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Chapter 0

Set, Relations and Functions

0.1 Logic

In this section we will provide an informal discussion of logic. A statement is a sentence which is either true
or false, for example

(1) 1+1=2
(2) V2 is a rational number.
(3) 7 is a real number.

(4) Exactly 1323 bald eagles were born in 2000 BC,

all are statements. Statement and are true. Statement is false. Statement is probably false,
but verification might be impossible. It nevertheless is a statement.

Let P and () be statements.

“Pand @ is the statement that P is true and @ is true. We illustrate the statement P and @ in the
following truth table

P| Q| Pand Q@
T|T T
T|F F
F T F
F|F F

“P or @7 is the statement that at least one of P and (@ is true:

5



6 CHAPTER 0. SET, RELATIONS AND FUNCTIONS

P|Q|PorQ
T|T T
T|F T
F|T T
F|F F

So “P or Q7 is false exactly when both P and Q are false.

“not-P” (pronounced ‘not P’ or ‘negation of P’) is the statement that P is false:

P | not-P
T F
F T

So not-P is true if P is false. And not-P is false if P is true.

“P = Q" (pronounced “P implies Q") is the statement “ If P is true, then @ is true”:

PlQ|P=Q
T|T T
T|F F
F | T T
F|F T

Note here that if P is true, then “P = @ ” is true if and only if @ is true. But if P is false, then
“P = Q" is true, regardless whether @ is true or false. Consider the statement “ @) or not-P” :

P | Q@ |not-P | Q or not-P
T|T F T
T|F F F
F|T T T
F|F T T
(*) " @ or not-P” is true if and only "P = Q" is true.

Y

This shows that one express the logical operator “=—>" in terms of the operators ” not-” and “or”.
“P <= Q" (pronounced “P is equivalent to Q") is the statement that P is true if and only if @ is true.:
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So P <= ( is true if either both P and @ are true, or both P and @ are false. Hence

(%) "P < ()" is true if and only "(P and Q) or (not-P and not-Q)” is true.

To show that P and ) are equivalent often shows that P implies @) and that @@ implies P. Indeed the
truth table

PlQIP=Q|Q=P|(P=Q) and(Q = P)
T|T T T T
T|F F T F
F|T T F F
F|F F T T
shows that
(5 % %) "P <= (" is true if and only "(P= Q) and (Q = P)” is true.

Often, rather than showing that a statement is true, one shows that the negation of the statement is false
(This is called a proof by contradiction). To do this it is important to be able to determine the negation of
statement. The negation of not-P is P:

P | not-P | not-(not-P)
T F T
F T F

The negation of ” P and Q" is ” not-P or not-Q":

P| Q| Pand Q@ | not-(P and Q) | not-P | not-Q | not-P or not-Q
T|T T F F F F
T|F F T F T T
F|T F T T F T
F|F F T T F T
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The negation of ” P or @” is " not-P and not-Q":

P| Q| PorQ |not-(Por Q)| not-P | not-Q | not-P and not-Q
T|T T F F F F
T|F T F F T F
F | T T F T F F
F|F F T T F T

The statement “not-Q = not-P” is called the contrapositive of the statement “P = @Q”. It’s actually
is equivalent to the statement “P <— Q”:

P|Q|P= Q| not-Q | not-P | not-Q = not-P
T|T T F F T
T|F F T F F
F|T T F T T
F|F T T T T

The statement “ not-P <= not-Q” is called the contrapositive of the statement “P <= Q7. It is
equivalent to the statement “P <= Q”:

P|Q|P< Q| not-P | not-Q | not-P <= not-Q
T|T T F F T
T|F F F T F
F|T F T F F
F|F T T T T

The the statement “QQ = P” is called the converse of the statement “ P = )”. In general the converse
is not equivalent to the original statement. For example the statement if © = 0 then x is an even integer is
true. But the converse (if = is an even integer, then = 0) is not true.

Theorem 0.1.1 (Principal of Substitution). Let ®(z) be formula involving a variable x. For an object d let
®(d) be the formula obtained from ®(x) by replacing all occurrences of x by d. If a and b are objects with
a=Db, then ®(a) = ®(b).

Proof. This should be self evident. For an actual proof and the definition of an formula consult your favorite
logic book. O

Example 0.1.2. Let ®(z) = 2% + 3z + 4.
If a = 2, then

a>+3a+4=22+3-2+4
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Notation 0.1.3. Let P(x) be a statement involving the variable x.

(a) “for all x : P(z)” is the statement that for objects a the statements P(a) is true. Instead of “for all x :
P(z)” we will also use ~ax : P(x)”, "P(x) is true for all ”, “P(x) holds for all x” or similar phrases.

(b) ‘there exists x : P(x)” is the statement there exists an object a such that the statements P(a) is true.
Instead of “there exists x : P(x)” we will use “‘Jr : P(x)”, "P(x) is true for some x”, “There exists x
with P(x)” or similar phrases.

Example 0.1.4. “for all z : x + x = 22" is a true statement.
“for all  : 22 = 2” is a false statement.
“there exists : z : 22 = 2” is a true statement.
“Jg : 22 = 2 and « is an integer” is false statement

Notation 0.1.5. Let P(x) be a statement involving the variable x.

(a) “There exists at most one x : P(x)” is the statement

P(z) and P(y) = z=y

(b) “There exists a unique x : P(x)” is the statement

there exists z : Ply) <= y==

Example 0.1.6. “There exists at most one x € R: x? =17 is false since 1! =1 and (-1)! =1, but 1 # —1.

“There exist a unique z € R: 23 = —1” is true since £ = —1 is the only elements in R with 2% = 1.

“There exists at most one z € R : 2 = —1” is true, since there does not exist any element z € R with
z?=—1.

“There exists a unique x € R : 22 = —1” is false, since there does not exist any element x € R with
x? = —1.

Lemma 0.1.7. Let P(x) be statement involving the variable z. Then

there exists = : P(x) and There exists at most onex : P(x)

if and only if
There exists a uniquex : P(x)

Proof. =>: Suppose first that
there exists = : P(x) and There exists at most onex : P(x).
Then there exists a object a such that P(a)-holds. Also by definition of “There exists at most one”:

P(z) and P(y) = =y

Since P(a) holds,
P(y) = P(a) and P(y) = a=y

If a = y, then since P(a) holds, also P(y) holds. Thus a = y = P(y) and so

P(y) = a=y.
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Hence “there exists x : P(y) <= x = y” holds. Hence the definition of “There exists a unique” gives

There exists a unique z : P(z).

<=: Suppose next that

There exists a uniquez : P(x)

Then by definition of “There exists a unique”:

there exists x : P(y) <= = = y.

and so there exists a object a such that “P(y) <= a = y”. Since a = a is true, we conclude that P(a) is true.
Thus

(%) there exists x : P(x).
holds. If P(z) and P(y) holds, then since P(y) <= a =1y, * = a and y = a. So x = y. We proved that

P(z) and P(y) = =x=y.

and so the definition of “There exists at most one” gives

(xx) There exists at most onex : P(x).
From () and we have

there exists = : P(x) and There exists at most onex : P(x).

0.2 Sets

First of all any set is a collection of objects.

For example
Z:={...,—4,-3,-2,—-1,-0,1,2,3,4,...}
is the set of integers. If S is a set and x an object we write 2 € S if 2 is a member of S and = ¢ S if z is not
a member of S. In particular,

(%) For all z exactly oneof z€S and ¢S holds.

Not all collections of objects are sets. Suppose for example that the collection B of all sets is a set. Then
B € B. This is rather strange, but by itself not a contradiction. So lets make this example a little bit more
complicated. We call a set .S is nice, if S ¢ S. Let D be the collection of all nice sets and suppose D is a set.

Is D a nice?

Suppose that D is a nice. Since D is the collection of all nice sets, D is a member of D. Thus D € D, but
then by the definition of nice, D is not nice.

Suppose that D is not nice. Then by definition of nice, D € D. Since D is the collection of nice sets, this
means that D is nice.

We proved that D is nice if and only if D is not nice. This of course is absurd. So D cannot be a set.
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Theorem 0.2.1. Let A and B be sets. Then
(A:B) = (forallx:(xEA)<:>(x€B))

Proof. Naively this just says that two sets are equal if and only if they have the same members. In actuality
this turns out to be one of the axioms of set theory. O

Definition 0.2.2. Let A and B be sets. We say that A is subset of B and write A C B if
forall z: (x € A) = (z € B)
In other words, A is a subset of B if all the members of A are also members of B.
Theorem 0.2.3. Let A and B sets. Then A= B if and only if AC B and B C A.
Proof.
A=B
= reA<=zeB — 02T

< (r€A=z€B)and(z € B=>xz€A) — Rule of Logic: [A.1.T|[LR 19) :(P(E}Q)
<:><(P:>Q) and(Q:>P))

<— ACBand BCA —definition of subset
O
Theorem 0.2.4. Let x be an object. Then there exists a set, denote by {x} such that
te{x} = t=u=x
Proof. This is an axiom of Set Theory. O

Theorem 0.2.5. Let S be a set and let P(x) be a statement involving the variable x. Then there exists a set,
denoted by {s € S| P(s)} such that

te{seS|P(s)} = teS and P(¢)
Proof. This follows from the so called replacement axiom in set theory. O

Note that an object t is a member of {s € S| P(s)} if and only if ¢ is a member of S and the statement
P(t) is true.

Example 0.2.6.
{reZ|2®>=1}={1,-1}.
{r € Z| x>0} is the set of positive integers.
Notation 0.2.7. Let S be a set and P(x) a statement involving the variable x.
(a) “for all z € S: P(x)” is the statement

forallz: z€S= P(x)
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(b) “there exists © € S : P(x)” is the statement

there exists z : € S and P(z)

Example 0.2.8. (1) “for allz € R: 22 > (0" is a true statement.

(2) “there exists * € Q: 2% =27 is a false statement.

Theorem 0.2.9. Let S be a set and let ®(x) be a formula involving the variable x such that ®(s) is defined
for all s in S. Then there exists a set, denoted by {®(s) | s € S} such that

te{®(s)|se S} = there exists s € S ¢t = P(s)
Proof. This also follows from the replacement axiom in set theory. O

Note that the members of {®(s) | s € S} are all the objects of the form ®(s), where s is a member of S.

Example 0.2.10.
{2z | x € Z} is the set of even integers}

{«° |z € {-1,2,5}} = { - 1,8,125}
We now combine the two previous theorems into one:

Theorem 0.2.11. Let S be a set, let P(x) be a statement involving the variable x and ®(x) a formula such that
D(s) is defined for all s in S for which P(s) is true. Then there exists a set, denoted by {@(s) | s € S and P(s)}
such that

te {(I)(S) | s € S and P(s)} = there exists s € S': (P(s) and t = @(s))
Proof. Define
(+) {<I>(s) |s €S and P(s)} - {@(s)) |lse{res| P(r)}}
Then

te {<I>(s) | s €S and P(s)}

= te {fb(s) |se{res| @(r)}} By (x)
= there exists s € {r € S| P(r)} with t = ®(s) 020
<= there exists s with (s € {r € S| P(r)} and t = ®(s) | definition of ‘there exists s €’ see [I.2.1]
<= there exists s with (s € S and P(s)) and t = ®(s) | [02F
<= there exists s with [ s € S and (P(s) and t = @(s)) Rule of Logic: [A.1.I{[LR 24) :

<P and (Q and R)) = ((P and Q) and R)
= there exists s € S with (P(s) and t = @(s)) definition of ‘there exists s €’ see 021



0.2. SETS 13

Note that the members of {®(s) | s € S and P(s)} are all the objects of the form ®(s), where s is a
member of S for which P(s) is true.

Example 0.2.12.
{2n|n € Z and n* = 1} = {2, -2}

{—z |z € R and = > 0} is the set of negative real numbers
Theorem 0.2.13. Let A and B be sets.
(a) There exists a set, denoted by AU B and called ‘A union B’, such that

r€ AUB — re€AorxeB

(b) There exists a set, denoted by AN B and called ‘A intersect B’, such that

re€eANB — reAandz € B

(¢) There exists a set, denoted by A\ B and called ‘A removed B’, such that

xe A\ B = x€Aand x ¢ B
(d) There exists a set, denoted by O and called empty set, such that

for all z : x ¢l

(e) Let a and b be objects, then there exists a set, denoted by {a,b}, that

x € {a, b} = r=aorz="=b

Proof. (ED This is another axiom of set theory.
Applying with P(x) being the statement “z € B” we can define

ANB:={zecA|zx € B}
Applying with P(x) being the statement “z ¢ B” we can define

A\B:={x € A|x ¢ B}

@ One of the axioms of set theory implies the existence of a set A. Then we can define

f:=A\A
(€) Define {a,b} := {a} U {b}. Then
z € {a,b}
= z € {a} U {b} — definition of {a,b}

< zec{atorze{b} —(d)
= r=aorx=> 024
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Exercises 0.2:
#1. Let A be a set. Prove that () C A.

#2. Let A and B be sets. Prove that AN B = BN A.

0.3 Relations and Functions

Definition 0.3.1. Let a, b and ¢ be objects.

(a) (a,b) := {{a},{a,b}}. (a,b) is called the (ordered) pair formed by a and b. a is called the first coordinate
of (a,b) and b the second coordinate of (a,b).

(b) (a,b,c) = ((a,b),c). (a,b,c) is called the (ordered) triple formed by a,b and c.

Theorem 0.3.2. Let a,b,c,d,e and f be objects.
(a) ((a,b) = (¢, d)) — (a —cand b= d).
(b) ((a,b,c):(d,e,f)) = (a:dandb:eandc:f)

Proof. (ED: See Exercise 0.3

(a7 b? C) = (d’ e’ f)

= ((a,b),¢) = ((d,e), f) — definition of triple

< (a,b)=(d,e) and(c, f)  — Part (@) of this theorem

< a=dandb=eande=f — Part @ of this theorem

O
Theorem 0.3.3. Let A and B be sets. Then there exists a set, denoted by A x B, such that
reAxB <= there exist a € A and b € B with x = (a,b)

Proof. This can be deduced from the axioms of set theory. O

Example 0.3.4. Let A ={1,2} and B = {2,3,5}. Then

Ax B=1{(1,2),(1,3),(1,5),(2,2),(2,3),(2,5)}
Definition 0.3.5. Let A and B be sets.

(a) A relation R from A and B is a triple (A, B,T'), such that T is a subset of Ax B. Let a and b be objects.
We say that a is in R-relation to b and write aRb if (a,b) € T. So aRb is a statement and

aRb if and only if (a,b) € T.
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(b) Let R= (A, B,T) be a relation.

DomR :=A
CoDom R := B
ImR = {b € B | there exists a € A with aRb}

Colm R :={a € A| there exists b € B with aRb}

(¢) A relation on A is a relation from A and A.

Example 0.3.6. (1) Using our formal definition of a relation, the familiar relation < on the real numbers,
would be the triple

(R,R,{(a,b) 6RxR|a§b})

(2) Let A={1,2,3}, B=1{a,b,c}, T ={(1,a),(1,¢),(2,b),(3,b)}. Then the relation ~:= (A, B,T) can be
visualized by the following diagram:

Also 1 ~ 1 is a true statement, 1 ~ b is a false statement, 2 ~ a is false statement, and 2 ~ b is a true
statement.

Definition 0.3.7. (a) A function from A to B is a relation F' from A to B such that for all a € A there
exists a unique b in B with aF'b. We denote this unique b by F(a) (or by Fa). So

forallae Aand b€ B : b= F(a) <= aFb
F(a) is called the image of a under F. If b = F(a) we will say that F' maps a to b.
(b) We write “F : A — B s function” for “A and B are sets and F' is a function from A and B”’.
(¢) Let F: A — B be a function and C a subset of A. Then F[C]:={F(c)|ce C}.
Example 0.3.8. (a) F = (R,R,{(z,2%) | # € R}) is a function with F(z) = 2? for all z € R.
(b) F = (R,R,{(z% %) | z € R}) is not a function, since 1F1 and (—1)F1.
(¢) F=((R,R,{(2* 2?) | 2 € R}) is a function with F(z) = 23 for all z € R.

(d) Let A={1,2,3}, B={4,5,6,}, T'={(1,4),(2,5),(2,6)} and R = (4, B,T):
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Then R is not a function from A to B. Indeed, there does not exist an element b in R with 1Rb. Also
there exists two elements b in B with 2Rb namely b =5 and b = 6.

(e) Let A={1,2,3}, B={4,5,6,}, 5 = {(1,4),(2,5),(3,5)} and F = (A, B,T):

Then F is the function from A to B with F(1) =4, F(2) =5 and F(3) = 5.

Notation 0.3.9. A and B be sets and suppose that ®(x) is a formula involving a variable x such that for all
xin A
®(a) is defined and ®(a) € B.

Put T = {(a,®(a)) | a € A} and F = (A,B,T). Then F is a function from A to B. We denote this
function by
F: A—- B, a — ®a).
So F is a function from A to B and F(a) = ®(a) for all a € A.
Example 0.3.10. (1) F': R — R, r — r? denotes the function from R to R with F(r) = 72 for all r € R.

(2) F: R—R, z— L isnot a function, since § is not defined.

3) F: R\ {0} 2R, z — % is a function.

Theorem 0.3.11. Let f: A — B and g : C — D be functions. Then f =g if and only if A=C, B=D and
f(a) =g(a) for all a € A.

Proof. By definition of a function, f = (4,B,R) and ¢ = (C,D,S) where R C Ax B and S C C x D. By
0.3.2([) :

(x) f=gifandonlyof A=C,B=D and R=S.

= If f = g, then the Principal of Substitution implies, f(a) = g(a) for all @ € A. Also by (), A = C
and B = D.

<=: Suppose now that A = C, B = D and f(a) = g(a) for all « € A. By it suffices to show that
R=25.



0.3. RELATIONS AND FUNCTIONS 17

Let a € Aand b € B.
(a,b) ER
afb —definition of afb
b= f(a) —the definition of f(a)
b=g(a) —since f(a)=g(a)
agb —definition of g(a)

T1e111

(a,b) € S —definition of agb

Since A = C and B = D, both R and S are subsets of A x B. Hence each element of R and S is of the
form (a,b),a € A,b € B. It follows that € R if and only if x € S and so R = S by O

Definition 0.3.12. Let R be a relation from A and B,
(a) R is called 1-1 (or injective) if for all b € B there exists at most one a in A with aRb.
(b) R is called onto (or surjective) if for all b € B there exists at least one a € A with aRb.

(¢) R is called a 1-1 correspondence (or bijective) if for all a € A there exists a unique b € B with aRb and
for all d € B there exists a unique ¢ € A with cRd

Example 0.3.13. (1) The relation

is 1-1 and onto, but its is neither a function nor a 1-1 correspondence.

(2) The relation

is a 1-1 function, but is neither onto nor a 1-1 correspondence.
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Lemma 0.3.14. (a) Let f be a relation from A and B. Then f is a 1-1 correspondence if and only if [ is
a 1-1 and onto function.

(b) Let f: A— B be a function. Then f is 1-1 if and only

Foralla,ce A: fla)=flc) = a=c
(¢) A relation f from A and B is onto if and only if Im f = B.

Proof. @

f is a 1-1 correspondence

for all a € A there exists a unique b € B with afb, and

for all d € B there exists a unique ¢ € A with cfd - Definition of 1-1 correspondence

f is a function, and

for all d € B there exists a unique ¢ € A with cfd - Definition of 2 function

f is a function, and
<= for all d € B there exists at most one ¢ € A with cfd, and - [T
for all d € B there exists at least one ¢ € A with cfd

<= fis a 1l-1 and onto function - Definition of 1-1 and onto

fis 1-1
< forallbe B: there exists at most one a € A with afb - definition of 1-1
<= forallbe B: there exists at most one a € A with b = f(a) - definition of f(a)
<= forallbe Bya,c€ A: b= f(a)and b= f(c) = a=c - definition of “exists at most one”
< foralla,ce A: fla)=flc)=a=c

By definition of Im f:

Im f = {b € B | there exists a € A : afb}.

Hence by

(%) belmf = b € B and there exists a € A: afb
Thus b € Im f implies b € B and so Im f C B. Thus
(%)  B=Imf if and only if B C Im f.

We have
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B=Imf

BCImf - ()

beB=belmf - Definition of subset
forallbe B:belmf - Definition of "for all b € B”

forallbe B : (b € B and there exists a € A : afb) -
for all b € B : there exists a € A : afb

rrerue

f is onto — definition of onto

Definition 0.3.15. (a) Let A be a set. The identity function id4 on A is the function
ida:A— Aja—a

Soida(a) = a for all a € A.

(b) Let f: A— B and g: B — C be function. Then go f is the function

gof:A—C,a— g(f(a)

S0 (g0 f)(a) = g(f(a)) for all a € A.

Exercises 0.3:

#1. Let a,b, c,d be objects. Prove that

((a,b) = (c, d)) = ((a =¢) and (b= d))
#2. Give an example of an 1-1 and onto relation which is not a function.

#3. Let F = (A, B, R) be a relation. Put

S={(b,a) e Bx A|(a,b) € R} and G = (B, A,S5)

Note that G a relation from B and A. Also, if a € A and b € B, then bGa if and only if aF'b.
Show that F'is a function if and only if G is 1-1 and onto.

#4. Let A and B be sets. Let A; and As be subsets of A and B; and Bs subsets of B such that A =
A1UAs, AyNAy =0, B= B1UBy and BiNBy = 0. Let m; : A1 — Bj and 75 : A3 — By be bijections.(Recall
that a bijection is a 1-1 and onto function.) Define

m:A— B,a— m(a) %fQEAl
7T2(a) lf(ZGAQ

Show that 7 is a bijection.
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#5. Prove that the given function is injective

(a) f:Z —Z, f(z) = 2.
(b) f:R— R, f(z) = 2%
() f:Z—Q, f(x) =%
(d) f:R—> R, f(z) =3z +5.

#6. Prove that the given function is surjective.

(a
(b

) fiR SR, f(z) =5

) FiZ T, f(x)=a—4
(¢) f:Ro R, f(z)=—3z+5.
(d) f:
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7Zx 7 —Q, f(a,b) = % when b# 0 and f(a,b) =0 when b = 0.

#7. (a) Let f: B— C and g : C — D be functions such that g o f is injective. Prove that f is injective.

(b) Give an example of the situation in part (a) in which ¢ is not injective.

0.4 The Natural Numbers and Induction

A natural number is a non-negative integer. N denotes the set of all natural numbers. So

N=1{0,1,2,3...}

We do assume that familiarity with the basic properties of the natural numbers, like addition, multiplication

and the order relation ‘<’.

A quick remark how to construct the natural numbers:

0=10

1={0} =0uU{0}
2 ={0,1} =1U{1}
3=1{0,1,2} =2U{2}
4=1{0,1,2,3} =3U{3}

n+1=40,1,2,3,....,n} =nU{n}

Definition 0.4.1. Let S is a subset of N. Then s is called a minimal element of S if s € S and s <t for all

tes.
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The following property of the natural numbers is part of our assumed properties of the integers and natural
numbers. (see Appendix

Well-Ordering Axiom: Let S be a non-empty subset of N. Then S has a minimal element

Using the Well-Ordering Axiom we now provide an important tool to prove statements which hold for all
natural numbers:

Theorem 0.4.2 (Principal Of Mathematical Induction). Suppose that for each n € N a statement P(n) is
given and that:

(i) P(0) is true.
(ii) If P(k) is true for some k € N, then also P(k + 1) is true.
Then P(n) is true for all n € N.

Proof. Suppose for a contradiction that P(ng) is false for some ng € N. Put

(%) S:={s e N| P(s) is false}

Then ng € S and so S is not empty. So by the Well-Ordering Axiom S has a minimal element m. So
by definition of a minimal element

() meSandm<sforallseS

By (i) P(0) is true and so 0 ¢ S and m # 0. Thus k := m — 1 is a non-negative integer and k < m. If
k € S, then gives m < k, a contradiction. Thus k ¢ S. By definition of S this means that P(k) is true.
So by (i), P(k + 1) is true. But k+1 = (m — 1) + 1 = m and so P(m) is true. But m € S and so P(m) is
false. This contradiction show that P(n) is true for all n € N. O

Theorem 0.4.3. Let n € N and S be a set with exactly n elements. Then S has exactly 2™ subsets.

Proof. For n € N, let P(n) be the statement
P(n): If S is a set with exactly n elements, then S has exactly 2" subsets.
If n = 0, then S = (. So S has exactly one subset, namely ). Since 2° = 1 we see that P(0) holds.

Now suppose that P(k) holds and let S be a set with k+ 1 elements. Fix s € S and put T'= S\ {s}. Then
T is a set with k elements.

Let A C S. Then either s € A or s ¢ A but not both.

Suppose that s ¢ A. Then A C T. By the induction assumption, 7" has 2* subsets and so there are 2¥
subsets of A with s ¢ A.

Suppose that s € A. Then A = {s} U B for a unique subset B of T, namely B = A\ {s}. By the induction
assumption there are 2* choices for B and so there exists 2 subsets of S with s € A.

Since the number of subsets of A is the number of subsets of A not containing s plus the number of subsets
of A containing s we conclude that A has 2% + 2% = 251 subsets. Thus P(k + 1) holds.

We proved that P(0) holds and that P(k) implies P(k 4+ 1) and so by the principal of induction, P(n)
holds for all n € N. O

Theorem 0.4.4 (Principal Of Complete Induction). Suppose that for each n € N a statement P(n) is given
and that
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(i) If k € N and P(i) is true for all i € N with i < k, then P(k) is true.

Then P(n) is true for all n.

Proof. Let Q(n) be the statement that P(i) is true for all ¢ € N with ¢ < n. Since there does not exits i € N

with 7 < 0 we have

(*)  Q(0) is true.

Suppose now that Q(k) is true, that is P(i) is a true for all i € N with i < k. Then by (), also P(k) is

true. Hence P(7) is for all ¢ in N with ¢ < k 4+ 1. Thus Q(k + 1) is true. We proved

(xx)  If Q(k) is true for some k € N, then also Q(k + 1) is true.

By and the assumptions of the Principal of Mathematical Induction are fulfilled. Hence Q(n) is

true for all n € N. Let n € N. Then Q(n + 1) is true and since n < n + 1, P(n) is true.

One last version of the induction principal:

O

Theorem 0.4.5. Suppose r € Z and for all n € Z with n > r, a statement P(n) is given. Also assume that

one of the following statements holds:
(1) P(r) is true, and if k € Z such that k > r and P(k) is true,then P(k + 1) is true.
(2) If k € Z with k > r and P(i) holds for all i € Z with r < i < k, then P(k) holds.

Then P(n) holds for all n € Z with n > r.

Proof. For n € N let Q(n) be the statement P(n+r). If (1]) holds we can apply to Q(n) and if (2) holds
we can apply to @(n). In both cases we conclude that Q(n) holds for all n € N. So P(n + r) holds for

all n € N and P(n) holds for all n € Z with n > r.

Exercises 0.4:

#1. Prove that the sum of the first n positive integers is w
Hint: Let P(k) be the statement:
k(k+1
1+2+...+k:%.

#2. Let r be a real number, r # 1. Prove that for every integer n > 1,

n
-1
1+r+r2+...r"_1:r .
r—1

#3. Prove that for every positive integer n there exists an integer k with 227+ + 1 = 2k
#4. Let B be a set of n elements.
(a) If n > 2, prove that the number of two-elements subsets of B is n(n — 1)/2.

(b) If n > 3, prove that the number of three-element subsets of B is n(n —1)(n — 2)/3..

O
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#5. What is wrong with the following proof that all roses have the same color:

For a positive integer n let P(n) be the statement:
Let A be a set containing n roses. Then all roses in A have the same color.

If n =1, then A only contains on rose and so certainly all roses in A have the same color. Thus P(1) is
true.

Suppose now that P(k) is true, that is whenever B is a set of k roses then all roses in B have the same
color. We need to show that P(k + 1) is true. So let A be any set of k + 1-roses. Let x and y be distinct
roses in A. Consider the set X = A\ {x} (that is the set of roses in A different from x). Then X is set of
k roses. By the induction assumption P(k) is true and so all roses in X have the same color. Similarly let
Y = A\ {y}, then all roses in'Y have the same color. Now let z be a rose in A distinct from x and y. Since
z is distinct from x, z € X; and since z is distinct from y, z € Y. We will show that all roses in A have the
same color as z. Indeed let a be any rose in A. If a # x, then both a and z are in X and so a has the same
color as z. If a = x then both a and z are in'Y and so again a and z have the same color. We proved that all
roses in A have the same color as z. Thus P(k + 1) is true.

We proved that P(1) is true and that P(k) implies P(k + 1). Hence by the Principal of Mathematical
Induction, P(n) is true for all n. Thus in any finite set of roses all the roses have the same color. So all roses
have the same color.

#6. Let x be a real number greater than —1. Prove that for every positive integer n, (1 + z)™ > 1 + na.

0.5 Equivalence Relations
Definition 0.5.1. Let ~ be a relation on a set A (that is a relation from A and A). Then
(a) ~ is called reflexive if a ~ a for all a € A.

(b) ~ is called symmetric if b ~ a for all a,b € A with a ~ b, that is if

a~b — b~ a.

(¢) ~ is called transitive if a ~ ¢ for all a,b,c € A with a ~ b and b ~ ¢, that is if

(a~b and b~c) = an~c

(d) ~ is called an equivalence relation if ~ is reflexive,symmetric and transitive.

Example 0.5.2. (1) Consider the relation ” <” on the real numbers:

” is reflexive.

a < a for all real numbers a and so 7 <
1 <2 but 2 ﬁ 1 and so 7 <7 is not symmetric.
If a <band b <c, then a <candso” <7 is transitive.

Since ” <7 is not symmetric, 7 <7 is not an equivalence relation.
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(2) Consider the relation ” = ” on any set A.
a=a and so ” =" is reflexive.
If a =10, then b =a and so ” =" is symmetric.
If a =band b=c, then a = c and so ” =7 is transitive.

7 =7 is reflexive, symmetric and transitive and so an equivalence relation.

(3) Consider the relation ” # ” on any set A.
a+#aandsoif A#D,” #7 is not reflexive.

Suppose A has at least two distinct elements a,b. Then

a#b and b#a but not-(a # a)

So ” 7 is not transitive.

Definition 0.5.3. (a) Let a,b be integers, then we say that a divides b and write alb if there exists an integer
k with b= ak.

(b) Let n be an integers. Then the relation = (mod n)’ on Z is defined by
a=b (modn) <= nla-—>
If a = b (mod n) we say that a is congruent to b modulo n.
Example 0.5.4. (1) 2|6, since 6 =2-3. But 7131,

(2) 6 =4 (mod 2) is true since 2 divides 6 — 4.
But 3 =8 (mod 2) is false since 2 does not divide 3 — 8. Thus 3 # 8 (mod 2).

If a and b are integers, then a = b (mod 2) if and only if b — a is even and so if and only if either both
a and b are even, or both a and b are odd.

Hence a # b (mod 2) if and only if one of a and b is even and the other is odd.

(3) Let a,b be integers. Then

a=b (mod0)
Ola—10
a—b=0-k for some k € Z
a—b=0
a=1b

1117

So congruent modulo 0 is the equality relation.

(4) Since m =m -1, 1 divides all integers. Thus 1 | b — a for all integers a and b and so

a=b (modl)forall abeZ

Lemma 0.5.5. Let n € Z. Then the relation ” = (mod n)” is an equivalence relation on Z.
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Proof. We have to show that 7 = (mod n)” is reflexive, symmetric and transitive. Let a,b,c € Z.
Reflexive: Since a —a =0 =0-n we see that n | a — a and so a = a (mod n). Thus ” = (mod n)” is
reflexive.

Symmetric: Suppose that « = b (mod n). Then n | (a — b) and so a — b = nk for some k € Z. Thus
b—a=—(a—b)=—(nk)=n(—k). Son|b—aand b=a (mod n). Thus” = (mod n)” is symmetric.

Transitive: Suppose that a = b (mod n) and b = ¢ (mod n). Then n | a —b and n | b — ¢ and so there
exist k,l € Z with a — b =nk and b — ¢ = nl. Thus

a—c=(a—b)+(b—c)=nk+nl=nk+]1).
Hence n | a — c and a = ¢ (mod n). Thus ” = (mod n)” is transitive. O
Definition 0.5.6. Let ~ be an equivalence relation on the set A and let n € Z.

(a) For a € A we define [a]~ == {b € A | a ~ b}. We often just write [a] for [a]~. [a]~ is called the
equivalence class of a with respect to ~.

(b) A/ ~:={[a]~ | a € A}. So A/~ is the set of equivalence classes with respect to ~.

(c) Leta € Z. Then [a], is the equivalence class a with respect to = (mod n)’. [a], is called the congruence

class of a modulo n.
(d) Z,,:=Z/'a=b (mod n)'. SoZ, ={[a], | a € Z} is the set of congruence classes modulo n.

Example 0.5.7. (1) Consider the relation '= (mod 2)":

[o={b€Z|1=b (mod2)}={beZ]|bisodd}

and so [1]3 is the set of odd integers.

02 ={b€Z|0=b (mod2)} ={beZ]|biseven }
and so [0]3 is the set of odd integers.

In general:

{beZ|biseven} ifaiseven

={beZ|a=D d2)}= :
[a]la = { |a (mod 2)} {{beZbisodd} if a is odd

So

Zy = {{n €Z|niseven},{n€Z|nis odd}} = {[0]2, [1]2}.

(2) Consider the relation = (mod 5)’: We have

0=b (modb) <= 5|b-0 <= 5|b <= b=>5kforsomekeZ

SO

0 ={beZ|0=b (mod5)}={bk|keZ}=1{0,510,1520,...,—5,—10,—15—20,...}
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Also

1=b (modb) <= 5|b—-1 <= b-1=5bkforsomekeZ <= b=>5k+1forsomekecZ

and so

[ls={b€eZ|1=b (mod5)}={bk+1|keZ}={1,6,11,16,21,...,—4,—9,—-14,—-19,...}
Similarly,
25 ={beZ|2=b (mod5)}={5k+2|keZ}={27,12,17,22,...,-3,—8,—13,—18,...}
Bls={b€Z|3=b (modb)}={bk+3|keZ}=1{3,813,18,23,...,—2,—7,—-12,-17,...}
Ms={beZ|4=b (mod5)}={5k+4|keZ}=1{4,9,14,19,24,...,—-1,—6,—11,—16,...}
Bls={b€Z|5=b (modb)}={5k+5|keZ}={510,15,20,25,...,0,-5,-10,—15,...} =10]5
6] ={bcZ|6=0b (mod5)}={5k+6|keZ}={6,11,16,21,26,...,1,—4,-9,—14,...} =[]

So it seems that

Zs = {[0]5, [1]s, [2]5, [3]5, [4]s }-
Later (see[2.1.2((b))) we will give a rigorous proof for this.

