F11

MTH 309-4

Linear Algebra I

Recitation 10

Remark: You are allowed to use the following Theorem:

Theorem 6.27 Let $T: V \to W$ a linear. If V is finite dimensional, then also ImT is finite dimensional and

 $\dim \operatorname{Im} T + \dim \ker T = \dim V$

(This is a fairly easy consequence of dim ColA + dim NulA = n for all $m \times n$ -matrices A and will be proved in class sometime this week)

(A) Let V and W be finite dimensional vector spaces and $T: V \to W$ a linear function. If $S: W \to W$ is an isomorphism prove:

- (a) $\ker(S \circ T) = \ker(T)$.
- (b) $\dim(\operatorname{Im}(S \circ T)) = \dim(\operatorname{Im}(T)).$
- (c) Give an example of a linear function $T: V \to W$ and an isomorphism $S: W \to W$ with $\operatorname{Im}(S \circ T) \neq \operatorname{Im}(T)$.

(B) Let V and W be finite dimensional vector spaces and $T: V \to W$ a linear function. If $L: V \to V$ is an isomorphism prove:

- (a) $\operatorname{Im}(T \circ L) = \operatorname{Im}(T)$.
- (b) $\dim(\ker(T \circ L)) = \dim(\ker(T)).$
- (c) Give an example of a linear function $T: V \to W$ and an isomorphism $L: V \to V$ with $\ker(T \circ L) \neq \ker(T)$.

(C) Let V and W be finite-dimensional vector spaces with ordered bases $B = (v_1, \ldots, v_n)$ of V and $B' = (u_1, \ldots, u_m)$ of W. Let $T: V \to W$ be a linear function. Consider the diagram

and prove

(a) There exists a unique $m \times n$ matrix A such that

$$V \xrightarrow{T} W$$

$$C_B \downarrow \qquad \qquad \downarrow C_{B'}$$

$$S \xrightarrow{L_A} T$$

commutes.

- (b) The *i*th column of A is the coordinate vector $[T(v_i)]_{B'}$, that is, A is the matrix of T relative to bases B and B'.
- (c) T is 1-1 if and only if L_A is 1-1.
- (d) T is onto if and only if L_A is onto.
- (e) T has an inverse function if and only if the matrix A is invertible.

(D) Let V and W be finite-dimensional vector spaces. Show that there exists an onto linear function $T: V \to W$ if and only if dim $W \leq \dim V$.