MTH 309-4

Linear Algebra I

F11

Recitation 8

- (A) Let A be an $m \times n$ matrix and $L_A : \mathbb{R}^n \to \mathbb{R}^m$ the linear function defined by: $L_A(v) = Av$ for all $v \in \mathbb{R}^n$. Prove that the following conditions are equivalent:
- (a) L_A is onto.
- (b) The columns of A span \mathbb{R}^m .
- (c) For all $b \in \mathbb{R}^m$ the linear system Ax = b is solvable.

- (B) Let A be an $m \times n$ matrix and $L_A : \mathbb{R}^n \to \mathbb{R}^m$ the linear function defined by: $L_A(v) = Av$ for all $v \in \mathbb{R}^n$. Prove that the following conditions are equivalent:
- (a) L_A is 1-1.
- (b) The columns of A are linearly independent.
- (c) The homogeneous linear system Ax = 0 has only the trivial solution.

- (C) Given positive integers m and n and an $m \times m$ -matrix B. Let $T : \mathbb{M}(m,n) \to \mathbb{M}(m,n)$ be the function defined by T(A) = BA for all $A \in \mathbb{M}(m,n)$.
- (a) Prove that T is a linear function.
- (b) Find m and n and B such that T is not 1-1.

(D) Given positive integers m and n and an $m \times m$ -matrix B. Let $T: \mathbb{M}(m,n) \to \mathbb{M}(m,n)$ be the function defined by T(A) = BA for all $A \in \mathbb{M}(m,n)$. Prove that T is an isomorphism if and only if B is an invertible matrix.