(3) Consider the relation '= (mod 0). By a =0b (mod 0) if and only if a = b.
So

[alo = {a}

and

zoz{{a}|aez}

(4) By a=b (mod 1) for all a,b. Thus
So

and

Theorem 0.5.8. Let ~ be an equivalence relation on the set A and a,b € A. Then the following statements
are equivalent:
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(a) a~b. (c) [a] N[b] # 0. (e) a € b
(b) b€ [a]. (d) [a] = [b]. (f) b~a.

Proof. (&) = (b):  Suppose that a ~ b. Since [a] = {b € A | a ~ b} we conclude that b € [a].

) = (d: Suppose that b € [a]. Since ~ is reflexive, b ~ b and so b € [b]. Thus b € [a] N [b] and
[a] N [b] # 0.

() = (d): Suppose [a] N [b] # . Then there exists ¢ € [a] N [b].

We will first show that [a] C [b]. So let d € [a]. Then a ~ d. Since ¢ € [a], a ~ ¢ and since ~ is symmetric,
¢ ~ a. Since a ~ d and ~ is transitive, ¢ ~ d. Since ¢ € [b], b ~ ¢. Since ¢ ~ d and ~ is transitive, b ~ d and
so d € [b]. Thus [a] C [b].

A similar argument shows that [b] C [a]. We proved that [a] C [b] and [b] C [a] and so [a] = [b] by [0.2.3]

(M) = (&): Since a is reflexive, a ~ a and so a € [a]. As [a] = [b] we get a € [b].
() = {@: From a € [b] and the definition of [b], b ~ a.

@ == @: Since ~ is symmetric, b ~ a implies a ~ b. O

Exercises 0.5:

#1. Let f: A — B be a function and define a relation ~ on A by
u~v = f(u) = f(v).
Prove that ~ is an equivalence relation.

#2. Let A = {1,2,3}. Use the definition of a relation (see[0.3.5{(b)) to exhibit a relation on A with the stated
properties.

(a) Reflexive, not symmetric, not transitive.

(b) Symmetric, not reflexive, not transitive.
Transitive, not reflexive, not symmetric.

(c
(

)
)
d) Reflexive and symmetric, not transitive.
(e) Reflexive and transitive, not symmetric.
(f) Symmetric and transitive, not reflexive.

#3. Let ~ be the relation on the set R* of non-zero real numbers defined by

a
Prove that ~ is an equivalence relation.

#4. Let ~ be a symmetric and transitive relation on a set A. What is wrong with the following ‘proof’ that
~ is reflexive.:
a ~ b implies b ~ a by symmetry; then a ~ b and b ~ a imply that a ~ a by transitivity.
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Chapter 1

Arithmetic 1n Z

1.1 The Division Algorithm

Theorem 1.1.1 (The Division Algorithm). Let a and b be integers with b > 0. Then there exist unique
integers q and r such that

a=bg+r and 0<r<hb.

Proof. We will first show that ¢ and r exist. Put

S:={a—bx|x€Zanda—bx>0}

We would like to apply the well-ordering Axiom to S, so we need to verify that S is not empty. That is
we need to find x € Z such that a — bx > 0.

If a > 0, then @ — b0 = a > 0 and we can choose x = 0.

So suppose a < 0. Let’s try = a. Then a —bx = a — ba = (1 —b)a. Since b > 0 and b is an integer, b > 1
and so 1 — b < 0. Since a < 0, this implies (1 — b)a > 0 and so a — bx > 0. So we can indeed choose = = a.

We have proved that S is non-empty. Note that every element of S is a natural number and so S C N.
Hence by the Well-ordering Axiom S has minimal element r. So

resS and r<sforall seS.

Since r € S, the definition of S implies that there exists ¢ € Z with r = a — bq. Then a = bq + r and it
remains to show 0 < r < b. Since r € S, r > 0. Suppose for a contradiction that » > b. Then r — b > 0. Note
that

r—b=(a—bg) —b=a—blg+1)

and ¢+1€Z. Thusr —b € S. Since b > 0 we have r — b < r, but this is a contradiction since r is a minimal
element of S.
This shows the existence of ¢ and r. To show the uniqueness let ¢, r, ¢ and 7 be integers with

(azbq+rand0§r<b) and (azbq~—|—fand0§1:<b>.

We need to show that ¢ = ¢ and r = 7.
From a = bg + r and a = bq + 7 we have

29
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bg +r = bj + 7

and so

(*) blg—q) =7—r.

Multiplying the equation 0 < r < b with —1 gives 0 > —r > —b and so

—-b< —r<O0.
Adding the inequality
0<7<b
yields
“b<r—1r<b

Using (*) we conclude

—b<-bl¢g—q) <b
Since b > 0 we can divide by b and get

—-1<g—g<1

ARITHMETIC IN Z

The only integer strictly between —1 and 1 is 0. Hence ¢ — ¢ = 0 and so ¢ = ¢. Hence (*) gives

7—r=">0(¢g—G) =0b0=0 and so also ¥ = r.

O

Corollary 1.1.2 (Division Algorithm). Let a and ¢ be integers with ¢ # 0. Then there exist unique integers

q and r such that
a=cqg+7r and 0 <r <]

Proof. See Exercise 1.1. {]]

O

Definition 1.1.3. Let a and b be integers with b # 0. Let q,r be the unique integers with a = bq + r and
0 <r <|bl. Then r is called the remainder of a when divided by b and q is called the integral quotient of a

when divided by b.

Example 1.1.4. (1) 42=28-5+2 and 0 < 2 < 8. So the remainder of 42 when divided by 8 is 2.

(2) —42=8-—6+6 and 0 < 6 < 8. So the remainder of —42 when divided by 8 is 6.

Exercises 1.1:

#1. Let a and ¢ be integers with ¢ # 0. Proof that there exist unique integers g and r such that

a=cqg+rand0<r<]|c.

#2. Prove that the square of an integer is either of the form 3% or the form 3%k + 1 for some integer k.

#3. Use the Division Algorithm to prove that every odd integer is of the form 4k + 1 or 4k + 3 for some

integer k.
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#4. (a) Divide 52, 72, 112, 152 and 272 by 8 and note the remainder in each case.
(b) Make a conjecture about the remainder when the square of an odd number is divided by 8.
(¢) Prove your conjecture.

#5. Prove that the cube of any integer has be exactly one of these forms: 9k, 9k + 1 or 9k + 8 for some integer
k.

1.2 Divisibility
Lemma 1.2.1. Let a and b be integers.

(a)

bla < b|l-a <= -bla <<= -—b|-a
(b) a and —a have the same divisors.
(¢) If b|a and a # 0, then 1 < |b| < |al.
(d) If a # 0, then a has only finitely many divisors.
Proof. (ED We will first show

(%) bla = b| —a.

For this suppose that b divides a. Then by definition of “divide” there exists k € Z with a = kb. Thus
—a = —(kb) = (—k)b. Since k € Z also —k € Z. Thus the definition of “divide” shows that b divides —a. So

holds.

(xx) b|—a = b | a.

Suppose that b divides —a. Then by definition of “divide” there exists k € Z with —a = kb. Thus
a = —(—a) = —(kb) = k(—b). Thus the definition of “divide” shows that —b divides a. So holds.

(s % %) —-bla = —b|—a

By , since —b | a, —b | —a.

(+) —b|—a = b|a.

By (), since —b | —a, —(—b) | a and so b | a.
We proved

bla = b|l-a = -bla = -b|l-a = bl|a
and so @ holds.
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(@) By (&) b | a if and only if b | —a. So b is a divisor of a if and only if b is a divisor of —a.

Suppose a # 0 and that b | a. Then a = kb for some k in Z. Since 0b = 0 and a # 0 we have k # 0 and
since k is an integer |k| > 1. Since |b| > 0 this gives |k||b| > 1|b| = |b|. Hence

b < |b < |K[[b] = [kb] = |a]

Also since a = kb and a # 0, b # 0 and so |[b| > 1. Thus (d) is proved.

Suppose a # 0 and let b be divisor of a. By (d), [b] < |a| and so —|a| < b < |a|. Thus b is one of
—lal,—la] +1,—la] +2,...,—1,0,1,...,|a| — 1, |a|] and so a has at most 2|a| 4+ 1 divisors. O

Definition 1.2.2. Let a, b and d be integers.

(a) d is called a common divisor of a and b provided that d | a and d | b.

(b) d is called a greatest common divisor of a and b provided that

(i) d is a common divisor of a and b; and

(ii) if ¢ is a common divisor of a and b then ¢ < d.

Example 1.2.3. (1) The largest integer dividing both 24 and 42 is 6. So 6 is the greatest common divisor
of 24 and 42.

(2) All integers divide 0 and 0. So there does not exits a greatest common divisor of 0 and 0.

Lemma 1.2.4. Let a and b be integers, not both 0. Then a and b have a unique greatest common divisor. We
denote the unique greatest common divisor of a and b by ged(a, b).

Proof. We may assume that a # 0. Then by [1.2.1](d), a has only finitely many divisors. Thus a and b have
only finitely many common divisors. Let ¢, co, ..., ¢, be the common divisors of a and b such that

1 <cp<ce3<...<cCp.

Then ¢, is the unique greatest common divisor. O

Lemma 1.2.5. Let a,b,c,u and v be integers and suppose that ¢ is a common divisor of a and b. Then ¢
divides au 4+ bv. In particular, ¢ divides a + b, au, —au, a + bv, au — bv and a — bv.

Proof. Since ¢ is a common divisor of a and b we have ¢ | a and ¢ | b. So by definition of ‘divide’ there exist
k,l € Z with a = kc and b = lc. Thus

au + bv = (ke)u + (lev) = (ku + lv)e

Since k,l,u and v are integers, also ku+[v is an integer. So the definition of ’divide’ shows that ¢ | au+ bv.
Choosing special values for u and v proves the second statement:
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U v | au+ bv
1 1 a+b
U 0 au
—u | 0 —auy

1 v a-+bv

u | —v | au—bv

—v | a—"bv

O

Lemma 1.2.6. Let a,b,q and r be integers with a # 0 or b # 0 and a = bg+r. Then b # 0 orr # 0, and
ged(a, b) = ged(b, r).

Proof. 1f b =0 and r = 0 then also a = bg + r = 0g + 0, a contradiction to the hypothesis that a # 0 or b # 0.
In particular, both ged(a,b) and ged((,b),r) exists. Put d = ged(a,b) and e = ged(b, 7). Then d divides
a and b and so by d divides r = a — bg. Hence d is a common divisor of b and r. Thus d < e by the
definition of ged.
Since e = ged(b, r), e divides b and r. So by e divides a = bg + r. Thus e is a common divisor of a
and b and so e < d. We have proved d < e and e < d and so e = d. O

Theorem 1.2.7 (Euclidean Algorithm). Let a and b be integers not both 0 and let E_1 and Ey be the equations

E,1 : a = al + b0
Ey : b a0 + bl

Let i € N and suppose inductively we already defined equation Ey,—1 < k <1 of the form
Ey : ry = axr + byg -
Suppose r; 0 and let t;y1,qi+1 € Z with

Tic1 = TiQiq1 Ftip1 and  [tig] < |rgl

(Note here that such t;11,q;41 exist by the division algorithm
Let E;11 be the equation of the form r;y1 = ax;11 + by;11 obtained by subtracting q;11-times equation E;
from E;_1. Then there exists m € N with rp,—1 #0 and r,, = 0. Put d = |ry—1|. Then

(a) 1k, Tk, yx € Z for all k € Z with —1 < k < m.
(b) d is the greatest common divisor of a and b.
(¢) Tm—1 = a®ym—1 + bYm—1 and d = ax + by for some x,y € Z.

Proof. For k € Z with k > —1, let P(k) be the statement that ry, z; and yi are integers and if k > 1, then
|T’k‘ < |’I"k_1‘.
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By the definition of Ey and Fy we have r_1 = a,z_1 = 1,y_1 = 0,79 = b,z9 = 0 and yg — 1. Thus P(-1)
and P(0) hold. Suppose now that ¢ € N, that P(k) holds for all k¥ € Z with —1 < k <4 and that r; # 0. We
have

Ei v @ rm1 = ari-1 + by
El' . T

and subtracting ¢; 41 times F; from F;_; we obtain

ar; + by

Eipv @ rici =71 = a1 —xigip1) + b(Yim1 — TiGig1)-

Hence

Tit1 = Ti—1 — Tiqi+1
Tit1 = Ti—1 — TiGi+1
Yit1l = Yi—1 — TiQit1-
By choice, g;+1 is an integer. By the induction assumption, x;,z;—1,y;—1 and y; are integers. Hence also
Tit1, Ti+1 and y;41 are integers. By choice of ¢; 11 and ¢;11

ric1 = 7iGiy1 + tip1  and  [tipa] < |l
So
tiv1 =Tigip1 — Tic1 =101 and  |riga] < |yl
Hence P(i + 1) holds. So by the principal of complete induction, P(n) holds for all n € Z with n > —1
(for which E,, is defined).
In particular, @ holds and

‘7“0|>|7”1|>|’I"2|>|’I“3|>...>|7“i|>....

Since the r;’s are integers, we conclude that there exists m € N with r,,,_1 # 0 and r,, = 0.
From 7;_1 = ri¢ix1 + tix1 = riqiv1 + 7341 and we have ged(r;—1,r;) = ged(r;, riy1) and so

ged(a, b) = ged(r_q1, 1) = ged(ro,m1) = ... = ged(rm—1, 7m) = ged(rm-1,0) = [rm-1]| = d.
So (]E[) holds.
The first statement in is the equation E,, 1. If r,_1 > 0, then d = rp,_1 = axm_1 + bym—_1 and if
Tm—1 <0, then d = —rp,_1 = a(—2pm—1) + b(—ym—1) and so holds. O

Example 1.2.8. Let a = 1492 and b = 1066. Then

E_y: 1492 = 1492 - 1 + 1066 - 0
Ey : 1066 = 1492 - 0 + 1066 - 1
Ei: 426 = 1492 - 1 + 1066 - -1 |E_, — Ey
Es: 214 = 1492 - -2 + 1066 - 3 By — 2B
Ej: 212 = 1492 - 3 + 1066 - —4 B, — B,
Ey: 2 = 1492 - -5 + 1066 - 7 |By  — B

E5 : 0 | E3 - 106E4
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So ged(1492,1066) = 2 and 2 = 1492 - —5 + 1066 - 7.

Theorem 1.2.9. Let a and b be integers not both zero and d := ged(a,b). Then d is the smallest positive
integer of the form au + bv with u,v € 7Z.

Proof. By the Euclidean Algorithm d is of the form au + bv with u,v € Z. Now let e be any positive
integer of the form e = au + bv for some u,v € Z. Since d = ged(a,b), d divides a and b. Thus by d
divides au + bv = e. Hence shows that d < |d| < |e] = e. Thus d is the smallest possitive integer of
the form au + bv with u,v € Z. O

Corollary 1.2.10. Let a and b be integers not both 0 and d a positive integer. Then d is the greatest common
divisor of a and b if and only if

(I) d is a common divisor of a and b; and
(IT) if ¢ is a common diwisor of a and b, then ¢ | d.

Proof. =>: Suppose first that d = ged(a,b). Then (I)) holds by the definition of ged. By d=ax+by
for some x,y € Z. So if ¢ is a common divisor of ¢ and b, then shows that ¢ | d. Thus (II)) holds.

<=: Suppose next that and (LI) holds. Then d is a common divisor of a and b by . Also if ¢ is a
common divisor of a and b, then by (II), ¢ | d. Thus by ¢ < |d| = d. Hence by definition, d is a greatest
common divisor of a and b. O

Theorem 1.2.11. Let a,b integers not both 0 with ged(a,b) = 1. Let ¢ be an integer with a | be. Then a | c.
Proof. Since ged(a,b) =1, shows that 1 = ax + by for some x,y € Z. Hence

¢ =1le = (ax 4 by)e = a(zc) + (be)y.

Note that a divides a and be, and that xzc and y are integers. So by a also divides a(xzc) + (cb)y.
Thus a | c. O

Exercises 1.2:
#1. If a | band b | ¢, prove that a | c.
#2. If a|cand b | ¢, must ab divide ¢? What if ged(a,b) =17

#3. Let a and b be integers, not both zero. Show that ged(a,b) = 1 if and only if there exist integers v and
v with ua +vb = 1.

#4. Let a and b be integers, not both zero. Let d = ged(a, b) and let e be a positive common divisor of a and

b.

(a) Show that ged(%, ¢) g.

b
e
(b) Show that ged(%, %) = 1.

#5. Prove or disprove each of the following statements.
(a) If 21 a, then 4 | (a® — 1).
(b) If 2t a, then 8 | (a? — 1).
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#6. Let n be a positive integers and a and b integers with ged(a,b) = 1. Use induction to show that
ged(a, b™) = 1.

#7. Let a,b, c be integers with a,b not both zero. Prove that the equation ax + by = ¢ has integer solutions
if and only if ged(a, d) | c.

#8. Prove that ged(n,n + 1) = 1 for any integer n.
#9. Prove or disprove each of the following statements.
(a) If 21 a, then 24 | (a® —1).
(b) If 2{a and 3 1 a, then 24 | (a® — 1).
#10. Let n be an integer. Then ged(n + 1,n? —n+1) =1 or 3.

#11. Let a,b, ¢ be integers with a | be. Show that there exist integers b, é with b | b,é | ¢ and a = bé.

1.3 Integral Primes
Definition 1.3.1. An integer p is called a prime if p ¢ {0,£1} and the only divisors of p are £1 and +p.
Lemma 1.3.2. (a) Let p be an integer. Then p is a prime if and only if —p is prime.
(b) Let p be a prime and a an integer. Then either (p | a and ged(a,p) = |p|) or (pta and ged(a,p) =1).
(¢) Let p and q be primes with p | q. Then p=q orp= —q.
Proof. @ Note that
(%) p ¢ {0,£1} ifand only if —p¢ {0,£1},
By [L.2.1]
(xx)  p and —p have the same divisor.
Moreover,
(% %) +p==(-p)

Thus the following statements are equivalent:

p is a prime

= p ¢ {0,4+1} and the only divisors of p are +1 and +p - Definition of a prime.

<= —p ¢ {0,£1} and the only divisors of —p are £1 and +(—p) - , and (% * *

= —p is a prime. - Definition of a prime.
So @ holds.

@: Let d = ged(a,p). Then d | p and since d is prime, d € {+1,+p}. Since d is positive we conclude

(+) d=1 or d = |p|.
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Case 1: Suppose p | a. Then [p| is a common divisor of a and p and so d > |p| and d # 1. Thus by
d = |p| and so (b)) holds in this case.

Case 2: Suppose p t a. Then also |p| { a and so ged(a,b) # |p|. Hence by ged(a,b) =1 and (b)) also
holds in this case.

: Suppose p and ¢ are primes with p | g. Since ¢ is a prime we get p € {£1,+¢}. Since p is prime,
p ¢ {£1} and so p € {£q}. O

Theorem 1.3.3. Let p be an integer with p ¢ {0,£1}. Then the following two statements are equiva-
lent:

(a) p is a prime.
(b) If a and b are integers with p | be, then p | a or p | b.

Proof. Suppose p is prime and p | ab for some integers a and b. If p { a, then by ged(p,a) = 1. Since

p | ab,[1.2.11)implies p | b. Sop | a or p | b.
For the converse, see Exercise 1.3#2] O

Corollary 1.3.4. Let p be a prime integer, n a positive integer and ay,as, ... a, integers with p | aras ... ay,.
Then p | a; for some i € Z with 1 <i <n.

Proof. The proof is by induction on n. If n = 1, then p | a; and so Corollary holds with ¢ = 1. Suppose now
that the Corollary holds for n = k and let aj, as . ..ag11 be integers with p | a1as ... arags1. Puta =ay...ax
and b = ag4+1. Then p | ab and so by plaorp|b Ifpla,then p|aj...a; and so by the induction
assumption, p | a; for some ¢ € Z with 1 < ¢ < k. If p | b, then p | ag1. In either case p | a; for some i € Z
with 1 <14 < k 4+ 1. Thus the Corollary holds for n = k + 1.

The Principal of Induction now shows that the Corollary holds for all positive integers n. O

Lemma 1.3.5. Let n be an integer with n > 1. Then the following statements are equivalent:

n 1S not a prime.

(a
(b

There exists a € Z with a | n and 1 < a < n.

d
(e

Proof. We will first prove

)
)
(¢) There exist a,b € Z withn=ab, 1 <a<n and 1 <b<n.
(d) There exist a,b € Z with n=ab, a > 1 and b > 1.

)

There exist a,b € 7Z with n = ab, a <n and b < n.

(¥*)  Let a and b be positive integers with n = ab, then

(1<a <— b<n) and (1<b <— a<n)

Since a is positive, we have 1 < a if and only if % < 1, if and only if 2 < n and if and only if b < n. By
symmetry, 1 < b if and only of a < n.

@ = : Suppose that n is not a prime. Since n > 1, n ¢ {0,4+1} and the definition of a prime
shows that there exists a divisor m of n with m ¢ {£1,£n}. Put @ = |m|. Then also a is a divisor of n, a is
positive and a # 1 and a # n. Since a divides n, [1.2.1)implies 1 < |a| < |n|. As a and n are positive this gives
1 <a < n. Together with a # 1 and a # n we get 1 < a < n.
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@ — : Suppose a € Z with a | n and 1 < a < n. Then by definition of divide, n = ab for some

b € Z. Since n and a are positive also b is positive. By , since 1 < a we have b < n and since a < n we have
1 <b. So holds.

= @: If holds, then @ holds for the same a and b.

(d) = (ED: Suppose there exist a,b € Z with n = ab, a > 1 and b > 1. Then gives a < n and b < n.
So () holds.

= @: Suppose now that n = ab with a,b € Z and a < n and b < n. Then «a is a divisor of n and
a # n. Since b < n, gives a > 1 and so a # 1, Since a and n are positive also a # —1 and a # —n. So a is
a divisor of n other than +1, £n and the definition of a prime shows that n is not a prime. O

Theorem 1.3.6. Let n be integer with n > 1. Then there exist a positive integer k and positive primes
P1,D2; - - Pk With
n=pip2...Pk-

Proof. The proof is by complete induction on n. So let m be an integer with m > 1 and suppose that the
theorem is true for all integers n with 1 < n < m.

Case 1. Suppose m is a prime.
Put £ =1 and p; = m. Then m = p; and theorem holds for n — m in this case.
Case 2. Suppose m is not a prime prime.
Then by [[.375] there exist integers a and b with n = ab, 1 < a < n and 1 < b < n. By the induction
assumption there exist positive integer ¢ and j and primes pq,...,p;, ¢1....¢q; with
a=p1...0; and b=gq1...q;.
Thus

m=ab=0p1...0:q1...;.
Put k:=1i+j and for 1 <[ < j define p;4; := q;. Then

m=p1...DiPi+1---Pi+j =P1---Dk
So again the theorem for n = m.

By the Principal of Complete Induction, the theorem now holds for all integers n with n > 2. O

Theorem 1.3.7 (Fundamental Theorem of Arithmetic,FTA). Let n be an integer with n > 1. Then n is a
product of positive primes. Moreover, if
n=pip2... Pk and n=qiq2 ... q,
where k,l are positive integers and p1,...Dpk,q1,-..q are positive primes. Then k = | and (possibly after
reordering the g.s)
pP1=4q, PpP2=4q2, -.-.5 Pk={Gk
In more precise terms: There exists a bijection 7 : {1,2...,k} = {1,2,...,1} with p; = qn(;) for all1 <i < k.
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Proof. By n is a product of positive primes. The proof of the second statement is by complete induction
on n. So let m be an integer with m > 1 and suppose that the FTA holds for all integers n with 1 < n < m.
Suppose also that

(%) m = pipz...Dk and m=qiqz...q.

where k, [ are positive integers and p1,...pk,q1,...q are positive primes.
Since p; and ¢; are primes, p; # 1 and ¢; # 1. Since p; and ¢; are positive we conclude

(%) p;>1foralll <i<k and ¢g;>1foralll<j<l.

Case 1. Suppose that m is a prime.

Assume for a contradiction, that & > 1. Then by m = p1(pa...px) and by , pr>landps...pg > 1.
Thus by shows that m is not a prime, contrary to the assumption. Thus k = 1 and by symmetry also
Il =1. Also p; = m = ¢; and the FTA holds for n = m.

Case 2. Suppose that m is not a prime.

Then p; #m # ¢ and so k > 2 and [ > 2.

Since m = (p1...pk—1)pr We see that pi divides m. So py divides ¢ ...q and thus by Pk | g; for
some 1 < j < [. Since p; and g; are primes, m gives pi = g; or pi, = —q;. Since p and g; are positive,
Pk = ¢;. Reordering the ¢;’s we may assume that j = [. So

(s * ) Pr =q

Put u := pﬂk:%. Then by

(+) U=pip2...Prk-1 and U=qiq2...q—1.

Bypk>1andsou:m<m. Alsopy >1sou=p;...pyx_1 > 1. Hence 1 < u < m and so by the

Pk

induction assumption the FTA holds for n = u. Thus implies k — 1 = — 1 and, possibly after reordering
qi;---,qk—1,
b1 =4q1, P2 =Gk, cevy Pk—1 = Qqk—1-
k—1=1—1gives k =1 and so by (* * *|) px = ¢ = gx. So the FTA holds for n = m.
The Principal of Complete Induction now shows that the FTA holds for any integer n with n > 1. O

Exercises 1.3:

#1. Let p be an integer other than 0, 1. Prove that p is a prime if and only if it has this property: Whenever
r and s are integers such that p = rs, then r = +1 or s = £1.

#2. Let p be an integer other than 0, &1 with this property
(*)  Whenever b and c are integers with p | be, then p | b or p | ¢. Prove that p is a prime.

3. a) List all the positive divisors of 3°5¢ where s,t € Z and s,t > 0.
#3. (a) P : :
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(b) If r,s,t € Z are positive, how many positive divisors does 235! have?
#4. Prove that ged(a,b) = 1 if and only if there is no prime p such that p | @ and p | b.
#5. Prove or disprove each of the following statements:

(a) If p is a prime and p | a® + b% and p | ¢? + d?, then p | (a® — c?)

(b) If p is a prime and p | a® + b? and p | ¢ + d?, then p | (a? + ¢?)

(c) If pis a prime and p | a and p | a® + b2, then p | b
#6. Let a and b be integers. Then a | b if and only if a® = b3.

#7. Prove or disprove: Let n be a positive integer, then there exists p,a € Z such that n = p + a? and either
p=1or pis a prime.



Chapter 2

Congruence in Z and Modular
Arithmetic

2.1 Congruence and Congruence Classes
Let a,b and n be integers. Recall that the relation ‘= (mod n)’ on Z is defined by

a=b (modn) <= mnla—0>b

By - ‘= (mod n)’ is an equivalence relation on Z. Recall also that [a], is the equivalence class of ‘=
(mod n)’ with respect to a. So
[al, ={b€Z]a=b (modn)}.

Theorem 2.1.1. Let a,b,n be integers with n # 0. Then the following statements are equivalent

(a) a = b+ nk for some integer k. (h) a € [b],.
(b) @ —b=nk for some integer k. (i) b=a (mod n).
¢c) nla—b. G) n|b—a.

a = nl for some integer [.

(1) b=a+ nl for some integer [.

)
)
( )
( )
)

f
)

)
)
)
d) a =b (mod n). (k) b—
()
( ; (m) a and b have the same remainder when divided

() laln = [0]n- by n.

Proof. @ — @: Add b to both sides of .
@ = : Follows from the definition of ‘divide’.
() < (d): Follows from the definition of ‘= (mod n)’.

By [0.5.5] ‘= (mod n)’ is an equivalence relation. So Theorem implies that (d)-() are equivalent.
Since we already proved that @ @ are equivalent we conclude that @ to ( . are equivalent.

41
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Note that @ is symmetric in ¢ and b. Since (ED— are equivalent to , we can interchange a and b in
@— and conclude that (E[) to are equivalent to (jg). Thus @— are equivalent.

By the division algorithm there exists integers g1, 71, g2, 72 With

a=nq +m and 0<7ry <|n|

and

b=ngqs + 1o and  0<ry<|n|
So 71 and ry are remainders of a and b, respectively when divided by n.

= (]E[): Suppose holds. Then ry = r9 and

b—a=(ng+72) — (nq1 +71) =n(qz — q1) + (r2 — 1) = n(g2 — q1).
Since g2 — q1 € Z we see that (]E[) holds with & = ¢» — ¢1.
@ = : Suppose @ holds. Then a = b+ nk for some integer k. Then

a = (ngs + 1) +nk =n(q + k) + ro.

Since g2+ k € Z and 0 < ro < |n|, we conclude that 75 is the remainder of a when divided by n. So 11 = r9

and holds. O
Corollary 2.1.2. Let n be positive integer.

(a) Let a € Z. Then there exists a unique r € Z with 0 < r < n and [a], = [r],, namely r is the remainder
of a when divided by n.

(b) There are exactly n distinct congruence classes modulo n, namely

[O]a [1}7 [2]7 L) [Tl - 1]
(¢) |Zn| = n, that is Z,, has exactly n elements.

Proof. @ Let a € Z, let r be the remainder of a when divided by n and let s € Z with 0 < s < n. Since
s=0n+sand 0 <s <mn, s is the remainder of s when divided by n. By [a]n, = [s]n if and only a and
s have the same remainder when divided by n, and so if and only if r = s.

(o) By definition each congruence class modulo n is of the form [a],,, with a € Z. By (@), [a], is equal to
exactly one of

[0],11],[2],.--,[n — 1]

So (]ED holds.
Since Z, is the set of congruence classes modulo n, () follows from (D). 0O

Example 2.1.3. Determine Zs.

Zs = { (05, (115, [2]5, 3]s, [4]s } = {05, 115, [2]5, [~2]s, [=1]5 }

Exercises 2.1:
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#1. (a) Let k be an integer with k = 1 (mod 4). Compute the remainder of 6k + 5 when divided by 4.

(b) Let r and s be integer with » = 3 (mod 10) and s = —7 (mod 10). Compute the remainder of 2r + 3s
when divided by 10.

#2. If a,m,n € Z with m,n > 0, prove that [a™]s = [a"]2
#3. If p > 5 and p is a prime, prove that [p] = [1] or [p] = [5] in Zs.
#4. Find all solutions of each congruence:
(a) 2z =3 (mod 5) (b) 3z =1 (mod 7)
(c) 62 =9 (mod 15) (d) 6z =10 (mod 15)
#5. If a =2 (mod 4), prove that there are no integers ¢ and d with a = ¢? — d>.
#6. If [a] = [1] in Z,, prove that gcd(a,n) = 1. Show by example that the converse is not true.
#7. (a) Show that 10" =1 (mod 9) for every positive integer n.

(b) Prove that every positive integer is congruent to the sum of its digits mod 9. [for example, 38 = 11
(mod 9)].

2.2 Modular Arithmetic

Theorem 2.2.1. Let a,a, b,l; and n be integers with n # 0. Suppose that

[al, = [a]n, and (0] = [b]n.
or that
a=a (modn) and b=b (modn)
Then
[a+ b, = [a+b], and [ab],, = [ab],
and

Proof. Since ~
[a], = [a]n and [b]n, = [b]n.

or

a=a (modn) and b=b (mod n)

we conclude from [2.1.1] that )
a=a+kn and b=b+1In

for some k,l € Z. Hence

a+b=(a+kn)+ B+In)=(a+b)+ (k+Dn.
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Since k + 1 € Z,[2.1.1] gives
[a+bl, = [a+ D] and a+b=a+b (modn)

Also

a-b=(a+kn)(b+In) = ab+ (ak + kb+ kin)n,
and, since ak + kb + kin € Z,[2.1.1] implies

[ab], = [ab],, and ab=ab (mod n).

In view of the following definition is well-defined.

Definition 2.2.2. Let a,b and n be integers with n # 0. Then
laln & [bln =[a+b], and [a]n © [b]n = [ab];.
The function

Zp X2y =2y, (A,B) > ADB

1s called the addition on Z,, and the function
Zp X2y =7y, (A,B) > AOB
is called the multiplication on Z,.

Example 2.2.3. (1) Compute [3]s © [7]s.

Bls ©[7]s = [3-7]s = [21]s = [8- 2+ 5]s = [5]s
Note that [3]s = [11]g and [7]s = [—1]s. So we could also have used the following computation:

[1]s © [-1]s = [11- —1]s = [-11]s = [5]s

Theorem [2.2.1] ensures that we will always get the same answer, not matter what representative we pick
for the congruence class.

(2) Compute [123]212 @ [157]212-

[123]212 D [157]212 = [123 + 157}212 = [280]212 = [68}212

Note that [123]212 = [—89}212 and [157]212 = [—55]212. Also

[—89]212 @ [—55]212 = [—89 — 55]212 = [—144]212 = [68]212
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(3) Warning: Congruence classes can not be used as exponents:

We have

2% =[16]3=[1]3 and [2']5 =[2]3
So

[2%]3 # [2']3  even though [4]3 = [1]3
Theorem 2.2.4. Let n be a non-zero integer and A, B,C € Z,,. Then

(1) AeBe€Z, [closure for addition].
(2) Ao (BaC)=(AeB)aC. [associative addition]
(3) AeB=Bo A. [commutative addition]
(4) A 0], =A=10],9 A. [additive identity]
(5) There exists X € Z,, with A® X = [0],. [additive inverse]
(6) A® B € Zy. [closure for multiplication]
() Ao(BoC)=(AeoB)oC. [associative multiplication]
8) Ao (BaC)=(AoB)®(Ac0C)and (AdB)oC=(AcC)® (Bo (). [distributive laws]
(9) Ao B=B0oA. [commutative multiplication]
(10) 1], 0 A=A=A0 1], [multiplicative identity]

Proof. If d € Z we will just write [d] for [d],,. By definition of Z,, there exists integers a,b and ¢ with A = [a],
B = [b] and C = [¢].

(1) We have A® B = [a] @ [b] = [a + b]. Since a + b € Z we conclude that A @® B € Z,.

(2) Using the definition of @ and the fact that addition in Z is associative we compute

AeBaC) = [de@el) = [keb+d = la+tO®+c)] = [a+b) +d
= [a+beld = (dep)eld = (AeB)acC.

