Linear Algebra I

Recitation 9

(A) Consider the linear function $L_A : \mathbb{R}^4 \to \mathbb{R}^3, x \to Ax$, where

$$A = \begin{bmatrix} 1 & 3 & 1 & 1 \\ 2 & -2 & 1 & 2 \\ -1 & -5 & 0 & 1 \end{bmatrix}$$

(A1) Recall that the kernel of L_A is defined to be

$$\ker L_A = \{ v \in \mathbb{R}^4 | L_A(v) = \mathbf{0} \}.$$

and that ker L_A is a subspace of \mathbb{R}^4 . Verify that the kernel of L_A is exactly the solution set of the homogeneous linear system of equations $Ax = \mathbf{0}$. Find a basis of ker L_A .

F11

(A2) Say your basis of L_A is the list (u_1, \ldots, u_i) . Extend this list to a basis (u_1, u_2, u_3, u_4) of \mathbb{R}^4 .

$$\operatorname{Im} L_A = \{ L_A(v) \mid v \in \mathbb{R}^4 \}.$$

- and that $\operatorname{Im} L_A$ is a subspace of \mathbb{R}^3 (i) Prove that $\operatorname{Im} L_A$ is the subspace of \mathbb{R}^3 spanned by the columns of A. (ii) Prove that the list $(L_A(u_{i+1}), \ldots, L_A(u_4))$ is a basis of $\operatorname{Im} L_A$. (iii) Compute dim(ker L_A) + dim(Im L_A).

(B) A diagram of sets and maps

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} & Y \\ h & & & \downarrow^{g} \\ S & \stackrel{f}{\longrightarrow} & T \end{array}$$

is called commutative if $g \circ f = \ell \circ h$. Suppose that the given diagram is commutative and that the maps h and g are 1-1 and onto. Show:

- (a) f is 1-1 if and only if is ℓ is 1-1.
- (b) f is onto if and only if ℓ is onto.
- (c) f is 1-1 and onto if and only if ℓ is 1-1 and onto.

(C) Let X, Y, S, and T be sets and $h: X \to S$ and $g: Y \to T$ 1 – 1 and onto maps. Let $f: X \to Y$ be a map. Show that there is a unique map $\ell: S \to T$ such that the diagram

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} & Y \\ h & & & \downarrow^g \\ S & \stackrel{f}{\longrightarrow} & T \end{array}$$

is commutative.