f # O define

f. = Z fnfil‘i
i=0
and let my € N be minimal with f,,, # Or. Prove that
(a) deg f =my + deg f°.
(b) f=aln-(f2)°
(c) (fg)* = f9"
)

(d) Let k,1 € N and suppose that fo # 0r. Then f is the product of polynomials of degree k and !
in R[z] if and only if f* is the product of polynomials of degree k and ! in R[z].

(e) Suppose in addition that R is a field and let @ € R. Show that a is a root of f* if and only if
a # Og and a is a root of f.

#7. Let p be a prime. Let f,g € Zpy[z] and let f*, g* : Z, — Z, be the corresponding polynomial

functions. Show that:

(a) If deg f < p and f* is the zero function, then f = 0p.

(b) If deg f < p,degg < p and f # g, then f* # g*.
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(c) There are exactly p? polynomials of degree less than p in Z,[x].
(d) There exist at least p? polynomial functions from Z, to Z,.
(e) There are exactly pP functions from Z, to Z,.

(f)

All functions from Z,, to Z, are polynomial functions.

4.5 Irreducibility in Q|x]

Theorem 4.5.1 (Rational Root Test). Let f =" fiz" € Z[z] with f, # 0. Let a € Q be a root
of f and suppose o = = where 1,5 € Z with s # 0 and ged(r, s) = 1. Then r|fo and s|f, in Z.

Proof. Since a is a root of f, f*(%) = f*(a) = 0. So

55 (0) o

=0

Multiplication with s™ gives

(+) Zfﬂ”:

If i > 1, then r|rri~! = 7% and so r* = 0 (mod 7). Thus (*) implies

fos" =0 (mod r).
and so r|fys™. Since ged(r,s) =1, Exermse 6| gives ged(r, s™) = 1. [1.2.10| now implies that r|fo.

Similarly, if i < n, then s|ss"~*~1 = s"~% and so s"7* =0 (mod s). Thus (*) implies

far™ =0 (mod s).
and so s|a,r™. Since ged(r, s) = 1, gives ged(s,r™) = 1 and then s|f,. O

Definition 4.5.2. Let p be a fized prime and f € Z[x]. Put

deg f
Zf”)x € Zplx].
i=0

Then f is called the reduction of f modulo p.
Lemma 4.5.3. Let p be a fixed prime and f,g € Z[x].

(a) The function
Op : Z[x] = Zp[al, f — f

is a homomorphism of rings.

) f+g=Ff+7and fg=f7.
(c) deg f < deg f.
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(d) If f #0, then deg f = deg f if and only if p{lead(f).
Proof. () Consider the map « : Z — Zy[z],n — [n],. By Example

deg f
az(f) = D filpa’ =T = 5,(1).
i=0
Thus 6, = a, and since o is a homomorphism, (ED holds.
(b)) This follows from (al).
(c) Follows immediately from the definition of f.
(c) Let n = deg f. Then f = > ,[fi],@* and so deg f = n if and only of [f,], # 0[0], and if
and only if p{ f,. Since leadf = f,, this gives (d). O

Lemma 4.5.4. Let f,g € Z[x] and let p a prime. If p divides all coefficients of fg, then p divides
all coefficients of f or p divides all coefficients of g.

Proof. Let h = Y"1 | h;z* € Z[z]. Then p divides all the coefficients of h if and only if [h;], = [0],
for all 0 < i < n and so if and only if A = [0],.

Since p divides all coefficients of fg, fg = [0], and so by @f@ = [0],. By|[3.2.21)(h)) Z,, is field
80 Zp[z] is integral domain by Thus f = [0], or g = [0],. Hence either p divides all coefficients
of f or p divides all coefficients of g. O

Definition 4.5.5. Let f € Z[x] and put n = deg f.

(a) If f # 0, define ct(f) = ged(fo, f1,---, fn)- If f =0 define ct(f) = 0. ct(f) is called the content
of f.

(b) f is called primitive if ct(f) = 1.

Example 4.5.6. Let f = 12+ 8x + 2022, Compute ct(f) and ct(f)~1f.

ct(f) = ged(12,8,20) =4

and

ct(f)"1f = 3(12 + 82 4 202%) = 3 + 2z + 52°
Note that the latter polynomial is primitive.
Lemma 4.5.7. Let f € Z[x].
(a) Let a € Z. Then ct(af) = |alct(f).

(b) Suppose f # 0 and put g = ct(f)~1f € Q[z]. Then g € Z[z], f = ct(f)g, deg f = degg and g is
primaitive.

Proof. (a) If a = 0 or f =0, then ct(af) = ct(0) = 0 = |a|ct(f). So suppose that a # 0 and f # 0.
Put n = deg f. By Exercise 1.2.4 ged(afo, af1) = |alged(fo, f1). An easy induction argument shows

ng(afO’afla cee afn) == |CL| ng(an fl7 ey fn)
Thus ct(af) = |a|ct(f).
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@ Since ct(f)|fi, ct(f) " fi € Z for all 0 < i < deg f. Thus g € Z[x]. Note that ct(f)g = f and
so by () and since ct(f) > 0.

ct(f) = let(f)lct(g) = ct(f)ct(g).
Since f # 0, ctf # 0 and thus ctg = 1. Hence g is primitive. O

Lemma 4.5.8. Let f,g € Z[z].
(a) If f and g are primitive, then also fg is primitive.

(b) ct(fg) = ct(f)ct(g)-

Proof. () Since ct(f) =1 = ct(g) we have f # 0 and g # 0. By Z[z] is an integral domain
and so fg # 0. Suppose for a contradiction that ct(fg) # 1. Then ct(fg) is a product of
primes and so there exists a prime p with p|ct(fg). Hence p divides all coefficient of fg and so by
p divides all coefficients of f or p divides all coefficients of g. Hence ct(f) > p or ct(g) > p, a
contradiction.

@ Suppose first that f = 0 or ¢ = 0. Then fg = 0. Also ct(f) = 0 or ct(g) = 0 and so
ct(fg) = 0= ct(f)ct(g). _ N

Suppose that f # 0 and g # 0. Put d = ct(f), e = ct(g), f = %f and § = %g. Then f = df,

g = eg and by @D f and g are primitive polynomials in Z[z]. By ~§ is primitive. It follows
576,

that ct(fg) = 1 and so using

ct(fg) = ct(defg) = de - ct(Fg) = de = ct(f)et(g).
O

Theorem 4.5.9. Let f € Z[z] and n,m € N. Then f is the product of polynomials of degree n. and
m in Q[x] if and only if f is the product of polynomials of degree n and m in Z[x].

Proof. The backwards direction is obvious. So suppose f = gh where g,h € Q[z] with degg = n
and deg h = m. Note that there exists a positive integer a such that ag € Z[z] (for example choose
a to be the product the denominators of the non-zero coefficients of f). Similarly choose b € ZT
with bh € Z[z]. Put § = ag and h = bh. Then

(1) abf = abgh = (ag)(bh) = Gh,

and so
4.5.8|(p]

ab - ct(f) ct(abf) L ct(gh) B30 oGt (h).
It follows that ablct(g)ct(h) in Z and hence (see Exercise 4 on Homework 9)
(2) ab= d(;,
where @ and b are integers with alct(g) and blct(h) in Z. Put

(3) g=a'g and h=>b""h.

By [4.5.7(b), ct(§)~1g € Z[z]. Since a|ct(g) in Z, a~ct(g) € Z. Thus
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Similarly h € Z[z]. Observe also that

deg g = degg = degg =n and degfz = degh = degh = m.
We compute

abf @ gh @ (ag)(bh) = (@b)gh 2 (ab)gh.

By [4.1.7| Z[z] is an integral domain. Since ab # 0, the Cancellation Law [3.2.19| implies f = gh

and so f is the product of polynomials of degree n and m in Z[x]. O

Corollary 4.5.10. Let f be a non-constant polynomial in Z|x] and suppose that f is not irreducible

in Qlx].
(a) There exist non-constant polynomials f and g in Z[x] of smaller degree than f with f = gh.

(b) Suppose in addition that p is a prime with p { lead(f). Then deg f = deg f and § and h are
non-constant polynomial of smaller degree than f with f =gh.

Proof. (@) Since f is not constant and not irreducible in Q[z] we conclude from that f = gh
where g and h are non-constant polynomials in Q[z] of smaller degree as f. By we can choose
such g, h € Z[z].

() Since p t lead(f) and leadf = lead(gh) = lead(g)lead(h) we get p { lead(g) and p { lead(h).
Thus by [4.5.3{(c), deg f = deg f, degg = degg and degh = degh. So g and h are non-constant
polynomials of smaller degree than f. By f=gh=4gh. So (]EI) holds. O

Theorem 4.5.11 (Eisenstein Criterion). Let f = Y. f;z" € Z[z] be a non-constant polynomial.
Suppose there exists a prime p such that

(i) p|fi for each 0 <i < n;
(i) pt fn; and
(iii) p*1 fo.
Then f is irreducible in Qlz].

Proof. Suppose for a contradiction that f is not irreducible. Then by f=ghand f =gh
where g, h € Z[x] and none of f, g, h are constant. Since p|f; for all 0 < i < n, we have [f;], = [0], for
0 <i<mnandso f=][f,]p,z". Since f = gh we have g|f in Z,[x] and so by Exercise 3 on Homework
9, g = ax’ for some i € N and a € Z,,. Since g is not constant, i > 1 and so [go], = gy = [0],. Thus
plgo and similarly p|hg. Since fo = hogo, this implies p?|fy, a contradiction to (fil). O

Example 4.5.12. Show that f = z* + 12123 + 5522 + 662 + 11 is irreducible in Q[z].

We choose p = 11. 11 divides 121,55,66 and 11. 11 does not divide 1 and 112 does not divide
11. So f is irreducible by Eisenstein’s Criterion.

Theorem 4.5.13. Let f € Z[x] and p a prime integer with p t lead(f). If the reduction F of f
modulo p is irreducible in Zy(x], then f is irreducible in Q[z].
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Proof. Suppose f is not irreducible in Q[z]. Then shows that f is the product of two
non-constant polynomials. So by £ is not irreducible in Z,[x], a contradiction. O
Example 4.5.14. Show that 72® + 1122 + 4z + 19 is irreducible in Q[x].

We choose p = 2. Then f = 23 + 22 + 1 in Zy[z]. By Exercise 6(b) on Homework 8, f is
irreducible and so f is irreducible in Q[z] by
Exercises 4.5:

#1. Use Eisenstein’s Criterion to show that each polynomial is irreducible in Q|z].

(a) z° — da + 22
(b) 10 — 15z + 2522 — Ta*.
(c) 5zt — 62 4 122 + 362 — 6.

#2. Show that each polynomial f is irreducible in Q[z] by finding a prime p such that the reduction
of f modulo p is irreducible in Zj[z].

(a) 72® + 622 + 4z + 6.
(b) 9z2* + 423 — 32 + 7.

#3. If a monic polynomial with integer coefficients factors in Z[z] as a product of a polynomials of
degree m and n, prove that it can be factored as a product of monic polynomials of degree m and
n in Z[z].