Using the definition of @ and the fact that addition in Z is commutative we compute

A®B = [d®b = [a+b = [b+a=[@a=BoA
Using the definition of & and the fact that 0 is an additive identity in Z we compute

A 0] =[a & [0] = [a+0] = [a] = 4,

and
(0]®A=[0]®[a] =[0+a] =[a] = A.

(5) Put X = [—a]. Then X € Z,,. Using the definition of & and the fact that —a is an additive inverse for
a in Z we compute
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A6 X =[d]®[-a] = [a+ (~a)] = 0].
(6) Similarly to we have A® B = [a] © [b] = [ab] and so A® B € Z,,
Similarly to we can use the definition of ® and the fact that addition in Z is associative to compute
Ao (BoC) = [do(blol) =  [dofd = [a(be)] = [(ab)q]
= [ab] ® [] = ([ajohb)oeld = (AeB)oC.

Using the definition of & and ® and the distributive law in Z we compute

Ao (BaC) = [a] ® ([o] ® [¢]) = [aOob+ = [a(b+ )]
= [ab + bc] = [ab]@®a = (la]O[]) @ ([a ©d])
(AOB)® (AG0),
and similarly
(AeB)oC = ([a] ® [0]) @[] = [a+b O] = [(a+b)]
= lac + bc] = lad&fbc] = (la]o[d) & ([b] ©[c])

(AeoC)a (Bo ).

@ Similarly to we can use the definition of ® and the fact that multiplication in Z is commutative to
compute

A®B = [ao] = [ab] = [ba]=[b]®[a] =B A.

(10) Similarly to we can use the definition of ® and the fact that 1 is a multiplicative identity in Z to
compute

and

O

Notation 2.2.5. Let a,b,n be integers with n # 0. We will often just write a for [al,, a + b for [a], & [b],
and ab (or a-b) for [a], © [b],. This notation is only to be used if it clear from the context that the symbols
represent congruence classes modulo n. FExponents are always integers and never congruences class.

Example 2.2.6. (1) Compute 445 and 4 -5 in Z7.

44+5=9=2 and 4.5=20=6
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(2) Determine the addition and multiplication table of Zs.

+10 1 2 3 4 01 2 3 4
0|0 1 2 3 4 0|0 00O 0 O
111 2 3 4 5 110 1 2 3 4
and
212 3 4 5 6 210 2 4 6 8
313 4 5 6 7 3/0 3 6 9 12
414 5 6 7 8 410 4 8 12 16
and after computing remainders when divided by 5:
+10 1 2 3 4 01 2 3 4
0|0 1 2 3 4 0j/0 O 0O 0 O
111 2 3 4 0 110 1 2 3 4
and
212 3 4 01 210 2 4 1 3
313 4 0 1 2 310 3 1 4 2
414 0 1 2 3 410 4 3 2 1

Definition 2.2.7. Let n be a non-zero integer, A € Z,, and k € N. Then A* is inductively defined by

A" =[1], and AF'=4A%0 A

v A’“:(((A@A)@A)...@A)@A

k—times
Lemma 2.2.8. Let n be a non-zero integer and k,l € N.
(a) Leta € Z. Then [a]k = [a*],.
(b) Let A,B € Z,,. Then (A® B)k = A* @ Bk, A*+l = AF © Al and A = (AF)L.

Proof. @ The proof is by induction on k. For k = 0, [a]® = [1] = [a°] and so @ holds for k = 0. Suppose @
holds for k, then

[a}k+1 _ [a]k o [a} _ [ak] o [a] — [aka] — [ak+1},

and so @ holds for k£ + 1. So by the Principal of induction, it holds for all k¥ € N.
(o) Choose a,b € Z with A = [a] and B = [b]. Using (&) and the fact that (b)) holds for integers in place
of congruence classes we compute:

(A® B)* = ([a] © b)* = [ab]* = [(ab)*] = ["b"] = [a"] © [b"] = [a]" © [b"] = A* © B,

Ak+l _ [a]kJrl _ [akJrl} _ [akal] — [ak] ® [al] _ [a}k: ® [a]l _ Ak @Al,
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and

Remark 2.2.9. Consider the expression
2°+3-7 in Z,

It is not clear which element of Z,, this represents, indeed it could be any of the following for elements:

[2°+3-7],
[2°], @[3 7]
2], ® ([8]n © [7]n)
21> ®[3- 7]
25 @ ([8]n © [7]n)

But thanks to Theorem (2.2.1] and Theorem |2.2.§ all these elements are actually equal. So our simplified
notation is not ambiguous. In other words, our use of the simplified notation is only justified by Theorem|2.2.1
and Theorem [2.2.8

Example 2.2.10. (1) Compute [1334%67];5.

[1334567]12 _ [13]?‘421567 _ [1]2{’421567 _ [134567]12 _ [1]12
In simplified notation this becomes: In Zi5, 13 = 1 and so

1334567 _ 34567 _ |

Why is the calculation shorter? In simplified notation the expression

[1334567] 12 and [13]?421567

are both written as
1334567

So the ste
P [1334567]12 _ [13]\;)421567

is invisibly performed by the simplified notation. Similarly, the step

[1]?421567 _ [134567] 12

disappears through our use of the simplified notation.
(2) Compute [7]£3°.
In Z50 :

7198 — (72)99 — 4999 — (_1)99 = _1= 49
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(3) Determine the remainder of 53 - 7190 + 47 .77t 4+ 4. 73 when divided by 50.
In Z50 :

537100 £ 47770 4 4. 78 =  3.(72)%0 —3.(72)35.744.72.7
— 3. (-1 3. (—1)% .74 1.7
= 3421 -28=3—-7=—-4=46
Thus [53- 7190 44777 +4.73]50 = [46]59. Since 0 < 46 < 50, [2.1.1]shows that the remainder in question
is 46.
Example 2.2.11. Find all solutions of 2 + 2z + 3 = 0 in Zs.

All computation below are in Zs.
By Corollary Zs ={0,1,2,3,4}. Since 3=—-2and 4 = -1, Zs = {0,1,2, -2, —1}. We compute

r |23 + 2 + 3

0|0 + 0 + 3 = 3

1 1 + 2 4+ 3 = 6 =1

218 + 4 + 3 = 15 =0

-2|-8 - 4 4+ 3 = -9 =1

-1/-1 - 2 + 3 = 0
So the solution of 23 + 22 +3=0inZs are x =2 and . = —1 = 4.

Exercises 2.2:
#1. Let n be a non-zero integer and A € Z,,. Show that A ® [0],, = [0],.
#2. (a) Solve the equation 2?2 + z = 0 in Zs.
(b) Solve the equation 22 + z = 0 in Zg.
(c) If p is a prime, prove that the only solutions of z? + z = 0 in Z, are [0] and [p — 1].
#3. Solve the equations:
(a) 22 =1 in Zq (b) x* =1in Zs
(c) 2 +3z+2=0in Zs (d) 22 +1=0in Zi,
#4. (a) Find an element a in Z7 such that every non-zero element of Z7 is a power of a.
(b) Do part (a) in Zs
(¢) Can you do part (a) in Zg?
#5. (a) Solve the equation 2% +z = 0 in Zs.
(b) Solve the equation 22 4+ x = 0 in Zg.

(c) If p is a prime, prove that the only solutions of z? + z = 0 in Z, are [0] and [p — 1].
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2.3 Cogruence classes modulo primes
Lemma 2.3.1. Let n,m € Z with n # 0. Then n | m if and only if [m], = [0],.

Proof. n | m if and only if n | m — 0 and so by if and only [m],, = [0]. O

Theorem 2.3.2. Let n be an integer with |n| > 1. Then the following statements are equivalent:
(a) n is a prime.
(b) For any A € Z,, with A # [0],, there exists X € Z,, with AX = [1],.
(¢) Whenever A and B are elements in Z, with AB = [0],, then A =[0], or B = [0],.

Proof. Let m € Z. We will write [m] for [m],.

(&) = (): Suppose n is a prime and let A € Z, with A # [0]. Then A = [a] for some a € Z. Since
[a] # [0], d implies n { a. Since n is prime, [1.3.2] shows ged(a,n) = 1 and so by the Euclidean Algorithm
[1.2.7]there exist u,v € Z with au+pv = 1. Henc%Q:._l.TI@ implies [au] = [1]. By the definition of multiplication
in Z,, [a][u] = [au] and so [a][u] = [1]. Put X = [u]. Then X € Z,, and AX = [1].

) = (J: Suppose (B) holds and let A, B € Z, with AB = [0]. Assume that A % [0]. Then by (D)
there exists X € Z,, with AX = [1]. We compute

0] = X[0] —See Exercise
= X(AB) - Since AB = [0]

= (XA)B - associative multiplication, [2.2.4{(7)

= (AX)B - commutative multiplication, [2.2.4)(9)

= [1]B  — Since AX = [1]

= B — Since [1] is a multiplicative identity,

We have proven that A # [0] implies B = [0]. So A = [0] or B = [0] and () holds.

[ = (): We will use Theorem namely n is a nrime if and only if n | b or n | ¢ whenever b and
c are integers with n | be.

So suppose (d) holds and let b and ¢ be integers with n | be. Then [be] = [0] by 2.3.1]and thus [b][c] = [bc] =
[0]. () implies [b] = [0] or [c] = [0]. Hence by 2.3 n | b or b | c. Thus by [1.3.3] n is a prime. O

Example 2.3.3. Use multiplication tables to verify Theorem for n =4 and n = 5.

Note first that Condition [2.3.2|(b|) in Theorem says that every row of the multiplication table of Z,
other than Row 0 (that is the row corresponding to 0) contains 1.

Condition|2.3.2((b]) in Theorem says that 0 only appears in Row 0 and in Column 0 of the multiplication
table.
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The multiplication table for Z4 and Zs are :

01 2 3 4
01 2 3

00 0 0 0 O
00 0 0 O

110 1 2 3 4

Zs: 1|10 1 2 3 Zs

210 2 4 1 3
210 2 0 2

310 3 1 4 2
310 3 21

410 4 3 2 1

Row 2 of the table for Z, does not contain a 1. Also the entry in Row 2, Column 2 is 0. Moreover 4 is not
a prime. So for p = 4 none of the three statements in Theorem holds.

Each row, other than Row 0 of the table for Z5 contains a 1. Also 0 only appears in Row 0 and in Column
0. Moreover, 5 is a prime. So for p = 5 all of the three statements in Theorem hold.

Corollary 2.3.4 (Multiplicative Cancellation Law). Let p be a prime and A, B,C € Z,, with A # [0],. Then
AB = AC if and only if B=C.

Proof. <—=: 1If B =C then AB = AC by the principal of substitution.
=—: Now suppose that AB = AC. By there exists X € Z, with AX = [1],. We compute

AB = AC

= X(AB) = X(AC) — Principal Of Substitution

= (XA)B=(XA)C - associative multiplication JStwice

= (AX)B = (AX)C - commutative multiplication [2.2.4Y(7)) twice
= [1],B =[1],C  — Since AX = [1],

= B=C — Since [1], is a multiplicative identity

Example 2.3.5. Verify that the Cancellation Law holds in Zs, but does not hold in Zy.

Let A, D € Z, with A # [0],. The Cancellation law says if B,C € Z, with D = AB and D = AC, then
B = C. So there exists at most one C' € Z, with AC = D. In terms of the multiplication table this means
that no entry appears more than once in Row A of the multiplication table.

Note that 2 appears twice in Row 2 of the multiplication table of Z4, namely in Column 1 and Column 3.
Indeed 2-1=2=2=6=2-31in Z4 but 1 # 3 in Z4. So the Cancellation Law does not hold for Z,.

Except for Row 0, each of row of the multiplication table of Z5 contains each of the congruence classes
0,1,2,3 and 4 exactly once. So the Cancellation law holds in Zs.

Corollary 2.3.6. Let p be a prime and A and B in Z, with A # [0],.
(a) There exists a unique X € Z,, with AX = [1],,.

(b) There exists a unique Y € Z, with AY = B, namely Y = XB.
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Proof. By there exists X € Z, with AX = [1],. Thus AX # [0],. Since A[0], = [0], by exercise
we conclude X # [0],. Let Y € Z,. Then

AY =B
< X(AY)=XB — Multiplicative Cancellation Law [2.3.4]
< (XA)Y = XB - associative multiplication [2.2.4|(7)
<— (AX)Y = XB - commutative multiplication @[)
<~ [1},Y =AB — Since AX =[1],
<~ Y =AB — Since 1 is a multiplicative identity

So Y = X B is the unique element in Z, with AX =Y. Thus (b) holds.
The case B = [1], shows that X[1], = X is the unique element in Z, with AX = [1],. So (a) holds. O

Example 2.3.7. (a) Solve the equation 2z =1 in Zs.
(b) Solve the equation 2z = 1 in Zg.
(c) Solve the equation 2z = 4 in Zg.

(a)): In Zs: 2-3 = 1. So 3 is a solution on 2z = 1. By[2.3.6|f),2z = 1 has a unique solution and so 3 is the
unique solution of 2x =1 in Zs.

() and (d): By Ze = {0,1,2,3,4,5}. We compute

T ‘ 01 2 3 4 5
2z |0 2 4 6 8 10
2z10 2 4 0 2 4

So 2x = 1 has no solution in Zg , but 2z = 4 has two solutions, namely x = 2 and x = 5. The second
solution is explained by the facts that 2-3 =6 = 0 and so

2.5=2-(243)=2-2+42-3=2.240=2-2.

Exercises 2.3:
#1. How many solutions does the equation 6z = 4 have in
(a) Z7 (b) Zg (C) Zg (d) ZlO

#2. Let a,b and n be integers with n # 0 and ged(a,n) = 1. Let w and v be integers with au + nv = 1. Put
A = la],, and B = [b],,.

(a) Show that [a], © [u], = [1]n-
(b) Show that there exists a unique X in Z,, with A © X = B, namely X = [ub]s,.
(c) Show that there exists Y € Z,, with B®Y = [1], if and only if ged(b,n) = 1.

#3. Let a,b,n,m € Z with n # 0 and m # 0. Prove each of the following statements:
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(a)
(b)
(©)

[a), = [b] if and only if [ma]mn = [Mb]mn.
[a], = [b], if and only if there exists r € Z with 0 < r < |m/| and [a]nm = [0 + 71 nm.

Suppose that [a], = [b]n, m | @ and m | n. Then m | b.

Remark 2.3.8. Let n be a non-zero integer and A,B € Z,,. The preceding two exercises give rise to a method
to solve the equation A ® X = B in Zy,:

(Step 1)

(Step 2)
(Step 3)

(Step 4)

(Step 5)

(Step 6)

Choose a,b € 7 with A = [a], and B = [b],,. Also let X = [x],, with x € Z. So the equation A® X = B
becomes [ax], = [b]n.

Use the Euclidean Algorithm to compute d = ged(a,n) and u,v € Z with au + nv = d.

Ifdtb, then A© X = B does not have a solution. Indeed, if X = [z], were a solution, then [ax], = [b],.
Note that d | a and d | n. So also d | ax and thus by Exercise 3(c) d | b, a contradiction.

Suppose now that d | b. Put a = 4, b= g andn="2%. Then a = ad,ax = axd, b = bd and n = @id. Thus
by Ezercise 3(a) [ax)s = [D]s if and only if [az], = [b],.

Dividing ua + vb = d by d gives ua + vb = 1. So by Ezercise 2(b), [ax]; = [ba has a unique solution in
Zi, namely [x]7 = [ub]s.

By Ezercise 3(b), (] = [ubls if and only if [z], = [u~l~7 + 1)y, for somer € Z with 0 <r <d. So X in
Z,, is a solution of A® X = B if and only if X = [ub+ ri], for some r € Z with 0 < r < d. In other
words, the solutions of A® X = B are

[wbl, , [ub+nln , [ub+2al, , ... , [ub+(d—2)al, , [ub+ (d—1)7],

#4. Solve the following equations:

(a)
(b)
(©)

122 = 2 in Zqo. (d) Tz =2 in Zog. (g) 252 =10 in Zgs.
3lz =11in Z50. (e) 34x =1 in Zg7. (h) 21z =17 in Zgg.

27z = 2 in Zyp. (f) 152 =9 in Zss.
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Chapter 3

Rings

3.1 Definitions and Examples
Definition 3.1.1. A ring is a triple (R, 4+, ) such that
(i) R is a set;

(ii) + is a function (called ring addition) and R X R is a subset of the domain of +. For (a,b) € R X R,
a+b denotes the image of (a,b) under +;

(iii) - 4s a function (called ring multiplication) and R X R is a subset of the domain of -. For (a,b) € R x R,
a-b (and also ab) denotes the image of (a,b) under -;

and such that the following eight axioms hold:

(Ax1) a+ber forallabeR; [closure of addition]
(Ax2) a+(b+c)=(a+b)+c foralla,b,cecR; [associative addition]
(Ax3) a+b=b+a foralla,beR. [commutative addition]
(Ax 4) there exists an element in R, denoted by Or and called ‘zero R’, [additive identity]

such that a+0r =a=0gr+a foralla € R;

(Ax 5) for each a € R there exists an element in R, denoted by —a [additive inverses]

and called ‘negative a’, such that a + (—a) = Og;

(Ax 6) abe R for all a,b € R; [closure for multiplication]
(Ax 7) a(bc) = (ab)e  for all a,b,c € R; [associative multiplication]
(Ax 8) a(b+c)=ab+ac and (a +b)c=ac+bc for all a,b,c € R. [distributive laws]

In the following we will usually just “Let R be a ring” for “ Let (R,+,-) be a ring.”
Definition 3.1.2. Let R be a ring. Then R is called commutative if

(Ax 9) ab=ba for all a,b € R. [commutative multiplication]

95
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Definition 3.1.3. Let R be a ring. We say that R is a ring with identity if there exists an element, denoted
by 1r and called ‘one R’, such that

(Ax 10) 1lgra=a=a-1p foralla € R. [multiplicative identity]
Example 3.1.4. (a) (Z +,-) is a commutative ring with identity.

(b) (

(c

(d

Q, +, ) is a commutative ring with identity.
(R, +, ) is a commutative ring with identity.
(C,+

)
)
) ,+) is a commutative ring with identity.
(e) Let n be a non-zero integer. Then (Z,,®,®) is a commutative ring with identity.
(f)

)

f) (2Z,+,) is a commutative ring without a multiplicative identity.

(g) Let n be integer with n > 1. Then set M,,(R) of n x n matrices with coefficients in R together with the
usual addition and multiplication of matrices is a non-commutative ring with identity.

Example 3.1.5. Let R = {0,1} and a,b € R. Define an addition and multiplication on R by

0 1 -0 1
0 and 0|0 0
1 a 110 b

For which values of ¢ and b is (R, +,-) a ring?

— o |+
—_

Since 1 needs to have an additive inverse, R will not be a ring if a = 1.

Suppose now that a = 0.

If b =1, then (R, +,") is (Z2,®, ®) with the regular addition and multiplication and so R is ring.

If b =0, then zy = 0 for all z,y € R. It follows that Axioms 6-8 holds. Axiom 1-4 holds since the addition
is the same as in Zy. So R is a ring.

In both cases R is commutative. If b = 1, then 1 is an identity. If b = 0, R does not have an identity.

Example 3.1.6. Let R = {0,1} Define an addition and multiplication on R by

B0 1 |0 1
0|1 0 and 0|0 1
110 1 11 1

Is (R,H,0) a ring?

Note that 1 an additive identity, so O = 1. Also 1r is an multiplicative identity. So 1z = 0. Using the
symbols Or and 1i we can write the addition and multiplication table as follows:

and
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Indeed, most entries in the tables are determined by the fact that 0z and 1r are the additive and multi-
plicative identity, respectively. Also 1 EH1lg = 0H0=1=0g and Og J0r =11 =1=0g.
Observe now that new tables are the same as for Zo. So (R,H, ) is a ring,.

Theorem 3.1.7. Let R and S be rings. Recall from[0.3.3 that R x S = {(r,s) | r € R,s € S}. Define an
addition and multiplication on R x S by

(r,8)+(r',s)y = (r+r',s+5)
(r,8)(r',s") = (rr',ss)
for allr,r € R and s,s' € S. Then

(a) Rx S is a ring;

(b) Orxs = (Or,0s);

(¢) =(r,s) =(—r,—s) forallr € R,s € S;

(d) if R and S are both commutative, then so is R x S;

(e) if both R and S have an identity, then R x S has an identity and 1gxs = (1g,1s).
Proof. See Exercise 3.1[F2] O
Example 3.1.8. Determined the addition table of the ring Zo x Zs.

Recall from 2.1.2|(b) that Z = {0,1} and Z3 = {0,1,2}. So
Zs x Z3 = {(0,0),(0,1),(0,2),(1,0),(1,1), (1,2).}

and

+ |(0,0) (0,1) (0,2) (1,0) (1,1) (1,2)
(0,0) | (0,0) (0,1) (0,2) (1,0) (1,1) (1,2)
(0,1) | (0,1) (0,2) (0,0) (1,1) (1,2) (1,0)
(0,2) | (0,2) (0,0) (0,1) (1,2) (1,0) (1,1)
(1,0) | (1,0) (1,1) (1,2) (0,0) (0,1) (0,2)
(1,1) | (1,1) (1,2) (1,0) (0,1) (0,2) (0,0)
(1,2) | (1,2) (1,0) (1,1) (0,2) (0,0) (0,1)

Exercises 3.1:

#1. Let E = {0, e, b, ¢} with addition and multiplication defined by the following tables. Assume associativity
and distributivity and show that R is a ring with identity. Is R commutative?

+10 e b ¢ 0 e b ¢
00 e b ¢ 0/{0 0 0 O
ele 0 ¢ b e|0 e b ¢
b|b ¢ 0 e b0 b b 0
clec b e 0 c|0 ¢ 0 ¢
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#2. Prove Theorem [3.1.7]

3.2 Elementary Properties of Rings

Lemma 3.2.1. Let R be ring and a,b € R. Then (a +b) + (—b) = a.
Proof.
(a+b)+(=b) = a+(b+(-b) -BAx2
= a+0g -Ax
= a -Ax 4

Theorem 3.2.2 (Additive Cancellation Law). Let R be ring and a,b,c € R. Then

a=1>b
<— c+a=c+b
<— at+c=b+c

Proof. “First Statement = Second Statement’: Suppose that a =b. Then ¢+ a = ¢+ b by the Principal of
Substitution [0.1.11

“Second Statement = Third Statement’: Suppose that c+a = c+b. Then applied to each side of
the equation gives a +c=b+ c.

“Third Statement = First Statement’: Suppose that a + ¢ = b+ ¢. Adding —c to both sides of the
equation gives (a + ¢) + (—¢) = (b+¢) + (—c¢). Applying to both sides gives a = b. O

Definition 3.2.3. Let R be a ring and ¢ € R. Then c is called an additive identity of R if
a+c=a and c+a=a

for alla € R.

Corollary 3.2.4 (Additive Identity Law). Let R be a ring and a,c € R. Then the following three statements
are equivalent:

a = OR
= c+a = c
<~ a+c = c

In particular, Og is the unique additive identity of R.
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Proof. Put b= 0g. Then by[Ax 4 ¢+ b = c and b+ ¢ = c. Thus by the Principal of Substitution:

a = Ogp <— a = b
c+a = ¢ = c+a = c+b
a+c = ¢ — at+c = b+c
So the Corollary follows from the Cancellation Law O

Definition 3.2.5. Let R be a ring and c € R. An additive inverse of ¢ is an element a in R with c+a = 0pg.

Corollary 3.2.6 (Additive Inverse Law). Let R be a ring and a,c € R. Then

a = —c
<= c+a = Op
<— a+c = Ogp

In particular, —c is the unique additive inverse of c.

Proof. Put b= —c. By[Bx 5l ¢+ b= 0pg and so by [Ax 3] b + ¢ = 0. Thus by the Principal of Substitution:

a = —c = a = b
c+a = Op = c+a = c+b
a+c = Op > a+c = b+ec
So the Corollary follows from the Cancellation Law [3.2.2] O

Definition 3.2.7. Let (R,+,-) be a ring and S a subset of R. Then (S,+,-) is called a subring of (R,+,")
provided that (S,4+,) is a ring.

Theorem 3.2.8 (Subring Theorem). Suppose that R is a ring and S a subset of R. Then S is a subring of
R if and only if the following four conditions hold:

(I) o€ S.
(IT) S is closed under addition (that is : if a,b € S, thena+b € S);
(IIT) S is closed under multiplication (that is: if a,b € S, then ab € S);
)

(IV) S is closed under negatives (that is: if a € S, then —a € S)

Proof. =: Suppose first that S is a subring of R.
By [Ax 4l for S there exists 0g € S with 0g + a = a for all a € S. In particular, 0g + 0g = 0s. So by [3:2.4]

(*) 0s =Or.
Since 0g € S, (I) holds.

By[AxTlfor S, a+b € S for all a,b € S. So () holds.
By [Ax @l for S, ab € S for all a,b € S. So ([II) holds.
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Let s € S. Then by [Ax 5l for S, there exists t € S with s +¢ = 0g. By 0s =0p and so s +t = Op.
Thus by t = —s. Since t € S this gives —s € S and holds.

<=: Suppose now that . . ) holds.

Since S is a subset of R, S is a set Hence Condition (i) in the definition of a ring holds for S.

Since S is a subset of R, S x S is a subset R x R. By Conditions (ii) and (iii) in the definition of a ring,
R x R is a subset of the domains of + and -. Hence also S x S is a subset of the domains of + and -. Thus
Conditions (ii) and (iii) in the definition of a ring hold for S.

By () a + b € S for all a,b € S and so [Ax 1] holds for S.

By(a+b)+cfa+(b+c) for all a,b,c € R. Since S C R we conclude that (a +b) +c=a+ (b+c)
for all a,b,c € S. Thus [Ax 2 holds for S.

Similarly since [Ax 3 for all elements in R it also holds for all elements of S.

Put 0g = Or. Then implies 0g € S. By[Ax4lfor R, Or +a = a = a + Og for all a € R. Thus
Os+a=a=a+0g for all a € S and so[Ax 4] holds for S.

Let s € S. Then s + (—s) = O and since 0g = Og, s+ (—s) = 0g. By —s € S and so [Ax 5 holds for
S.

By ab € S for all a,b € S and so [Ax Gl holds for S.

Since [Ax 7l and [Ax§ hold for all elements of R they also holds for all elements of S. Thus[Ax 7 and [Ax 8
holds for S.

So [Ax THAX § hold for S and S is a ring. Hence, by definition, S is a subring of R. O

Example 3.2.9. (1) Show that Z is a subring of Q, Q is a subring of R and R is a subring of C.

By example Z, Q and R are rings. So by definition of a subring, Z is a subring of Q, Q is a subring
of R and R is a subring of C.

(2) Let n € Z and put nZ := {nk | k € Z}. Show that nZ is subring of Z.
We will verify the four conditions of the Subring Theorem for S = nZ.
Observe first that since nZ = {nk | k € Z},

(%) a € nZ <— there exists k € Z with a = nk.

Let a,b € nZ. Then by

() a=nk and b=nl,

for some k,l € Z.
(I): 0 = n0 and so 0 € nZ by ()

(I):a+b = nk+nl =n(k+1). Since k+1 € Z, shows a +b € Z. So nZ is closed under addition.
(III): a . (nk(nl) = n(knl). Since nkl € Z, shows ab € Z. So nZ is closed under multiplication.
(

IV)—a (=) —(nk) = n(—k). Since —k € Z, shows —a € Z. So nZ is closed under negatives.
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(3) Show that {[0]4, [2]4} is a subring of Z,.
We compute in Z4: 0z, =0 € {0,2} and so Condition (I) of the Subring Theorem holds. We compute :

+ 10 2 -0 2

z |0 2
010 2 0[]0 O and

—x |0 2
212 0 210 0

So {0, 2} is closed under addition, multiplication and negatives. Thus {0, 2} is a subring of Z4 by Subring
Theorem.

Definition 3.2.10. Let R be a ring and a,b € R. Then a —b:=a+ (—b).

Proposition 3.2.11. Let R be a ring and a,b,c € R. Then

(a) —Or =0g (g) —(a+b)=(=a)+ (=) =(~a) - b.

(b) a—0g = a. (h) —(a—b) = (—a)+b=0b—a.

(c) a-0gp =0r =0g - a. (i) (—a)-(=b) = ab.

(d) a-(=b) = —(ab) = (—a) - b. () a-(b—c)=ab—ac and (a —b) - ¢ = ac — be.
(e) —(—a)=a. If R has an identity 1,

(f) a—b=0g if and only if a = b. (k) (-1g)-a=—-a=a-(—1g).

Proof. (&) By [Ax40r + 0r = O and so by the Additive Inverse Law Or = —0g.

d£|>a70R Def: - a+ (—0g) @ CLJrOR@a
Wecompute

B 0p+00) B 0 0p + a0,

a-0p
and so by the Additive Identity Law [3.:2:4] a - Ogr = Og. Similarly Og - a = Og.
@ We have
ab+a-(=b) o b+ (=b) "L 0 0r € op.
So by the Additive Inverse Law —(ab) = a - (—b).
(¢) By[AxTHl, a + (—a) = 0g and so by the Additive Inverse Law [3.2.6] a = —(—a).
®
a—b=0g
<= a+(—b) =0 — definition of -
< a=—(-b) — Additive Inverse Law [3.2.6]
= a=>b )
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()
(a+b)+((~a)+(-0) "= (b+a)+((~a)+(-b) ((b+ a) + (~a)) + (~b)
21 b+ (~b) B Or.
and so by the Additive Inverse Law —(a+b) = (—a) + (=b). By definition of 7 — 7, (—a) 4+ (—=b) =
(—a) —b.
()
~a-p) " @) @ oy | o
N A D= g

W o) (-0 Qo (—(-v) Ban

@) a-(b—rc) Def - a-(b+ (—0)) @wb—ka-(—c) @ ab + (—(ac)) L ab — ac.
Similarly (a —b) - ¢ = ab — ac.

Suppose now that R has an additive identity. Then

Ax Ax 8
a+((=15)-a) P2 g at (—1p) - a BB (g4 (<18)  a 050 @ 0.
Hence by the Additive Inverse Law —a = (—1g) - a. Similarly, —a = a - (—15). 0

Lemma 3.2.12. Let R be ring and a,b,c € R. Then

c = b—a
<— ct+a = b
<= at+c = b
Proof.
a+c = b

= cta = b —
— (c+a)+(—a) = b+ (—a) — Additive Cancellation Law [3.2.2]
= c = b—a —[B271and Definition of b — a

Definition 3.2.13. Let R be a ring with identity.
(a) Let u € R. Then u is called a unit in R if there exists an element in R, denoted by u=' and called
‘u-inverse’, with

wut = 1p = u .

(b) Let u,v € R. Then v is called an (multiplicative) inverse of u if uv = 1 = vu.
(c) Let e € R. Then e is called an (multiplicative) identity of R, if ea = a = ae for all a € R.

Example 3.2.14. Find the units in Z, Q and Zg.
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Units in Z: Let u be a unit in Z. Then wv = 1 for some v € Z. So u|1 and so by 1 < |u| < 1. Hence
|u| =1 and +1 are the only units in Z.

Units in Q: If w is a non-zero rational number, then also % is rational. So all non-zero elements in QQ are
units.

Units in Zg: By Z¢ ={0,1,2,3,4,5} and so Zg = {0, £1,+2,3}. We compute

0 1 £2 3
010 O 0 0
+1|0 1 £2 3
2|0 £2 £2 0
310 3 0 3

So +1 (that is 1 and 5) are the only units in Zg.

Lemma 3.2.15. (a) Let R be a ring and e and ' € R. Suppose that
(x) ea=a and (xx) ac' =a

foralla € R. Then e = ¢’ and e is a multiplicative identity in R. In particular, a ring has at most one
multiplicative identity.

(b) Let R be a ring with identity and x,y,u € R with

(+) zu=1g and (++) uy=1g.

Then x =y, u is a unit in R and x is an inverse of u.

Proof. @
e Qe D¢

()

(+) (Ax 10)

Ax 10 + AX T
y( = )1Ry &) (zu)y = z(uy) =" zlp =

O

Theorem 3.2.16 (Multiplicative Inverse Law). Let R be a ring with identity and u,v € R. Suppose u is a
unit. Then
-1

voo= u
< vu = 1lg
<= w = 1lg

In particular, u=! is the unique multiplicative inverse of u.

Proof. Recall first that by definition of unit:

() wut=1p and (%) ulu=1g

(%)

First Statement = Second Statement’: Suppose v = u~'. Then vu = u~tu

1x.
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"Second Statement = Third Statement’: Suppose that vu = 1g. By (*) uu~! = 1z. Thus by [3.2.15((b)

. . _ _ 1 ()
applied with t =vand y =« v ="' and so wv =uwu™! = 1p.

"Third Statement = First Statement’: Suppose that uv = 1z. By (**) u~!u = 1z. Thus|3.2.15| applied
with e =v ' and y = v gives v~ ! = v. O

Lemma 3.2.17. Let R be a ring with identity and a and b units in R.

(a) a=t is a unit and (a=1)"! = a.

(b) ab is a unit and (ab)~! =b"ta"L.

g =1p = aa~!. Thus o~ ! is a unit and

Proof. @ By definition of a™', aa™' = 1g = a 'a. Hence also a~
by the Multiplicative Inverse Law [3.2.16} a = (a=1)~L.

See Exercise 3.2 O

Definition 3.2.18. A ring R is called an integral domain provided that R is commutative, R has an identity,
1R # OR and

(Ax 11) whenever a,b € R with ab = 0gr, then a =0 or b = 0g.

Theorem 3.2.19 (Multiplicative Cancellation Law for Integral Domains). Let R be an integral domain and
a,b,c € R with a # 0r. Then

ab = ac
<— b = ¢
<= ba = ca

Proof. ‘First Statement = Second Statement:” Suppose ab = ac. Then

a(b—c) =ab—ac [3.2.11)(j)
=ab — ab Principal of Substitution, ab = ac
=0g 3.2. 11)(f)

Since R is an integral domain, (Ax 11) holds. So a(b—c) = O implies a = O or b—c = Or. By assumption
Since a # 0 and so b — ¢ = 0g. Thus by @, b=rc.

'Second Statement = Third Statement:” If b = ¢ then ab = ac by the Principal of Substitution.

"Third Statement = First Statement:’ Since integral domains are commutative, ba = ca implies ab =
ac. O

Definition 3.2.20. A ring R is called a field provided that R is commutative, R has an identity, 1 # Ogr
and

(Ax 12) each a € R with a # Og is a unit in R.

Example 3.2.21. Which of the following rings are fields? Which are integral domains?

