MTH 309-4

Linear Algebra I

F11

Recitation 4

- (A) Consider the vectors $v_1 = (1, 2, 1)$, $v_2 = (0, 1, 2)$, $v_3 = (2, 1, 0)$, $v_4 = (1, 0, 2)$ and w = (1, 2, 3) in \mathbb{R}^3 .
- (a) Write w in two different ways as a linear combination of (v_1, v_2, v_3, v_4) .
- (b) Prove that there are infinitely many different ways to write w as a linear combination of (v_1, v_2, v_3, v_4) .

(Hint to (b): Can you write the zero vector in different ways as a linear combination (v_1, v_2, v_3, v_4) ?)

(B) Generalize the statement of (A) by showing:

Let V be a vector space and $v_1, v_2, \ldots, v_n \in V$. If a vector $w \in \text{span}(v_1, \ldots, v_n)$ can be written as a linear combination of (v_1, \ldots, v_n) in two different ways, then there are infinitely many different ways to write w as a linear combination of (v_1, \ldots, v_n) .

(C) Let V be a vector space and $v_1, v_2, \ldots, v_n \in V$. Prove that if $v_i \in \text{span}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n)$ for some $1 \leq i \leq n$, then

$$\operatorname{span}(v_1,\ldots,v_n) = \operatorname{span}(v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_n)$$

In particular, if $v_i = 0$ for some $1 \le i \le n$, then

$$\operatorname{span}(v_1,\ldots,v_n)=\operatorname{span}(v_1,\ldots v_{i-1},v_{i+1},\ldots,v_n)$$

- (D) Let V be a vector space and $u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n$ vectors in V. Show:
- (a) If $\{u_1, \ldots, u_m\} \subseteq \operatorname{span}(v_1, \ldots, v_n)$, then

$$\operatorname{span}(u_1,\ldots,u_m)\subseteq\operatorname{span}(v_1,\ldots,v_n)$$

(b)

$$span(v_1, ..., v_n) = span(v_1 - v_2, v_2 - v_3, ..., v_{n-1} - v_n, v_n)$$

(E) Let V be a vector space and $u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n \in V$. Prove:

$$\mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_n)=\mathrm{span}(u_1,\ldots,u_m)+\mathrm{span}(v_1,\ldots,v_n)$$