#4. Let f be a non-constant polynomial of degree n in Z[z] and let p be a prime. Suppose that
(i) p|fi for all 1 <4 < n.
(i) pt fo-
(i) p*{ fu-
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Chapter 5

Congruence Classes in F[x]

5.1 The Congruence Relation

Definition 5.1.1. Let F be a field and p € Flx]. Then the relation = (mod p) on F[z] is defined
by
f=g (modp) i plf—ginFlz]

If f = ¢ (mod p) we say that f and g are congruent modulo p.

Observe that by f and g are congruent modulo p if and only if the remainder of f — g when
divided by p is Op. So we can use the division algorithm to check whether f and g are congruent
modulo p.

Example 5.1.2. Let f =23+ 22+ 1, g=a2>+x andp=2?+x+1 in Zs[x]. Is f =g (mod p)?

We have f —g =234+ 2+ 1 and

2+x+1|a2 + x + 1

J:3—|—x2—|—a:

22 + 1
2 + z + 1

x
So the remainder of f — g when divided by p is not zero and therefore
P+ 1#2°+2 (mod 2?4z +1)
in Zso[z].

Theorem 5.1.3. Let F be a field and p € Flx]. Then the relation = (mod p)’ s an equivalence
relation on F[x].

99
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Proof. We need to verify that ‘= (mod p)’ is reflexive, symmetric and transitive.
Reflexive: Let f € Flz]. Then f — f =0p =p-0p. Sop|f — f and f = f (mod p).
Symmetric: Let f,g € F[z] with f = g (mod p). Then p|f —g. Since g — f = —(f — 9),

3.4.3((b) implies that p|g — f. Thus g = f (mod p).
Transitive: Let f,g,h € Flz] with f = g (mod p) and ¢ = h (mod p). By definition of =

).
(mod p) we have p|f — g and p|g — h. Observe that f —h = (f — g) + (g — h) and so by [3.4.3|(d),
p|f —h. Thus f = h (mod p). O

Notation 5.1.4. Let F be a field and f,p € F[x].

(a) [f]p denotes the equivalence class of = (mod p)’ containing f. So
[flp={9 € Flz]| f=g (modp)}
[f]p is called the congruence class of f modulo p.

(b) Flx]/(p) is the set of congruence classes modulo p in Flx]. So
Flal/(p) = {lflp | f € Flz]}

Theorem 5.1.5. Let F be a field and f,g,p € Fx] with p # 0p. Then the following statements are
equivalent:

(a) f = g+ pk for some k € Fla]. () f € lgly-

(8) - g = ph for some k € Fla]. (i) 9= f (mod p).

(c) plf =g (G) plg— f-

(d) f=g (mod p). (k) g— f = pl for some | € Flz].

(¢) g€lfly- (1) g = f +pl for some | € Flz].

@) 10 lgle 7 0. (m) f and g have the same remainder when di-
(9) [f]p = [glp- vided by p.

Proof. (a) <= (b):  This holds by [3.2.12

(b) <= (¢): Follows from the definition of ‘divide’.

(¢) <= (d): Follows from the definition of ‘= (mod p)’.

Since ‘= (mod p)’ is an equivalence relation, Theorem [0.5.10]implies that statements (d)- (i) are
equivalent. In particular (g) is equivalent to each of (a)-(c). Since the statement (g) is symmetric
in f and g we conclude that (g) is also equivalent to each of (j)-(I). Hence statements (a)-(l) are
equivalent.

Let 1 and ro be the remainders of f and g when divided by p. Then there exists ¢1, ¢ € Flx]
with

f=pa1n+r1 and degry <degp
g=pg2+7r2 and degry < degp

- (]ED: Suppose holds. Then r; = ro and
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g—f=Pe+r)—(pa+r)=p (@-—q)+(2—r)=p (¢2—q).
So (]ED holds with k = ¢ — ¢1.
(&) = (m):  Suppose f = g+ pk for some k € Flz]. Then f = (pgz +72) +pk = p(qz + k) + 7.
Note that g2 + k € F[z], ro € Flx] and degrs < degp. So 73 is the remainder of f when divided by
p and holds. O

Theorem 5.1.6. Let F be a field and f,p € F with p # 0p. Then there exists a unique r € Fx]
with degr < degp and [f], = [r]p, namely r is the remainder of f when divided by p.

Proof. Let r be the remainder of f when divided by p and let s € F[z] with degs < degp. Since
s = 0pp + s and deg s < degp, s is the remainder of s when divided by p. By [flp = [s]p if
and only f and s have the same remainder when divided by n, and so if and only if r = s. O

Lemma 5.1.7. Let F be a field and p € F[z] with p # 0p. Then

Flz]/(p) = {[r]plr € Flz], degr < degp}
Proof. By definition Fz]/(p) = {[f], | f € F[z]}. So the lemma follows from follows from O
Example 5.1.8. Determine
(a) Z3lx]/(z* + 1), and
(b) Qlz]/(2* —x +1).
@) Put p = 22 + 1 in Z3[z]. Then degp = 2. Since Zy = {0, 1,2}, the polynomials of degree less
than 2 in Zs[z| are
0,1,2,z,x+ 1,2+ 2,22,2x + 1,2z + 2
Thus

Z3 [x]/(m2 + 1) = {0, [Lp: [2]p, []p, [z + 1y, [2 + 2]p, [22],, 22 + 1]p, [22 + 2], }.
@ A polynomial of degree less than 3 can be written as a + bx + cx?, where a,b,c € Q. Thus

Qz/(2® =2 +1) = {la + bx + c2®]z0 411 | a,b,c € Q}.

Exercises 5.1:
#1. Let f,g,p € Q[z]. Determine whether f = g (mod p).
(a) f=a°— 22 +423 -3z +1, g =3z + 223 — 52 +2, p=a?+1;
(b) f=a+22% 322+ -5, g =x*+ 23 — 522 + 122 — 25, p=a2+1;
() f=3x%+42* +523 —622+52 -7, g=22"+62x*+23+222+22 -5, p=a—-a22+2-1
#2. Show that, under congruence modulo x + 2x + 1 in Z3[z] there are exactly 27 congruence classes.

#3. Prove or disprove: Let F be a field and f, g, k,p € F[z]. If p is nonzero, p is relatively prime to k
and fk = gk (mod p), then f =g (mod p).

#4. Prove or disprove: Let F' be a field and f,g,p € F[z]. If p is irreducible and fg = 0 (mod p),
then f =0p (mod p) or g =0 (mod p).
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5.2 Congruence Class Arithmetic

Theorem 5.2.1. Let F be a field and f, g, f,§,p in Flz] with p # 0p. If

[flp = [f]p and [g], = [9]p
then ~ ~
[f+glp=1[f+3lp, and [fgl,=1[fdlp

Proof. Since [f], = [f], and [g], = [§], we conclude fromthat f=f+pkandg=g+plfor
some k,l € F[z]. Hence

Frag=(+pk)+(g+p)=(f+g)+p- (k+1)
Since k +1 € F[z], gives

[f +glp = [+ 3l
Also

Fa=(f+pk)(g+pl)=fg+p-(kg+ fl+kpl),
€ Flz],[5.1.5 implies

[fg]p = [fg]p-

and since kg + fI + kpl

O
Definition 5.2.2. Let F' be a field and p € Flx]. We define an addition and multiplication on
Flz]/(p) by

flp+1glp=[f+9lp and [flp-[9p=1[f 9glp
for all f,g € F[z]. By this is well defined.

Example 5.2.3. Compute the addition and multiplication table for Zs[z]/(x? + ).

+ (0] ] fa]  [z+1] (0] (1] | [=] [z +1]
(0] [0] A = [z+1] 0] | [0] [0 | o] [0]
1] (1] 0 | [z +1]  [«] [1] | [o] (1] | [=z] [z +1]
(7] [z]  [z+1] 0] 1] [z | (0] [l [l (O]
[z+1] | [z+1] [z] [1] [0] [+1] [ [0] [r+1] [0] [z+1]

Note here that

(@l +1] = [+ D) = [2 + ] = [0

and

[z + 1)z + 1] = [(z + 1)(z +1)] = [2* + 1] = [(2° + 1) = (2" + 2)] = [z + 1]
Observe from the above tables that Zs[z]/(2? + z) contains the subring {[0],[1]} isomorphic to
Zs. The next theorem shows that a similar statement holds in general.
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Theorem 5.2.4. Let F be a field and p € F|x].

(a) The map o : Flz] = Flz|/(p), f — [flp is an onto homomorphism.
(b) Flz]/(p) is a commutative ring with identity [1r]p.

(¢c) Put F ={[a],|a € F}. Then F is a subring of F[z]/(p).

d DeﬁneT:F—>ﬁ',a—> alp (soT=0|p, ) If F, then 7 is an isomorphism and F is a
( P FxFE D P
subring of Fx]/(p) isomorphic to F.

Proof. @ Let f,g € F[z]. Then

a(f+g)=1[f+glp=[flp +glp = o(f) +0(9)

and
a(fg) = falp = [flplglp = o(f)o(g)

So ¢ is a homomorphism. If a € F[z]/(p), then a = [f], for some a € f € F[z]. So o(f) =a and ¢
is onto.

This is proved similar to m For the details see m

(c), F ={[a], | a € F} = {o(a) | a € F}. Since F is a subring of F[z] and ¢ is a homomorphism
we conclude from Exercise 6 on the Review for Exam 2 that F is a subring of F[z]/(p).

(d) We need to show that 7 is a 1-1 and onto homomorphism. Since 7(a) = o(a) for all a € F,
@ implies that 7 is a homomorphism. Let d € F. Then d = [a], for some a € F and so d = 7(a).
Thus 7 is onto. Let a,b € F with 7(a) = 7(b). Then [a], = [b],. Since p ¢ F, degp > 1 and since
a,b € F, dega < 0 and degb < 0. Thus dega < degp and degb < degp. Since [a], = [b], we
conclude from that a = b. So 7 is 1-1 and (d)) holds. O

The preceding theorem shows that F[z]/(p) contains a subring isomorphic to F. This suggest
that there exists a ring isomorphic to F[x]/(p) containg F has a subring. The next theorem shows
that this is indeed true.

Theorem 5.2.5. Let F be a field and p € F[x] with p ¢ F. Then there exist a ring R and o € R
such that

(a) F is a subring of R,
(b) there exists an isomorphism ® : R — Fz]/(p) with ®(«) = [z], and ®(a) = [a], for all a € F.
(¢) R is a commutative ring with identity 1 = 1p.