(a) Z. (¢) R. (e) Zy. (g) Ma(R).
(b) Q. (d) Zs. (f) Zsg. (h) Z,, p a prime.
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All of the rings have a non-zero identity. All but Ma(R) are commutative. If a, b are non zero real numbers
then ab # 0. So (Ax 11) holds for R and so also for Z and Q. Thus Z,Q and R are integral domains.

@ 2 does not have an inverse in Z. . So Z is an integral domain, but not a field.

(b) The inverse of a non-zero rational numbers is rational. So Q is a integral domain and a field.

The inverse of a non-zero real numbers is real. So R is a integral domain and a field.

@ +1 are the only non-zero elements in Zs. 1-1=1and —1-—1 = 1. So £1 are units £1-+1 =41 #0
and so Zg is an integral domain.

(), (@: Let a € {2,3}. Let n,m € Z with [2]2q = [n]2q = [m]2q. then m = 2n + 2ak for some k € Z and so
m is even. Thus [2]2q4[n]2q # [1]24 and [2]24 is not a unit in Zg,. Hence Zsa, is not a field. Since 2-a =2a =0
in Zsy, but neither 2 nor a are 0 in Zs,, Zs, is not an integral domain.

1 0 0 0
(g) M2(R) is not commutative. Also is not a unit and = . So M(R) fails
00 0 o |1 1 00

all conditions of a field and integral domain, except for 1z # Og.
By each non-zero element in Z, has an inverse. So Z,, is a field. Let a,b € Z with [a],[b], = [0],.
Then by la]p, = [0], or [b], = [0],. Thus Z, is an integral domain.

Proposition 3.2.22. FEvery field is an integral domain.

Proof. Let F be a field. Then by definition, F' is an commutative ring with identity and 1p # Op. So it
remains the verify in [3.2.18 For this let a,b € F with

Suppose that a # 0r. Then by the definition of a field, a is a unit. Thus a has multiplicative inverse a*.

So we compute

(*

—

3-2.11)(d) 0l Def: a™! (Ax 10)

Op 0p 2 at(a-b) R (01 a) b 1p-b b.
Sob= OF
We have proven that if a # Op, then b = 0p. So a = O or b = 0. Hence holds and F is an integral
domain. O]

Theorem 3.2.23. Ewvery finite integral domains is a field.

Proof. Let R be a finite integral domain. Then R is a commutative ring with identity and 1r # Og. So it
remains to show that every a € R with a # Op is a unit. Set S := {ar | r € R}. Define

f:R—=Sr—ar

Let b,c € R with f(b) = f(¢). Then ab = ac and by the Cancellation Law [3.2.19|b = ¢. Thus f is 1-1. By
definition of S, f is also onto and so |R| = |S|. Since S C R and R is finite we conclude R = S. In particular,
1r € S and so there exists b € R with 1z = ab. Since R is commutative we also have ba = 1r and so a is a
unit. O

Definition 3.2.24. Let R be a ring and a € R.
(a) Letn € Z*. Then a™ is inductively defined by a' = a and a™*! = a™a.

(b) If R has an identity, then a® = 1g.
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(c) If R has an identity and a is a unit, then a=" = (a=1)" for alln € Z*.

Exercises 3.2:

#1. Let R be a ring and a € R. Let n,m € Z such that a™ and o™ are defined. (So n,m € Z*, or R has an
identity and n,m € N, or R has identity, a is a unit and n,m € Z. ) Show that

(a) a™a™ = a™t™,
(b) a™™ = (a™)™.
#2. Prove or disprove:
(a) If R and S are integral domains, then R x S is an integral domain.
(b) If R and S are fields, then R x S is a field.

#3. Which of the following six sets are subrings of My (R)? Which ones have an identity?

(a) All matrices of the form _3 g_ with r € Q.

(b) All matrices of the form -g lc)- with a,b,c € Z.
(¢) All matrices of the form _Z Z_ with a,b € R.
(d) All matrices of the form _Z 2_ with a,b € R.
(e) All matrices of the form -(C; 2- with a € R.

(f) All matrices of the form _g 2_ with a € R.

#4. Let Z[i] denote the set {a + bi | a,b € Z}. Show that Z[i] is a subring of C.
#5. An element e of a ring is said to be an idempotent if ¢? = e.

(a) Find four idempotents in M (R).

(b) Find all idempotents in Zs.

(c) Prove that the only idempotents in an integral domain R are Og and 1g.

#6. Let R be a ring and b a fixed element of R. Let T = {rb | » € R}. Prove that T is a subring of R.
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#7. (a) If a and b are units in a ring with identity, prove that ab is a unit with inverse b=ta=".

(b) Give an example to show that if a and b are units, then a=1b~! does not need to be the multiplicative
inverse of ab.

#8. Let R be a ring with identity. If ab and a are units in R, prove that b is a unit.

#9. Let R be a commutative ring with identity 1z # Og. Prove that R is an integral domain if and only if
cancellation holds in R, (that is whenever a,b,c¢ € R with a # 0r and ab = ac then b = ¢.)

3.3 Isomorphism and Homomorphism
Definition 3.3.1. Let (R,+,) and (S,®,®) be rings and let f : R — S be a function.

(a) f is called a homomorphism from (R,+,-) to (S,®,®) if

fla+b)=f(a)® f(b) [f respects addition]

and
fla-b) = f(a) ® f(b) [f respects multiplication]

for all a,b € R.

(b) f is called an isomorphism from (R, +,-) to (S,®,®), if f is a homomorphism from (R,+,-) to (S, ®,®)
and f is 1-1 and onto

(¢) (R,+,") is called isomorphic to (S,®,®), if there exists an isomorphism from (R,+,-) to (S,®,®).

Example 3.3.2. (1) Counsider f:Z — R,a — a.
Let a,b € Z. Then

flat+b)=a+b=fla)+ f(b)  and  f(ab) =ab= f(a)f(b)
and so f is homomorphism. f is 1-1, but not onto and so holds.

(2) Consider g: R — R,a — —a.

Let a,b € R. Then
gla+b) = —(a+b) = —a+ (=b) = g(a) + g(b).
and so g respects addition.

glab) = —(ab) ~ and  g(a)g(b) = (—a)(=b) = ab

For a = b =1 we conclude that g(1-1) = =1 # 1 = g(1)g(1). So g does not respect multiplication, and
g is not a homomorphism. But note that ¢ is 1-1 and onto.
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(3) Let R and S be rings and consider h: R — S,r — Og.

Let a,b € R. Then

gla+b) =05 =0s+0s =g(a) +9g(b)  and  g(ab) =05 = 0505 = g(a)g(b)-

So g is a homomorphism. g is 1-1 if and only if R = {Or} and ¢ is onto if and only if S = {0s}. So g is
an isomorphism if and only if R = {Og} and S = {0g}. is a homomorphism.

(4) Let R be a ring. Consider idg : R — R, —r
Let a,b € R. Then

idgr(a+b) = a+b=1idg(a) +idg(b) and idg(ab) = ab = idg(a)idg(b)
and so idg is a homomorphism. Since idg is 1-1 and onto, idg is an isomorphism.

(5) Let n be a non-zero integer. Consider h : Z — Zy,,a — [a],.

Let a,b € Z. By definition of addition and multiplication in Z,

h(a+b) = [a+ by = [a]n @ [l = h(a) ®A(®)  and  h(ab) = [abln = [a]n ® [b]n = h(a) ® h(b).

So h is homomorphism. Since

and n # 0, h is not 1-1. So A is not isomorphism.

Let A € Z,,. By definition of Z,,, A = [a],, for some a € Z. Hence h(a) = A and h is onto.

Example 3.3.3. Consider the function

f:C— Mz(R),r+ st — "o

—Ss T

Let a,b € C. Then a =7+ si and b =7 + § for some r,5,7,5 € R. So

f(a+b) - f((r+si)+(f+.§i))
- f(r+f)+(s+§)i)

r+T s+ s

—(s+38) r+r

I
&.‘
—
=3
- +
= &
~—
+ +
= =
—
=
_|_
V31
S
SN~—
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and
f(ab) - f((r + 8i) (7 + §i)>
= fl(r7F—s8)+ (rs+ sf)i)
T — 85 T8+ ST

—(r§+4sr) rr—s§

roos| |7 3§
- -5 r| |—s T
= f(r 4+ si) f(7 + i)
= fa)f(b)
So f is a homomorphism. If f(a) = f(b), then
r s r s
-5 r - -5 T

10
andsor =7 and s =35. Hence a=r+si =7+ §i = b and so f is 1-1. Note that is not of the form
0 0

r S

and so f is not onto.
—s r

Notation 3.3.4. (a) ‘f: R— S is a ring homomorphism’ stands for (R, +,-) and (S,®,®) are rings and
f is a ring homomorphism from (R,+,-) to (S,®,®).’

(b) Usually we will use the symbols + and - also for the addition and multiplication on S and so the conditions
for a homomorphism become

fla+b) = f(a)+ f(b) and  f(ab) = f(a)f(b)

Remark 3.3.5. Let R = {ry,ra,...,r,} be a ring with n elements. Suppose that the addition and multiplica-
tion table is given by

+ 1 N . Ty . Lo o... Tj ... T

1 ail e aij o Q1n 1 b11 SN blj PPN bln
A: and M :

T ;1 . (%%] N Qin Ti bil e bij N bln

Tn | Gu1  «vr Gpj ... Gpp Tn | bpt oo bnj ... bpp

Sor; +1j =a;; and ryr; = by for all1 <i,7 < n.



70 CHAPTER 3. RINGS

Let S be a ring and f : R — S a function. Forr € R putr’ = f(r). Consider the tables A’ and M’ obtain
from the tables A and M by replacing all entries by its image under f:

TP A 4 (T T 4
! ! ! ! / / / /
Ty ey .. ay .. agy, T - blj n
A and M':
! / I / ! / / /
(I P g | b . bij b,
! Vi ! Vi ! / / /
L I L T

(a) f is a homomorphism if and only if A" and M’ are the tables for the addition and multiplication of the

elements 1, ..., in S, that is v + 1% = aj; and rir; =b}; for all 1 <i,j <n.
(b) f is 1-1 if and only if i, ... v, are pairwise distinct.

(¢c) f is onto if and only if S = {r{,rh, ..., }.
(d) f is an isomorphism if and only if A" is an addition table for S and M’ is a multiplication table for S.

Proof. (@) f is a homomorphism if and only if

fla+b)=a+b and  f(ab) = f(a)f(b)
for all a,b € R. Since R = {ry,...,r,}, this holds if and only if

flri+ry)=fri) + f(ry) and  f(riry) = f(r:) f(r))

for all 1 <14,j <mn. Since r; + r; = a;; and r;r; = b;; this holds if and only if

flai;) = f(ri) + f(r;) and  f(bs;) = f(r:) f(r;)
Since f(r) = ', this is equivalent to
aj; =r;+7r; and b =

[®) f is 1-1 if and only if for all a,b € R, f(a) = f(b) implies @ = b and so if and only if a # b implies
f(a) # f(b). Since for each a € R there exists a unique 1 < i < n with a = r;, f is 1-1 if and only for all
1 <4,j <mn,i# jimplies f(r;) # f(r;), that is i # j implies 7; # r7.

f is onto if and only if Im f = S. Since R = {r1,...,rn}, Im f = {f(r1),.... f(rn)} = {rl,...,7,}. So
f is onto if and only if S = {rf,..., 7}

@ Follows from @—.
O
Example 3.3.6. Let R be the ring from example Then the map
f ‘R — 75,0 — [1]2,1 — [0]2

is an isomorphism.
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The tables for R are

H| |0 1 Lo 1

01 0 and 010 1

110 1 111 1
Replacing 0 by [1]2 and 1 by [0]2 we obtain

12 [0 12 [0):
[z | [02 [1]e  and  [1]y | [1]2 [0]2 -
02 | [1]2 [0]2 [0]2 | [0]2 [0]2

Note that these are addition and multiplication tables for Z, and so by f is an isomorphism.
Lemma 3.3.7. Let f : R — S be a homomorphism of rings. Then

(b) f(—a) = —f(a) for alla € R.
(¢) fla—0)= f(a)— f(b) for all a,b € R.
Suppose in addition that R has an identity and f is onto, then
(d) S is a ring with identity and f(1g) = 1g.
(e) If u is a unit in R, then f(u) is a unit in S and f(u=t) = f(u)~1.
Proof. () We have
FOR)+ f(0r) 22" £(0r +0r) == £(0r).

So by the Additive Identity Law f(OR) = 0s.
(]ED We compute

f(a)+ f(=a) "= fla+ (—a) =2 £(0m) B o,
and so by the Additive Inverse Law f(=a) =—f(a).
(<)
Fla—b) "L fla+(=b) "2 fa)+ £(-b) B fla)+ (—1 () ‘L Fla) - £).
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(d) We will first show that f(1g) is an identity in S. For this let s € S. Then since f is onto, s = f(r) for

some r € R. Thus

s-f(r) = F(F(1R) "™ forig) Y20 pr) =,

and similarly f(1g)-s = s. So f(1gr) is an identity in S. By [3.2.15(fa)) ring has at most one identity and so

f(lgr) = 1s.

(ED Let u be a unit in R. We will first show that f(u™!) is an inverse of f(u):
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F s 2 ) 2 pie) @ .
Similarly f(u=!)f(u) = 1s. Thus f(u™1) is an inverse of f(u) and so f(u) is a unit. By (u)~1 is the
unique inverse of f(u) and so f(u™1) = f(u)~t O

Example 3.3.8. Find all onto homomorphisms from Zg to Zo X Zs.
Let f:Zg — Zo X Z3 be an onto homomorphism. For a,b € Z let

@i=ldo.  flal:=F(lds), and (0,8 := (lala,[bla).
Since f is an onto homomorphism, we get from [3.3.7(d) that f(1z,) = 1z,xz,. Since [1] is the identity in
Zg and [1,1] is the identity in Zg x Zj this gives f[1] = [1, 1]. Similarly, by B3.7(a), f(0z;) = 0z,xz, and thus
f[0] = [0,0]. We compute

f10] = 10,0]
fl =11
fRI= b+ 1] = FI+ ) = [+ [1,1] = [2,2] = [0, 2]
fBI =2+ 1 =7r21+ fl1] = [2,2] + [1,1] = [3,3] = [1,0]
flA = fB+1] =B+ fl1] = [3,3] + [1,1] = [4,4] = [0,1]
fBl = fla+1] = fl4l + 1] = [4,4] + [1,1] = [5,5] = [1,2]
By 1.2 Zs = {[0], [1],[2], [3], [4], [5]}, Z2 = {[0]2, [1]2} and Zs = {[0]3, [1]3,[2]3}. Hence f is unique and

Z2 X Z3 = {(x,y) | HAS] ZQay € Z3} = {[070]7 [Ov 1]v [072]7 [1’0]7 [lvl]a [1v2]}

and we conclude that f is 1-1 and onto. Moreover,

(%) flr] = [ryr] for all 0 < r < 5.

We will show that the function f : Zg — Z2 X Z3 defined by (*) is a homomorphism. For this we first show
that f[m] = [m,m] for all m € Z. Indeed, by the Division Algorithm, m = 6¢ +r with ¢, € Z and 0 < r < 6.
Then by [2.1.1] [m]¢ = [r]¢ and since m = 2(3q) +r = 3(2q) + r, [m]2 = [r]2 and [m]s = [r]3. So [m] = [r],
[m, m] = [r,r] and

() flm] = flr] = [r,r] = [m,m].
Note also that by the definition of addition and multiplication in the direct product Zs x Zs:

(5 * %) [n4+m,n+m]=[n,m]+ [n,m] and [nm,nm]= [n,m][n,m)
Thus
fintm] = ot mon 4 m) = fnom] + ] S ] + £,
and
finm] ) fmnm] = [y m(n,m) S pin) £,

So f is a homomorphism of rings. Since f is 1-1 and onto, f is an isomorphism and so Zg is isomorphic to
ZQ X Zg.
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Example 3.3.9. Show that Z, and Zs X Zsy are not isomorphic.
Put R :=Z3 X Zs. Since x + x = [0]3 for all x € Zy we also have

(@,9) + (z,y) = (z + 2,y +y) = ([0]2, [0]2) = Or.
for all z,y € Zs. Thus

(*) r+r=0g

for all » € R. Let S be any ring isomorphic to R. We claim that s+s = 0g for all s € S. Indeed, let f : R — S
be an isomorphism and let s € S. Since f is onto, there exists r € R with f(r) = s. Thus

ss= 1)+ fr) "2 fr ) © pon) B o
Since [1]4 + [1]4 = [2]4 # [0]4 we conclude that Z, is not isomorphic to Zs X Zs.

Corollary 3.3.10. Let f : R — S be a homomorphism of rings. Then Im f is a subring of S. (Recall here
that Im f = {f(r) | r € R}).

Proof. 1t suffices to verify the four conditions in the Subring Theorem Observe first that for s € S,

(%) selmf = s = f(r) for some r € R

Let z,y € Im f. Then by :

(xx) x=f(a) and y=f(b) forsome a,b€ R.
(I) ByB.37f) f(0r) = 0s and so 0g € Im f by
I z+y fla)+ f(b) fhom fla+0b). By[AxTla+b€ R. Soxz+y € Im f by .
(III) =y f(a)f(b) fhom f(ab). By[Ax @ ab € R. So zy € Im f by (*).
W) -« & ) f(—a). ByAxH —a € R. So —x € Im f by (¥). 0
Definition 3.3.11. Let R be a ring. For n € Z and a € R define na € R as follows:
(i) Oa = Og.
(ii) If n > 0 and na already has been defined, define (n + 1)a = na + a.

(iii) If n < 0 define na = — ((—n)a).

Exercises 3.3:

#1. Let R be ring, n,m € Z and a,b € R. Show that
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(a) la = a. (¢) (n+m)a =na+ ma. (e) n(a+ b) = na + nb.

(b) (-1)a = —a. (d) (nm)a = n(ma). (f) n(ab) = (na)b = a(nb)
#2. Let f: R — S be a ring homomorphism. Show that f(na) =nf(a) for alln € Z and a € R.
#3. Let R be a ring. Show that:

(a) If f:Z — R is a homomorphism, then f(1)% = f(1).

(b) Let a € R with a? = a. Then there exists a unique homomorphism g : Z — R with g(1) = a.

#4. Let § = a,b € Zs p. Given that S is a subring of My(Z2). Show that S is isomorphic to

b a+?d
the ring R from Exercise 1|

#5. (a) Give an example of a ring R and a function f : R — R such that f(a +b) = f(a) + f(b) for all
a,b € R, but f(ab) # f(a)(f(b) for some a,b € R.

(b) Give an example of a ring R and a function f: R — R such that f(ab) = f(a)f(b) for all a,b € R, but
fla+0b) # f(a) + (f(b) for some a,b € R.

a 0
#6. Let L be the ring of all matrices in My (Z) of the form with a,b, ¢ € Z. Show that the function
b ¢

a
f:+L — Z given by f = a is a surjective homomorphism but is not an isomorphism.
c

#7. Let n and m be positive integers with n = 1 (mod m). Define f : Z,, = Zpm, [%]m — [2n]pm. Show
that

(a) fis well-defined. (That is if z, y are integers with [z],, = [y]m, then [xn]nm = [yn]nm)
(b) f is a homomorphism.

(c) fis1-1.

(d) If n > 1, then f is not onto.

#8. Let f: R — S be a ring homomorphism. Let B be a subring of S and define
A={reR| f(r) € B}.

Show that A is a subring of R.

3.4 Associates in commutative rings

Definition 3.4.1. Let R be a commutative ring and a,b € R. Then we say that a divides b in R and write
alb if there exists ¢ € R with b = ac O

Lemma 3.4.2. Let R be a commutative ring and r € R. Then Og|r if and only of r = Og.



3.4. ASSOCIATES IN COMMUTATIVE RINGS 75
Proof. By , Or =0g - 0g and so Og|Og.
Suppose now that r € R with Og|r. Then there exists s € R with r = Ogs and so by B.2.11|(d), r = 0. O

Lemma 3.4.3. Let R be a commutative ring and a,b,c € R.

(a) | is transitive, that is if alb and b|c, then alc.

(b) alb <= al(~b) <= (~a)|(=b) <= (~a)lb.

(¢) If a|b and alc, then a|(b+ ¢) and a|(b — c).

(d) If alb and alc, then a|(bu + cv) and a|(bu — cv) for all u,v € R
Proof. @ Let a,b,c € R such that alb and blc. Then by definition of divide there exist  and s in R with

(%) b=ar and c=bs
Hence
c bs (ar)s a(rs)

Since R is closed under multiplication, rs € R and so a|c by definition of divide.

@ We will first show

(%) alb = al(—b) and (—a)|b
Suppose that a divides b. Then by definition of “divide” there exists r € R with b = ar. Thus
—b=—(ar) a(—r) b=ar (—a)(—r)

By[AxH —r € R and so a|(—b) and (—a)|b by definition of “divide”. So holds.

Suppose alb. Then by al(=b).

Suppose that a|(—b), then by applied with —b in place of b, (—a)|(—b).

Suppose that (—a)|(—b). Then by applied with —a and —b in place of a and b, (—a)| — (=b). By
3.2.11)(e), —(—b) = b and so —alb.

Suppose that (—a)|b. Then by applied with —a in place of a, —(—a)|b. By B.2.11)¢), —(—a) = a and
so alb.

Suppose that a|b and a|e. Then by definition of divide there exist r and s in R with

and

( * x) b=ar and c=as
Thus

b+car+as@a(r+s) and b E o _ o EZIID a(r — s)

By [Ax 1] and [Ax 5l R is closed under addition and subtraction. Thus r +s € R and r — s € R and so
alb+ ¢ and alb — c.

Suppose that alb and alc and let u,v € R. By definition, b | bu and ¢ | cv and so by (&) albu and a|cv.
Thus by (d), a|(bu + cv) and a|(bu — cv). O
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Definition 3.4.4. Let R be an commutative ring with identity and let a,b € R. We say that a is associated
to b, or that b is an associate of a and write a ~ b if there exists a unit u in R with au = b.

Lemma 3.4.5. Letn be a non-zero integer and a € Z. Then ged(a,n) = 1 if and only if [a], s a unit in Z,,.

Proof. Recall first from that [1],, is the identity in Z,.

=—>: Suppose that gcd(a,n) = 1. Then by the Euclidean algorithm there exist w,v € Z with
au+nv =1. By [au], = [1],. By definition of multiplication in Z,, this show [a],[u], = [1],. Since Z,
is commutative we get this also gives [u],[a], = [1],, and so [a], is a unit.

<=: Suppose next that [a], is a unit. Then the definition of a unit shows that there exists U in Z,, with
[a],U = [1],. Then U = [u],, for some u € Z and so

laul, = [a]n[u], = [a] U = [1]

Thus by au 4+ nv = 1 for some v € Z. Since 1 is the smallest positive integer, we conclude that 1 is
also the smallest positive integer of the from au + nv,u,v € Z. Thus by ged(a,n) = 1. O

Example 3.4.6. (a) Let n € Z. Find all associates of n in Z.
(b) Find all associates of 0,1,2 and 5 in Zy,.

(ED By :3.2.14 the units in Z are £1. So the associates of n are n - £1, that is +n.
(]E[) By[2.1.2)Z1o = {0,1,2,3,4,5,6,7,8,9} and so Z1o = {0, £1,+2, +3, +4,5}.
We compute

n ‘0 +1 +2 43 +4 5
gcd(mlO)‘lO 1 2 1 2 5

and so by 2.3|#2] the units in Z¢ are 1 and £3.
So the associates of a € Zyy are a - £1 and a - £3, that is +a and +3a. We compute

a | associates of a | associates of a, simplified
0 +0,+3-0 0

1 +1,£3-1 +1,+3

2 +2,43-2 +2,+4

5 +£5,£3-5 5

Lemma 3.4.7. Let R be a commutative ring with identity. Then the relation ~ (’is associated to’) is an
equivalence relation on R.

Proof. Reflexive: Let a € R. By (Ax 10), 1g = 1glg and alp = a. Hence 1y is a unit and a ~ a. So ~ is
reflexive.

Symmetric: Let a,b € R with a ~ b. Then there exists a unit v € R with au = b. Since v is a unit, u
has an inverse u~'. Hence multiplying au = b with u~! gives

A —1
bu~l = (au)uil a(uufl) def u alp (Ax 10) a

By[3.2.17 %! is a unit in R and so b ~ a. Thus ~ is symmetric.
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Transitive: Let a,b,c € R with a ~ b and b ~ ¢. Then au = b and bv = ¢ for some units u and v € R.
Substituting the first equation in the second gives (au)v = ¢ and so by [Ax 2 a(uv) = c¢. By uw is a unit
in R and so a ~ ¢. Thus ~ is transitive.

Since ~ is reflexive, symmetric and transitive, ~ is an equivalence relation. O

Example 3.4.8. Determine the equivalence classes of ~ on Zqg.
Note that for a € Zjq, [a]~ = {b € Z1o | a ~ b} is the set of associates of a. So by Example

0. = {0}

1]~ = {£1,£3}

2. = {£2,+4}

Bl = {5}
By- Zio ={0,1,... } = {0 +1,+2,43,44,5}. So for each x € Z;q there exists y € {0,1,2,5} with
€ [y]~. Thus by [0.5.§ [z] . So [0 [ I~y 1]~ [2]~, [5]~ are all the equivalence classes of ~.

Lemma 3.4.9. Let R be a commutative ring with identity and a,b € R with a ~b. Then a|b and b|a.

Proof. Since a ~ b, au = b for some unit v € R. So alb.
By the relation ~ is symmetric and so a ~ b implies b ~ a. Thus, by the result of the previous
paragraph applied with a and b interchanged, b|a. O

Lemma 3.4.10. Let R be a commutative ring with identity and v € R. Then the following four statements
are equivalent:

(a) 1R ~T.
(b) rl1r
(¢) There exists s in R with rs = 1p.

(d) r is a unit.

Proof : Since 1z ~ r, m gives r|lg.
Follows from the definition of ‘divide’.
Since R is commutative rs = 1 implies sr = 1g. So r is a unit.
By (Ax 10), 1gr = r. Since r is a unit this gives 1z ~ r by definition of ~. O

Lemma 3.4.11. Let R be a commutative ring with identity and a,b,c,d € R.
(a) If a ~ b and ¢ ~ d, then a|c if and only if b|d.
(b) If ¢ ~ d, then alc if and only if ald.
(¢) If a ~ b, then a|c if and only if blc.

Proof. @ Suppose that a ~ b and ¢ ~ d.

—: Suppose that alc. Since a ~ b, gives bla. Since alc and | is transitive (3.4.3{[a])) we have blc.
Since ¢ ~ d, gives c|d. Hence by transitivity of |, b|d.

<=: Since ~ is symmetric, b ~ a and d ~ ¢. So previous paragraph applied with a and b interchanged
and ¢ and d interchanges show that b|d implies ac.

Since ~ is reflexive, a ~ a. Hence @ follows from @ applied with b = a.
Since ~ is reflexive, ¢ ~ ¢. Hence follows from @ applied with ¢ = d. O
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Definition 3.4.12. Let R be a commutative ring. The relation = on R is defined by a ~ b if and only if a|b
and bla.

Exercises 3.4:
#1. Let R = Z1o.
(a) Find all units in R.
(b) Determine the equivalence classes of the relation ~ on R.
#2. Let R be a commutative ring with identity. Prove that:
(a) = is an equivalence relation on R.
(b) Let a,b,c,d € R with a =~ b and ¢ = d. Then a|c if and only if b|d.

#3. Let n be a positive integer and a,b € Z. Put d = ged(a,n) and e = ged(b, n). Prove that:

#4. Let R be an integral domain and a, b, ¢ € R such that a # 0p and ba|ca. Then b|c.

3.5 The General Associative Commutative and Distributive Laws
in Rings
Definition 3.5.1. Let R be a ring, n a positive integer and ai,as,...a, € R.
(a) Fork € Z with 1 <k <n define Zle a; inductively by
(i) 23:1 a; = ay1; and
(i) Zf;l a; = (25:1 ai) + Ak41-

$0 Y a; = <(...((a1 + az) + as) +...+an_2> +an_1> +a,.

(b) Inductively, we say that z is a sum of (a1, ...,ay,) in R provided that one of the following holds:

(1) n=1and z =ay.
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(2) n> 1 and there exist an integer k with 1 <k <n and x,y € R such that x is a sum of (a1,...,ax)
in R, y is a sum of (aky1,0k12,---,0,) in R and z =x +y.

(c) Hle ay, 18 defined similarly as in (@, Just replace <> by T[” and 4" by “".

(d) A product of (ay,...,an) in R is defined similarly as in (), just replace ‘sum’ by ’product’ and “+’ by
(' 7.

We will also write a1 + as + ...+ ap, for > a, and aras . ..a, for [[; a;,
Example 3.5.2. Let R be a ring and a,b,¢,d € R. Find all sums of (a, b, ¢, d).

a is the only sum of (a).

a + b is the only sum of (a,b).

a+ (b+c) and (a + b) 4 ¢ are the sums of (a, b, c).

a+ (b+(c+d),a+ ((b+c)+d),(a+b)+ (c+d),(a+ (b+¢))+dand ((a+b) + ¢) + d are the sums of
(a,b,c,d).

Theorem 3.5.3 (General Associative Law). Let R be a ring and a1, as, ..., a, elements of R. Then any sum
of (a1,as,...,a,) in R is equal to >, a; and any product of (a1,as,...,a,) is equal to [, a;

Proof. See[D.1.3| O
Theorem 3.5.4 (General Commutative Law). Let R be a ring, aj,as,...,a, € R and

f:A{L2,....,n} > {1,2,...,n}
a 1-1 and onto function.
(8) 2oimy @i = iy ar(y-
(b) If R is commutative, then [}, ai = [[;— asu)-
Proof. See[D.2.2] O
Theorem 3.5.5 (General Distributive Law). Let R be a ring and a1, ...,an,b1,...,bym € R. Then
n m n m
<Z ai> . ij = Z a;b;
i=1 j=1 i=1 \j=1
Proof. See[D.3.2] O
Example 3.5.6. Let R be a ring and a, b, c,d, e in R. Then by the General Associative Law

atbtct+d=(a+(b+c)+d=(a+b)+(c+d)=a+ ((b+c)+d),

by the General Commutative Law:

at+b+c+d+e=d+c+a+b+e=b+a+c+d+e
and by General Distributive Law:

(a+b+c)(d+e) = (ad + ae) + (bd + be) + (cd + ce)
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Chapter 4

Polynomial Rings

4.1 Addition and Multiplication

Definition 4.1.1. Let R and P be a rings with identity and x € P. Then P is called a polynomial ring with
coefficients in R and indeterminate x provided that

(i) R is subring of P.
(ii) axz = za for all a € R.

(iii) For each f € P, there exists n € N and fo, f1,-.., fn € R such that
n
f= Z fix™.
i=0

(iv) Whenever n,m € N with n < m and fo, f1,..., fn,90,---,9m € R with

then f; = g; for all0 <i<n and g; = 0g for alln <i<m.
Theorem 4.1.2. Let P be a ring with identity, R a subring of P, x € P and f,g € P. Suppose that
(i) re =ar for all v € R;
(ii) there exist n € N and fo, ..., f, € R with f =3I fiz'; and
(iii) there exist m € N and go, ..., gm € R with g => 1" g;x".

Put f; =0g fori>n and g; = 0r fori>m. Then

max(n,m)

@) f+g= > (fi+tg)a'

=0
n m _ n+m min(n,k) n+m [ k
(b) fg=>Y D figiz™ | =" S figeei | b =0 ( fiQk—i) a*.
=0 \j=0 k=0 \i=max(0,k—m) k=0 \i=0

81
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Proof. (ED Put p = max(n,m). Then f; = 0r = g; for all i > p and so

p p
(*) f= Z fix' and g= Zgzl‘l
i=0 i=0
Thus
F+g = (Ciofir) + (Ziogin’) — (%)

= S o (firt + gizt) — General Commutativity Law

= Zf:o(fi +gi)at -
So holds.

(b) We will first show that

() az" = z"a

for all ¢ € R and n € N. Indeed for n = 0 we have

0 Def z° (Ax 10) (Ax 10) Def 2
ax = ="a ="1lp-a =

a - ].p
So (**) holds for n = 0. Suppose (**) is true for n = k. Then

k41 X *k —
kt+1  Defol @ a(z*x) = (ax®)x () for =k (zFa)r =" 2F(ax)

az
A k+1
o (wa) Ax T (e*2)a Def of @ .

So (**) holds for n = k + 1 and so by the Principal of Mathematical Induction, (**) holds for all n € N.
We now can compute fg.

n m
fg = ( fw> (e | - @ ana
i=0 j=0
n m
= Z Z fiz'gja? — General Distributive Law
i=0 \ j=0
n m
= Z Zfigjlﬁlxj — (xx)
i=0 \ j=0
n m
= Z Z fingiH — ') = 2" by Exercise B2J[#]]
i=0 \ j=0
n+m min(k,n)
= Z Z fige—iz" — Substitution k =i+ j and so j = k — 1,

k=0 \i=max(0,k—m)
0<j<m,s0o —m<i—k<0,k—m<i<k

General Commutativity Law [3.5.4

n+m min(k,n)
= Z Z figi—i | #¥ — General Distributive Law B.5.5]

k=0 \i=max(0,k—m)
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If0<i<k—m,then k—i > m and gx_; = Og. Also f; = 0 for n < i < k. Thusbym.7
figk—i; =0g for 0 < i < k —m and for n < i < k. So also the last equality in (]ED holds.
Example 4.1.3. (1) Suppose that R =Zy, f =1+ 2+ 2% and g = 1 + 22 + 23 + 25, Compute f + g.
fHg=0+z+2%)+ 1 +2%+2°+2°)
=(1+1)+(1+0)z+ (0+1z*+ (1+1)z® + (0+0)z* + (0 + 1)z°
=04 1z + 122 + 02> + 0z* + 2°
=x+2°42°

(2) Suppose that R =Zg, f =1+ 2 +2? and g = 1 + = + 222 + 323. Compute fg.

fg=0+z+22%)(1+x+ 227 + 32°%)
=(1-D+1-14+1-Dr+(1-24+1-1+2-2)2>+(1-3+1-2+2-D)a* +(1-3+2-2)z* +(2-3)2°
=142z 422+ 2% +2*
Definition 4.1.4. Let R be a ring with identity.
(a) R[z] denotes the polynomial ring with coefficients in R and indeterminate x constructed in|F.3.1]

(b) Let f € R[x] and let n € N and ag,ay,...a, € R with f =3 ja;z'. Leti € N. If i <n define f; = a;.
If i > n define f; = Og. Then f; is called the coefficient of x® in f.(Observe that this is well defined by
YN

(¢) N*:=NU{—00}. Forn € N* we define n+ (—00) = —00 and —oo +n = —co. We extend the relation
" <" on N to N* by declaring that —oo < n for all n € N*.

(d) For f € R[x], deg f is the minimal element of N* with f; = Or for all i € N with i > deg f. So
degOp = —oc0 and if f = i fiz" with f, # 0, then deg f = n.

(e) If deg f € N then lead(f) is the coefficient of x4°8 in f. If deg f = —o0, then lead(f) = Og.
Lemma 4.1.5. Let R be ring with identity and f € R[x].
(a) f=0g if and only if deg f = —oco and if and only if lead(f) = Og.
(b) deg f =0 if and only if f € R and f # Op.
(¢) f € R if and only if deg f < 0 and if and only if f = lead(f).
d) f= Zdegf fizt. (Here an empty sum is defined to be Og)

Proof. This follows straightforward from the definition of deg f and leadf and we leave the details to the
reader. O

Theorem 4.1.6. Let R be a ring with identity.

(a) 1r = 1pp)-

(b) If R is commutative, then also R[z] is commutative.
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Proof. @ Let f € R[z] and put n = deg f. Note that by (Ax 10) 1z = 1glpgp) = 1ga’. Also by (Ax 10) for
R filg = f; and so by [{.1.2]

f1r= <va > 1Rx Z(leR x *Zfzx =

i=0 1=0

Similarly, 1z - f = f and so 1g is an identity in R[z].
(b) Since R is commutative, f;g; = f;g; for all relevant ¢, j. So

n+m k
Z <Z fkgki> z¥  — Theorem E1.2

k=0 \i=0
n+m k
= Z (Z gkifi> ¥ — R commutative
k=0 \i=0
n+m
= Z Zgjfk i — Substitution: j =k—iandsot=%k—j
= Zgjl‘j (Z fzx’> — Theorem [4.1.2]
§=0 i=0
= g9f
We proved that fg = gf for all f,¢g € R[z] and so R|z] is commutative. O

Lemma 4.1.7. Let R be a commutative ring with identity and f,g € R[x]. Then

(a) deg(f +g) < max(deg f,degg).

(b) FEzactly one of the following holds.

(1) deg(fg) = deg f + degg and lead(fg) = lead(f)lead(g).
(2) deg(fg) < deg f + degg, lead(f)lead(g) = Or, f # Or and g # Or.

Proof. @ By-. ), f+g= max(" ™ (£ + g;)azt and so (f + 9)x = Og for k > max(deg f,degg). Thus

() holds
b)) Suppose first that f = 0g. Then fg = 0rg = Or. Hence deg f = —o0, deg(fg) = —o0,leadf = 0g and
lead(fg) = Or. Hence

deg(fg) = —0o = —00 + degg = deg f + deg g and lead(fg) = O0r = Og - lead(g) = lead(f)lead(g)

So (b:1) holds in this case. Similarly, (b:1) holds if g = Op.
So suppose f # 0r # g and put n = deg f and m = degg. By 4.1.2|(b)),

n+m max (k,n)

f9="> > figei | 2

k=0 \i=min(0,k—m)
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Thus (fg)r = Og for kK > n+m and so deg fg < n+m. Moreover, for k = n+m we have max(0,k—m) =n

and min(n, k) = n. So (fg)ntm = fugm = lead(f)lead(g).
If lead(f)lead(g) # Og, then (b:I)) holds and if lead(f)lead(g) = O, (b:2) holds. O

Theorem 4.1.8. Let R be field or an integral domain. Then
(a) deg(fg) = deg f + degg and lead(fg) = lead(f)lead(g) for all f,g € R[x].
(b) deg(rf) =deg f andlead(rf) = rlead(f) for allv € R and f € R[x] with r # Og.
(¢) R[z] is an integral domain.

Proof. By Theorem [3.2.22] any field is an integral domain. So in any case R is an integral domain. We will
first show that

(*) If f,¢g € R with lead(f)lead(g) = Og then f = 0g or g = Og.

Indeed since R is an integral domain, lead(f)lead(g) = Ogr implies lead(f) = 0 or lead(g) = Op. now
implies f = 0g or g = 0p.

() By ETA[)
(1) deg(fg) = deg f + deg g and lead(fg) = lead(f)lead(g), or

(2) deg(fg) < deg f +degyg, lead(f)lead(g) = Or, f # Or and g # Og.
In the first case @ holds. The second case contradicts (*) and so does not occur.

(]ED By |4.1.5] m degr =0 and leadr = r. So (]E[) follows from (ED

. ) By [£.1.6 - [z] is a commutative ring with identity 1z. Note that 1g,) = 1g # Or = Ogjy). Let
fg € R[z] with fg = Og. Then by (a)) lead(f)lead(g) = lead(fg) = lead(0g) = O and by (*), f = Og or
g = Op. Hence RJx] is an integral domain. O

Theorem 4.1.9 (Division Algorithm). Let F' be a field and f, g € F|x] with g # 0p. Then there exist uniquely
determined q,r € F[x] with
f=gqg+r and degr <degg.

Proof. Fix g € F[z] with g # 0p. For n € N let P(n) be the statement:
P(n): If f € Flz] with deg f < n then there exists q,r € F[z] with f = g¢ + r and degr < degg.

Let k € N such that P(n) holds for all n € N with n < k. We will show that P(k) holds. So let f € F|x]
with deg f < k. Put m = degg. If & < m, then P(k) holds for f with ¢ = O and » = f. So we may assume
that & > m. Since g,, # Or and F is a field, g,, is a unit in F'. Define

(1) f=Ff—g gn fram

Since g has degree m and g;,!frz*~™ has degree k — m, shows that g - frg,'z*~™ has degree
m+-(k—m) = k. Since f has degree at most k we conclude that f has degree at most k. The coefficient of x*
in f is fr — gmfrgt = fx — fr = 0p. Thus f has degree less than k and so deg‘f < k — 1. By the induction
assumption, P(k — 1)-holds and so that there exist ¢ and 7 € F|x] with

(2) f=9Gd+7 and degT <degg.
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We compute

= f+g- fogptat—m
= (9gG+7)+g- fugn'ab—m
= (9G+ 9" fegpta®™) +7

= g-(G+ fugptah™) + 7
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Put ¢ = ¢+ frg;,'2*~™ and r = 7. Then by (3), f = qg +r and by (2), degr < degg. Thus P(k) is proved.
By the Principal of Complete Induction we conclude that P(n) holds for all n € N. This shows the

existence of g and r.

To show uniqueness suppose that for i = 1,2 we have ¢;,r; € F[z] with

(4)
Then

and so

()

gq1 + 711 =992 + 12

9'(41—(12)27“1—7"2

Suppose g1 — g2 # 0p Then deg(q; — ¢2) > 0 and so

degg < deg g + deg(q1 — q2)

@)
=" deg(g - (

f=g9q+r; and degr; <degg

5 4)
@ —q2)) © deg(r1 —r2) < degg.

This contradiction shows ¢ — g2 = Op and by (5) also r; — ro = Op. Hence by [3.2.11|(f) ¢1 = ¢2 and

K =T2.

O

Definition 4.1.10. Let F' be field and f,g € F[z] with g # Op. Let q,r € F[x] be the unique polynomials with

f=g9qg+7r and degr <degg

Then r is called the remainder of f when divided by g.

Example 4.1.11. Consider the polynomials f = 2* + 2% —2 +1 and g = 2% — 2 + 1 in Z3[z]. Compute the

remainder of f when divided by g.

22 - x + 1
22 —z+1 |2 + 23 -z + 1
R A T
- 2 - 22 - z 4+ 1
— 23+ 22 - 2
x? + 1
2 — z 4+ 1
x

So the remainder of 2* + #® — z + 1 when divided by 2% — x + 1 in Z3[x] is .
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Exercises 4.1:

#1. Perform the indicated operation and simplify your answer:

(a) (3z* +22° — 42? + x + 4) + (42® + 2® + 4z + 3) in Zs[x].
(b) (z+1)? in Zs[z].

(c) (x —1)® in Zs[z].

(d) (22 — 3z +2)(223 — 4z + 1) € Zy[a].

#2. Find polynomials ¢(z) and r(z) such that f(z) = g(x)q(z) + r(x) and degr(z) < degg(x).

(a) f(x)—Bx — 223+ 622 —x+2and g(z) =22 + 2+ 1 in Q[z].
(b) f(x) =2* — 7z +1 and g(x) = 222 + 1 in Q[z].

(c) f(z) =22 +22 —z+1and g(z) =22 — 1 in Zs[z].

(d) f(x) = 42* 4+ 22% + 62% + 42 + 5 and g(z) = 322 + 2 in Z;[x].

#3. Let R be a commutative ring. If a, # Og and ag + a1z + ... 4+ ap,z™ is a zero-divisor in R[z], then a,, is
a zero divisor in R.

#4. (a) Let R be an integral domain and f,g € R[x]. Assume that the leading coefficent of g is a unit in
R. Verify that the Division algorithm holds for f as divident and g as divisor.

(b) Give an example in Z[x] to show that part (a) may be false if the leading coefficent of g(z) is not a
unit.[Hint: Exercise 4.1.5(b).]

4.2 Divisibility in F[z]
In a general commutative ring it may or may not be easy to decide whether a given element divides another.

But for polynomial over a field it is easy, thanks to the division algorithm:

Lemma 4.2.1. Let F be a field and f,g € Flz] with g # Op. Then g divides [ in F[z] if and only if the
remainder of f when divided by g is Op.

Proof. =>: Suppose that g|f. Then by Definition f = gq for some g € Flx]. Thus f = gq+ Op. Since
degOp = —oo0 < deg g, Definition 4.1.10| shows that Op is the remainder of f when divided by g.

<=: Suppose that the remainder of f when divided by g is 0. Then by Definition f=9q+0p for
some ¢ € F[z]. Thus f = gq and so Definition shows that g|f. O

Lemma 4.2.2. Let R be a field or an integral domain and f,g € R[x]. If g # Or and f|g, then deg f < degg.

Proof. Since flg, g = fh for some h € R[z]. If h = O, then by [3.2.11{|c), g = fh = fOr = Og, contrary to
the assumption. Thus h # Og and so degh > 0. Thus by |4.1.8|(a),

degg = deg fh = deg f + degh > deg f.

Lemma 4.2.3. Let F be a field and f € Flx]. Then the following statements are equivalent:
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(a) deg f =0. (c) fllF. (e) f is a unit.
(b) f€F and f # 0p. (d) f~1p.

Proof. @ = (]E[): See |4.1.5|(b)

= ():  Suppose that f € F and f # Op. Since F is a field, f has an inverse f~! € F. Then
-1 E F and ff ' = 1p. Thus f|1F by definition of ‘divide’ and . holds.

and (d) = (€):  See[3.4.10
Since f is a unit, 1p = fg for some g € Flx]. So by [4.1.8|(a)) deg f + degg = deg(fg) =
deg 1F —Oandsoalsodegf degg = 0. O

Lemma 4.2.4. Let F be a field and f,g € F|x]. Then the following statements are equivalent:

(a) f~g. (c) deg f =degg and flg.
(b) flg and g|f. (d) g~ f.
Proof. @ = (]E[): See
(b) = (d): Suppose that f|g and g|f. Assume first that g = O, then since g|f, we get from that
f = 0p and so (d) holds in this case.
Assume next that g # Op. Since f|g,4.2.2limplies deg f < degg. Since g # 0r and f|g, we conclude from
the contrapositive of- that f #0p. As g|f n implies deg g < deg f. Thus deg g = deg f and . ) holds.
() = @: Suppose that deg f = degg and flg. If f = Op, then degg = degf —00 and so
g =0p and f ~ g. Thus we may assume f # Op. Since f|g, g = fh for some h € F[z]. Thus by 4.1.§ ,
degg = deg f + degh. Since f # Op we have degg = deg f # —oo0 and so degh = 0. ThIlb by@ h is a

unit. So g ~ f by definition of ~.
@ - @: This holds since ~ is symmetric by O

Definition 4.2.5. Let F be a field and f € F[z].

(a) f is called monic if lead(f) = 1p.

(b) If f # Op then f :=1lead(f)~'f is called the monic polynomial associated to f. If f = 0 put f = Op.
Lemma 4.2.6. Let F be a field and f,g € Flx].

(a) f~ .

(b) If f and g are monic and f ~ g, then f =g.

(c) If f # Op, then f is the unique monic polynomial associated to f ~ f.

(d) deg f =deg f.

(e) f~ g ifand only if f = 3.
Proof. . By definition of f ~ g, fu = g for some unit v in F[z]|. By - O # u € F. Hence

e 7™ Jead(g) 7= 9 lead(fu) BB lead(f)u © O 1pu L1
andsouzlpandg:fq:flpzf. }
By-. lead(f) = lead(lead(f)~1f) = lead(f) 'lead(f) = 1z. So f is monic. Since lead(f)! is
a umt f ~ f. Suppose g is a monic polynomial with g ~ f. By [3.4. 7| ~ is an equivalence relation and so
transitive. Since g ~ f and f ~ f we get g ~ f. Thus by (]E[), g=f.
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(e) If f = 0, then also f = 0p and @ holds. If f # Op, then by , f ~ f and so bydegf = deg f.
() Suppose that f = 0p. Then f ~ g if and only if g = 0F and so if and only if § = 0r and if and only if
f=g. So holds in this case.
So we may assume f # Op and (similarly), g # 0. Then by , f and § are monic and g ~ §. Since ~ is
an equivalence relation, we conclude that f ~ g if and only if f ~ §. Since § is monic, the latter holds by
if and only if f = g. O

Definition 4.2.7. Let F be a field and f,g € F[x].
(a) h € Flz] is called a common divisor of f and g provided that h|f and hlg.
(b) Letd € F[x]. Then d is called a greatest common divisor of f and g provided that

(i) d is a common divisor of f and g.

(ii) If ¢ is a common divisor of f and g, then degc < degd.
Theorem 4.2.8. Let F be a field and f, g € Flx] not both zero.
(a) There exists d € Fx] such that degd is minimal with respect to

(i) d # OF, and
(ii) d = fu+ gv for some u,v € Flx].

(b) If e is a common divisor of f and g in F|x] then e|d.
(c) dis a greatest common divisor of f and g.

Proof. (a): Put S = {fu+gv | u,v € Flz]} and S* = S\ {Op}. Note that f = flp + g0p € S and
g=fO0p+glp € F. Since f # Op or g # Or we conclude that S* is not empty. By the Well Ordering Axiom
{deg h|h € S*} has a minimal element m. Let d € S* with degd = m. Then

(1) d e S* and degd < degh for all h € S™.

Since d € §*, d € S and so there exist u,v € F[z] with

(2) d= fu+ gv.

So @ holds.
[): Let e € Flz] with e|f and e|g. Then [3.4.3|(d) gives €| fu + gv and so by (2), e|d.
: We will first show that

3) dlf.
By the Division Algorithm there exists ¢ and r € F[z] with f = dg + r and degr < degd. Thus
r = f — dgq and so by (2)
r=f—(futgv)-g=f-(lr —uq)+g-(vq).

Hence r € S. Since degr < degd, (1) implies r ¢ S*. Since all non-zero elements of S are contained in S*

this means r = 0p. So d | f by
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Similarly to (3) we get

(4) dlg.

Let e be a common divisor of f and g. Then by (b)), e|d and so by dege < degd. By (3) and (4), d
is a common divisor of f and ¢g and so holds. O

Corollary 4.2.9. Let F be a field and f,g € F[z] not both zero. Let d be as in[4.2.4
(a) Let e € Flz]. Then e is a greatest common divisor of f and g if and only if e ~ d.
(b) If e and € are greatest common divisors of f and g then e ~ €.

(c) Let e be a greatest common divisor of f and g. Then dege = degd and there exist s and t in F[x] with
e= fs+ gt.

(d) d is the unique monic greatest common divisor of f and g.

Proof. (ED Suppose first that e is a greatest common divisor of f and g, Then , eld. Since both e and
d are greatest common divisor, dege < degd and degd < dege. Hence degd = dege and by [f.2:4] e ~ d.
Suppose next that e ~ d. Since d|f and d|g, implies that e ~ f and e ~ g. So e is a common
divisor of f and g. Since e ~ d, gives degd = dege. So if h is a common divisor of f and g, then
dege = degd > degh and so e is a greatest common divisor of f and g.
@ Let e and é be greatest common divisors of f and g. Then by @ e~dand e~ d. By ~ is an

equivalence relation and so e ~ €.

By @ e ~ d and so degd = dege by Moreover, e = dz for some unit z in F[z]. By
d = fu+ gv for some u,v € Flx] and so e = du = (fu+ gv)z = f - (uz) + g - (vz). So holds with s = uz
and t = vz.

(d) Let e be a monic polynomial. By @, e is a greatest common divisor of f and ¢ if and only if e ~ d.
By this holds if and only if e = d. O

Definition 4.2.10. Let F be a field and f, g € F[x].
(a) If f and g are not both O, then gcd(f, g) denotes the unique monic greatest common divisor of f and g.
(b) f and g are called relatively prime if f and g are not both Op and ged(f,g) = 1p.

Corollary 4.2.11. Let F be a field and f,g € Flz]. Then f and g are relatively prime if and only if there
exist u,v € Flz] with fu+ gv = 1p.

Proof. =>: Suppose that f and g are relatively prime. Then f and g are not both Or and ged(f, g) = 1F.
So by [4.2.9(c) there exist u,v € F[z] with fu+ gv = 1p.

<=: Suppose that there exist u,v € F[z] with fu + gv = 1p. Since 1 # O this implies that f and g
are not both Op. Also deglp = 0 < degh for any non-zero h € F[z]. So by 1p is a greatest common
divisor of f and g. Since 1 is monic, 1r = ged(f, g). O

Proposition 4.2.12. Let F be a field and f,g,h € F[z]|. Suppose that f and g are relatively prime and f|gh.
Then flh.
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Proof. Since f and g are relatively [4.2.11|shows that there exist u,v € F[z] with fu+ gv = 1. Multiplication
with h gives (fu)h + (gv)h = h and so (using the General Commutative Law)

[ (uh)+ (gh)-v=h.
Since f divides f and gh, now implies that f|h. O

Lemma 4.2.13. Let F be a field and f,g,h € F|x] such that f and g are not both Op. Let d be a greatest
common diwisor of f and g. Then h is a common divisor of f and g if and only if h is a divisor of d.

Proof. Suppose first that h is a common divisor of f and g. By [4.2.9(d|), d = fu + gv for some u,v € F[z] and
thus by h|d.

Suppose next that h|d. By definition of ‘greatest common divisor’, d|f and d|g. Since ‘divide’ is transitive
by |3.4.3([a) we get h|f and h|g. So h is a common divisor of f and g. O

Lemma 4.2.14. Let F be a field and f,g,f,g in F[z]. Suppose f and g are not both Op and also f and g

are not both Op. Then ged(f, g) = ged(f,g) if and only if the common divisors of f and g are the same as the
common divisors of f and g.

Proof. =>: Suppose ged(f, g) = ged(f, §) and let h € Flz].

h is a common divisor of f and g

— h divides ged(f, g) -4.2.13
= h divides gcd(f, J) - Since ged(f, g) = gcd(f, J)
<= his a common divisor of f and g -4.2.13

<=: Let S be the set of common divisors of f and g and suppose that S is also the set of common divisors
of f and g. By definition ged(f, g) is the unique monic polynomial in .S of maximal degree. Since S is also the
set of common divisors of f and g, ged(f,g) is the unique monic polynomial in S of maximal degree. Thus

ged(f, 9) = ged(f. 9) -

Lemma 4.2.15. Let F be a field and f, g, f,§ € F[z]. Suppose that f and g are not both O, and that f and
g are not both 0. Then

(a) If f ~ f and g ~ §, then ged(f, g) = ged(f, ).
(b) ged(f, g) = ged(f,§) = ged(f,§) = ged(f, g).

Proof. (EI) Since f ~ f, f and f have the same divisor (see ) Similarly, g and g have the same
divisors. Hence the common divisors of f and ¢ are the same as the common divisor of f and §. So
shows that ged(f, g) = ged(f, §).

@ By @ f ~ fand g ~ §. Since ~ is reflexive, f ~ f and ¢ ~ g. So (]E[) follows from three
applications of (jal).

O

Lemma 4.2.16. Let F' be a field and f,g,q,r € Flx] with f = gg+r and g # O0p. Then ged(f, g) = ged(g, ).
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Proof. By it suffices to show that the common divisors of f and g are the same as the common divisors
of g and 7.

So suppose e € Fx] with e|g and e|r. Then [3.4.3{|d) implies that e|gqg + r1r and so e|f. Hence e is also a
common divisor of g and f.

Similarly if e € F[z] with e|f and e|g, then [3.4.3||d) implies that e|f - 1r + g - (—¢) and so e|r. Hence e is
also a common divisor of g and 7. O

Theorem 4.2.17 (Euclidean Algorithm). Let F' be a field and f,g € F[z] with g # 0F and let E_1 and Ey
be the equations

EF_ 1 : f = f -1 + g (U
Ey : g = f-0p + g-lead(g)!
Let i € N and suppose inductively we defined equations Ey,—1 < k < ¢ of the form

Ey, : rp = frazp + g-uyp -

where 1y, Tk, yr € Flx] and r; is monic. According to the division algorithm) let t;11,qi+1 € F[z] with

rio1 = 1iQiy1 +tip1 and degt; 1 < degr;

Iftiv1 # OF, put uiyq = lead(t;41) 1. Let E;y1 be equation of the form riy1 = f - xi41+ g - yir1 obtained
by first subtracting q;+1-times equation E; from E;_1 and then multiplying the resulting equation by w;y1.
Continue the algorithm with ¢ + 1 in place of i.

Ift;11 = 0p, defined=r;,u =x; and v =1y;. Then

ged(f,9) =d = fu+gv
and the algorithm stops.
Proof. For i € N let P(i) be the following statement:

(1) For —1 < k < i an equation Ej, of the form ry = f -2z + g - yr with 7,2 and y, € F[z] has been
defined;

2) for —1 < k < i the equation Fj is true;

3

4

r; 1S monic;
forall 1 <k <4, degry < ri_1; and
ged(f, g) = ged(ri—1, 7).

Putr 1= f,x_1=1p,y_1 =0p,70 = §,20 = O and yo = lead(g)~!. Then for k = —1 and k = 0, E}, is
the equation ry = f -z + g - yx and so holds for i = 0. Also E_; and Ej are true, so ([2) holds for i = 0.
ro = ¢ is monic and so holds for i = 0. There is no integer k with 1 < %k < 0 and thus (4] holds for i = 0.

Also by [4.2.15((b))

(2)
3)
(4)
()

5

ng(fa g) = ng(f7 g) = ng(T—la TO)
Thus P(0) holds. Suppose now that ¢ € N and that P(¢) holds. Then the equations

Ei1 @ rmia

Ei LT

f-xici 4+ g-yi-1 and

[ + 9 Y
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are defined and true. Also ry, zx and yy are in F[z] for k =i — 1 and 1,
Since 7; is monic, r; # Op and so by the Division algorithm there exist unique ¢; 11 and ¢;4; in F[z] with

(%) ri—1 = 73q; +tiy1 and degt;; < degr;

Thus by 4.2.16| ged(r;—1,7;) = ged(ri, tiy1). By in P(i), ged(f,g) = ged(r;—1,7;) and so

() ged(f, 9) = ged(ri, tiy1)

Consider the case that t; 11 # Op. Subtracting ¢; 1 times F; from F;_; we obtain the true equation

ric1 —Tigiv1 = f- (@1 —2iqiv1) + 9 (Yim1 — Yidig1)-

Put u; 41 = (leadt;;1)~!. Multiplying the preceding equation with u;, 1 gives the true equation

By o (Ti—l - Tin‘+1)Uz‘+1 = f- (xi—l - Iifh+1)ui+1 + g- (yz’—l - yz‘qz'+1)ui+1-

Putting riy1 = (ri—1 — 7iGiv1)Uiv1, Tiv1 = (Tim1 — Ti@iy1)uir1 and yip1 = (Yio1 — YiGit1)Uir1 We see that
E;41 is the equation 7341 = f - @41+ ¢ yi+1 and 741, 2541 and y;41 are in Flx]. So and hold for ¢ +1
in place of 4.

By (*) we have t;41 = r;_1 — 7;¢;11 and so

71 e
Tiv1 = (Tim1 — Tigit1)Uit1 = bip1Uip1 = tiprlead(tize) ™ = tiga.

Hence
(* * *) Ti+1 = fi—i—l
Thus 741 is monic and (3] holds. Moreover,

sokok . (*)
deng_l (:) degti_H = degti_H < degr;,
and of P(i+ 1) holds.
Also
ged(f, g) (:) ged(ri, tig1) — ng(%fiH) (:) ged(ri, Tiy1)

and so in P(i + 1) holds. We proved that P(i) implies P(i + 1) and so by the principal of induction, P(7)
holds for all ¢ € N, which are reached before the algorithm stops. Note here that Condition ensures that
the algorithm stops in finitely many steps.

Suppose next that t;41 = Op. Then by (**)

ged(f, 9) = ged(ri, tiy1) = ged(ri, OF) = 7
Note that last equality holds since 7; is monic polynomial dividing r; and 0 and that by [£.2.2)any common
divisor of r; and O has degree at most degr;. So r; is monic common divisor of r; and 0p of maximal degree,
that is ged(r;, 0p) = 7;.
By P(i) the equation
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Ei: ri=f-zi+g-y
is true. So putting d = r;,u = x; and v = y; we have
ged(f,9) =d = fu+gv
O

Example 4.2.18. Let f = 3z* +42° + 222 + v + 1 and g = 22% + 22 + 22 + 3 in Zs[z]. Find u,v € Zy[x]
with fu + gv = ged(f, g).

In the following if a in integer, we just write a for [a]5. We have
lead(g) ' =2"'=2"1.1=2"1.6=3

and sorg =g =39 =623+ 322+ 62+ 9 =2+ 322 + 2 +4.

Ey @ 3xt+23+2224+2+1 = f-1 + g-0
Ey 22 +322+z+4 = f-0 + g¢-3 ,
3z

2 +3x2+zx+4|3z* + 423 + 222 + x + 1

3zt + 922 4+ 322 + 2z

—z? -z + 1
Subtracting 3z times Ey from F_; we get
22 —z+1 = f-1 + g-—92 | E_1—Ey-3z
and multiplying with (—1)~! = —1 gives
E : 224+z-1 = f- -1 + g-4x

2+zx—122 + 322 + =z + 4

Subtracting x + 2 times F, from Fj gives

1 = f~(07(71)(z+2)) + g~(3—(4x)(x+2))

and so
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Ey : 1 = f-(z+2) + g (22+22+3)

Since x + 2 is monic, this equation is Fy. The remainder of any polynomial when divided by 1 is zero, so
the algorithm stops here. Hence

ged(f,g)=1=f-(z4+2)+g- (2% +22+3)

Exercises 4.2:
#1. Let F be a field and a,b € F with a # b. Show that « + a and = + b are relatively prime in F[z].

#2. Use the Euclidean Algorithm to find the ged of the given polynomials in the given polynomial ring.

rt — 2241 and 2° — 1 in Q[z].

(a
(b

25+ a2t + 223 — 2% — 2 — 2 and 2* + 223 + 522 + 42 + 4 in Q[x].

)
)
(¢) * +32% + 22+ 4 and 22 — 1 in Zs][x].
(d) 42t + 223 + 622 + 42 + 5 and 32° + 522 + 62 in Zr[z].
(e) 23 —ix? + 4z — 4i and 2 + 1 in Clz].

)

(f) 2*+ 2+ 1 and 22 + 2 + 1 in Zy[z].

#3. Let F be a field and f € F[z] such that f|g for every non-constant polynomial g € F[z]. Show that f is
a constant polynomial.

#4. Let F be a field and f,g,h € F[z] with f and g relatively prime. If f|h and g|h, prove that fg|h.

#5. Let F be a field and f,g,h € F[z]. Suppose that g # Or and ged(f,g) = 1p. Show that ged(fh,g) =
ged(h, g).

#6. Let F be a field and f, g € F[x] such that h is non-zero and one of f and g is non-zero. Let d = ged(f, g)
and let f,gEF[ | with f = fd and g = gd. Then gcd(f, g)=1p.

#7. Let F be a field and f, g, h € F[z] with f|gh. Show that there exist g, he F[z] with glg, iz|h and f = gh.

4.3 Irreducible Polynomials

Definition 4.3.1. Let F be a field and f € Flx].
(a) f is called constant if f € F, that is if deg f < 0.
(b) Then f is called irreducible provided that

(i) f is not constant, and
(i) if g € Flx] with g|f, then
g~1p or g~ f.

(¢) f is called reducible provided that
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(i) f # OF, and
(i) there exists g € F[z] with
glf, g=1p, and g f.

Proposition 4.3.2. Let F be a field and Op # f € F[z]. Then the following statements are equiva-
lent:

(a) f is reducible.
(b) f is divisible by a non-constant polynomial of lower degree.

f is the product of two polynomials of lower degree.

(c
(

)
)
)
d) f is the product of two non-constant polynomials of lower degree.
) f is the product of two non-constant polynomials.

)

(e
(f) f is not constant and f is not irreducible.

Proof. @ = (]ED: Suppose f is reducible. Then by Definition [4.3.1| there exist g € F[z] with g|f, g = 1F

and g = f. Since g|f and f # O we have g # O (see[3.4.2). Since g » 1p,[4.2.3|now shows that g ¢ F. Since
g~ fand g|f, implies deg f # degg. Also by since g|f we have deg g < deg f and so degg < deg f.
Thus g is a non-constant polynomials of lower degree than f. Thus (]E[) holds.

(b) = (d): Let g be a non-constant polynomial of lower degree than f with g|f. Then degg > 0,

degg < deg f and f = gh for some h € F[z]. Since f # Or we conclude h # 0p. By |4.1.8(a) deg f =
deg g + deg h and since degg > 0, degh < deg f. Thus holds.

= @: Suppose f = gh with degg < deg f and degh < deg f. By deg f = degg + degh.
Since deg g < deg f we conclude that degh > 0. So h is not constant. Similarly g is not constant. Thus @

holds.

@ == @: Obvious.

(E[) = @): Let f = gh with neither g nor h constant. Then g|f. Since g is not constant, Lemma
gives g = 1p. Since degh > 0 and deg f = degg + degh ([4.1.8|(al)) we have deg f > degg. Since g is not
constant, degg > 0 and so also deg f > 0 and f is not constant. Also deg f # degg and [£:2.4] gives g » f.
Thus by Definition f is not irreducible. So @ holds.

@ = (ED: Suppose f ¢ F' and f is not irreducible. Then by Definition there exists g € F[x] with
glf, g~ 1p and g » f. So by Deﬁnition f is reducible and @ holds. O

Remark 4.3.3. Let F be a field.
(a) A non-constant polynomial in Fx] is reducible if and only if its is not irreducible.

(b) A constant polynomial in F|x] is neither reducible nor irreducible.

Proof. (@): This follows from [£.3.2|(a)), ().

@: By definition irreducible polynomials are not constant and by reducible polynomials are not
constant. O

Lemma 4.3.4. Let F be a field and p € Flx] with p ¢ F. Then the following statement are equiva-
lent:

(a) p is irreducible.
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(b) Whenever g, h € F[z] with p|gh, then plg or p|h.
(¢) Whenever g,h € F[z] with p = gh, then g or h is constant.

Proof. (@) = (B):  Suppose p is irreducible and let g, h € F[z] with p|gh. Put d = gcd(p, g). By definition
of ‘ged’, d|p and since p is irreducible, d ~ 1 or d ~ p. We treat these two cases separately.

Suppose that d ~ 1p. Since both d and 1 are monic we conclude from [1.2.6] that d = 1p. So p and g are
relatively prime and, since p|gh, implies pl|h.

If d ~ p, then since d|g, (lc) gives p|g.

[®) = (d): Suppose (b) holds and let g, h € F[z] with p|gh. Since ‘divide’ is reflexive, p|p and so p = gh
implies p|gh. From (]ED we conclude plg or p|h. Since the situation is symmetric in g and h we may assume
plg. Since p # Op and p = gh, g # Op. From p|g and we have degp < degg. On the other hand by
4.1.8(a), deg p = deg gh = deg g + deg h. Thus degg = degp and degh = 0. So h € F.

(d) = @: Suppose () hold. Then p is not a product of two constant polynomials in F[x]. So
does not holds. Hence also @) does not hold, that is the statement ‘p ¢ F and p is not irreducible’ is
false. Since p ¢ F, this means that p is irreducible. O

Lemma 4.3.5. Let F be a field and p an irreducible polynomial in Fx]. If a1,...,a, € Flx] and pla1as ... an,
then pla; for some 1 <i<n.

Proof. By induction on n. For n = 1 the statement is obviously true. So suppose the statment is true for
n = k and that pla; ...arars1. By play ...ax or plagri. In the first case the induction assumption
implies that p|a; for some 1 < i < k. So in any case pla; for some 1 < ¢ < k+ 1. Thus the Lemma holds
for k + 1 and so by the Principal of Mathematical Induction the Lemma holds for all positive integer
n. O

Lemma 4.3.6. Let F be a field and p, q irreducible polynomials in F[x]. Then plq if and only if p ~ q.

Proof. If p ~ ¢, then p|q, by [3.4.90 So suppose that p|g. Since q is irreducible, p ~ 1p or p ~ ¢. Since p is
irreducible, p ¢ F and so by [4.2.3] p = 1p. Thus p ~ q. O

Lemma 4.3.7. Let F be a field and f,g € Flx] with f ~ g. Then f is irreducible if and only if g is irreducible.

Proof. =: Suppose f is irreducible. Then f ¢ F and so deg f > 1. Since f ~ g, implies degg =
deg f > 1. Hence g ¢ F. Let h € F[x] with h|g. Since f ~ g, [3.4.11] implies h|f. Since f is irreducible we
conclude h ~ 1 or h ~ f. In the latter case, since ~ is transiti\|;@ h ~ g. Hence h ~ 1p or h ~ g and
so g is irreducible.

<=: Suppose g is irreducible. Since ~ is symmetric by we have g ~ f. So we can apply the
‘==’-case with f and g interchanged to conclude that f is irreducible. O

Theorem 4.3.8 (Unique Factorization Theorem). Let F be a field and f € Flx] with f ¢ F. Then
(a) f is the product of irreducible polynomials in F[z].
(b) If n,m are positive integers and p1,pa,...,Pn and qi,...q¢m are irreducible polynomials in F[x] with

f=pip2...pn and f=qq...qm,

then n = m and possibly after reordering the q;’s,

pP1~P1, P2~Qq2, ceoy  DPn ™~ (n-
In more precise terms: there exists a bijection w: {1,...n} = {1,...m} such that

P1 ~d4r1), P2 ~A4r2), -5 Pn ™~ qn(n)-



98 CHAPTER 4. POLYNOMIAL RINGS

Proof. (ED The proof is by complete induction on deg f. So suppose that every non-constant polynomial of
lower degree than f is a product of irreducible polynomials.