Proof. Let S = Flz]/(p)\ F and R = SUF. ( So for a € F we removed [a], from F[z]/(p) and
replaced it by a.) Define ® : R — F[z]/(p) by

O(r)y=[rl,ifre Fand ®(r)=rifres
Then its is easy to check that ® is a bijection. Next we define an addition & and a multiplication

® on R by

(1) r®s=0"H®(r)+d(s)) and 7Os:=0 1 (B(r)d(s))
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Observe that ®(®~1(u)) = u for all u € F[x]/(p). So applying ® to both sides of (1) gives
P(rds)=0(r)+P(s) and P(ros)=2(r)P(s)

for all r, s € R. implies that R is ring and ® is an isomorphism. Put a = [z],. Then a € S
and so a € R. Moreover ®(a) = ®([z],) = [2],. Let a € F. Then a € R and ®(a) = [a],. Thus (b)
holds.
For a,b € F we have
a®b=0"1(®(a)+ (b)) =2 *(a], +[b],) =@ (a+b],) =a+beEF
and
0 b= (B(@)(b)) = & (], lb],) = & ([ab],) = ab e F

So F'is a subring of R. Thus also @ is proved.
By F[z]/(p) is a commutative ring with identity [1r],. Since ® is an isomorphism we
conclude that R is a commutative ring with identity 1r. So holds. O

Notation 5.2.6. (a) Let F be a field and p € Flz] with p ¢ F. Let R and « be as in[5.2.5 We
denote the ring R by Fpla. (If F =Z,, we will use the notation Zg p[a])

(b) Let R and S be commutative rings with identities. Suppose that S is a subring of R with 1g = 1g.
Then we view S[z] as a subring of R[x], that is we identify the polynomial Y, fiz" in S[z] with
the polynomial 3" fiz' in Rlz]. Also if f € S[z] and r € R we write f*(r) for Z?ﬁ%f firt.

Theorem 5.2.7. Let F be a field and p € Flx] with p ¢ F and let « and @ be as in|5.2.5

(a) For all f € Fa], c1>(f*<a)) = [f],.

(b) Let f,g € Flx]. Then f*(«) = g*(«) if and only if [f], = [g]p-

(c) For each B € Fy,|a] there exists a unique f € F[z] with deg f < degp and f*(a) = 6.

(d) Let n = degp. Then for each B € Fy[a] there exist unique by, b1,...,by—1 € F with
B=bo+bia+...+b,_1a" "

(e) Let f € Flz], then f*(o) = 0p if and only if p | f in Flx].

(f) « is a root of p in Fyla].

Proof. @
deg f ' deg f 4 deg f ‘ deg f .
B(f*(a)) = @ (Z fz-w) = > e(f)e(a) "F Y (£l [l = [Z fx] = [flp-
i=0 i=0 i=0 i=0 »

()

—
—
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Let f € F[z]. Then

f'(0) =
= (" (@) = ©(3) (@ is 1-1)
— 71y = 2(5) i

Since ®(8) € Flz]/(p), shows that there exists unique f € F[z] with deg f < degp and
[f]p = ©(B). Thus (c) holds.

Let bg,...b,_1 € F and put f = by + by + ...b,_12" . Then f is a polynomial with
deg f < degp and by, ...,b,_1 are uniquely determined by f. Also
f*(a) =byg+bia+... bnflan_l
and so @ follows from .

f*(a) =0F
= fHa) =05(a) —- defintition of 0%
— [f]p = [0F] (H)
— plf—-0r 515
— plf 3.2.11|(B)
() Since p | p this follows from (). O

Example 5.2.8. Let p = 2?+x € Zs[z]. Determine the addition and multiplication table of Zs p[c].

+ 0 1 «a a+1 0 lla a+1
0 0 1 @ a+1 0 0 0]0 0
1 1 0|la+1 a 1 0 lla a+1
a o a+1 0 1 a 0 o « 0
a+l|a+1 @ 1 0 a+1|0 a+1 0 a+1

This can be read of from Example [5.2.3] But it also can be computed from the preceeding

theorem: By [5.2.7|(d) any elements of Fla] as by + by with b; € Zs. By Zs = {0,1} and so
Zopla) = {0+ 0,0 + 1o, 1 + 0a, 1 + 1a} = {0,1, 0, + 1}. By [5.2.7(f) p*(a) = 0. So o> + a =0
and

o’ =—a=(-Da=1la=oa.

This allows us to compute the multiplication table, for example

(a+Da+)=a’+a+a+l1=3a+1=a+1.

and

ala+1)=a’+a=0
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Exercises 5.2:
#1. Write out the addition and multiplication table of Zs[z]/(z® + 2z +1). Is Za[z]/(z® +z + 1) a field?

#2. Each element of Q[x]/(2% — 3) is can be uniquely written in the form [az + b] (Why?). Determine
the rules of addition and multiplication of congruence classes.(In other words, if the product of
[ax + b][cx + d] is the class [rz + ¢] describe how to find r and s from a,b, ¢, d, and similarly for
addition.)

#3. In each part explain why ¢ € F[x]/(p) is a unit and find its inverse.

(@) t = 22 -3] € Qz]/(=*-2)
b t = [gP+z+1] € Zsa]/(a*+1)
() t = [22+2+1] € Zsfz]/(z®+2+1)

5.3 F,|a] when p is irreducible

In this section we determine when F,[a] is a field.

Lemma 5.3.1. Let F be a field, p € Flz] withp ¢ F and f € F[z].

(a) f*(a) is a unit in Fpla] if and only if ged(f,p) = 1p.

(b) If 1p = fg + ph for some g,h € F[z], then g*(«) is an inverse of f*(«a).
Proof. @ We have

f*(a) is a unit in Fp[q]

— f*(a)B = 1F for some 8 € F,la] - B3
= f*(a)g*(a) = 1 for some g € F[z] —6.2.7(c)
= (fg)*(a) = 1% () for some g € F|x] - HE47
= [fglp = [1F]p for some g € F[x] —5.2.7|(b))
— 1p = fg + ph for some g, h € F[x] —5.1.5(a) (i)
— ged(f,p) = 1p —E2.17]

() From the above list of equivalent statement, 1z = fg -+ ph implies f*(a)g*(a) = 1 and so
since F[a] is commutative g* () is an inverse of f*(a). O

Proposition 5.3.2. Let F be a field and p € F[z] with p ¢ F. Then the following statements are
equivalent:

(a) p is irreducible in F[x].
(b) F,la] is a field.

(c) Fpla] is an integral domain.
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Proof. (ED = @: By F,la] is a commutative ring with identity 1. Suppose p is
irreducible and let 8 € F,la] with 8 # 0p. By [p.2.7d), 8 = f*(a) for some f € Flz]. Then
f*(a) #0p and@ , gives pt f. Since p is irreducible, Exerciseshows that ged(f,p) = 1p.
Hence so by Lemma [5.3.1| 8 = f*(«) is a unit in Fyla]. Also since F is a field, 1r # Op and since
(by ) 1p = 1p (o) and O = Of |4, all the conditions of a field (see Definition (3.2.20) hold
for Fplal.

@ = : If F,[a]. is a field, then by Corollary F,[a] is an integral domain.

() = (a):  Suppose F,[a] is an integral domain and (for a contradiction) that p is not
irreducible. Since p ¢ F, shows that p = gh where g and h are non constant polynomials of
degree less than deg p. Since g # 0 and both g and 0 have degree less than p, shows that
g*(a) # 0% () = 0p. Similarly, h*(«) # Op. But

g*(@)h*(a) = (gh)*(a) = p*(a) = Op
a contradiction since (Ax 11) holds in integral domains (see [3.2.18)). O

Corollary 5.3.3. Let F be a field, p an irreducible polynomial in F[zx]. Then Fpla] is a field
containing F as subring, and « is a root of p in Fpla).

Proof. By F' is a subring of Fj,[a]. Since p is irreducible, implies that Fj, () is field. By
5.2.7 a is a root of p in Fp(a). O

Example 5.3.4. Show that R,211[a] is a field and determine the addition and multiplication.

Since b2 +1 > 1 for all b € R, 22 4+ 1 has no root in R. So by Exercise 22 41 is irreducible
in R[z]. Thus by R,241[a] is a field and « is a root of 22 4+ 1 in R,2;[a]. Hence a? +1 =0
and o? = —1. By [5.2.7] every element of K can be uniquely written as a + ba with a,b € R. We
have

(a+ba)+ (c+da)=(a+c)+ (b+d)a

and

(a+ ba)(c + da) = ac + (be + ad)a + bda? = ac + (be + ad)a + bd(—1) = (ac — bd) + (ad + be)a
We remark that is now straight forward to check that
¢:Ry2pifa] = C, a+ba— a+bi
is an isomorphism between R,z [a] and the complex numbers C.
Corollary 5.3.5. Let F be a field and f € F[z].
(a) Suppose f & F. Then there exists a field K with F' as a subring such that f has a root in K.

(b) There exist a field L with F' as a subring, n € N, and elements c¢,a1,as...,a, in L such that

f=c(z—a1) (x—az) ...-(x—ap)
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Proof. (ED By , f is a product of irreducible polynomials. In particular, there exists an
irreducible polynomial p in F[z] dividing f. By K = F,la] is a field containing F' and « is a
root of p in K. Since p|f, shows that « is a root of f in K.

(]ED We will prove (]ED by induction on deg f. If deg f < 0, then f € F. So holds with
n =0,c = f and L = F. Suppose that k£ € N and (]ED holds for any field F' and any polynomial
of degree k in F[z]. Let f be a polynomial of degree k + 1 in F[z]. Then deg f > 1 and so by (a))
there exists a field K with F' as a subring and a root « of f in K. By the Factor Theorem
f=g(z—a) for some g € K[z]. Thus degg = k and so by the induction assumption, there exists
a field L with K as a subring and elements ¢, aq,...a; in L with

g=c-(x—ay) ... (x—ag).
Put ax4+1 = «. Then
f=g-@—a)=c-(x—a1) ...- (x —ar)  (r — aps1)-

Since F is a subring of K and K is subring of L, F' is subring of L. So (]ED holds for polynomials
of degree k + 1. By the Principal of Mathematical Induction (0.4.2]) (]ED holds for polynomials of
arbitrary degree. O

Exercises 5.3:

1. Determine which of the following congruence-class rings is a field.
(a) Zslz]/(2® + 222 + . + 1).
(b) Zs[z]/(223 — 42% + 22 + 1).
(¢) Zalx]/(x* + 22 +1).

2. (a) Verify that Q(v/3) := {r + sv/3|r,s € Q} is a subfield of R.
(b) Show that Q(v/3) is isomorphic to Q[z]/(x? — 3).
3. (a) Show that Zs[z]/(z® + x + 1) is a field.

(b) Show that 2® + x + 1 has three distinct roots in Zs[z]/(23 + z + 1).
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Ideals and Quotients

6.1 Ideals

Definition 6.1.1. Let I be a subset of the ring R.
(a) We say that I absorbs R if

ra€l and arel forallae I,r € R

(b) We say that I is an ideal of R if I is a subring of R and I absorbs R.

Theorem 6.1.2 (Ideal Theorem). Let I be a subset of the ring R. Then I is an ideal in R if and
only if the following four conditions holds:

(i) Or € I.

(ii) a+bel foralla,be .

(ii)) ra € I and ar € I for alla € I and r € R.
(iv) —a €1 forallael.

Proof. =>: Suppose first that [ is ideal in R. By Definition S absorbs R and S is a subring.