Suppose that f is irreducible. Then f is the product of one irreducible polynomial (namely itself).

Suppose f is not irreducible. Since f ¢ F, shows that f = gh where g and h are non-constant
polynomials of lower degree than f. By the induction assumption both g and h are products of irreducible
polynomials. Hence also f = gh is the product of irreducible polynomials.

@ The proof of @ is by complete induction on n. So let k be a positive integer and suppose that (]E[)
holds whenever n < k. Suppose also that

(%) f=pip2...0k and f=qq- . qm,

where m is a positive integer and p1, ..., Dk, q1, - - ¢m are irreducible polynomials in F[z].

Suppose first that f is irreducible. Then by f is not the product of two non-constant polynomials in
F[x]. Hence (*) implies k = m = 1. Thus p; = f = ¢1. Since since is reflexive we get p; ~ ¢ and so (b) holds
for n = k in this case.

Suppose next that f is not irreducible. Then p; # f # ¢; and so k > 2 and m > 2.

Since f = (p1 ... Pk—1)pr We see that py divides f. So by (*) py divides ¢ ... gy,. Hence by pilg; for
some 1 < j < m. By pr ~ q;. Reordering the ¢;’s we may assume that py ~ ¢n,. Then p, = ug,, for
some unit v € F[z]. Thus

((upr)p2 - Pr—1)@m = (pr - Pr—1)(ugm) = p1-- Pk = f = (@1 - Gm—1)4gm-
By 4.1.8(c) F[x] is an integral domain. Since ¢y, # O, the Cancellation Law [3.2.19| gives

(Upl)p2 - Pk—-1=4q1---qm—-1-

Since w is a unit, up; ~ p;. Thus since p; is irreducible also up; is irreducible by By the induction
assumption £k — 1 = m — 1 and we may reorder the ¢;’s such that

up1 ~4qi, PpP2~4q2, ... Pk-1"~qk-1-

In particular, K = m. Also since p; ~ up; and ~ is transitive, p; ~ ¢;. Thus

p1~q, p2~q ... Pk-1~4k-1,
Thus (b) also n = k. By the principal of complete induction, (b) holds for all positive integers n. O

Exercises 4.3:
#1. Find all irreducible polynomials of
(a) degree two in Zs[z].
(b) degree three in Zs[z].
(c) degree two in Zg[x].
#2. (a) Show that 22 + 2 is irreducible in Zs[z].

(b) Factor z* — 4 as a product of irreducibles in Zs[z].
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#3. Let F be a field. Prove that every non-constant polynomial f in F[z] can be written in the form
f = cpipa...pn with ¢ € F and each p; monic irreducible in F[z]. Show further that if f = dgy ... g, with
d € F and each ¢; monic and irreducible in F[z], then m = n, ¢ = d and after reordering and relabeling, if
necessary, p; = ¢; for each i.

#4. Let F be a field and p € F[z] with p ¢ F. Show that the following two statements are equivalent:
(a) p is irreducible
(b) If g € F[z] then p|g or ged(p,g) = 1p.

#5. Let F be a field and let pq,ps,...p, be irreducible monic polynomials in F[z] such that p; # p; for

all 1 < i < j < n. Let f,g € Flz] and suppose that f = pf'pk2 .. pkr and g = p'pk ... plr for some

ki,koy... kn,li,lo... 1, €N
(a) Show that flg in Flx] if and only if k; <; for all 1 <i <mn.

(b) For 1 <4 <n define m; = min(k;,!;). Show that ged(f,g) = p7"'ps?...po".

4.4 Polynomial function

Theorem 4.4.1. Let R and S be commutative rings with identities, o : R — S a homomorphism of rings
with a(1g) = 1g and let s € S.

(a) There exists a unique ring homomorphism o : Rlx] — S such that as(x) = s and ag(r) = afr) for all

r € R.
deg f deg f
(b) Forall f =Y fix' in Rlz], as(f) = > alfi)s'.
=0 =0

Proof. Suppose first that 8 : R[z] — S is a ring homomorphism with

(%) Blz)=s and B(r)=a(r)
for all » € R. Let f € R[z].
Then
deg f ‘
B(f) = B fx> @
deg;z:O
= B(fix')  —p is a homomorphism
degi?o

i

= B(f)B(x)" —p is a homomorphism
Eogf

= alfi)s'. — (%)

©
I

This proves (]ED and the uniqueness of «.
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It remains to prove the existence. We use (]ED to define az. That is we define

deg f

as: Rz =S, f— Z affi)s

i=0
It follows that
as(z) = as(lgz) = a(lgr)s = 1lgs = s

and if r € R, then

as(r) = as(rz®) = a(r)s® = a(r)ls = a(r).

Let f,g € R[z]. Put n = max(deg f,degg) and m = deg f + degg.

as(f+g9) = <Z fi+gi)z > —[4.1.2(a)) applied with P = R[]
=0

= afi + gi)si — definition of ay
=0
= (a(fi) + a(gi))si — Since « is a homomorphism
i=0

deg f ‘ degg ‘
= (Z a(ﬁ)y) + (Z a(gi)s’> —4.1.2(la) applied with R=S,P =S,z =s

=0 i=0
= as(f) + as(g) — definition of ay, twice

as(fg) = (Z (Z fige- ) ) —ET2R) applied with P = Rlz]
k=0
= Z « (Z figr—i — definition of ar
m =2 k =0
= <Z a(fi)a(gr—i ) k — Since « is a homomorphism
k=0 \=0
deg f deg g
= (Z a(fi)5i> . Z a(g;)s’ —4.1.2a)) applied with R=S,P =S5,z =s
i=0 j=0
= as(f) - as(g) — definition of s, twice
So ay is a homomorphism and the Theorem is proved. O

Example 4.4.2. Compute a; in the following cases:
(1) R is a commutative ring with identity, S = R, o = idg and s € R.
(2) R is a commutative ring with identity, S = R[z], a(r) = and s = x.

(3) R=17Z, nis an integer, S = Zy[z], a(r) = [r], and s = z.
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=0

deg f deg f
as(f) Zafzs—Zfz

deg f deg f
[2) as(f) =D alfi)s' = Zm =
=0
So a is identity function on R[ ].
Note first that by Example a:Z — Ly|z],r = [r]n is @ homomorphism. Also
deg f ~ degf
a(f)=Y a [f
i=0 =0

So a4(f) is obtain from f by viewing each coefficient as congruence class modulo n rather than an integer

Definition 4.4.3. Let I be a set and R a ring.
(a) Fun(I, R) is the set of all functions from I to R.
(b) For o, 8 € Fun(I, R) define o+ S in Fun(I, R) by
(a+B)(i) = ali) + B(i)

foralliel.
(¢) For a, B € Fun(I, R) define af in Fun(I, R) by
(aB)(i) = a(i)B(i)

foralliel.
(d) Forr € R define r* € Fun(I, R) by

foralliel.
(e) Fun(R) = Fun(R, R).
Lemma 4.4.4. Let I be a set and R a ring.
(a) Fun(I, R) together with the above addition and multiplication is a ring.

(b)
(c)
(d)
(e) The function 7 : R — Fun(I, R),r — r* is a homomorphism. If [ # 0, than 7 is 1-1.

Proof. Note that Fun(/, R) = X, ; R and so @—@ follows from
(E[) Let a,b € Rand ¢ € I. Then

0%, is the additive identity in Fun(I, R).
If R has a multiplicative identity 1g, then 1% is a multiplicative identity in Fun(I, R).

(—a)(i) = —a(i) for all« € Fun(I, R), i € I.

(a+b)*(1) = a+b — definition of (a + b)*

= a*(i)+b*(i) — definition of a* and b*

= (a*+0b*)(i) — definition of addition of functions
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Thus (a + b)* = a* + b* by and so 7(a +b) = 7(a) + 7(b) by definition of 7.
Similarly,

(ab)*(i) = ab — definition of (ab)*
a*(i)b*(i1) — definition of a* and b*

= (a**)(i) — definition of multiplication of function

Hence (ab)* = a*b* by [0.3.11] and so 7(ab) = 7(a)7(b) by definition of 7.

Thus 7 is a homomorphism .

Suppose that I # () and 7(a) = 7(b). Then a* = b* and there exists i € I. So a = a*(i) = b*(i) = b and T
is 1-1. O

Notation 4.4.5. Let R be a commutative ring with identity and f € R[z]. For f = Z?i%f fiz® € Flx] define
the function

ff:R—R
by
deg f
e =Y i
i=0
for allr € R.

f* is called the polynomial function induced by f.
Letid: R — R,r — r be the identity function on R and for r € R letid, : R[x] — R be the homomorphism

from . Then by Example

for all f € Flz] and r € R.
Note that if f € R[z] is constant polynomial then the definitions of f* € Fun(R) in and in

coincide.
The following example shows that it is very important to distinguish between a polynomial f and its
induced polynomial function f*.

Example 4.4.6. Determine the functions induced by the polynomials of degree at most two in Zs[z].

‘ f ‘0‘1‘m‘x+1‘x2‘w2+1‘w2+x‘x2+x+1
ffoyjoj1fo| 1 0 1 0 1
Ay jof1f1| o 1 0 0 1

We conclude that z* = (2%)*. So two distinct polynomials can lead to the same polynomial function. Also
(22 4+ x)* is the zero function but 2 + x is not the zero polynomial.

Theorem 4.4.7. Let R be commutative ring with identity.
(a) f* € Fun(R) for all f € R[z].
(b) (f +9)7(r) = f*(r) + g7(r) and (fg)*(r) = f*(r)g*(r) for all f,g € Rlz] and r € R.
(c) (f+9)"=f"+g" and f*g" = f*g" for all f,g € Rlz].
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(d) The function R[z] — Fun(R), f — f* is a ring homomorphism.
Proof. () By definition f* is a function from R to R. Hence f* € Fun(R).

(f+9*(r) = id.(f+g)  — Definition of (f + g)*
= id.(f) +id,(g) - id, is a homomorphism
= f*(r)+g*(r) — Definition of f* and g*

and similarly

(f9)*(r) = idi(fg)  — Definition of (fg)*
(fid,(g) — id, is a homomorphism
= f*(r)g*(r) — Definition of f* and g*
Let r € R. Then

(F+9)*(r) = fr)+g7(r) - @)
(f*+g*)(r) — Definition of addition in Fun(R)

So (f+9)* = f*+ g¢g*. Similarly

(fo)*(r) = f*(r)g*(r) — ()
= (f*¢*)(r) — Definition of multiplication in Fun(R)

and so (fg)* = f*g*.
@ Follows from . O

Lemma 4.4.8. Let F be a field, f € Flx| and a € F. Then the remainder of f when divided by x — a is
f(a).

Proof. Let r be the remainder of f when divided by  — a. So r € F[z], degr < deg(xz — a) and there exists
q € F[z] with

(%) f=q - (x—a)+r.

Since deg(z — a) = 1 we have degr < 0 and so r € F. Thus

(%) r(t)=r
forall t € R.
RO (¢-(z—a)+7)"(a) (¢- (x — a))*(a) + 7*(a)
I v (a) - (2 — a) (@) +r7(@) DT “(a)(a—a) +r
52 L1 q*(a) - 0p +r ’m 7.
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Definition 4.4.9. Let R be a commutative ring with identity and f € R[z]. Then a € R is called a root of f
if f*(a) =0g.

Theorem 4.4.10 (Factor Theorem). Let F a field, f € F|x] and a € F. Then a is a root of f if and only if
x—alf.

Proof. Let t be the remainder of f when divided by x — a. Then

x—alf
= t=0p —E27
—  f*a)=0r —HZX
<= aisaroot of f — Definition of root

Lemma 4.4.11. Let R be commutative ring with identity and f € R[z].
(a) Let g € R[x] with g|f. Then any root of g in R is also a root of f in R.

(b) Let a € R and g,h € R[z] with f = gh. Suppose that R is field or an integral domain. Then a is a root
of f if and only if a is a root of g or a is a root of h.

Proof. For the proof of (@), note that if g|f, then there exists h € R[z] with f = gh. Let a € R. Then

1179

(%) fr(a) = (gh)*(a) =="" g"(a)h*(a).

If a is a root of ¢ then g*(a) = Og and so also g*(a)h*(a) = Or. Hence by (*) f*(a) = Og and a is a root
of f. So @ holds.

If R is field then R is an integral domain by The same of course holds when R is an integral domain
and so (Ax 11) holds. Hence

a is a root of f

= f*(a) =0g — definition of root

— g*(a)h*(a) = Or - ()

= g*(a)=0r or h*(a)=0g (Ax 11)

<= aisarootofg or aisarootofh —definition of root, twice

O

Example 4.4.12. (1) Let R be a commutative ring with identity and a € R. Find the root of z — a in R.
Let b € R. The (x —a)*(b) =b—a. So bis aroot of x — a if and only if b — a = O and if and only if
b=a.

(2) Find the roots of 2% — 1 in Z.

2?2 —1= (x —1)(z+1). Since Z is an integral domain, [4.4.11| show that the roots of z? — 1 are the roots
of x — 1 together with the roots of  + 1. So by the root of 22 — 1 are 1 and —1.
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(3) Find the roots of 22 — 1 in in Zs.

Since Zg is not an integral domain, the argument in does not work. We compute in Zg

0?—1=—-1,(£1)*-1=1-1=0,(£2)?-1=4-1=3,(£3)?=9-1=8=0,4>-1=15=—1
So the roots of 22 — 1 are +1 and £3. Note here that (3 —1)(3+1) =2-4 =8 = 0. So the extra root 3
comes from the fact that 2 -4 = 0 in Zg but neither 2 nor 4 are zero.

Theorem 4.4.13 (Root Theorem). Let F be a field and f € F[z] a non-zero polynomial.
Then there exist a non-negative integer m, elements ai,...,am € F and q € F|x] such that
(a) m < degf.
b) f=q - (z—a1) (x—az) ... (x — am)-
(¢) q has no roots in F.
(d) {a1,as,...,an} is the set of roots of f in F.
In particular, the number of roots of f is at most deg f.

Proof. The proof is by complete induction on deg f. So let & € N and suppose that theorem holds for
polynomials of degree less than k. Let f be a polynomial of degree k.

Suppose that f has no roots. Then the theorem holds with ¢ = f and m = 0.

Suppose next that f has a root a. Then by the Factor Theorem r —alf and so

(%) f=g9-(x—a)
for some g € F[z]. By [£.1.8 deg f = degg + deg(z — a) = degg + 1 and so degg = k — 1. Hence by the
induction assumptlon there exist a non-negative integer n, elements aq,...,a, € F and g € F[z] such that

(i) n < degg.

)
(i) g=qg-(x—a1) - (x—az) ... - (x — ay)
(iii) ¢ has no roots in F.

)

(iv) {a1,aq,...,a,} is the set of roots of g.

()
Putm=n+1land a,, =a. Thenm=n+1 < degg+1=(k—1)+1=k=degf andsod;b holds.
From f=g-(z —a) =g (z —ay) and (i) we conclude that (b)) holds. By (i), holds.
‘

Let b e F. Since f =g (x — am), [4.4.11| shows that b is a root of f if and only if b is a root of g or g is a
root of x — a,,. Using we conclude that b root of f if and only if b € {a;,as,...a,} or b — a,, = 0 and
so if and only if b € {a1,a2...,an,am} ={a1,...,an}. Thus also @ holds. O

We have seem in example 4.4.12 that 22 —1 has four roots in Zg, namely +1 and £3. So in rings without
(Ax 11) a polynomial can have more roots than its degree.

Lemma 4.4.14. Let F be a field and f € F[x] with deg f > 2. If f is irreducible, then f has no roots.

Proof. See Lemma 1 on the Solutions of Homework 10 O
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Lemma 4.4.15. Let F be a field and f € Flx] with deg f =2 or 3. Then f is irreducible if and only if f has
no T00ts.

Proof. See Corollary 2 on the Solutions of Homework 10. O

Exercises 4.4:
#1. Let F be a field and f € F[z] with deg f > 2. If f is irreducible, then f has no roots.
#2. Let F be a field and f € F[z] with deg f = 2 or 3. Then f is irreducible if and only if f has no roots.

#3. Let F be an infinite field. Then the map F[z] — Fun(F), f — f* is 1-1 homomorphism. In particular,
if f and g in F[z] induced the same function from F to F, then f = g.

#4. Show that x — 1p divides a,2™ + ... a12 + ag in Flz] if and only if ag + a1 +... 4+ a, = 0.
#5. (a) Show that 27 — x induces the zero function on Z;.
(b) Use @ and Theorem [4.4.13|to write 27 — 2 is a product of irreducible monic polynomials in Z.

#6. Let R be an integral domain and n € N Let f,g € R[z]. Put n = deg f. If f = O define f* = 0g and
my = 0. If f # Og define

f. = Z fn—le
i=0
and let my € N be minimal with f,,, # Or. Prove that
(a) deg f =mys+ deg f°.
(b) f=alm-(f*)°
(c) (fg)*=f*g"
)

(d) Let k,1 € N and suppose that fy # Og. Then f is the product of polynomials of degree k and [ in R[z]
if and only if f* is the product of polynomials of degree k and [ in R[x].

(e) Suppose in addition that R is a field and let @ € R. Show that a is a root of f* if and only if a # Og
and a is a root of f.

#7. Let p be a prime. Let f,g € Z,[z] and let f*,g* : Z, — Z, be the corresponding polynomial functions.
Show that:
(a) If deg f < p and f* is the zero function, then f = Op.
(b) If deg f < p,degg < p and f # g, then f* # g*.
(c) There are exactly pP polynomials of degree less than p in Z,[x].
(d) There exist at least p? polynomial functions from Z, to Z,.
)
)

e) There are exactly p? functions from Z, to Z,.

(
(f

All functions from Z, to Z, are polynomial functions.
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4.5 Irreducibility in Q|x]

Theorem 4.5.1 (Rational Root Test). Let f = > fiz* € Z[z] with f, #0. Let o € Q be a root of f and
suppose o = = where 1,5 € Z with s # 0 and ged(r, s) = 1. Then r|fo and s|f, in Z.

Proof. Since a is a root of f, f*(%) = f*(a) = 0. So

35(2) -0

Multiplication with s™ gives

(*) Zfrznz:

1=0
If i > 1, then r|rr*~! = 7% and so 7 =0 (mod 7). Thus (*) implies

fos" =0 (mod r).
and so r|fos™. Since ged(r,s) =1, Exerase 6| gives ged(r, s™) = 1. [1.2.11| now implies that r|fo.

Similarly, if i < n, then s|ss" "1 = s"~% and so s" " =0 (mod s). Thus (*) implies
far® =0 (mod s).
and so s|a,r™. Since ged(r, s) = 1, gives ged(s, ™) = 1 and then s|f,. O

Definition 4.5.2. Let p be a fized prime and f € Z[x]. Put
deg f
f Z fil px € Zy[].
=0
Then f is called the reduction of f modulo p.
Lemma 4.5.3. Let p be a fixed prime and f,g € Z[x].

(a) The function _
Op : Zla] = Zylal, f — f

is a homomorphism of rings.

(b) f+g=f+gand fg=fg.
(c) deg f < degf.
(d) If f #0, then deg f = deg f if and only if p tlead(f)
Proof. () Consider the map « : Z — Zyp[z],n — [n],. By Example

deg f

o (f) = Z [filpa® = f = 8,(f).

=0

Thus 6, = a, and since o is a homomorphism, (ED holds.
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(b)) This follows from @

(c) Follows immediately from the definition of f.

() Let n = deg f. Then f =i ,[fil,2* and so deg f = n if and only of [f,], # 0[0], and if and only if
pt fn. Since leadf = f, this gives (d). 0O

Lemma 4.5.4. Let f,g € Z[z] and let p a prime. If p divides all coefficients of fg, then p divides all
coefficients of f or p divides all coefficients of g.

Proof. Let h = 1" | hya' € Z[z]. Then p divides all the coefficients of h if and only if [hs], = [0], for all
0 <4 <n and so if and only if A = [0],,.

Since p divides all coefficients of fg, fg = [0], and so by f3=10],. By3.2.21{(hl) Z, is field so Z,[7]
is integral domain by m Thus f = [0], or g = [0],. Hence either p divides all coefficients of f or p divides

all coefficients of g. O
Definition 4.5.5. Let f € Z[z] and put n = deg f.
(a) If f #0, define ct(f) = ged(fo, f1,- -5 fn)- If f =0 define ct(f) = 0. ct(f) is called the content of f.
(b) f is called primitive if ct(f) = 1.

Example 4.5.6. Let f = 12 + 8z + 2022, Compute ct(f) and ct(f)~1f.

ct(f) = ged(12,8,20) =4

and

ct(f)~1f = 3(12 + 8z 4 202%) = 3 + 2z + 52°
Note that the latter polynomial is primitive.
Lemma 4.5.7. Let f € Z[x].
(a) Let a € Z. Then ct(af) = |alct(f).

(b) Suppose f # 0 and put g = ct(f)~1f € Qlz]. Then g € Zlx], f = ct(f)g, deg f = degg and g is
primaitive.
Proof. @ If a =0or f =0, then ct(af) = ct(0) = 0 = |a|ct(f). So suppose that a # 0 and f # 0. Put
n = deg f. By Exercise 1.2.4 ged(afo,af1) = |alged(fo, f1). An easy induction argument shows

ng(af()vaflv .. afn) = |CL| ng(an f17 .. 7fn)

Thus ct(af) = |a|ct(f).
@ Since ct(f)|fi, ct(f) " fi € Z for all 0 < i < deg f. Thus g € Z[z]. Note that ct(f)g = f and so by @
and since ct(f) > 0.

ct(f) = [et(f)let(g) = ct(f)ct(g).
Since f # 0, ctf # 0 and thus ctg = 1. Hence ¢ is primitive. O
Lemma 4.5.8. Let f,g € Z[z].

(a) If f and g are primitive, then also fg is primitive.
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(b) ct(fg) = ct(f)et(g)-

Proof. () Since ct(f) = 1 = ct(g) we have f # 0 and g # 0. By Z[z] is an integral domain and so
fg # 0. Suppose for a contradiction that ct(fg) # 1. Then ct(fg) is a product of primes and so there
exists a prime p with p|ct(fg). Hence p divides all coefficient of fg and so by p divides all coefficients
of f or p divides all coefficients of g. Hence ct(f) > p or ct(g) > p, a contradiction.

(]ED Suppose first that f = 0 or ¢ = 0. Then fg = 0. Also ct(f) = 0 or ct(g) = 0 and so ct(fg) =0 =
ct(fet(g): ) )

Suppose that f # 0 and g # 0. Put d = ct(f), e = ct(g), f = 2f and g = 1g. Then f = df, g = g and
by [4.5.7((b)), f and § are primitive polynomials in Z[z]. By (EI) fg is primitive. It follows that ct(f§) = 1 and
so using 4.5. @,

ct(fg) = ct(defg) = de - ct(f§) = de = ct(f)ct(g).
O

Theorem 4.5.9. Let f € Z[x] and n,m € N. Then f is the product of polynomials of degree n. and m in Q[z]
if and only if f is the product of polynomials of degree n and m in Zx].

Proof. The backwards direction is obvious. So suppose f = gh where g,h € Q[z] with degg = n and
deg h = m. Note that there exists a positive integer a such that ag € Z[x] (for example choose a to be the
product the denominators of the non-zero coefficients of f). Similarly choose b € Z* with bh € Z[z]. Put
g = ag and h = bh. Then

(1) abf = abgh = (ag)(bh) = g,

and so

ab - ct(f) ct(adbf) W ct(gh) ct(g)ct(h).
It follows that ab|ct(§)ct(}~z) in Z and hence (see Exercise 4 on Homework 9)
(2) ab = ab,
where @ and b are integers with alct(g) and blct(h) in Z. Put

(3) g=a'g and h=>b""h.
By [4.5.7(b), ct(§)~'g € Z[z]. Since a|ct(g) in Z, a~ct(g) € Z. Thus
g=a"'g=a"(ct@et()")g = (a"'et() (ct(5)'3) € Za).
Similarly h € Z[z]. Observe also that
deg g = degg = degg = n and degiL = degiL =degh =m.
We compute
M) <5 @) 77 Savar o (2) .
abf = gh = (ag)(bh) = (ab)gh = (ab)gh.

By Z[z] is an integral domain. Since ab # 0, the Cancellation Law |3.2.19|implies f = f]ﬁ and so f is
the product of polynomials of degree n and m in Z[z]. O
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Corollary 4.5.10. Let f be a non-constant polynomial in Zlx] and suppose that f is not irreducible in

Q[z].
(a) There exist non-constant polynomials f and g in Z[x] of smaller degree than f with f = gh.

(b) Suppose in addition that p is a prime with p { lead(f). Then deg f = deg f and g and h are non-constant
polynomial of smaller degree than f with f =gh.

Proof. @ Since f is not constant and not irreducible in Q[z] we conclude from that f = gh where g and
h are non-constant polynomials in Q[z] of smaller degree as f. By we can choose such g, h € Z[x].

(b) Since p {lead(f) and leadf = lead(gh) = lead(g)lead(h) we get p { lead(g) and p { lead(h). Thus by
4.5.3]c)

, degz = deg f, degg = deg g and degh = degh. So g and h are non-constant polynomials of smaller

degree than f. By f = gh =gh. So (b) holds. O

Theorem 4.5.11 (Eisenstein Criterion). Let f = > " fiz* € Z[z] be a non-constant polynomial. Suppose
there exists a prime p such that

(1) plfi for each 0 <i < n;
(i) p1 fu; ond

(i) 21 fo.

Then f is irreducible in Qlz].

Proof. Suppose for a contradiction that f is not irreducible. Then by |4.5.10| f = gh and f = gh where
g,h € Z[z] and none of f, g, h are constant. Since p|f; for all 0 < i < n, we have [f;], = [0], for 0 < i < n and
so f = [fu]pz™. Since f = gh we have g|f in Z,[z] and so by Exercise 3 on Homework 9, § = az’ for some
i € Nand a € Z,. Since g is not constant, ¢ > 1 and so [go]p, = gy = [0],. Thus p|go and similarly p|hg. Since
fo = hogo, this implies p?|fy, a contradiction to . O

Example 4.5.12. Show that f = 2% + 12123 + 5522 + 66z + 11 is irreducible in Q[x].

We choose p = 11. 11 divides 121, 55,66 and 11. 11 does not divide 1 and 112 does not divide 11. So f is
irreducible by Eisenstein’s Criterion.

Theorem 4.5.13. Let f € Z[x] and p a prime integer with p 1 lead(f). If the reduction F of f modulo p is
irreducible in Zy[z], then f is irreducible in Q[z].

Proof. Suppose f is not irreducible in Q[z]. Then 14.5.10@ shows that f is the product of two non-constant
polynomials. So by f is not irreducible in Z,[z], a contradiction. O

Example 4.5.14. Show that 723 + 1122 + 4z + 19 is irreducible in Q[z].

We choose p = 2. Then f = 23 + 22 + 1 in Zy[z]. By Exercise 6(b) on Homework 8, f is irreducible and
so f is irreducible in Q[x] by 4.5.13

Exercises 4.5:

#1. Use Eisenstein’s Criterion to show that each polynomial is irreducible in Q[x].
(a) z° — 4x + 22
(b) 10 — 15z + 2522 — Ta*.
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(c) 5atl — 62t + 1227 + 362 — 6.

#2. Show that each polynomial f is irreducible in Q[z] by finding a prime p such that the reduction of f
modulo p is irreducible in Z[z].

(a) 72® + 622 + 4 + 6.
(b) 9z + 423 — 32 + 7.

#3. If a monic polynomial with integer coefficients factors in Z[x] as a product of a polynomials of degree m
and n, prove that it can be factored as a product of monic polynomials of degree m and n in Z[x].

#4. Let f be a non-constant polynomial of degree n in Z[z] and let p be a prime. Suppose that
(i) p|fi for all 1 <i < n.

(i) p1 fo.

(iii) p*{ fn-



112 CHAPTER 4. POLYNOMIAL RINGS



Chapter 5

Congruence Classes in F[x]

5.1 The Congruence Relation

Definition 5.1.1. Let F be a field and p € Fx]. Then the relation = (mod p) on F[z] is defined by
f=g (modp) if plf—ginFla]

If f =g (mod p) we say that f and g are congruent modulo p.

Example 5.1.2. Let f =2+ 22+ 1l,g=a2?+zand p=a?+ a2+ 1 in Zy[z]. Is f =g (mod p)?

f and g are congruent modulo p if and only if p divides f — ¢ and so by f if and only if the remainder
of f — g when divided by p is 0p. So we can use the division algorithm to check whether f and g are congruent
modulo p.

We have f —g =23+ 2+ 1 and

2 +x+1|2 + z + 1

x3+x2+x

x? + 1
2 + z + 1

T

So the remainder of f — g when divided by p is not zero and therefore

P+ 1#22+2 (mod 2?4z +1)
in Zs[z].

2

Theorem 5.1.3. Let F be a field and p € Flx]. Then the relation = (mod p)’ is an equivalence relation on

Proof. We need to verify that ‘= (mod p)’ is reflexive, symmetric and transitive.
Reflexive: Let f € Flz]. Then f — f =0p =p-0p. Sop|f — f and f = f (mod p).

113
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Symmetric: Let f,g € Flz] with f = ¢ (mod p). Then p|f —g. Since g— f = —(f —g),[3.4.3((]b) implies
that p|g — f. Thus g = f (mod p).

Transitive: Let f,g,h € Flz] with f = g (mod p) and g = h (mod p). By definition of = (mod p) we
have p|f — g and p|g — h. Observe that f —h = (f —g) + (g — h) and so by, p|f —h. Thus f = h
(mod p). O

Notation 5.1.4. Let F be a field and f,p € F[x].
(a) [f], denotes the equivalence class of = (mod p)’ containing f. So
[flp={9 € Flz]| f=g (modp)}
[f]p is called the congruence class of f modulo p.

(b) F[z]/(p) is the set of congruence classes modulo p in F[z]. So
Flz]/(p) ={[flp | f € Flal}

Theorem 5.1.5. Let F be a field and f,g,p € F|x] withp # 0p. Then the following statements are equivalent:

(a) f =g+ pk for some k € Fla]. (h) f € [glp-

(b) f—g=pk for some k € Flz]. (i) 9= (mod p).

(c) plf =g () plg—f-

(d) f=g (mod p). (k) g— f = pl for some | € Flz].

(e) g € [flp- (1) g = f +pl for some | € Flz].

® [flpNlgly # 0 (m) f and g have the same remainder when divided
(&) [flp = lglp- by p.

Proof. (a) <= (b):  This holds by [3.2.12]
¢):  Follows from the definition of ‘divide’.
(¢) <= (d): Follows from the definition of ‘= (mod p)’.
Since ‘= (mod p)’ is an equivalence relation, Theorem implies that statements (d)- (i) are equivalent.
In particular (g) is equivalent to each of (a)-(c). Since the statement (g) is symmetric in f and g we conclude
that (g) is also equivalent to each of (j)-(1). Hence statements (a)-(l)) are equivalent.
Let 7 and ro be the remainders of f and g when divided by p. Then there exists g1, ¢2 € F[z] with

f=pgpr+7r and degry <degp
g=pq+1ry and degrs < degp

= ([B): Suppose holds. Then r; =7 and

g—f=@a+r:)—(pg+r1)=p-(@2—q)+(ra—71) =p- (2 — q1)-
So (]ED holds with &k = g2 — ¢1.
(a) = (m): Suppose f = g+ pk for some k € F[z]. Then f = (pg> + r2) + pk = p(g2 + k) + r2. Note
that g2 + k € Flz], 72 € Flz] and degry < degp. So ry is the remainder of f when divided by p and
holds. O
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Theorem 5.1.6. Let F be a field and f,p € F with p # Op. Then there exists a unique r € F|x] with
degr < degp and [f], = [r]p, namely r is the remainder of f when divided by p.

Proof. Let r be the remainder of f when divided by p and let s € F[z] with degs < degp. Since s =0pp+ s

and deg s < degp, s is the remainder of s when divided by p. By [flp = [s]p if and only f and s have
the same remainder when divided by n, and so if and only if r = s. O

Lemma 5.1.7. Let F be a field and p € F[z] with p # 0p. Then

Flz]/(p) = {lrlp|r € Flz],degr < degp}

Proof. By definition F[z]/(p) = {[f]p | f € Flz]}. So the lemma follows from follows from O

Example 5.1.8. Determine
(a) Zslx]/(z* + 1), and
(b) Qfz]/(z® — 2 +1).

@ Put p = 22 + 1 in Z3[x]. Then degp = 2. Since Zy = {0, 1,2}, the polynomials of degree less than 2 in
Zsx] are

0,1,2,z, 2+ 1, x4+ 2,22,2x + 1,20 + 2

Thus

Z3 [x]/(m2 + 1) = {[0]p, [Up, [2lp; [2]p, [z + 1p, [x + 2], [22],, [22 + 1], [22 + 2]}

@ A polynomial of degree less than 3 can be written as a + bx + cx?, where a,b,c € Q. Thus

Qz)/(2® —w+1) = {la + bx + c2”]z3 411 | a,b,c € Q}.

Exercises 5.1:
#1. Let f,g,p € Q[z]. Determine whether f =g (mod p).

(a) f=a°— 22 +423 -3z +1, g =3x* 4+ 223 — 52 +2, p=a?+1;

(b) f=a+223 322+ -5, g=x*+ 23 — 522 + 122 — 25, p=a2+1;

() f=3x%+4a*+52% 622 +52x—7, g=22°+62* +2+222+22x -5, p=a3 -2+ 1
#2. Show that, under congruence modulo 2% + 2x + 1 in Z3z[x] there are exactly 27 congruence classes.

#3. Prove or disprove: Let F' be a field and f,g,k,p € Flx]. If p is nonzero, p is relatively prime to k and
fk = gk (mod p), then f =g (mod p).