Thus hold and by also (i), (i) and hold.
<—: Suppose that || hold. (fiii) implies ab € I for all a,b € I. So by I is a subring
of R. By , I absorbs R and so [ is an ideal in R. O

Example 6.1.3. 1. {3n|n € Z"'} is an ideal in Z.

2. Let F be a field and a € F. Then {f € Flz]| f*(a) =0p} is an ideal in F|x].

3. Let R be a ring, I an ideal in R. Then {f € R[z] | f; € I for all i € N} is an ideal in R.

4. Let R be a ring, I an ideal in R and n a positive integer. Then M, (I) is an ideal in M, (R).

5. Let R and S be rings. Then R x {0g} is an ideal in R X S.
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Definition 6.1.4. Let R be a ring.
(a) Let a € R. Then aR = {ar | a € R}.
(b) Let I, Io,...1, be ideal in R. Then

ka =L+L+...+1, ::{Zik

k=1 k=1

ik61k71§/{3§n}

Lemma 6.1.5. Let R be a commutative ring with identity and a € R. Then aR is the smallest ideal
in R containing a. (That is: a € aR, aR is an ideal in R and aR C I, whenever I is an ideal in R
with aR C I.)

Proof. We first show that aR is an ideal containing a. Since a = a - 1g, a € aR. Let b,c € aR
and r € R. Then b = as and ¢ = at for some s,t € R. Thus b+ ¢ = as + at = a(s +t) € Ra,
rez = ar = (as)r = a(sr) € aR and Og = a0 € aR and —z = —(as) = a(—s) € aR. So by[6.1.2]aR
is an ideal in R.

Now let I be any ideal of I containing a. Since I absorbs R, ar € I for all » € R and so
aR C I O

Lemma 6.1.6. (a) Let I1, 15, ... 1, be ideals in the ring R. Then Iy + Is + ...+ I, is the smallest
ideal in R containing Iy, 1Is,...,I,_1 and I,,.

(b) Let R be a commutative ring with identity and ay,...,a, € R. Then a;R+ asR+ ...+ a,R is
the smallest ideal of R containing a1, as, ..., ay,.

Proof. @ For n = 1 this is obvious. For n = 2 this follows from Exercise 7 on Homework 11. The
general case follows by induction on n (and we leave the details to the reader)

(]EI) By a; R is an ideal containing a;. So by a1R+asR+...+a,R is an ideal containing
a1R,...a, R and so also contains ay, ..., ay,.

Let I be an ideal containing a1, ...a,. Then by a; R C I and thus by @, a1R+...4a,R C
1. O

Definition 6.1.7. Let I be an ideal in the ring R. The relation = (mod I)’ on R is defined by

a=b (modlI) <= a—-bel
for all a,b € R.
Remark 6.1.8. Let F be a field and f,g,p € F[z] with p # 0p. Then

f=g (modp) <= f=g (modpF[x])

Proof.
f=g (modp)
<= f—g=pkforsome k € Flz] —EIH
= f—g € pFz] —Definition of pFx]
— f=g¢g (mod pFlx]) — 6117
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Proposition 6.1.9. Let I be an ideal in R. Then = (mod I)’ is an equivalence relation on R.

Proof. We need to show that ‘= (mod I)’ is reflexive, symmetric and transitive. Let a,b,c € R.
Reflexive a —a =0g € I and so a = a (mod I).
Symmetric If a =b (mod I) thena—b € I. Thusb—a=—(a—b) € [ and so b=a (mod I).

Transitive If a = b (mod I) and b = ¢ (mod I), thena—b € I, b—c € I. Thusa—c =
(a—b)+(b—c)elandsoa=c (mod I). O

Definition 6.1.10. Let R be a ring and I an ideal in R.
(a) Let a € I. Then a + I denotes the the equivalence class of = (mod I)’ containing a. So
a+I={beR|a=b (modI)}={beR|a—-beTl}
a+ I is called the coset of I in R containing a.
(b) R/I is the set of cosets of I in R/I. So
R/I={a+1|ac R}
and R/I is the set of equivalence classes of = (mod I)’

Theorem 6.1.11. Let R be ring and I an ideal in R. Let a,b € R. Then the following statements
are equivalent

(a) a=b+1i for some i€ I. (9) a+I=0+1.

(b) a—b=1 for someiel (h) acb+1.

(¢c) a—bel. (i) b=a (mod I).

(d) a=b (mod I). (j) b—acel.

(e) bea+1. (k) b—a=j for some j €I
) (a+ )N {B+I)#0. (1) b=a+j for some j € 1.

Proof. @ <= (]ED :  This holds by [3.2.12
(]ED = : Obvious.
() < (d) : Follows from the definition of ‘= (mod I)".

Theorem [0.5.10[ implies that @— are equivalent. In particular, is equivalent to @—.
Since @ is symmetric in a and b we conclude that @ is also equivalent to @—. O

Corollary 6.1.12. Let I be an ideal in the ring R.
(a) Leta € R. Thena+1={a+1i|ieI}.
(b) Op + 1 =1 and so I is a coset of I in R.

(¢) Any two cosets of I are either disjoint or equal.
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Proof. (ED Let b € R. By7 we have b € a + I if and only if b = a + i for some 7 € I and
soif and only if be {a+i|i € I}.

(®) By (@) 0r+1={0,+i|icl}={i|icl} =1

By [6.1.11)(f),(g) a+I = b+I if and only if (a+I1)N(b+1) # 0. Since either (a+1)N(b+1) # 0
or (a+ )N (b+ 1) =0 we conclude that either a+ 1 =0b+1 or (a+1)N(b+1)=10. So two cosets
of I in R are either disjoint or equal. O

Exercises 6.1:
#1. Let I, I5,... I, be ideals in the ring R. Show that I; + I + ...+ I,, is the smallest ideal in R

containing I, I, ..., I, and I,,.
O O . . . .
#2. Is the set J = r € R 3 an ideal in the ring M2 (R) of 2 x 2 matrices over R?
0 r

#3. If I is an ideal in the ring R and J is an ideal in the ring S, prove that I x J is an ideal in the
ring R x S.

#4. Let F be a field and I an ideal in F[z]. Show that I is a principal ideal. Hint: If I # {Op} choose
d € I with d # Op and deg(d) minimal. Show that I = F[z]d.

#5. Let @ : R — S be a homomorphism of rings and let .J be an idealin S. Put I = {a € R | ®(a) € J}.
Show that I is an ideal in R.

6.2 Quotient Rings
Proposition 6.2.1. Let I be an ideal in R and a,b,a,b € R with
a+I=a+1 and b+I1=b+1

Then ~ ~
(a+b)+I=(a+b+I and ab+I=ab+1

Proof. Since a + I = a+ I|6.1.11fimplies that a = a + i for some ¢ € I. Similarly b= b+ j for some
jel
Thus ~
a+b=(a+i)+(b+j)=(a+b)+(i+7).

Since 4,5 € I and I is closed under addition, i + j € I and so by |6.1.11| (a +b) + I = (a +b) + 1.
Also R
ab=(a+1)(b+j) = ab+ (aj +ib+ij)
Since 7,7 € I and I absorbs R we conclude that aj,ib and ij all are in I. Since I is closed under
addition, aj +ib+ij € I and so ab+ I = ab-+ I by [6.1.11 O

Definition 6.2.2. Let I be an ideal in the ring R. Then we define an addition + and multiplication
- on R by
(a+D)+b+D)=(a+b)+I and (a+1I)-(b+I)=ab+1

for all a,b € R.
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Note that by the preceding proposition the addition and multiplication on R/I are well defined.
Remark 6.2.3. Let F be a field and p € F|x] with p # Or. Then F[z]/(p) = F[z]/pF[x].
Proof. This follows from Remark [6.1.§] O
Theorem 6.2.4. Let R be ring and I an ideal in R
(a) The function m: R — R/I, a — a+ I is an onto homomorphism.
(b) (R/I,+,-) is a ring.
(c) Opyr =0r+1=1.
(d) If R is commutative, then R/I is commutative.
(e) If R has an identity, then R/I has an identity and 1g;; = 1 + 1.
Proof. Let a,b € R. Then

ma+b) "LT (a+b)+1 LY @+ D)+ b+1) "L 7(a) + 7 (b)
and

Def ™

(ab) ab+1 "2 (a+Db+1) "L n(a)r(b)

So 7 is a homomorphism. If w € R/I, then by definition of R/I, Then u = r + I for some r € R
and so m(r) = r + I = u. Hence 7 is onto.

(]ED and @ follow from @ and - @ follows from @ and (3 -. O

Lemma 6.2.5. Let R be a ring and I an ideal in R. Let r € R. Then the following statements are
equivalent:

(a) rel.
(b)) r+1=1.
(C) T+I:0R/I'

Proof. By|6.1.11|r € 0g+1 if and only of r+1 = 0g+1. Since Og+1 =1 @ and (]ED are equivalent.
Since Op/r =1, (]E[) and @ are equivalent. O

Definition 6.2.6. (a) Let f : R — S be a homomorphism of rings. Then
ker f ={a€ R| f(a) =0gr}.
ker f is called the kernel of f.
(b) Let I be an ideal in the ring R. The function
m: R—R/I, r—r+1
is called the natural homomorphism from R to R/I.

Lemma 6.2.7. Let f: R — S be homomorphism of rings. Then ker f is an ideal in R.
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Proof. We will verify the four conditions of the Ideal Theorem So let a,b € ker f and r € R.
By definition of ker f,

(%) fla)=0s and f(b)=0s
(i) fla+1b) £ hom fla) + £(b) - 0g + 0g S 0s and so a + b € ker f by definition of ker f.

(ii)) f(ra) fhom f(r)f(a) @ f(r)0s O0g and so ra € ker f by definition of ker f.
Similarly, ar € ker f.

(iii)  f(OR) 0g and so Op € ker f by definition of ker f.
(iv)  f(—a) —f(a) Q —0g 0g and so —a € ker f by definition of ker f. O

Example 6.2.8. Define
O :Rz] = C, f — f*(49)

Verify that ® is a homomorphism and compute ker ®.

Define p : R — C,r — r. Then p is a homomorphism and @ is the function p; from Lemma [1.4.1]
So @ is a homomorphism. We have

ker® = {f € Rla] | ®(f) = 0} = {f € Rl] | /(i) = 0},

Let f € F[z]. We claim that i is a root of f if and only if 2% + 1 divides f in R[z]. According to
the Division algorithm, f = (22 + 1) - ¢ + r, where ¢,r € R[z] with deg(r) < deg(x? 4+ 1) = 2. Then
r = a + bz for some a,b € R and so

() = ((x2 +1)- q—H")*(i) =2 +1)-¢" (@) +r*(i) =0-q*(i) + (a + bi) = a + bi.

It follows that f*(i) = 0 if and only if @ = b = 0 and so if and only if » = 0 and if and only if
22 4+ 1 divides f. Hence
ker ® = (2% + 1)R[z].

Lemma 6.2.9. Let f: R — S be a ring homomorphism.
(a) Let a,b € R. Then f(a) = f(b) if and only if a +ker f = b+ ker f.
(b) f is 1-1 if and only if ker f = {Og}.

Proof. (ED
f(a) = [
— fla)-f0) = 05 -
= fla=10) = 0g -
— a—béekerf — Definition of ker f
= a+kerf = b4kerf —[GIII

(o) =>: Suppose f is 1-1 and let a € ker f. Then f(a) = 0g = f(0g) and since f is 1-1, a = Op.
Thus ker f = {Ogr}.
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<=: Suppose ker f = {0g} and let a,b € R with f(a) = f(b). By (a) a +ker f = b+ker f. We
have
a+ker f =a+ {0g} {a+0r} = {a}
and similarly b+ ker f = {b}. So {a} = {b} and a = b. Thus f is 1-1. O

Lemma 6.2.10. Let R be a ring, I an ideal in R and m# : R — R/I,a — a + I the natural
homomorphism from R to I. Then kermw = I.

Proof. Let r € R. Then r € ker f if and only if 7(r) = Og,; and if and only if » + 1 = Og,;. By
this holds if and only if r € I. So kerm = 1. O

Theorem 6.2.11 (First Isomorphism Theorem). Let f : R — S be a ring homomorphism. The
function

fiR/ker f — Imf, (a+ker f) — f(a)
is a well-defined ring isomorphism. In particular R/ ker f and Im f are isomorphic rings

Proof. By f(a) = f(b) if and only if a + ker f = b+ ker f. Hence fis well defined and 1-1. If
s € Im f, then s = f(a) for some a € R and so f(a+ker f) = f(a) = s. Hence f is onto. It remains
to verify that f is a homomorphism. We compute

Fllatkerf)+(b+terf)) PE" F((a+b)+ker f) et fla+b)
Flom f@ ) "L Fatker f) + F(b+ker )
and
Fllatkerf) - @tkerf)) "L Flab+ker ) Det 7 f(ab)
T @) f) "= Flatker f) T(b+ker f)
and so f is a homomorphism. O

Example 6.2.12. Show that Q[z]/(2? — 3)Q[x] is isomorphic to Q[v/3] = {a + bv/3 | a,b € Q}.

Define
®:Qz] >R, f — f<\/§)

By ® is a homomorphism. We will determine the kernel and image of ®. Let f € Qlx].
By the Division Algorithm, f = (2% — 3) - ¢+ for some ¢,r € Q[x] with degr < 2. Then r = a + bx
for some a,b € Q. Thus

o(f) = £ (V3) = (V3" =3) - q"(V3) + (a+ bV3) =a+bV3,
Thus

Im® = {a+bV3|a,beQ} =Q[V3]
Note that f € ker ® if and only if a + bv/3 = 0.
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Suppose a+bv/3 = 0 and b # 0. Then v/3 = —7 and so — ¢ is a root of 22 —3in Q, a contradiction
since #? — 3 is irreducible in Q[z] by Eisenstein’s Criterion applied with p = 3.

So a + bv/3 = 0 if and only of @ = 0 and b = 0. Hence f € ker ® if and only if » = 0 and if
and only if f = (22 — 3) - ¢ for some ¢ € Q[z]. Thus ker ® = (22 — 3)Q[x]. The First Isomorphism
Theorem shows that

Qlz]/(x? — 3)Q[z] is isomorphic to Q[v/3]



Appendix A

Logic

A.1 Rules of Logic

In the following we collect a few statements which are always true.

Lemma A.1.1. Let P, Q and R be statements, let T be a true statement and F a false statement.
Then each of the following statements holds.

LR1 F= P.

LR2 P=T.

LR 3 not(not P) <= P.
LR4 (notP = F)= P.
LR5 PorT.

LR 6 not(P and F).

LR7 (Pand T) <= P.

LR8 (Por F)«<= P.

LR9 (P and P)< P.

LR 10 (P or P) < P.

LR 11 P or not P.

LR 12 not(P and not P).

LR 13 (P and Q) < (Q and P).

LR 14 (Por Q)<= (Qor P).
LR 15 (P <= Q) < ((P and Q) or (not P and not Q))

LR 16 (P = Q) <= (not P or Q).
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LR 17

LR 18

LR 19

LR 20
LR 21
LR 22
LR 23

LR 24

LR 25

LR 26

LR 27

LR 28

LR 29

not(P = Q) <= (P and not Q).

(P and (P = Q)) — Q.

((P= @ and(Q = P)) «= (P Q).
(P = Q) < (not Q@ = not P)

(P <= Q) < (not P <= not Q).
not(P and Q) <= (not P or not Q)
not(P or Q) <= (not P and not Q)

(P and Q) and R) (P and (Q and R)).

Por Q) or R) (P or (Q or R))

((
((
( (P and Q) or R) ((P or R) and (Q or R))
(P or @) and R) ((P and R) or (Q and R))
((

P = Q) and( Q:>R)):>(P:>R)

((P — Q) and (Q — R)) — (P < R)

APPENDIX A. LOGIC

Proof. If any of these statements are not evident to you, you should use a truth table to verify it. [



Appendix B

Relations, Functions and Partitions

B.1 The inverse of a function

Definition B.1.1. Let f: A — B and g : B — A be functions.
(a) g is called a left inverse of f if go f =1ida.

(b) g is called a right inverse of g if fog=idp.

(¢) g is a called an inverse of f if go f =id4 and fog=1idp.

Lemma B.1.2. Let f: A — B and h : B — A be functions. Then the following statements are
equivalent.

(a) g is a left inverse of f.
(b) f is a right inverse of g.
(c) g(f(a)) =a for alla € A.

(d) Foralla € A and b € B:
fa)=b = a=g)

Proof. @ = @: Suppose that g is a left inverse of f. Then go f = id4 and so f is a right
inverse of g.
@ == : Suppose that f is a right inverse of g. Then by definition of ‘right inverse’

(1) go f=ida

Let a € A. Then

g(f(a)) = (gof)(a) — definition of composition
= ida(e)  —(1)
= a — definition of id 4

= (d):  Suppose that g(f(a)) = a for all a € A. Let a € A and b € B with f(a) = b.
Then by the principal of substitution g(f(a)) = g(b), and since g(f(a)) = a, we get a = g(b).

119
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@ = @: Suppose that for all a € A,b € B:

(2)) fla) =b= a=g(b)
Let a € A and put
(3) b= f(a)
Then by (2)
(4) a=g(b)
and so
(go f)(a) = g(f(a)) — definition of composition
= g0) ()
= a (4)
= ida(a) — definition of id4
Thus by go f =ida. Hence g is a left inverse of f. O

Lemma B.1.3. Let f: A — B and h : B — A be functions. Then the following statements are
equivalent.

(a) g is an inverse of f.
(b) f is a inverse of g.
(c) g(fa)=a for alla € A and f(gb) =b for all b € A.

(d) For alla € A and b € B:
fa=b <= a=gb

Proof. Note that g is an inverse of f if and only if g is a left and a right inverse of f. Thus the
lemma follows from [B.1.2] O

Theorem B.1.4. Let f : A — B be a function and suppose A # (.
(a) f is 1-1 if and only if f has a right inverse.
(b) f is onto if and only if [ has left inverse.
(c) f is a 1-1 correspondence if and only f has inverse.
Proof. =—>: Since A is not empty we can fix an element ag € A. Let b € B. If b € Im f choose
ap € A with fa, =b. If b ¢ Im f, put a, = ag. Define
g:B— A, b—ay

@ Suppose f is 1-1. Let a € A and b € B with b = fa. Then b € Im f and fap = b = fa. Since
f is 1-1, we conclude that a; = b and so ga = a, = b. Thus by g is right inverse of f.
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@ Suppose f is onto. Let a € A and b € B with gb = a. Then a = a;. Since f is onto,
B=1Imf and so a € Im f and f(a;) = b. Hence fa = b and so by [B.1.2] (with the roles of f and f
interchanged), ¢ is left inverse of f.

Suppose f is a 1-1 correspondence. Then f is 1-1 and onto and so by the proof of @ and
@7 g is left and right inverse of f. So g is an inverse of f.

—:

@ Suppose g is a left inverse of f and let a,c € A with fa = fc. Then by the principal of
substitution, g(fa) = g(fc). By[B- 1.2 g(fa) = a and g(fb) =b. So a =b and f -s 1-1.

(b) Suppose g is a right inverse of f and let b € B. Then by f(gb) = b and so f is onto.

Suppose f has an inverse. Then f has a left and a right inverse and so by @ and (]ED, fis
1-1 and onto. So f is a 1-1 correspondence. O

B.2 Partitions

Definition B.2.1. Let A be a set and A set of non-empty subsets of A.

(a) A is called a partition of A if for each a € A there exists a unique D € A with a € D.

(b) ~a= <A,A,{(a,b) € Ax A|{a,b} C D for some D € A})

Example B.2.2. The relation corresponding to a partition A = {{1, 3}, {2}} of A=1{1,2,3}

{1, 3} is the only member of A containing 1, {2} is the only member of A containing 2 and {1, 3}
is the only member of A containing 3. So A is a partition of A.

Note that {1,2} is not contained in an element of A and so 1 = 2. {1,3} is contained in {1, 3}
and so 1 ~a 3. Altogether the relation ~a can be described by the following table

~a |l 2 3
1 r — T
2 |- =z -
3 |z — =

where we placed an z in row a and column b of the table iff a ~a b.
We now computed the classes of ~ao. We have

1= {be A1 ~a b} = {13}
2]={bec A|2~ab}={2}

and
B]={be A3 ~ab}={1,3}

Thus A/ ~a= {{1,3},{2}} = A.
So the set of classes of relation ~x is just the original partition A. The next theorem shows that
this is true for any partition.

Proposition B.2.3. Let A be set.



1°.

122 APPENDIX B. RELATIONS, FUNCTIONS AND PARTITIONS

(a) If ~ is an equivalence relation, then A/ ~ is a partition of A and ~=~ /..
(b) If A is partition of A, then ~a is an equivalence relation and A = A/ ~a.

Proof. (&) Let a € A. Since ~ is reflexive we have a ~ a and so a € [a] by definition of [a]. Let
D € A/ ~ with a € D. Then D = [b] for some b € A and so a € [b]. [0.5.10] implies [a] = [b] = D. So
[a] is the unique member of A/ ~ containing a. Thus A/ ~ is a partition of A. Put ~=~4,.. Then
a ~ b if and only if {a,b} C D for some D € A/ ~. We need to show that a ~ b if and only if a ~ b.

So let a,b € A with a & b. Then {a,b} C D for some D € A/ ~. By the previous paragraph, [a]
is the only member of A/ ~ containing a. Thus D = [a] and similarly D = [b]. Thus [a] = [b] and
implies a ~ b.

Now let a,b € A with a ~ b. Then both a and b are contained in [b] and so a = b.

We proved that a = b if and only if a ~ b and so (ED is proved.