#4. Prove or disprove: Let F be a field and f,g,p € F[z]. If p is irreducible and fg = 0r (mod p), then
f=0p (mod p) or g =0p (mod p).
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5.2 Congruence Class Arithmetic

Theorem 5.2.1. Let F be a field and f, g, f,§,p in Flz] with p # 0p. If

[f]p = [f]p and [g], = (9],

then B ~
[f+glp=1[f+3lp, and [fgl,=1[fdlp

Proof. Since [f], = [f], and [g], = [§], We conclude from that f = f +pk and § = g + pl for some
k,l € F[z]. Hence

Fra=(+pk)+(g+pl)=(f+g)+p- (k+1)
Since k + 1 € F[z], |5.1.5| gives

[f +glp = [[ +dlp
Also

F-g=(f+pk)g+pl)=Ffg+p-(kg+ fl+kpl),
and since kg + fl + kpl € F|x],[5.1.5| implies

[fg]p = [fg]p
O]

Definition 5.2.2. Let F be a field and p € F|x]. We define an addition and multiplication on F[z]/(p) by

oty =1f+9lp and [flp-lglp=1[f"9lp
for all f,g € F[z]. By this is well defined.
Example 5.2.3. Compute the addition and multiplication table for Zs[z]/(2? + ).

+ (0] ] [a]  [z+1] (0] (1] | [#] [z +1]
(0] [0] A = [e+1] 0] | [0] [0 | o] [0]
1] (1] O] | [z +1]  [2] (1| [0] (1 | [«] [z +1]
[z] [z]  [z+1] 0] 1] [z | (0] f«] [l (O]
[z+1] | [z+1] ] [1] [0] [+1] [ [0] [z+1] [0] [z+1]

Note here that

and

z+1z+1)=[(z+ D+ =22 +1]=[2*+1) - (2> +2)] = [z +1]

Observe from the above tables that Zs[z]/(z% + x) contains the subring {[0], [1]} isomorphic to Zg. The
next theorem shows that a similar statement holds in general.
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Theorem 5.2.4. Let F be a field and p € Flx].
(a) The map o : Flz] — Flz]/(p), f — [f]p is an onto homomorphism.
(

b) Flz]/(p) is a commutative ring with identity [1p],.

)
(c) Put F = {[a],|a € F}. Then F is a subring of F|z]/(p).
)

(d) Define m: F — F,a — [a], (soT = Olpyp) If p & F, then T is an isomorphism and F is a subring of
Flz]/(p) isomorphic to F.

Proof. @ Let f,g € F[z]. Then
o(f +9)=[f+glp=1flp+lglp =0(f) +0(9)

and
o(f9) = [falp = [flplglp = o(f)o(g)

So o is a homomorphism. If a € F[ 1/(p), then a = [f], for some a € f € F[z]. So o(f) = a and ¢ is onto.

ﬂ) ThlS is proved similar to For the details see m

(c), ¥ = {[a], | a € F} = {0‘( ) | @ € F}. Since F is a subring of F[z] and o is a homomorphism we
conclude from Exercise 6 on the Review for Exam 2 that F' is a subring of F[z]/(p).

@ We need to show that 7 is a 1-1 and onto homomorphism. Since 7(a) = o(a) for all a € F, (ED implies
that 7 is a homomorphism. Let d € F. Then d = [a], for some a € F and so d = 7(a). Thus 7 is onto.
Let a,b € F with 7(a) = 7(b). Then [a], = [b],. Since p ¢ F', degp > 1 and since a,b € F, dega < 0 and
degb < 0. Thus dega < degp and degb < degp. Since [a], = [b], we conclude fromthat a=>4. SorTis
1-1 and @ holds. O

The preceding theorem shows that F[x]/(p) contains a subring isomorphic to F. This suggest that there
exists a ring isomorphic to F[x]/(p) containg F has a subring. The next theorem shows that this is indeed
true.

Theorem 5.2.5. Let F' be a field and p € Flx] with p ¢ F. Then there exist a ring R and o € R such
that

(a) F is a subring of R,
(b) there exists an isomorphism ® : R — Flz]/(p) with ®(«) = [z], and ®(a) = [a], for all a € F.
(¢) R is a commutative ring with identity 1 = 1p.

Proof. Let S = Flz]/(p)\ F and R=SUF. ( So for a € F we removed [a], from F[z]/(p) and replaced it by
a.) Define ® : R — Flz]/(p) by

O(r)=[rlpifre Fand ®(r)=rifres

Then its is easy to check that ® is a bijection. Next we define an addition & and a multiplication ® on R by

(1) r®s=0"H®(r)+d(s)) and 7Os:=0 L (B(r)D(s))
Observe that ®(®~1(u)) = u for all u € F[z]/(p). So applying ® to both sides of (1) gives

O(rds)=0(r)+P(s) and P(ros)=2(r)d(s)
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for all r,s € R. implies that R is ring and ® is an isomorphism. Put a = [z],. Then a € S and so
a € R. Moreover ®(a) = ®([z],) = [#],. Let a € F. Then a € R and ®(a) = [a],. Thus (b)) holds.
For a,b € F we have

a®b=o1(®(a)+ 0(b) = ([al, + [b],) = 2 (a+b],) =a+beEF
and
a©b =0 (0(a)®(h) = &' ([a][t],) = @ ([ab],) =abe F

So F'is a subring of R. Thus also @ is proved.
By Flz]/(p) is a commutative ring with identity [1r],. Since ® is an isomorphism we conclude that
R is a commutative ring with identity 1z. So holds. O

Notation 5.2.6. (a) Let F be a field and p € Flz] withp ¢ F. Let R and o be as in[5.2.5, We denote the
ring R by Fpla. (If F = Z,, we will use the notation Zq plc])

(b) Let R and S be commutative rings with identities. Suppose that S is a subring of R with 1g = 1g.
Then we view S[z] as a subring of R[z], that is we identify the polynomial Y i, f;x* in S[z] with the
polynomial 7, fix' in Rlz]. Also if f € S[z] and r € R we write f*(r) for Y087 firi.

Theorem 5.2.7. Let F be a field and p € Flz] withp ¢ F and let a and ® be as in[5.2.5
(a) Forall f € Fla], ®(f*(a)) = [fl,.
(b) Let f,g € Flz]. Then f*(a) = g*(c) if and only if [f], = [g]p-
(c) For each B € Fy,la] there exists a unique f € Flz] with deg f < degp and f*(a) = f.
(d) Let n=degp. Then for each 8 € F,la] there exist unique by, b1, ..., bn—1 € F with

B=by+bia+...4+b,_1a" L.

(e) Let f € Flx], then f*(a) = 0p if and only if p | f in F[z].

(f) « is a root of p in Fpla].

Proof. @
deg f ‘ deg f A deg f ‘ deg f ‘
e(f* () =@ (Z fio/> = (fi)® ()’ [filpla]; = [Z fﬂl] = [f]p-
i=0 i=0 i=0 i=0 »
(bl

11

Let f € F[z]. Then
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frle) =8
= (f*(a)) = 2(B) (® is 1-1)
= s = 2(5) K

Since ®(8) € Flx]/(p), shows that there exists unique f € F[z] with deg f < degp and [f], = ®(f).
Thus holds.

@ Let bg,...b,—1 € Fand put f = by + by +...b,_12" L. Then f is a polynomial with deg f < degp
and bg,...,b,_1 are uniquely determined by f. Also

f*(a) =byt+ b+ ... bn,la”_l
and so @ follows from .

(%)
fr(a) =0p
= fH(a) =05(a) —- defintition of 0%
= 7]y = [07] W
— plf—=0F —5.T.5
= plf 3.2.11|(b)
() Since p | p this follows from (g). O

Example 5.2.8. Let p = 2% + x € Zs[z]. Determine the addition and multiplication table of Zs ,[«/].

+ 0 1 o a+1 0 lla a+1
0 0 1 @ a+1 0 0 0]0 0
1 1 0|l a+1 «a 1 0 lla a+1
« o a+1 0 1 «a 0 o « 0
a+l|a+1 « 1 0 a+1|0 a+1 0 a+1

This can be read of from Example |5.2.3] But it also can be computed from the preceeding theorem: By
5.2.7|(d) any elements of F[a] as by + by with b; € Zy. By Zy = {0,1} and so Zg p[a] = {0+ 0c, 0 +
la, 14 0a,1+ la} = {0,1,a,a+ 1}. By 5.2.7(|f) p*(a) =0. So a® + a =0 and

o =—a=(-1la=1la=a.

This allows us to compute the multiplication table, for example

(a+)(a+l)=a’+a+a+1l=3a+1l=a+l.

and

ala+1)=a’+a=0

Exercises 5.2:
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#1. Write out the addition and multiplication table of Zs[x]/(2® + z + 1). Is Za[x]/(2® + z + 1) a field?

#2. Each element of Q[z]/(x? — 3) is can be uniquely written in the form [az + b] (Why?). Determine the
rules of addition and multiplication of congruence classes.(In other words, if the product of [ax + b][cz + d] is
the class [ra 4 ¢] describe how to find r and s from a, b, ¢, d, and similarly for addition.)

#3. In each part explain why ¢ € F[z]/(p) is a unit and find its inverse.

(a) t = 22 -3] € Q[z]/(2?-2)
b)) t = [2P+x+1] € Zslz]/(z*+1)
() t = [224+2+1] € Zaa)/(z®+z+1)

5.3 F,[a] when p is irreducible
In this section we determine when Fj[a] is a field.
Lemma 5.3.1. Let F be a field, p € Flz] withp ¢ F and f € Flx].
(a) f*(a) is a unit in Fpla] if and only if ged(f,p) = 1p.
(b) If 1p = fg + ph for some g,h € Flx], then g*(a) is an inverse of f*(a).
Proof. @ We have

f*(a) is a unit in F,[q]

— [*(a)B = 1F for some j € F,[a] — BZIU
= f*(a)g*(a) = 1F for some g € F[z] —6.2.7|(c)
— (f9)*(a) = 1%(a) for some g € F|z] S o |
— [fglp = [1Fr], for some g € F[z] — [B.2.7[)
= 1p = fg + ph for some g, h € Fx] 73)()
A ged(f,p) = 1p — 2,17

@ From the above list of equivalent statement, 1z = fg+ ph implies f*(a)g*(a) = 1r and so since Fj[¢]
is commutative ¢*(«) is an inverse of f*(a). O

Proposition 5.3.2. Let F' be a field and p € Flx] with p ¢ F. Then the following statements are equiva-
lent:

(a) p is irreducible in F[x].
(b) Fy[a] is a field.
(¢c) Fpla] is an integral domain.
Proof. (ED B (]ED: By oz} is a commutative ring with identity 1. Suppose p is irreducible and
5.2.7

let 5 € F,la] with 8 # 0p. By [5.2.7(c), 5 = f*(a) for some f € F[z]. Then f*(a) # 0p and [5.2.7(e), gives
pt f. Since p is irreducible, Exercise [4.3#4] shows that ged(f,p) = 1p. Hence so by Lemma B=f(a)
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is a unit in Fyla]. Also since F is a field, 1 # Op and since (by ) lp = 1p o) and O = O, [q), all the
conditions of a field (see Definition hold for Fla].
If F,[a]. is a field, then by Corollary F,[a] is an integral domain.

() = Suppose Fpla] is an integral domain and (for a contradiction) that p is not irreducible.
Since p ¢ F, shows that p = gh where g and h are non constant polynomials of degree less than deg p.
Since g # 0p and both g and 0p have degree less than p, [5.2.7|(d) shows that ¢*(«) # 0% () = Op. Similarly,
h*(a) # 0p. But

9" (a)h*(a) = (gh)*(a) = p*() = OF
a contradiction since (Ax 11) holds in integral domains (see [3.2.18)). O

Corollary 5.3.3. Let F' be a field, p an irreducible polynomial in Fx]. Then Fyla] is a field containing F as
subring, and a is a root of p in Fya].

Proof. By F is a subring of Fj,[a]. Since p is irreducible, implies that F),(«) is field. By « is
a root of p in Fy, (). O

Example 5.3.4. Show that R,2,1[a] is a field and determine the addition and multiplication.

Since b*> +1 > 1 for all b € R, 2% 4 1 has no root in R. So by Exercise z? + 1 is irreducible in R[z].
Thus by R,2,1[a] is a field and « is a root of 2% + 1 in R,2,1[a]. Hence a? +1 =0 and o? = —1. By
every element of K can be uniquely written as a + ba with a,b € R. We have

(a+ba)+ (c+da)=(a+c)+ (b+ d)a

and

(a + ba)(c+ da) = ac + (be + ad)a + bda? = ac + (be + ad)a + bd(—1) = (ac — bd) + (ad + be)a
We remark that is now straight forward to check that
¢:Rp2pqfa] = C, a+ba—a+bi
is an isomorphism between R, 24[@] and the complex numbers C.
Corollary 5.3.5. Let F' be a field and f € Flz].
(a) Suppose f ¢ F. Then there exists a field K with F as a subring such that f has a root in K.

(b) There exist a field L with F as a subring, n € N, and elements c¢,a1,a3...,a, in L such that
f=c(zr—a1) (x—az) ... (x—ap)

Proof. @ By , f is a product of irreducible polynomials. In particular, there exists an irreducible
polynomial p in F[z] dividing f. By K = F,[a] is a field containing F' and « is a root of p in K. Since
plf,[A-4.11] shows that a is a root of f in K.

We will prove by induction on deg f. If deg f < 0, then f € F. So (]ED holds with n = 0,c = f and
L = F. Suppose that k € N and (b holds for any field F and any polynomial of degree k in F|z]. Let f be a
polynomial of degree k 4+ 1 in F[z]. Then deg f > 1 and so by @ there exists a field K with F' as a subring
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and a root « of f in K. By the Factor Theorem [4.4.10| f = ¢ - (x — «) for some g € K[z]. Thus degg = k and
so by the induction assumption, there exists a field L with K as a subring and elements ¢, ay,...a in L with

g=c-(x—a1) ... - (z—ak).

Put ag4+1 = a. Then
f=g-@—a)=c-(x—a1) ... - (. —ar)  (r — ary1)-

Since F is a subring of K and K is subring of L, F' is subring of L. So (@ holds for polynomials of degree
k + 1. By the Principal of Mathematical Induction ((0.4.2) holds for polynomials of arbitrary degree. [

Exercises 5.3:
#1. Determine which of the following congruence-class rings is a field.
(a) Zslx]/(z3 +22% + 2+ 1).
(b) Zs|x]/(223 — 422 4 2z + 1).
(c) Za[z]/(x* + 2% +1).
#2. (a) Verify that Q(v/3) := {r + sv/3|r, s € Q} is a subfield of R.
(b) Show that Q(+/3) is isomorphic to Q[z]/(z? — 3).
#3. (a) Show that Zy[z]/(2® + 2 + 1) is a field.
(b) Show that 2® + x + 1 has three distinct roots in Zs[z]/(z3 + z + 1).
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Ideals and Quotients

6.1 Ideals

Definition 6.1.1. Let I be a subset of the ring R.
(a) We say that I absorbs R if

ra€l and arel forallae I,r € R

(b) We say that I is an ideal of R if I is a subring of R and I absorbs R.

Theorem 6.1.2 (Ideal Theorem). Let I be a subset of the ring R. Then I is an ideal in R if and only if the
following four conditions holds:

(i) Or € 1.

(ii) a+be I foralla,bel.
(iii
(iv
Proof. =>: Suppose first that I is ideal in R. By Definition S absorbs R and S is a subring. Thus

hold and by also (i), () and hold.
<=: Suppose that (ii)-(iv) hold. implies ab € I for all a,b € I. So by I is a subring of R. By
, I absorbs R and so [ is an ideal in R. O

)
)
Yra€l andar €1 foralla €I andr € R.
)

—a €l forallaceI.

Example 6.1.3. (1) {3n|n € Z"} is an ideal in Z.
(2) Let F be a field and a € F. Then {f € F[z] | f*(a) = 0p} is an ideal in Fx].
(3) Let R be aring, I an ideal in R. Then {f € R[z] | f; € I for all i € N} is an ideal in R.
(4) Let R be a ring, I an ideal in R and n a positive integer. Then M, (I) is an ideal in M, (R).

(5) Let R and S be rings. Then R x {0Og} is an ideal in R x S.

123
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Definition 6.1.4. Let R be a ring.
(a) Let a € R. Then aR = {ar | a € R}.
(b) Let I, Is,...1, be ideal in R. Then

ka =L+LL+...+1, ::{Zik

ik61k71§]€§n}
k=1 k=1

Lemma 6.1.5. Let R be a commutative ring with identity and a € R. Then aR is the smallest ideal in R
containing a. (That is: a € aR, aR is an ideal in R and aR C I, whenever I is an ideal in R with aR C I.)

Proof. We first show that aR is an ideal containing a. Since a = a - 1r, a € aR. Let b,c € aR and r € R.
Then b = as and ¢ = at for some s,t € R. Thus b+c¢ = as+at = a(s+1t) € Ra, re = ar = (as)r = a(sr) € aR
and Og = a0 € aR and —x = —(as) = a(—s) € aR. So by aR is an ideal in R.

Now let I be any ideal of I containing a. Since I absorbs R, ar € I for all r € R and so aR C I. O

Lemma 6.1.6. (a) Let I, Is,...1I, be ideals in the ring R. Then I1 + Iy + ...+ I, is the smallest ideal in
R containing I, I, ..., I, 1 and I,.

(b) Let R be a commutative ring with identity and aq,...,a, € R. Then a1R + asR + ... + a, R is the
smallest ideal of R containing ai,as, ..., 0y,.

Proof. @ For n = 1 this is obvious. For n = 2 this follows from Exercise 7 on Homework 11. The general
case follows by induction on n (and we leave the details to the reader)

@ By a;R is an ideal containing a;. So by (]E[) a1R 4+ asR + ... 4+ a,R is an ideal containing
a1 R,...a, R and so also contains ay,...,a,.

Let I be an ideal containing a1, ...a,. Then by a; R C I and thus by @), aR+...+a,RCI. O

Definition 6.1.7. Let I be an ideal in the ring R. The relation = (mod I)’ on R is defined by

a=b (modI) < a-bel
for all a,b € R.
Remark 6.1.8. Let F be a field and f,g,p € F[z] with p # 0p. Then

f=g (modp) < f=g (modpF[z)])

Proof.
f=g (modp)
< f—g=pkforsome ke Flz] —EII
= f— g€ pFz] —Definition of pF'[z]
— f=g¢g (mod pFlx]) — 6117

Proposition 6.1.9. Let I be an ideal in R. Then = (mod I)’ is an equivalence relation on R.
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Proof. We need to show that ‘= (mod I)’ is reflexive, symmetric and transitive. Let a,b,c € R.
Reflexive a —a =0g € I and so a = a (mod I).
Symmetric If a =b (mod I) thena—b € I. Thusb—a=—(a—0b) € I and so b =a (mod I).

Transitive If a = b (mod I) and b= ¢ (mod I), thena—be I,b—cel. Thusa—c=(a—b)+(b—c) €1
and so a = ¢ (mod I). O

Definition 6.1.10. Let R be a ring and I an ideal in R.
(a) Let a € I. Then a+ I denotes the the equivalence class of = (mod I)’ containing a. So

a+I={beR|a=b (modI)}={beR|a—-bel}

a+ I is called the coset of I in R containing a.
(b) R/I is the set of cosets of I in R/I. So
R/I={a+1]|a€c R}
and R/I is the set of equivalence classes of = (mod I)’

Theorem 6.1.11. Let R be ring and I an ideal in R. Let a,b € R. Then the following statements are
equivalent

(a) a=b+1i for someic€ . (g) a+I=0b+1.

(b) a—b=1 for somei€el (h) acb+1.

() a—bel. (i) b=a (mod I)

(d) a=b (mod I). (j)b—ael

(e) bea+1. (k) b—a=j for somejel.
) (a+D)N(b+1)#0. () b=a+j for some j€I.

Proof. @ <= (]ED: This holds by (3.2.12
(b) < (c): Obvious.
<= (d): Follows from the definition of ‘= (mod I)’.

Theorem implies that @— are equivalent. In particular, is equivalent to @—. Since @ is
symmetric in a and b we conclude that is also equivalent to @-. O

Corollary 6.1.12. Let I be an ideal in the ring R.
(a) Leta€ R. Thena+I={a+i|icI}.
(b) O + I =1 and so I is a coset of I in R.

(¢) Any two cosets of I are either disjoint or equal.
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Proof. (ED Let b € R. By7 we have b € a + [ if and only if b = a + i for some ¢ € [ and so if and
0nlyifb€{a—|—i|i€]}

(o) By (&) Or + I ={0,+i|iecl}={i|iel}=1.

By 11@a+I—b+Ilfandonly1f(a+I) (b+1I) # 0. Since either (a+I)N(b+1I)# 0 or
a+I (b+I) =0 we conclude that either a + T =b+ 1T or (a+1)N(b+ 1) =0. So two cosets of [ in R
are elther disjoint or equal. O

Exercises 6.1:

#1. Let Iy, I5,... I, be ideals in the ring R. Show that I; + I + ...+ I,, is the smallest ideal in R containing
.[1, IQ, ey In and In

0 0
#2. Is the set J = r € R 3 an ideal in the ring M2(R) of 2 x 2 matrices over R?
0 r

#3. If I is an ideal in the ring R and J is an ideal in the ring S, prove that I x J is an ideal in the ring R x S.

#4. Let F be a field and I an ideal in F'[z]. Show that I is a principal ideal. Hint: If I # {Op} choose d € I
with d # 0p and deg(d) minimal. Show that I = F[z]d.

#5. Let @ : R — S be a homomorphism of rings and let J be an ideal in S. Put I = {a € R | ®(a) € J}.
Show that I is an ideal in R.

6.2 Quotient Rings

Proposition 6.2.1. Let I be an ideal in R and a, b, d,l; € R with
a+I=a+1 and b+I1=0b+1
Then } }
(a+b)+I=(a+b+I and ab+I=ab+1

Proof. Since a + I = a+ I'|6.1.11)implies that @ = a + ¢ for some ¢ € I. Similarly b= b+ j for some j € I.
Thus ~
a+b=(a+i)+ (b+7) = (a+b)+(i+7).
Since 4,5 € I and I is closed under addition, i + j € I and so by [6.1.11| (a +b) + I = (a+b) + T
Also
ab= (a+i)(b+j) =ab+ (aj + b+ ij)

Since 4,j € I and I absorbs R we conclude that aj,ib and ij all are in I. Since I is closed under addition,

aj+ib+ijeland soab+ I =ab+ I byl6.1.11 O
Definition 6.2.2. Let I be an ideal in the ring R. Then we define an addition + and multiplication - on R
by

(a+D)+b+I)=(a+b)+1 and (a+I1)-(b+I)=ab+1
for all a,b € R.

Note that by the preceding proposition the addition and multiplication on R/I are well defined.
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Remark 6.2.3. Let F be a field and p € Flz] with p # Or. Then F[z]/(p) = F|z]/pF[z].
Proof. This follows from Remark O

Theorem 6.2.4. Let R be ring and I an ideal in R

a) The function m: R — R/I, a — a+ I is an onto homomorphism.

(R/I,+,) is a ring.
(c

(a)
(b)
) Oryr=0r+1=1.
(d) If R is commutative, then R/I is commutative.
)

(e) If R has an identity, then R/I has an identity and 1g;; = 1 + 1.

Proof. @ Let a,b € R. Then

ma+b) "ET @+ +I LT @+ D)+ 0+ "L 1(a) + 7(b)
and

m(ab) "ET ab+ 1 PE (a+ )b+ 1) PET

So 7 is a homomorphism. If w € R/I, then by definition of R/I, Then u = r 4 I for some r € R and so
m(r) —r—i—I—u Hence 7 is onto.

@ and @ follow from @ and [E.0.3] - @ follows from @ and [3.3.7] -. O

Lemma 6.2.5. Let R be a ring and I an ideal in R. Let r € R. Then the following statements are equiva-
lent:

m(a)m(b)

(a) rel.
(b) r+1=1.
(C) 7’+[:0R/I.

Proof. By[6.1.11]r € 0g + I if and only of r + I = Og + I. Since 0g + I = I () and (b)) are equivalent. Since
Or/r =1, (b)) and @ are equivalent. O

Definition 6.2.6. (a) Let f: R — S be a homomorphism of rings. Then
ker f ={a € R| f(a) = 0g}.
ker f is called the kernel of f.
(b) Let I be an ideal in the ring R. The function
m: R—R/I, r—r+]1
is called the natural homomorphism from R to R/I.

Lemma 6.2.7. Let f: R — S be homomorphism of rings. Then ker f is an ideal in R.
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Proof. We will verify the four conditions of the Ideal Theorem So let a,b € ker f and r € R. By
definition of ker f,

(%) fla) =0s and f(b) =0s
() fla+b) 22 f@) + f0) 2 0g + 05 BT 0g and s0 a + b € ker f by definition of ker f.
i) f(ra) f hom fr)f(a) Q f(r)0g 0s and so ra € ker f by definition of ker f. Similarly,

iv) f(—a) —f(a) Q —0g 0s and so —a € ker f by definition of ker f. O

Example 6.2.8. Define
O :R[z] > C, f — f*(4)

Verify that ® is a homomorphism and compute ker ®.

Define p: R — C,r — r. Then p is a homomorphism and @ is the function p; from Lemma [£.4.1] So ® is

a homomorphism. We have
ker ® = {f € Rlz] | ®(f) = 0} = {f € R[] | f*(:) = 0}.

Let f € F[z]. We claim that i is a root of f if and only if 2% + 1 divides f in R[z]. According to the
Division algorithm, f = (22 + 1) - g+ r, where ¢,r € R[z] with deg(r) < deg(z? + 1) = 2. Then r = a + bz for
some a,b € R and so

£ = ((x2 +1) q+7") (i) = (2 +1) - ¢* () + (i) = 0- ¢*(5) + (a + bi) = a + bi.

It follows that f*(i) = 0 if and only if a = b = 0 and so if and only if » = 0 and if and only if 22 + 1 divides
f. Hence
ker ® = (22 + 1)R[z].

Lemma 6.2.9. Let f: R — S be a ring homomorphism.
(a) Let a,b € R. Then f(a) = f(b) if and only if a +ker f = b+ ker f.
(b) f is 1-1 if and only if ker f = {Og}.

Proof. @
f(a) = [
— f@-fo) = 05 -
= fla—b) = 0s -
= a—bekerf — Definition of ker f
S a+kerf = b4kerf —[GIII

(b) =: Suppose f is 1-1 and let a € ker f. Then f(a) = 0s = f(0g) and since f is 1-1, a = 0. Thus
kerf = {OR}
<=: Suppose ker f = {Ogr} and let a,b € R with f(a) = f(b). By @ a + ker f = b+ ker f. We have
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atler f =+ {0g} {a+ 05} = {a}
and similarly b+ ker f = {b}. So {a} = {b} and a = b. Thus f is 1-1. O
Lemma 6.2.10. Let R be a ring, I an ideal in R and 7 : R — R/I,a — a + I the natural homomorphism
from R to I. Then kerm = 1.

Proof. Let r € R. Then r € ker f if and only if 7(r) = Og,; and if and only if r + 1 = Og,/;. By this
holds if and only if » € I. So kerm = I. O

Theorem 6.2.11 (First Isomorphism Theorem). Let f : R — S be a ring homomorphism. The function
f:R/ker f —Imf, (a+ker f) — f(a)
is a well-defined ring isomorphism. In particular R/ker f and Im f are isomorphic rings

Proof. By f(a) = f(b) if and only if a + ker f = b+ ker f. Hence f is well defined and 1-1. If s € Im f,
then s = f(a) for some a € R and so f(a + ker f) = f(a) = s. Hence f is onto. It remains to verify that f is
a homomorphism. We compute

Fllatterf)+ @+ker)) PL5 F((a+b) +lerf) Def Fla+b)
= fa@ ) P2 Flatker f)+ F(b+ ker f)
and
Flla+ter ) @tkerf)) "L Flab+ker ) Det f(ab)
TE pa)-f0) P2 Flatkerf) F(b+ker f)
and so f is a homomorphism. O

Example 6.2.12. Show that Q[z]/(x? — 3)Q[] is isomorphic to Q[v/3] = {a +bV/3 | a,b € Q}.
Define
®: Q] >R, f - f(\/§)

By ® is a homomorphism. We will determine the kernel and image of ®. Let f € Q[z]. By the
Division Algorithm, f = (22 —3)-q+r for some ¢,r € Q[z] with degr < 2. Then r = a+ bz for some a,b € Q.
Thus

o(f) = £'(V3) = (V3" =3) - q"(V3) + (a+ 0V3) =a+bV3,
Thus

Im® = {a+bV3|a,bcQ} =Q[V3].
Note that f € ker ® if and only if a 4+ bv/3 = 0.
Suppose a + /3 =0and b # 0. Then V3= f% and so f% is a root of z2 — 3 in Q, a contradiction since
2?2 — 3 is irreducible in Q[z] by Eisenstein’s Criterion applied with p = 3.
So a4 by/3 = 0 if and only of a = 0 and b = 0. Hence f € ker ® if and only if r = 0 and if and only if
f=(x?—3)-q for some q € Q[z]. Thus ker ® = (22 — 3)Q[z]. The First Isomorphism Theorem shows that

Qlz]/(2* — 3)Q[z] is isomorphic to Q[v/3]
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Appendix A

Logic

A.1 Rules of Logic

In the following we collect a few statements which are always true.

Lemma A.1.1. Let P, Q and R be statements, let T be a true statement and F a false statement. Then each
of the following statements holds.

(LR 1) F= P.
(LR2) P=T.

(LR 3) not -(not -P) <= P.
(LR 4) (not-P = F) = P.
(LR5) PorT.

(LR 6) not-(P and F).

(LR7) (Pand T) < P.
(LR 8) (Por F)<«<= P.
(LR9) (P and P) < P.
LR 10) (P or P) < P.
LR 11) P or not -P.

LR 13

)
)
)
)
)
)
)
)
)
) (
)
)
) (P and Q) <= (Q and P).
) (

(
(
(LR 12) not -(P and not -P).
(
(

LR 14) (P or Q) < (Q or P).
(LR 15) (P <= Q) < ((P and Q) or (not -P and not -Q))
(LR 16) (P = Q) <= (not-P or Q).
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(LR 17) not -(P = Q) <= (P and not -Q).

(LR 18) (P and (P = Q)) — Q.

(LR 19) (P:>Q ) and ( Q:>P)) — (P = Q).
LR 20) (P = Q) <= (not-Q = not -P)
LR 21) (P < Q) < (not -P < not -Q).

( )
( )
(LR 22) not (P and Q) <= (not -P or not -Q)
(LR 23) not (P or Q) <= (not -P and not -Q)

(LR 24) ((P and Q) and R) (P and (Q and R)).

(LR 25) (Por orR) (Por(QorR)).

(LR 26) (PandQ or R) ((P or R) and (Q or R)).
(LR 27) (P or Q) and R) ((P and R) or (Q and R)).
(LR 28) (P:>Q ) and ( Q:>R)):>(P:>R)

(LR 29) (P<:>Q ) and ( Q<:>R)):>(P<:>R)

APPENDIX A. LOGIC

Proof. If any of these statements are not evident to you, you should use a truth table to verify it. O



Appendix B

Relations, Functions and Partitions

B.1 The inverse of a function

Definition B.1.1. Let f: A — B and g : B — A be functions.
(a) g is called a left inverse of f if go f =1ida.
(b) g is called a right inverse of g if fog=idg.
(¢c) g is a called an inverse of f if go f =id4 and fog=1idp.

Lemma B.1.2. Let f : A — B and h : B — A be functions. Then the following statements are equiva-
lent.

(a)
(b) f is a right inverse of g.
(¢) g(f(a)) =a for alla € A.
(d) Forallae A andbe B:

g 1s a left inverse of f.

fl@=b = a=g()

Proof. (a) = (b):  Suppose that g is a left inverse of f. Then go f =id4 and so f is a right inverse of g.
() = (J: Suppose that f is a right inverse of g. Then by definition of ‘right inverse’

(1) go f=idy

Let a € A. Then

g(f(a)) = (gof)(a) — definition of composition
= il ()
= a — definition of id 4

= (d):  Suppose that g(f(a)) =a for alla € A. Let a € A and b € B with f(a) = b. Then by the
principal of substitution g(f(a)) = g(b), and since g(f(a)) = a, we get a = g(b).
@ == @: Suppose that for all « € A,b € B:
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(2)) fla) = b= a=g(b)
Let a € A and put
3) b= f(a)
Then by (2)
(4) a=g(b)
and so
(go f)(a) = g(f(a)) — definition of composition
= g0 3
= a (4)
= ida(a) — definition of id4
Thus by go f=1ida. Hence g is a left inverse of f. O

Lemma B.1.3. Let f : A — B and h : B — A be functions. Then the following statements are equiva-
lent.

(a) g is an inverse of f.
(b) f is a inverse of g.

)
)

(¢) g(fa)=a for alla € A and f(gb) =b for all b € A.
)

(d) Foralla € A and b € B:
fa=b <= a=gb

Proof. Note that ¢ is an inverse of f if and only if g is a left and a right inverse of f. Thus the lemma follows

from B.1.2] O
Theorem B.1.4. Let f : A — B be a function and suppose A # (.

(a) f is 1-1 if and only if [ has a right inverse.

(b) f is onto if and only if [ has left inverse.

(¢) f is a 1-1 correspondence if and only f has inverse.

Proof. =>: Since A is not empty we can fix an element ag € A. Let b € B. If b € Im f choose a, € A with
fap=0b. It b ¢ Im f, put a = ag. Define
g:B—A, b—a

(@) Suppose f is 1-1. Let a € A and b € B with b = fa. Then b € Im f and fay, = b = fa. Since f is 1-1,
we conclude that a; = b and so ga = a, = b. Thus by g is right inverse of f.
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@ Suppose f is onto. Let a € A and b € B with gb = a. Then a = ap. Since f is onto, B = Im f and
so a € Im f and f(ap) = b. Hence fa = b and so by (with the roles of f and f interchanged), g is left
inverse of f.

Suppose f is a 1-1 correspondence. Then f is 1-1 and onto and so by the proof of @ and (]ED, g is left
and right inverse of f. So ¢ is an inverse of f.

—:

@ Suppose g is a left inverse of f and let a,c € A with fa = fc. Then by the principal of substitution,

g(fa) =g(fc). By B1.2 g(fa) = a and g(fb) =b. Soa=b and f -s 1-1.

(b) Suppose g is a right inverse of f and let b € B. Then by f(gb) = b and so f is onto.

(c) Suppose f has an inverse. Then f has a left and a right inverse and so by @ and (]ED, fis 1-1 and
onto. So f is a 1-1 correspondence. O

B.2 Partitions

Definition B.2.1. Let A be a set and A set of non-empty subsets of A.

(a) A is called a partition of A if for each a € A there exists a unique D € A with a € D.