(o) Let a € A. Since A is a partition, there exists D € A with a € A. Thus {a,a} C D and
hence a ~a a. So ~x is reflexive. If a ~a b then {a, 8} C D for some D € A. Then also {b,a} C D
and hence b ~aA. There ~ is symmetric. Now suppose that a,b,¢c € A with a ~a b and b ~a c.
Then there exists D, E € A with a,b € D and b,¢c € E. Since b is contained in a unique member of
A, D =F and so a ~a c¢. Thus ~A is an equivalence relation.

It remains to show that A = A/ ~a. For a € A let [a] = [a]~a. We will prove:

Let D € A and a € D. Then D = [a].

Let b € D. Then {a,b} € D and so a ~a b by definition of ~a. Thus b € [a] by definition of [a].
It follows that D C [a].

Let b € [a]. Then a ~a b by definition of [a] and thus {a,b} € F for some F € A. Since A is a
partition, a is contained in a unique member of A and so E = D. Thus b € D and so [a] C D. We
proved D C [a] and [a] € D and so holds.

Let D € A. Since A is a partition of A, D is non-empty subset of A. So we can pick a € D and
implies D = [a]. Thus D € A/ ~a and so A C A/ ~a

Let E € A/ ~a. Then E = [a] for some a € A. Since A is a partition, a € D for some D € A.
gives D = [a] = E and so E € A. This shows A/ ~AC A.

Together with A C A/ ~a this gives A = A/ ~a and is proved. O



Appendix C

Real numbers, integers and natural
numbers

In this part of the appendix we list properties of the real numbers, integers and natural numbers we
assume to be true.

C.1 Definition of the real numbers
Definition C.1.1. The real numbers are a quadtruple (R, +,-, <) such that
(Ri) R is a set (whose elements are called real numbers)

(R ii) + is a function ( called addition) , R x R is a subset of the domain of + and

a+belR (Closure of addition)
for all a,b € R, where a @ b denotes the image of (a,b) under +;

(R iii) - is a function (called multiplication), R X R is a subset of the domain of - and

a-beR (Closure of multiplication)

for all a,b € R where a - b denotes the image of (a,b) under -. We will also use the notion
ab for a-b.

(R iv) < is a relation between R and R;

and such that the following statements hold:

(RAx1) a+b=b+a foralla,beR. (Commutativity of Addition)
(RAx2) a+ (b+c¢)=(a+b)+c foralab,ceR; (Associativity of Addition)

(R Ax 3) There exists an element in R, denoted by 0 (and called zero), such that a +0 = a and
0O+a=a foralla € R; (Existence of Additive Identity)
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(R Ax 4) For each a € R there exists an element in R, denoted by —a (and called negative a) such

that a + (—a) =0 and (—a) + a = 0; (Existence of Additive Inverse)
(R Ax 5) a(b+c) = ab+ ac for all a,b,c € R. (Right Distributivity)
(R Ax 6) (a+b)e=ac+ bc for all a,b,c € R (Left Distributivity)
(R Ax 7) (ab)c = a(bc) for all a,b,c € R (Associativity of Multiplication)

(R Ax 8) There exists an element in R, denoted by 1 (and called one), such that la = a for all
a€ R. (Multiplicative Identity)

(R Ax 9) For each a € R with a # 0 there exists an element in R, denoted by + (and called ‘a
inverse’) such that aa=! =1 and a=la = 1;

(Existence of Multiplicative Inverse)

(R Ax 10) For all a,b € R,
(a<bandb<a)< (a=0)

(R Ax 11) For all a,b,c € R,
(a<bandb<c)= (a<c¢)

(R Ax 12) For all a,b,c € R,
(a<band 0 < c) = (ac < be)

(R Ax 13) For all a,b,c € R,
(a<b)=(a+c<b+c)

(R Ax 14) Each bounded, non-empty subset of R has a least upper bound. That is, if S is a non-

empty subset of R and there exists u € R with s < u for all s € S, then there exists
m € R such that for all r € R,

(sgrforalls€S><:>(m§r)

(R Ax 15) For all a,b € R such that b # 0 and 0 < b there exists a positive integer n such that
a < nb. (Here na is inductively defined by la = a and (n+ 1)a = na + a).

Definition C.1.2. The relations <, > and > on R are defined as follows: Let a,b € R, then
(a) a<bifa<banda#b.
(b) a>bifb<a.

(c)a>bifb<aanda#b



C.2. ALGEBRAIC PROPERTIES OF THE INTEGERS

C.2 Algebraic properties of the integers

Lemma C.2.1. Let a,b,c € Z. Then

1. a+beZ.

2.a+(b+c)=(a+d)+c

3. a+b=b+a.

4.a+0=a=0+4a.

5. There exists v € Z with a +z = 0.

6. abe Z.

7. a(be) = (ab)c.

8. a(b+c¢) =ab+ ac and (a4 b)c = ac + be.
9. ab = ba.

~
S

al =a = la.

11. If ab=0 thena=0 or b=0.

C.3 Properties of the order on the integers

Lemma C.3.1. Let a,b,c be integers.

(a) Ezactly one of a < b,a =">b and b < a holds.
(b) If a < b and b < ¢, then a < c.

(c) If ¢ > 0, then a < b if and only if ac < bc.
(d) If ¢ <0, then a < b if and only if bc < ac.
(e) If a < b, thena+c<b+c.

(f) 1 is the smallest positive integer.

C.4 Properties of the natural numbers
Lemma C.4.1. Let a,b € N. Then

(a) a+beN.

(b) ab € N.

Theorem C.4.2 (Well-Ordering Axiom). Let S be a non-empty subset of N.

element
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Then S has a minimal
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Appendix D

The Associative, Commutative and
Distributive Laws

D.1 The General Associative Law

Definition D.1.1. Let G be a set.

(a) A binary operation on G is a function + such that G X G is a subset of the domain of + and
+(a,b) € G for all a,b € G.

(b) If + is a binary operation on G and a,b € G, then we write a + b for +(a,b).
(c) A binary operation + on G is called associative if a + (b+ ¢) = (a4 b) + ¢ for all a,b,c € G.

Definition D.1.2. Let G be a set and +: G x G — G, (a,b) — a+b a function. Let n be a positive
integer and ay,as,...a, € G. Define 23:1 a; = a1 and inductively forn > 1

n n—1
E a; = E a; | + ay,.
i=1 i=1

S0 Z?zl a; = (( ((a1 + Cbz) +a3) +...+ anfz) +an1) +a,.
Inductively, we say that z is a sum of (a1,...,ay,) provided that one of the following holds:
1. n=1and z =a;.

2. n > 1 and there exists an integer k with 1 < k < n and x,y € G such that x is a sum of
(a1y...,ax), y is a sum of (ag41,akt2,-..,0,) and 2 =z + Y.

For example a is the only sum of (a), a + b is the only sum of (a,b), a + (b +¢) and (a +b) + ¢
are the sums of (a,b,¢), and a+ (b+ (c+d)),a+ (b+¢) +d),(a+b)+ (c+d),(a+ (b+¢)) +d and
((a+b) + ¢) + d are the sums of (a, b, ¢, d).

Theorem D.1.3 (General Associative Law). Let + be an associative binary operation on the set
G. Then any sum of (a1,as,...,ay,) is equal to Y i, a;.

127
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Proof. The proof is by complete induction. For a positive integer n let P(n) be the statement:
If a1,as,...a, are elements of G and z is a sum of (a,as,...,a,), then z =31 a;.

Suppose now that n is a positive integer with n and P(k) is true all integer 1 < k < n. Let
ai,as,...a, be elements of G and z is a sum of (a1,as,...,a,). We need to show that z = Z;;l a;.

Assume that n = 1. By definition a; is the only sum of (a;) and 2321 ar =ai. S0z =a; =
Z:‘L:l a;

Assume next that n > 1. We will first show that

(*) If w is any sum of (a1, ...,an—1), then u+a, = > 1 a;.

Indeed by the induction assumption, P(n — 1) is true and so u = Z:-le a;. Thus v+ a, =

S ' a; + a,, and the definition of Y27, a; implies u + a, = Y31, a;. So (*) is true.

K3

By the definition of ‘sum’ there exists 1 < k < n, a sum z of (a1,...,ax) and a sum y of
(ag+1,---,an) such that z =z + y.

Case 1: k=n—1.

In this case z is a sum of (a1,...,an—1) and y a sum of (ay,). So y = a, and by (**) applied
with x = u we havez:ac—l—y:x—i—anzz?:lai.

Case 2: 1<k<n-1.

Observe that n — k < n — 1 < n and so by the induction assumption P(n — k) holds. Since y
is a sum of agy1,...,a,) we conclude that y = Z?:_lk Qi Since k <n—1,1 < n—k and so by
definition of ¥, y = Z;:lk_l Gj+; + an. Since + is associative we compute

n—k n—k—1
Z:x+y:x+(zak+i+an) =(z+ Z apyi) + an

=1 =1

Put u =z + Z?;lkfl agyi- Then z = u+ a,. Also z is a sum of (ay,...,ax) and Z?;lkfl Qhyi
is a sum of (ak,...,an—1). So by definition of a sum, v is a sum of (a1,...,a,—1). Thus by (**),

n

c=uta, =Y an

3

We proved that in both cases z = Y. | a;. Thus P(n) holds. By the principal of complete
induction, P(n) holds for all positive integers n. O
D.2 The general commutative law

Definition D.2.1. A binary operation + on a set G is called commutative if a + b = b+ a for all
a,beq.

Theorem D.2.2 (General Commutative Law I). Let + be an associative and commutative binary
operation on a set G. Let aj,as,...,a, € G and f:[1...n] — [1...n] a bijection. Then

doai=) a0
i=1 i=1
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Proof. Obsere that the theorem clearly holds for n = 1. Suppose inductively its true for n — 1.

Since f is onto there exists a unique integer k with f(k) = n.

Define g : {1,...n — 1} - {1,...,n—1} by g(i) = f(i) if ¢ < k and g(i) = f(i + 1) if ¢ > k.
We claim that g is a bijection. For this let 1 <! < n — 1 be an integer. Then [ = f(m) for some
1<m<n. Sincel #nand fis 1-1, m # k. If m < k, then g(m) = f(m) =1 and if m > k, then
g(m —1) = f(m) = [. Thus g is onto and by [G.L.7([b) g is also 1-1. By assumption the theorem is
true for n — 1 and so

n—1 n—1
(+) dai= ) a0
i=1 i=1
Using the general associative law (GAL, Theorem [D.1.3) we have

D i1 f (i)

(GAL) - <zf‘f as(i) + (@500 + Lizpr1 a56)
(n=f(k)) = (CiZ ag) + (an + i ar)
Y apm) + (i arc) + an)
(i) ap) + (X1 ar@) + an

(
(‘ +' commutative ) =
(
(Substitution j =i+1) = (X1 apm) + (Xiok argen)) + an
(
(

("+'associative ) =

(definition of g) = (Z 71 ag(iy) + (Z;L;kl ag(;))) + an
(GAL) = Z 71 Qg (i) ) +an

(+) = (T @) +an
(definition of ") = Yra

So the Theorem holds for n and thus by the Principal of Mathematical induction for all positive
integers. O

Corollary D.2.3. Let + be an associative and commutative binary operation on a set G. I a
non-empty finite set and fori € I letb; € G. Let g,h: {1,...,n} — I be bijections, then

D boty = D i)
=1 =1

Proof. For 1 <i < n, define a; = by(;). Let f = g 1 oh. Then f is a bijection. Moreover, go f = h
and ag(;) = by(s()) = bn(i))- Thus

n n n n
D bhiy =D asm = D 6= by
i=1 i=1 i=1 i=1
O
Definition D.2.4. Let + be an associative and commutative binary operation on a set G. I a finite

set and for i € I let b € G. Then Y, a; :== > by, where n = |I| and f := {1,...,n} is
bijection. (Observe here that by this does not depend on the choice of f.)
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Theorem D.2.5 (General Commutative Law II). Let + be an associative and commutative binary
operation on a set G. I a finite set, (I;,| j € J) a partition of I and fori € I let a; € G. Then

Su-X (¥

i€l jeJ \iely

Proof. The proof is by induction on |J|. If |J| = 1, the result is clearly true. Suppose next that |J| =
2 and say J = {j1,J2}. Let f; : {1,...,n;} — I}, be a bijection and define f: {1...,n1 +no} — I
by f(i) = f1(4) if 1 <i<ny and f(i) = fa(i —n1) if n; +1 < ¢ < ny + ny. Then clearly f is a onto

and so by [G.1.7(b), f is 1-1. We compute

S aga

B (S asw) + (SR a0
= (ZZien) + (CEiane)
= (Zieljl ai) + (Zielj2 ai)
= Djed (Zielj ai)

Dier @i

Thus the theorem holds if |J| = 2. Suppose now that the theorem is true whenever |J| = k.
We need to show it is also true if |J| = k+ 1. Let j € J and put Y = I\ J;. Then (I | j #
k € J) is a partition of Y and (I;,Y’) is partition of I. By the induction assumption, >, y a; =

D ithes (Zielk a;) and so by the |J| = 2-case

Dierti = (Zielj ai) + (Ciey @)
= (Zielj ai) + (Zj;ﬁkeJ (Z’ielk ai))
= djes (Zieh a;)

The theorem now follows from the Principal of Mathematical Induction. O

D.3 The General Distributive Law

Definition D.3.1. Let (+,-) be a pair of binary operation on the set G. We say that

(a) (+,) is left-distributive if a(b+ ¢) = (ab) + (ac) for all a,b,c € G.

(b) (+,-) is right-distributive if (b+ ¢)a = (ba) + (ca) for all a,b,c € G.

(c) (+,-) is distributive if its is right- and left-distributive.

Theorem D.3.2 (General Distributive Law). Let (+,-) be a pair of binary operations on the set G.

(a) Suppose (+,-) is left-distributive and let a,by,...by, € G. Then

m

Q(ij) =Zabj

j=1
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(b) Suppose (+,-) is right-distributive and let ay,...an,b € G. Then

O ai)-b=

=1 1=

n

aib
1
(¢) Suppose (+,-) is distributive and let ay,...apn,b1,...by € G. Then

Oa)- O b)) =>_ D ab

i=1 j=1 i=1 \j=1

Proof. (ED Clearly @ is true for m = 1. Suppose now @ is true for k and let a,bq,...bx41 € G.
Then

a (Zf“ bi)
(i

=1
(definition of ) = a- (K, 0)+ ka)
(left-distributive) = a- (S5, bi) +a by
(induction assumption) = (Zle abi> + abgy1

(definition of ) Zf:ll ab;

Thus @ holds for k£ + 1 and so by induction for all positive integers n.
The proof of (]ED is virtually the same as the proof of @ and we leave the details to the reader.

()
m k n m n m
<Zai> | (Zb’) 23 e | E X X
i=1 i=1 i=1 j=1 i=1 \j=1
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Appendix E

Verifying Ring Axioms

Proposition E.0.3. Let (R,+,-) be ring and (S,®,®) a set with binary operations @ and ©.
Suppose there exists an onto homomorphism ® : R — S ( that is an onto function ® : R — S with
D(a+b) = P(a) ® P() and P(ab) = P(a) © ®(b) for all a,b € R. Then

(a) (S,®,®) is a ring and ® is ring homomorphism.

(b) If R is commutative, so is S.

Proof. @ Clearly if S is a ring, then ® is a ring homomorphism. So we only need to verify the eight
ring axioms. For this let a,b,c € S. Since ® is onto ther exist z,y,z € R with ®(z) = a,®(y) = b
and ®(z) = c.

By assumption @ is binary operation. So [(Ax 1) holds for S.

(Ax 2)
ad(boc) = @) (@@ @e(z) = C@oblytz) = B(z+(y+2)
= O((z+y) +2) = P(x+y) © O(2) = (P(z)@2(y)dP(z) = (adb)Dc

aDb=0(x)DP(y) =P(z+y)=D(y+z)=2(y) ©P(z)=bDa
Put 0g = ®(0r). Then
a®0s =) DP0g)=P(x+0g) =P(z)=0a
O0s+a=®0g)®P(x) =20 +z)=?(x) =a.
Put d = ®(—z). Then
a®d=>(x)®P(—z) =P(x+ (—z)) = 2(0g) =0sg
By assumption © is binary operation . So holds for S.

a®(boe) = @) (2(y) o 2(2)) O(z) © (yz) = ®(z(y2))
= O((zy)2) = D(zy) © D(2) = (2(z)02Y)0®(z) = (a0d)OC
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(Ax 8)
a®(bdc) = ()0 (P(y) dP(z) = O(z) © P(y + 2) = D(z(y+ 2))
= Pley+xz) = O(xy) + P(xz) = (P(x)0D(y)+ (P(x) ©@P(2)) = (a®b)B(aG®c)

Similarly (a®b) ©c=(a®c) ® (bOc).

(b)) Suppose R is commutative then
(Ax 9)] a®b=2(z) O 0(y) = (zy) = 2(yz) = 2(y) © P(z) =bOa O



Appendix F

Constructing rings from given rings

F.1 Direct products of rings

Definition F.1.1. Let (R;):cs be a family of rings (that is I is a set and for each i € I, R; is a
ring).

(a) X,c; Ri is the set of all functions r: I — J;c; Ri,i — r; such that r; € R; for alli € 1.

iel
(b) X,cp Ri is called the direct product of (R;)er-
(c) We denote r € XiEI R; by (ri)icr, (ri); or (ri).
(d) Forr = (r;) and s = (s;) in R define r +s = (r; + s;) and rs = (r;s;).
Lemma F.1.2. Let (R;)ier be a family of rings.
(a) R:= X, R; is a ring.

(b) O0r = (O, )ier-

(¢) =(ri) = (=ri).

(d) If each R; is a ring with identity, then also X

ser Ri is a ring with identity and 1g = (1g,).

(e) If each R; is commutative, then X, ; R; is commutative.

i€l
Proof. Left as an exercise. O

F.2 Matrix rings

Definition F.2.1. Let R be a ring and m,n positive integers.

(a) An m X n-matrix with coefficients in R is a function

A:A{L...,om}x{Ll,...,n} = R, (i,7)— a;.
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(b) We denote an m x n-matriz A by [a;]1<i<m., [aijlij, [aij] or

1<5<n

ail a12 . A1n
a21 a2z ... Q2pn
Aml  Am2 oo Amn

(¢) Let A = [a;;] and B = [b;;] be m x n matrices with coefficients in R. Then A + B s the
m X n-matriz A+ B := [a;; + bjj].

(d) Let A = [ai;lij be an m X n-matriz and B = [bi]j5 an n X p matric with coefficients in R. Then
AB is the m x p matriz AB = [Z?Zl aijbjklik-

(e) M, (R) denotes the set of all m X n matrices with coefficients in R. M, (R) = M, (R).

It might be useful to write out the above definitions of A+ B and AB in longhand notation:

a1 a2 ... Qin b11 bio ... bin
ag1 a9 e a9n, b21 b22 e an
_'_
am1  Am2 Amn bml bm2 bmn
a1 +biy az+biz ... amn +bi,
a1 +bo1  agze +baa ... azy + b2,
am1 + bm2 am2 + bm2 ces Qmp Tt bmn_
and -
a1 a1z e A1n b11 b12 e blp
a1 a9 “e a2n b21 bgg . bgp
Am1 Am2 ... Qmn bnl bng . bmp_
a11bi1 +aizba1 + ... + ainbn a11bi2 +aizbe2 + ... +ainbnz ... anibip +ai2bzp + ...+ ainbnp
az1b11 + az2b21 + ... + az2pbni a21b12 + a22b22 + ... +aznbn2 ... a21bip +a22bzp + ... + a2nbnp
am1b11 + amaba1 + ... + amnbn1 am1bi2 + amabaz + ... + amnbn2 cee amlblp + am2b2p +...+ amnbnp

Lemma F.2.2. Let n be an integer and R an ring. Then

(a‘) (Mn(R)a+7) is a Ting.
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(b) Ont,(r) = (OR)i;
(¢) —laij] = [~aij] for any [ai;] € My (R).

(d) If R has an identity, then M, (R) has an identity and 1y;, (ry = (0i;), where

1n ifi=j
dij = o
Or  ifi#]

Proof. Put J = {1,...,n} x {1,...,m} and observe that (M,(R),+) = (X ,c;R,+). So
implies that [[Ax T){(Ax 5)} (b) and hold.

Clearly [(Ax 6)| holds. To verify [(Ax 7)[let A = [a;;], B = [bji] and C' = [cy] be in M, (R). Put
D = AB and E = BC. Then

(AB)C = DC = Zdikcu = Z (Z az’jbjk> Ckl] = [ az‘jbjkckl]
k=1 1 i j

il

and

A(BC) = AF = Zaijeﬂ = Zaij (Z bjkckl>] = lzzaijbﬂcckl}
L7=1 i / il

il

Thus A(BC) = (AB)C.

(A+ B)C = [ai; + bijlij - [cjnlin = [Zn:(%‘ + bz‘j)cjk]
ik

j=1

= [Z aijcjk] +
j=1

Zbijcjk = AC + BC.
ik j=1 i

k
So (A+ B)C = AC + BC and similarly A(B+ C) = AB + AC. Thus M,,(R) is a ring,.

Suppose now that R has an identity 1z. Put I = [d;;];;, where

g ifi=j
dij = e
Op ifi=j

If ¢ # j, then 6;5a;; = Orajr = Og and if ¢ = j then 6501 = 1pas = as. Thus
= [aix)ir = A

ITA = [Z 5ijajk
7j=1

and similarly AT = A. Thus A is an identity in R and so @ holds. O

ik
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F.3 Polynomial Rings

In this section we show that if R is ring with identity then existence of a polynomial ring with
coefficients in R.