(b) ~a= (A,A,{(a,b) € Ax A|{a,b} C D for some D € A})

Example B.2.2. The relation corresponding to a partition A = {{17 3}, {2}} of A=1{1,2,3}

{1, 3} is the only member of A containing 1, {2} is the only member of A containing 2 and {1, 3} is the
only member of A containing 3. So A is a partition of A.

Note that {1,2} is not contained in an element of A and so 1 = 2. {1,3} is contained in {1,3} and so
1 ~a 3. Altogether the relation ~a can be described by the following table

~a |l 2 3
1 r — T
2 |- =z -
3 |z — =

where we placed an z in row a and column b of the table iff a ~a b.
We now computed the classes of ~ao. We have

1= {be A1 ~a b} = {13}
2={bec A|2~ab}={2}

and
B]={be A3 ~ab}={1,3}

Thus A/ ~a= {{1,3},{2}} = A.
So the set of classes of relation ~a is just the original partition A. The next theorem shows that this is
true for any partition.

Proposition B.2.3. Let A be set.
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(a) If ~ is an equivalence relation, then A/ ~ is a partition of A and ~=~ 4.
(b) If A is partition of A, then ~a is an equivalence relation and A = A/ ~a.

Proof. () Let a € A. Since ~ is reflexive we have a ~ a and so a € [a] by definition of [a]. Let D € A/ ~ with
a € D. Then D = [b] for some b € A and so a € [b]. implies [a] = [b] = D. So [a] is the unique member
of A/ ~ containing a. Thus A/ ~ is a partition of A. Put ~=~4,.. Then a ~ b if and only if {a,b} C D for
some D € A/ ~. We need to show that a ~ b if and only if a ~ b.

So let a,b € A with a ~ b. Then {a,b} C D for some D € A/ ~. By the previous paragraph, [a] is the only
member of A/ ~ containing a. Thus D = [a] and similarly D = [b]. Thus [a] = [b] and implies a ~ b.

Now let a,b € A with a ~ b. Then both a and b are contained in [b] and so a & b.

We proved that a ~ b if and only if a ~ b and so () is proved.

(]ED Let a € A. Since A is a partition, there exists D € A with a € A. Thus {a,a} C D and hence a ~x a.
So ~n is reflexive. If @ ~a b then {a, 5} C D for some D € A. Then also {b,a} C D and hence b ~a. There
~ is symmetric. Now suppose that a,b,c € A with a ~a b and b ~A ¢. Then there exists D, E € A with
a,b € D and b,c € E. Since b is contained in a unique member of A, D = E and so a ~a ¢. Thus ~x is an
equivalence relation.

It remains to show that A = A/ ~a. For a € A let [a] = [a].a. We will prove:

(*) LetDe A anda€ D. Then D = [a].

Let b € D. Then {a,b} € D and so a ~a b by definition of ~a. Thus b € [a] by definition of [a]. It follows
that D C [al.

Let b € [a]. Then a ~a b by definition of [a] and thus {a,b} € E for some E € A. Since A is a partition,
a is contained in a unique member of A and so £ = D. Thus b € D and so [a] C D. We proved D C [a] and
[a] € D and so () holds.

Let D € A. Since A is a partition of A, D is non-empty subset of A. So we can pick a € D and implies
D =a]. Thus D € A/ ~a and so A C A/ ~a

Let E € A/ ~a. Then E = [a] for some a € A. Since A is a partition, a € D for some D € A. gives
D =[a) = FE and so E € A. This shows A/ ~aoC A.

Together with A C A/ ~a this gives A = A/ ~x and is proved. O



Appendix C

Real numbers, integers and natural
numbers

In this part of the appendix we list properties of the real numbers, integers and natural numbers we assume
to be true.

C.1 Definition of the real numbers

Definition C.1.1. The real numbers are a quadtruple (R,+,-, <) such that
(R i) R is a set (whose elements are called real numbers)

(R ii) + is a function ( called addition) , R x R is a subset of the domain of + and

a+beR (Closure of addition)
for all a,b € R, where a ® b denotes the image of (a,b) under +;

(R iii) - is a function (called multiplication), R x R is a subset of the domain of - and

a-beR (Closure of multiplication)

for all a,b € R where a-b denotes the image of (a,b) under -. We will also use the notion ab for a - b.
(R iv) < is a relation from R and R;
and such that the following statements hold:
(RAx1) a+b=b+a for alla,beR. (Commutativity of Addition)
(RAx2) a+(b+c)=(a+0b)+c forallab,ceR; (Associativity of Addition)

( R Ax 3) There exists an element in R, denoted by 0 (and called zero), such that a +0 = a and 0+ a = a for all
a € R; (Existence of Additive Identity)

(R Ax 4) For each a € R there exists an element in R, denoted by —a (and called negative a) such that a+(—a) =0
and (—a) +a = 0; (Existence of Additive Inverse)
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(R Ax 5) a(b+c¢) = ab+ ac for all a,b,c € R. (Right Distributivity)
(R Ax 6) (a+b)c=ac+bc for all a,b,c € R (Left Distributivity)
(R Ax 7) (ab)c = a(bc) for all a,b,c € R (Associativity of Multiplication)
( R Ax 8) There exists an element in R, denoted by 1 (and called one), such that la = a for all a € R. (Multi-
plicative Identity)
(R Ax 9) For each a € R with a # 0 there exists an element in R, denoted by % (and called ‘a inverse’) such that
aa" ' =1and a ta=1;
(Existence of Multiplicative Inverse)
(R Ax 10) For all a,b € R,
(a<bandb<a) <= (a=0b)
(R Ax 11) For all a,b,c € R,
(a<bandb<c)= (a<¢)
(R Ax 12) For all a,b,c € R,
(a <band 0 < c¢) = (ac < be)
(R Ax 13) For all a,b,c € R,
(a<b)=(a+c<b+c)
( R Ax 14) Each bounded, non-empty subset of R has a least upper bound. That is, if S is a non-empty subset of R
and there exists u € R with s < wu for all s € S, then there exists m € R such that for all r € R,
(sgrforallseS) = (mgr)
(R Ax 15) For all a,b € R such that b # 0 and 0 < b there ezists a positive integer n such that a < nb. (Here na is

inductively defined by la = a and (n+ 1)a = na + a).

Definition C.1.2. The relations <, > and > on R are defined as follows: Let a,b € R, then

(a)
(b)

a<bifa<banda#b.

a>bifb<a.

(¢c)a>bifb<aanda#b

C.2 Algebraic properties of the integers

Lemma C.2.1. Let a,b,c € Z. Then

1

3
4

(1)
(2)
(3)
(4)

a+beZ.
a+(b+c)=(a+b)+ec.
a+b=b+a.

a+0=a=0+a.



C.3. PROPERTIES OF THE ORDER ON THE INTEGERS

C.3 Properties of the order on the integers

Lemma C.3.1. Let a,b,c be integers.
(a) FEzactly one of a < b,a =0 and b < a holds.
(b) Ifa<bandb<c, thena < c.
If ¢ > 0, then a < b if and only if ac < be.
d) If ¢ <0, then a < b if and only if bc < ac.
Ifa <b, thena+c<b+c.

(§]

)

)
()
(d)
)
f)

(
(f) 1 is the smallest positive integer.
C.4 Properties of the natural numbers
Lemma C.4.1. Let a,b € N. Then

(a) a+beN.

(b) ab € N.

Theorem C.4.2 (Well-Ordering Axiom). Let S be a non-empty subset of N.

139

Then S has a minimal element
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Appendix D

The Associative, Commutative and
Distributive Laws

D.1 The General Associative Law
Definition D.1.1. Let G be a set.

(a) A binary operation on G is a function + such that G X G is a subset of the domain of + and +(a,b) € G
for all a,b € G.

(b) If + is a binary operation on G and a,b € G, then we write a + b for +(a,b).
(c) A binary operation + on G is called associative if a + (b+ ¢) = (a4 b) + ¢ for all a,b,c € G.

Definition D.1.2. Let G be a set and + : G x G — G, (a,b) — a+ b a function. Let n be a positive integer
and ay,as,...a, € G. Define Z;Zl a; = a1 and inductively for n > 1

n n—1
E a; = E a; | + ay.
i=1 i=1

S0 Z?zl a; = (( ((a1 + Cbz) +a3) +...+ anfz) +an1) +a,.
Inductively, we say that z is a sum of (a1,...,ay,) provided that one of the following holds:
(1) n=1and z = a;.

(2) n > 1 and there exists an integer k with 1 <k <n and x,y € G such that x is a sum of (ay,...,ax), y
is a sum of (ak41,0k+2,-..,0,) and z =z +y.

For example a is the only sum of (a), a + b is the only sum of (a,b), a + (b+ ¢) and (a 4 b) + ¢ are the
sums of (a,b,¢), and a+ (b+ (c+d)),a+ ((b+¢)+d),(a+b)+ (c+d),(a+ (b+¢))+dand ((a+b)+c¢c)+d
are the sums of (a,b,c,d).

Theorem D.1.3 (General Associative Law). Let + be an associative binary operation on the set G. Then
any sum of (a1, as, ..., ay,) is equal to Y i | a;.
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Proof. The proof is by complete induction. For a positive integer n let P(n) be the statement:
If a1, as,...a, are elements of G and z is a sum of (a1, as,...,a,), then z = 2?21 a;.

Suppose now that n is a positive integer with n and P(k) is true all integer 1 < k < n. Let ay,as,...an
be elements of G and z is a sum of (a1, as,...,a,). We need to show that z = """ | a;.

Assume that n = 1. By definition a; is the only sum of (a;) and 2321 ar=a;. Soz=a1 =Y a4

Assume next that n > 1. We will first show that

(*) If w is any sum of (a1,...,a,-1), then u+a, = > ., a;.
Indeed by the induction assumption, P(n — 1) is true and so u = Z;le a;. Thus u + a,, = Z::ll a; + an,
and the definition of >_" | a; implies u+ a, = >, a;. So (*) is true.

By the definition of ‘sum’ there exists 1 < k < n, a sum « of (a1,...,ar) and a sum y of (agy1,...,an)
such that z =z + y.

Case 1: k=n—1.

In this case z is a sum of (aq,...,a,—1) and y a sum of (a,). So y = a, and by (**) applied with z = u

wehave z =z +y=x+a,=> ., a.

**)

Case2: 1<k<n-—1.

Observe that n — k < n —1 < n and so by the induction assumption P(n — k) holds. Since y is a sum
of agy1,...,a,) we conclude that y = Z;:lk Gp+i. Since k < n—1,1 < n —k and so by definition of X,
_ n—k—1 . . . .
Y= Zi:l ap+; + an. Since + is associative we compute

Z:x+y:x+(zak+i+an):(x+ Z Ak+i) + an

n—k n—k—1
—1

i=1 i

Putu=x+ Z?;lkfl ak+i- Then z = u+ a,. Also z is a sum of (ay,...,ax) and Z?;lkfl agas is a sum of
(ag,...,an—1). So by definition of a sum, u is a sum of (a1,...,a,—1). Thus by (**), z=u+a, =, a;.

We proved that in both cases z = > ; a;. Thus P(n) holds. By the principal of complete induction, P(n)
holds for all positive integers n. O

D.2 The general commutative law

Definition D.2.1. A binary operation + on a set G is called commutative if a +b = b+ a for all a,b € G.

Theorem D.2.2 (General Commutative Law I). Let + be an associative and commutative binary operation
on a set G. Let ay,ag,...,a, € G and f:[1...n] = [L...n] a bijection. Then

Sa=Y e
=1 =1

Proof. Obsere that the theorem clearly holds for n = 1. Suppose inductively its true for n — 1.

Since f is onto there exists a unique integer k with f(k) = n.

Define g: {1,...n—1} = {1,...,n—1} by g(4) = f(¢) if i < k and g(i) = f(i + 1) if i > k. We claim that
g is a bijection. For this let 1 <! < n —1 be an integer. Then [ = f(m) for some 1 < m < n. Since | # n and
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fis1-1, m # k. If m < k, then g(m) = f(m) =1 and if m > k, then g(m — 1) = f(m) = {. Thus g is onto
and by [G.1.7|(b)) ¢ is also 1-1. By assumption the theorem is true for n — 1 and so

n—1 n—1
() D= a0
i=1 i=1
Using the general associative law (GAL, Theorem [D.1.3) we have

D i f (i)
(GAL) = (7 _1 ar@y) + (apm) + 2ispr1 a56)
(n=f(k)) =

(‘ +' commutative ) =

Z 1 apiy) + (an + D00 j 1 @p(i))
Yimy ar) + (i ap) + an)
(Z 71 ar@y) + (Z?:k+1 af(i))) +an
(i ag) + (C02g apgen) + an
(definition of g) = (i) agw) + ()25 agi)) + an
(GAL) = Xr 71 ag()) + an
(+) = (Zi @) +an
(definition of ) = Yra

('+'associative ) =

(Substitution j =i+ 1) =

(
(
(
(
(
(

So the Theorem holds for n and thus by the Principal of Mathematical induction for all positive integers. [

Corollary D.2.3. Let + be an associative and commutative binary operation on a set G. I a mon-empty
finite set and fori € I letb; € G. Let g,h:{1,...,n} — I be bijections, then

> boty = D bai)
=1 =1

Proof. For 1 < i < n, define a; = by(;). Let f = g ' oh. Then f is a bijection. Moreover, go f = h and
ar@) = by(s(i)) = bn(i))- Thus

D buiy =D asa) = D ai=> by
=1 =1 =1 =1
O

Definition D.2.4. Let + be an associative and commutative binary operation on a set G. I a finite set and
forielIletb; € G. Then Y, a; == Y1 by, where n = |I| and f := {1,...,n} is bijection. (Observe
here that by this does not depend on the choice of f.)

Theorem D.2.5 (General Commutative Law II). Let + be an associative and commutative binary operation
on a set G. I a finite set, (I;,| j € J) a partition of I and fori € I let a; € G. Then

Yo=Y (3]

iel jeJ \iel,
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Proof. The proof is by induction on |J|. If |J| = 1, the result is clearly true. Suppose next that |J| = 2 and
say J = {j1,72}. Let f; : {1,...,n;} — I, be a bijection and define f: {1...,n1 +ne} — I by f(i) = f1(9)
if1<i<mngand f(i) = fo(i —nq) if n; + 1 <4 < mny + ny. Then clearly f is a onto and so by , fis
1-1. We compute

Yier@i = S g
(S agw) + (S an )
= (Ciianm) + (X anw)
= (Zieljl ai) + (Ziefj2 ai)
= Yies (Zielj ai)
Thus the theorem holds if |J| = 2. Suppose now that the theorem is true whenever |J| = k. We need to
show it is also true if |J| = k+ 1. Let j € J and put Y = I\ J;. Then (I | j # k € J) is a partition of

Y and (I;,Y) is partition of I. By the induction assumption, }_,cy a; = 324y (Zielk a;) and so by the
|J| = 2-case

Dlier®i = (Zielj ai) + (Ziey i)
= (Zielj ai) + (Zj;&keJ (Ziejk ai))
= > jes (Zieh a;)
The theorem now follows from the Principal of Mathematical Induction. O

D.3 The General Distributive Law
Definition D.3.1. Let (+,) be a pair of binary operation on the set G. We say that
(a) (+,-) is left-distributive if a(b+ ¢) = (ab) + (ac) for all a,b,c € G.
(b) (+4,-) is right-distributive if (b+ ¢)a = (ba) + (ca) for all a,b,c € G.
(¢) (+,-) is distributive if its is right- and left-distributive.
Theorem D.3.2 (General Distributive Law). Let (+, ) be a pair of binary operations on the set G.

(a) Suppose (+,-) is left-distributive and let a,by,...b, € G. Then

a-()_bj) = ab;
j =1

Jj=1 J

(b) Suppose (+,-) is right-distributive and let ay,...an,b € G. Then

i=1 i=1
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(¢) Suppose (+,-) is distributive and let aq,...ap,b1,...by € G. Then

O a)- O b)) => D aiby

i=1 j=1 i=1 \j=1
Proof. @ Clearly @ is true for m = 1. Suppose now @ is true for k and let a,bq,...bgy1 € G. Then

a- (Zfill bi)
(definition of ) a- ((Zle b;) + ka)
(left-distributive) = a- (Zle bi) +a-bgys

(induction assumption) = (Zle abi> + abgy1
(definition of ) Zfill ab;

Thus @ holds for k£ + 1 and so by induction for all positive integers n.
The proof of (]E[) is virtually the same as the proof of @) and we leave the details to the reader.

(8

m k n m n m
<Zai> | (Zb’) 23w | E X Xt
i=1 i=1 i=1 j=1 i=1 \j=1
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Appendix E

Verifying Ring Axioms

Proposition E.0.3. Let (R,+,-) be ring and (S,®,®) a set with binary operations ® and ©. Suppose there
exists an onto homomorphism ® : R — S ( that is an onto function ® : R — S with ®(a + b) = ®(a) ® P(b)
and ®(ab) = ®(a) © ®(b) for all a,b € R. Then

(a) (S,®,®) is a ring and P is ring homomorphism.
(b) If R is commutative, so is S.

Proof. (ED Clearly if S is a ring, then ® is a ring homomorphism. So we only need to verify the eight ring
axioms. For this let a,b,c € S. Since ® is onto ther exist z,y,z € R with ®(z) = a,®(y) = b and ®(z) =c.

[AX1] By assumption @ is binary operation. So[Ax 1] holds for S.

Ax 2l
a® (b®c) = P(x)®(P(y) @ P(2)) = O(z) Py + 2) = P+ (y+2))
= O((z+y) +2) = Pz +y)® P(2) = (P(z)d2(y)dP(2) = (a®b)Bc
Ax3 avb=d@)d(y)=2(r+y)=2(y+2)=2(y)dP(z) =bda
[Ax4] Put 0g = ®(0g). Then
a®0s =) DP0g)=P(x+0r) =P(x)=0a
O0s +a=®0g) @ P(x) =20 +2z) =(x) =a.
[AX 5l Putd= ®(—z). Then
a®d=(x)®P(—z) =D(x+ (—z)) = ®(0g) =0sg
[AX 6] By assumption ® is binary operation . So holds for S.
Ax 7|
a®(boc) = ¢)0 () o02(z) = P(z) © P(yz) = O(z(y2))
= O((zy)z)) = D(zy) © (z) = (2@@)02@)0e(z) = (@ob)OC

147
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[Ax S|
a®(boc) = 2(z)0(2(y) & P(z) = P(z) © 2(y + 2) = O(z(y+2)
= Pay+xzz) = D(zy) + D(x2) = (P(x)02(@y)+(P(x)0P(2)) = (a@b)®(ad®c)

Similarly (a®b) ©c=(a®c) B (b c).
(b) Suppose R is commutative then
3.1.2l a0b=2(x)0P(y) = P(zy) = P(yz) = P(y) ©P(z) =bOa O



Appendix F

Constructing rings from given rings

F.1 Direct products of rings

Definition F.1.1. Let (R;);c1 be a family of rings (that is I is a set and for eachi € I, R; is a ring).
(a) X,cr Ri is the set of all functions r: I — J;c; Ri,i — r; such that r; € R; for alli € 1.
(b) X,es Ri is called the direct product of (R;)er-
(c) We denote r € X ,o; Ri by (ri)icr, (ri)i or (ri).
(d) Forr = (r;) and s = (s;) in R definer +s = (r; + s;) and rs = (1;5;).

Lemma F.1.2. Let (R;)icr be a family of rings.
(a) R:= X, Ry is a ring.
(b) Or = (OR,)icr-
(€) =(ri) = (=ri).
(d) If each R; is a ring with identity, then also X ,.; R; is a ring with identity and 1r = (1g,).
(e) If each R; is commutative, then X ,_; R; is commutative.

Proof. Left as an exercise.

F.2 Matrix rings
Definition F.2.1. Let R be a ring and m,n positive integers.
(a) An m x n-matrix with coefficients in R is a function

A:A{L... o m}x{Ll,...,n} = R, (i,7)— a;.

149
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(b) We denote an m x n-matriz A by [ai;]i<i<m., [ai]ij, [ai;] or

1<5<n
ail a12 . A1n
a21 a2z ... QG2pn
Aml  Am2 oo Amn

(c) Let A = [a;j] and B = [b;;] be m x n matrices with coefficients in R. Then A+ B is the m X n-matric
A+ B = [aij =+ bij].

(d) Let A = [ai;]ij be an m X n-matriz and B = [bj];x an n X p matriz with coefficients in R. Then AB is
the m X p matriz AB = [Z?:1 @ijbjkik-

(e) M, (R) denotes the set of all m x n matrices with coefficients in R. M, (R) = M, (R).

It might be useful to write out the above definitions of A+ B and AB in longhand notation:

a1 a2 ... Qin b11 bio ... bin
ag1 a9 e a9n, b21 b22 e an
_'_
aml Am2 ... (mn bml bm2 e bmn
a1 +byy az+biz ... amn +bi,
a1 +bo1  aze+baa ... azy + b2,
am1 + bm2 am2 + bm2 ces Qmp Tt bmn_
and -
a1 a1 e A1n b11 b12 . blp
a1 a9 “e a2n, b21 bgg . bgp
Am1 Am2 ... Qmn bnl bng . bmp_
a11bi1 +aizba1 + ... + ainbni a11biz +aizbe2 + ... +ainbn2 ... anibip +ai2bzp + ...+ ainbnp
az1b11 + az2b21 + ... + az2pbni a21b12 + a22b22 + ... +aznbna ... a21bip +a22bzp + ...+ a2nbnp
am1b11 + amab21 + ... + amnbn1 am1bi2 + amabaz + ... + amnbn2 cee amlblp + am2b2p +...+ amnbnp

Lemma F.2.2. Let n be an integer and R an ring. Then

(a) (Mn(R)v+7) is a Ting.
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(b) Om,,(r) = (Or)sj-
(c) —laij] = [—ay] for any [ai;] € Mn(R).
(d) If R has an identity, then My, (R) has an identity and 1y, gy = (ds5), where
ln ifi=j
dij = e
Or ifi#]

Proof. Put J ={1,...,n} x {1,...,m} and observe that (M,(R),+) = (X c; R, +). So implies that
[Ax THAXE] (b)) and () hold.

Clearly [Ax 6] holds. To verify [Ax T let A = [a;;], B = [bjx] and C = [¢x] be in M, (R). Put D = AB and
E = BC. Then

(AB)C = DC = Zdikckl = Z (Z az’jbjk> Ckl] =
Li—1 1, ;

e
<.

Il 3
=

o

Il 3
—

aijbjkckl]
il

and

A(BC) = AF = Zaijejl = Zaij (Z bjkckl>] = lzzaijbﬂcckl}
_‘7:1 . .

il L

Thus A(BC) = (AB)C.

(A+B)C = [aij +biglig - [egule = | D (aij +big)esn
=1

J ik
= Zaijcjk + Z bijCjk = AC + BC.
Jj=1 ik Jj=1 ik
So (A+ B)C = AC + BC and similarly A(B+ C) = AB + AC. Thus M,,(R) is a ring,.
Suppose now that R has an identity 1z. Put I = [d;;];;, where
s = {1R e
Op ifi=j

If ¢ # j, then 6;5a;; = Orajr = Og and if ¢ = j then §;5a,1 = 1pas = as. Thus

IA = [Z 5ijajk] = [aik]ik = A
j=1

ik

and similarly AT = A. Thus A is an identity in R and so @ holds. O
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F.3 Polynomial Rings

In this section we show that if R is ring with identity then existence of a polynomial ring with coefficients in
R.

Theorem F.3.1. Let R be a ring. Let P be the set of all functions f : N — R such that there exists m € N*
with

(1) f(i) = 0g for alli >m

We define an addition and multiplication on P by

(2) (f+9)(0) = f(D) +9()) and (fg)(i) = f(D)g(k —1i)

k=0

(a) P is a ring.
(b) Forr € R define r° € P by

o fr difi=o0
3) (i) = {OR i

Then the map R — P,r — r° is a 1-1 homomorphism.

(c) Suppose R has an identity and define x € P by

) 1p ifi=1
x(1) == T
Or ifi#1
Then (after identifying r € R with r° in P), P is a polynomial ring with coefficients in R and indeter-
minate x.

Proof. Let f,g € P. Let deg f be the minimal m € N* for which (1) holds. Observe that (2) defines functions
f+gand fg from N to R. So to show that f + ¢g and fg are in P we need to verify that (1) holds for f + g
and fg as well. Let m = maxdeg f,degg and n = deg f + degg. Then for i > m, f(i) = Or and g(i) = Og
and so also (f + ¢g)(i) = Or. Alsoif i > n and 0 < k < 4, then either k¥ < deg f or i — k > degg. In either
case f(k)g(i — k) = Ogr and so (fg)(i) = Og. So we indeed have f+ g € P and fg € P. Thus axiom [Ax 1] and
[Ax 6l hold. We now verify the remaining axioms one by one. Observe that f and g in P are equal if and only
if f(i) =g(4) for all i € N. Let f,g,h € P and i € N.

(Ax2]

(F+9)+n)@) = (F+9@+hE) = (f@E)+9(@)+h(i) f(@) + (g(i) + h())
= f(0) + (9(d) + h(i)) f@+g+nE) = (F+g+h)E)

Ax3  (f+9)(@) = f(i) +9(i) = g(i) + f(i) = (g + [)()
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(Ax“4 Define 0p € P by 0p(i) = Og for all i € N. Then

(f +0p)(i) = f(i) + 0p(i) = f(i) + Or = f(i)
(Op + f)(i) = 0p (i) + f(i) = Or + f(i) = f(4)
[AX5] Define —f € P by (—f)(i) = —f(4) for all i € N. Then
(f + (=NE) = f(@) + (=)@) = f(i) + (=f(i) = 0r = 0p(3)

Any triple of non-negative integers (k, [, p) with k + 1+ p = i be uniquely written as (k,j — k,i — j)
where 0 < j <iand 0 <k <j—k) and uniquely as (k,l,i—k —1) where 0 <¢ < k and 0 <[ <+i—k. This is
used in the fourth equality sign in the following computation:

((fg)h)() > (f9)() - i —j) > ((Z Fk)g(j — k)) h(i — j))
k=0

=0 =0

i J 7 i—k
= ( f(k)g(j —k))h(i - j)) = > <Z f(k)g(Dh(i — k — l)))
Z:O k=0 i k=0 ITO
= (f(k) g(D)h(i —k — l))) = > F(k) - (gh)(i — k)
k=0 =0 k=0
= (f(gh))(i)
Ax 8
(f-(g+h)(i) = @) (g+h)(i—3) = f(G) - (9(i = 7) + h(i - 4))
=0 =0
= fGgli—3) + fGRr(Ei—35) = FG)g(i—5)+ > FU)RG - )
Jj=0 j=0 j=0
= (f9)(@) + (fh)(5) = (fg+ fh)(i)
(f+g)-ME) = (f+9)() - h(i—j) = (f(7) +9()) - h(i = j)
=0 R 4
= FGRGE = 5) +g(ih(i —35) = FGRG = 5)+ > g(i)hi - j)
Jj=0 j=0 j=0
= (fR) (@) + (gh)(3) = (fh+ gh)(i)

Since [Ax ] through [Ax§ hold we conclude that P is a ring and (a]) is proved. Let r,s € R and k,l € N.
We compute

() (r+8)°() = {g: i:g = o) 4s°0) = (4 ()

and
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= Z r°(k)s(i —
k=0

Note that r°(k) = O unless k = 0 and s°(¢i — k) = Og unless and i — k = 0. Hence r°(k)s(i — k) = Og
unless k =0 and ¢ —k = 0 (and so also ¢ = 0). Thus (r°s)(¢) = 0if ¢ # 0 and (r°s)(0) = r°(0)s°(0) = rs. This

(5) r°s® = (rs)°

Define p: R — P,r — r°. If r;s € R with 7° = s°, then r = r°(1) = s°(1) = s and so p is 1-1. By (4) and
(5), p is a homomorphism and so (]ED is proved.

Assume from now on that R has an identity.
For k € N let 6, € P be defined by

L J1g ifi=k
(6) ou(E) := {OR ifi A k
Let f € P. Then
(7) (r°f)@) =) r°(k)fi—k)=r-f(i) +20Rf i—k)=r-f(i)
k=0
and similarly
(8) (fro)(@) = f@@)-r

In particular, 1% is an identity in P. Since §y = 1% we conclude

(9) So=1%=1p

For f = 6, we conclude that

T ifi=k

(10) (80)(0) = (04°)(0) = {OR i

Let m € N and ao, . .. @y, € R. Then (10) implies
a; ifi<m
11 azd ! -
(1D <Z’“> {OR if i >m
We conclude that if f € P and ag,a1,as,...a, € R then

(12) f:ZaZ(Sk < m>degfanda,=f(k)forall0<k<m
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We compute

(13) (0k00) (1) = > 0k(§)6u(i — §)

=0

Since 0 (7)01(i — 7) is Og unless j = k and [ = ¢ — 7, that is unless j = k and ¢ = [ + k, in which case it is
1R, we conclude

) 1p fi=k+1 .
14 00 = = ¢
(14) (6161)(2) {OR itk k1 ()
and so
(15) 010 = 5k+l
Note that x = §;. We conclude that
(16) k=6,
By (10)
(17) rz =xr® forallreR

We will now verify the four conditions (i)-(iv) in the definition of a polynomial. By (b)) we we can identify
r with r° in R. Then R becomes a subring of P. By (9), 1% = 1p. So (i) holds. By (17), (ii) holds. (iii) and
(iv) follow from (12) and (16). O

Lemma F.3.2. Let R and P be rings and x € P. Suppose that Conditions (@)— in hold under the
convention that fox° := fo for all fo € R. Then R and P have identities and 1 = 1p.

Proof. Since x € P, [4.1.1{iil) shows that z = Y_/" e;2" for some m € N and eg,e1,...e, € R. Let r € R.
Then

n

n
T = rZeiJ;i = Z(Tei)xi.
=0

i=0

So [4.1.1){iv) shows that re; = r. Since rz = xr by [4.1.1|{ii) a similar argument gives e;r = e and so e; is
an identity in R and e; = 1. Now let f € P. Then f =), f;z’ for some n € N and fo,..., f, € R. Thus

n n

Falr=0 fa)-1n=)Y (filp)r' =) fi' = f
=0

i=0 =0

Similarly, 1 - f = f and so 1y is an identity in P. O
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Appendix G

Cardinalities

G.1 Cardinalities of Finite Sets
Notation G.1.1. Fora,b€ Z setfa...bi={c€Z|a <c<b}.
Lemma G.1.2. Let A C [1...n]. Then there exists a bijection a: [1...n] = [1...n] witha(A) C[1...n—1].

Proof. Since A # [1...n] there exists m € [1...n] with m ¢ A. Define a: [1...n] = [1...n] by a(n) = m,
a(m) =n and «a(i) =i for all i € [1...n] with n # 7 # m. It is easy to verify that « is bijection. Since
am)=nand m¢ A, afa)#nforallae A. Son & a(A) and so a(A) C[1...n] —1. O

Lemma G.1.3. LetneNandlet f:[1...n] = [1...n] be a function. If B is 1-1, then B is onto.

Proof. The proof is by induction on n. If n = 1, then 8(1) = 1 and so § is onto. Let A = S([1...n —1]).
Since S(n) ¢ A, A # [1...n]. Thus by there exists a bijection a : [1...n] with a(A) C [1...n—1].
Thus af([1...n—1]) C[1...n — 1]. By induction a5([1...n — 1] =[1...n —1]. Since af is 1-1 we conclude
that afB(n) = n. Thus of is onto and af is a bijection. Since « is also a bijection this implies that g is a
bijection. O

Definition G.1.4. A set A is finite if there exists n € N and a bijection a: A — [1...n].

Lemma G.1.5. Let A be a finite set. Then there exists a unique n € N for which there exists a bijection
a:A—l...n].

Proof. By definition of a finite set there exist n € N and a bijection o : A — [1...n]. Suppose that also
méeNand 8: A—[1...m] is a bijection. We need to show that n = m and may assume that n < m. Let
y:[l...n] = [1...m],i —iand 6 :=yoao B! Then ~is a 1-1 function from [1...m] to [1...m] and so
by [G.1.3] § is onto. Thus also v is onto. Since y([1...n]) = [1...n] we conclude that [1...n] = [1...m] and

so also n = m. O

Definition G.1.6. Let A be a finite set. Then the unique n € N for which there exists a bijection o : A —
[1...n] is called the cardinality or size of A and is denoted by |A|.

Theorem G.1.7. Let A and B be finite sets.
(a) If «: A — B is 1-1 then |A| < |B|, with equality if and only if a is onto.

(b) If «: A — B is onto then |A| > |B|, with equality if and only if a is 1-1.

157
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(¢) If A C B then |A| < |B|, with equality if and only if |A| = |B].

Proof. (@) If o is onto then « is a bijection and so |A| = |B|. So it suffices to show that if |A| > |B], then o
is onto. Put n = |A] and m = |B| and let 5: A — [1...n] and v: B — [1...m] be bijection. Assume n > m
and let 0 : [1...m] — [1...n] be the inclusion map. Then dyaB~! is a 1-1 function form [1...n] to [1...n]
and so by its onto. Hence § is onto, n = m and ¢ is bijection. Since also « is bijection, this forces 3!
to be onto and so also « is onto.

@ Since « is onto there exists 8 : B — A with a8 = idg. Then 8 is 1-1 and so by @, |B| < |A| and S is
a bijection if and only if |A| = |B|. Since « is a bijection if and only if f is, (]ED is proved.

Follows from @ applied to the inclusion map A — B. L]

Proposition G.1.8. Let A and be B be finite sets. Then
(a) If ANB =1, then |AUB| = |A| + |B]|.
(b) [Ax B|=A]-|B|.
Proof. (e) Put n = |A|, m = |B| and let 3 : A — [1...n] and v : B — [1...m] be bijections. Define
v:AUB — [1...n+m] by
a(c ifceA
Ao =10
Blc)+n ifce B

Then it is readily verified that 7 is a bijection and so |[AU B| =n +m = |A| + |B|.

(b)) The proof is by induction on |B|. If |B| = 0, then B = () and so also A x B = (. If |B| = 1, then
B = {b} for some b € B and so the map A — A x B,a — (a,b) is a bijection. Thus |A x B| = |A| = |4| - |B|.
Suppose now that holds for any set B of size k. Let C be a set of size k+1. Pick ¢ € C and put B = C'\ {c}.
Then C = BU{c} and so (@) implies |B| = k. So by induction |[A x B| = |A| - k. Also |A x {c} = |A]| and so

by @
[Ax C|=]Ax Bl 4+ |Ax{c}|=|4] - k+|A| =1|4] - (k+1) = |A||C]
(o) now follows from the principal of mathematical induction O
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