Theorem F.3.1. Let R be a ring. Let P be the set of all functions f : N — R such that there exists
m € N* with

(1) f(i) =0g for alli>m

We define an addition and multiplication on P by

(2) (f+9)(@) = f() +g() and (fg)(i)= )  f(i)g(k—1i)

(a) P is a ring.
(b) Forr € R define r° € P by

orn T ifi=0
®) ()= {OR ifi 0

Then the map R — P,r — r° is a 1-1 homomorphism.

(¢) Suppose R has an identity and define x € P by

(i) = g ifi=1
T o ifi#1

Then (after identifying r € R with r° in P), P is a polynomial ring with coefficients in R and
indeterminate x.

Proof. Let f,g € P. Let deg f be the minimal m € N* for which (1) holds. Observe that (2) defines
functions f + g and fg from N to R. So to show that f + g and fg are in P we need to verify that
(1) holds for f+ g and fg as well. Let m = maxdeg f,degg and n = deg f + deg g. Then for i > m,
f(@i) = 0g and ¢(i) = Or and so also (f + ¢g)(¢) = Or. Also if i > n and 0 < k < ¢, then either
k < degf ori—k > degg. In either case f(k)g(i — k) = Or and so (fg)(i) = Ogr. So we indeed
have f + g € P and fg € P. Thus axiom [(Ax 1)[ and |(Ax 6) hold. We now verify the remaining
axioms one by one. Observe that f and g in P are equal if and only if f(i) = g(¢) for all i € N. Let
f,9,h € Pand i€ N.

((Ax 2)
(F+9)+h)@) = (F+9@+hE) = (F@)+9@)+n6) = [+ (96)+hi)
= [+ @O +h@) = fO+@+HEH = (F+g+h)3E)

((Ax3)]  (f +9)(@) = f(i) +g(i) = g(i) + f(i) = (g + [)(2)
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((Ax 4)] Define Op € P by 0p(i) = Og for all ¢ € N. Then

(f +0p)(i) = f(i) + 0p(i) = f(i) + 0r = f(i)
(0p + f)(@) = 0p(i) + f(i) = Or + f(i) = f(i)
Define —f € P by (—f)(i) = —f(i) for all i € N. Then
(f + (=NE) = f(@) + (=)@) = f(i) + (=f(i) = 0r = 0p ()

Any triple of non-negative integers (k,l,p) with k + 1 4+ p = ¢ be uniquely written as
(k,j—k,i—j) where 0 < j<iand 0 <k <j—k)and uniquely as (k,l,i — k — 1) where 0 <i <k
and 0 <[ <14 — k. This is used in the fourth equality sign in the following computation:

(fg)h)(i) = > (f9)() - i —j) = Z((Zf ) (z—j))
7=0 =0
= ( f(k)g(j—k))h(z—g)) = Z(Zf(k)g(l)h(i—k—l)))
gzO k=0 L k=0 \I1=0
- (f(k) g(l)h(z’—k—l))) = Zf ~(gh)(i — k)
k=0 =0
= (f(gh))(3)
(f-(g+m)) = > FG) - (g+ ) —j) = > fG) - (gli— )+ (i - j))
=0 =0 ‘
= FGg =5+ FhG—35) = D fGgli—35)+ > FG)hiE—j)
j=0 j=0 j=0
= (f9)(@) + (fh)(i) = (fg+ fh)(d)
(f+9) W) = D (F+90) h(i—7) = D (FG) +9() - hli = 5)
j=0 - =0 ‘
= Y SO =) +9ihi—5) = D FGBGE—5)+ D g(i)h(i— i)
j=0 j=0 j=0
= (fR)(i) + (gh)(i) = (fh+ gh)(i)

Since |(Ax 1)| through hold we conclude that P is a ring and (@) is proved. Let r,s € R
and k,l € N. We compute

(W (r+9)°(0) = {0; iz = el = 7+

and
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Note that r°(k) = Og unless k = 0 and s°(i — k) = Og unless and i — k = 0. Hence 7°(k)s(i —
k) = Op unless k = 0 and ¢ — k = 0 (and so also ¢ = 0). Thus (r°s)(i) = 0 if i # 0 and
(r°s)(0) = r°(0)s°(0) = rs. This
(5) r°s® = (rs)°

Define p: R — P,r — r°. If r;s € R with r° = s°, then r = r°(1) = s°(1) = s and so p is 1-1.
By (4) and (5), p is a homomorphism and so (b) is proved.

Assume from now on that R has an identity.
For k € N let 6 € P be defined by

® S b

Let f € P. Then

(7) (rf)@) =Y r°(k)f(i—k)=r-f(i +20sz* ) =7 f(i)

and similarly

(8) (fro)(@) = f()-r

In particular, 1% is an identity in P. Since §y = 1% we conclude

9) So=1%=1p

For f = §; we conclude that

r ifi=k

(10) (18)(0) = (Bur)(0) = {OR i

Let m € N and aq, ... an, € R. Then (10) implies

a; ifi<m
11 1) ¢ -
1 <Za’“> {OR iti>m

We conclude that if f € P and ag,a1,a2,...a, € R then
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(12) f=Y a6 <= m>degfanday=f(k)forall0<k<m
k=0
We compute

i
(13) (8k00)(0) = D 8k ()10 — j)
§=0
Since 05 (5)0;(i — j) is Og unless j = k and [ =i — j, that is unless j = k and ¢ = [ + k, in which
case it is 1, we conclude

. 1p ifi=k+1 .
14 010, = = 4
(14) (9101) (@) {OR it k41 (1)
and so
(15) 0101 = Op4t

Note that x = §;. We conclude that

(16) zF =5y,
By (10)
(17) rx =xr° forallreR

We will now verify the four conditions (i)-(iv) in the definition of a polynomial. By (b)) we we
can identify r with r° in R. Then R becomes a subring of P. By (9), 13 = 1p. So (i) holds. By
(17), (ii) holds. (iii) and (iv) follow from (12) and (16). O

Lemma F.3.2. Let R and P be rings and © € P. Suppose that Conditions (@)- m hold
under the convention that fox° := fy for all fo € R. Then R and P have identities and 1 = 1p.

Proof. Since x € P, shows that z = Y. e;2" for some m € N and eg, e1,...e, € R. Let
r € R. Then

n n
rr = rZeixi = Z(Tei)xi.
i=0 i=0
So shows that re; = r. Since rz = xr by a similar argument gives e;r = e and
$0 e is an identity in R and e¢; = 1. Now let f € P. Then f = > " fiz® for some n € N and
fo,--+, fn € R. Thus

Far=0 fia) - 1r =) (filp)' =) fix' = f
i=0 i=0 i=0
Similarly, 1 - f = f and so 1p is an identity in P. O
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Appendix G

Cardinalities

G.1 Cardinalities of Finite Sets

Notation G.1.1. Fora,b€ Z setfa...bi={c€Z|a<c<b}.

Lemma G.1.2. Let A C [1...n]. Then there exists a bijection o : [1...n] — [1...n] with a(A) C
1...n—1].

Proof. Since A # [1...n] there exists m € [1...n] with m ¢ A. Define a : [1...n] — [1...7n]
by a(n) = m, a(m) = n and «(i) = i for all ¢ € [1...n] with n # i # m. It is easy to verify
that « is bijection. Since a(m) = n and m ¢ A, a(a) # n for all a € A. Son & a(A) and so
alA)C[1l...n]—1. O

Lemma G.1.3. Letn €N and let B:[1...n] = [1...n] be a function. If B is 1-1, then B is onto.

Proof. The proof is by induction on n. If n = 1, then 8(1) = 1 and so § is onto. Let A =
B([1...n—1]). Since B(n) ¢ A, A # [1...n]. Thus by there exists a bijection a : [1...n]
with a(A) C [1...n—1]. Thus af8([1...n—1]) C [1...n—1]. By induction aB([1...n—1] =
[1...n—1]. Since af is 1-1 we conclude that a8(n) = n. Thus o is onto and af is a bijection.
Since « is also a bijection this implies that 3 is a bijection. O

Definition G.1.4. A4 set A is finite if there exists n € N and a bijection a: A — [1...n].

Lemma G.1.5. Let A be a finite set. Then there exists a unique n € N for which there ezists a
bijection ac: A — [1...n].

Proof. By definition of a finite set [G.1.4] there exist n € N and a bijection a: A — [1...n]. Suppose
that alsom € Nand §: A — [1...m] is a bijection. We need to show that n = m and may assume
that n <m. Let y:[1...n] = [1...m],i — i and § := yoa o 7t Then 7 is a 1-1 function from
[1...m] to [L...m] and so by [G.1.3] § is onto. Thus also 7 is onto. Since ¥([1...n]) = [1...n] we
conclude that [1...n] =[1...m] and so also n = m. O

Definition G.1.6. Let A be a finite set. Then the unique n € N for which there exists a bijection
a:A—[1...n] is called the cardinality or size of A and is denoted by |A|.

Theorem G.1.7. Let A and B be finite sets.

(a) If « : A — B is 1-1 then |A| < |B|, with equality if and only if a is onto.
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(b) If a: A — B is onto then |A| > |B|, with equality if and only if v is 1-1.
(c) If A C B then |A| < |B|, with equality if and only if |A| = |B].

Proof. (@) If a is onto then « is a bijection and so |A| = |B|. So it suffices to show that if |A| > |B],
then « is onto. Put n = |A] and m = |B|and let : A — [1...n] and 7 : B — [1...m] be bijection.
Assume n > m and let 6 : [1...m] — [1...n] be the inclusion map. Then dyaB~! is a 1-1 function
form [1...n] to [1...n] and so by its onto. Hence ¢ is onto, n = m and ¢ is bijection. Since
also v is bijection, this forces a3~! to be onto and so also « is onto.

@ Since « is onto there exists 5 : B — A with o = idg. Then S is 1-1 and so by (&), |B| < |A4]
and 3 is a bijection if and only if |A|] = |B|. Since « is a bijection if and only if /3 is, (b)) is proved.

Follows from @ applied to the inclusion map A — B. [

Proposition G.1.8. Let A and be B be finite sets. Then
(a) If ANB =10, then |AU B| = |A| + | B|.
(b) |Ax Bl = |A|-|BI.
Proof. (e Put n = |A|, m = |B| andlet 3: A — [1...n] and 7y : B — [L...m] be bijections. Define
v:AUB — [1...n+m] by

a(c ifce A

Ao =10
Blc)+n ifce B

Then it is readily verified that 7 is a bijection and so |[AU B| =n +m = |A| + |B|.

The proof is by induction on |B|. If |B] = 0, then B = ) and so also A x B = (. If
|B| = 1, then B = {b} for some b € B and so the map A — A x B,;a — (a,b) is a bijection. Thus
|A x B| = |A| = |A| - |B|. Suppose now that (b)) holds for any set B of size k. Let C be a set of
size k + 1. Pick ¢ € C and put B = C \ {c}. Then C' = BU{c} and so (@) implies |B| = k. So by
induction |A x B| = |A| - k. Also |A x {c} = |A| and so by (a))

[Ax C|=]|Ax Bl 4+ |Ax{c}|=|4] - k+|A| =1|4] - (k+1) = |A]||C]
() now follows from the principal of mathematical induction O
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