$\mathbf{F11}$

MTH 309-4

Linear Algebra I

Recitation 3

(A) Let r be real number with $r \neq 1$. Prove by induction that for any integer $n \geq 1$:

$$1 + r + r^2 + \ldots + r^{n1} = \frac{r^n - 1}{r - 1}$$

(B) Prove by induction that 2n < n! for all integers $n \ge 4$.

(C) Let $(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...) = (s_n)$ be the Fibonacci sequence, that is, $s_{n+2} = s_{n+1} + s_n, \text{ where } s_1 = s_2 = 1. \text{ Prove by induction:}$ (1) $s_1 + s_2 + \ldots + s_n = s_{n+2} - 1.$ (2) $s_2 + s_4 + \ldots + s_{2n} = s_{2n+1} - 1$

- (3) $s_1 + s_3 + \ldots + s_{2n-1} = s_{2n}$ (4) $s_1^2 + s_2^2 + \ldots + s_n^2 = s_n s_{n+1}$ (5) $s_n s_{n+2} = s_n^2 + (-1)^n$.

(D) Consider a homogeneous system of linear equations

$a_{11}x_1$	+	$a_{12}x_2$	+		+	$a_{1n}x_n$	=	0
$a_{21}x_1$	+	$a_{22}x_2$	+		+	$a_{2n}x_n$	=	0
÷	÷	:	÷	÷	÷	÷	÷	÷
$a_{m1}x_1$	+	$a_{m2}x_2$	+		+	$a_{mn}x_n$	=	0

with solution set $S \subseteq \mathbb{R}^n$. Show that S is a subspace of \mathbb{R}^n .

(E) Let V be a vector space and $U, W \subseteq V$ be subspaces of V. Show that the set

 $U+W=\{\mathbf{u}+\mathbf{w}\mid \mathbf{u}\in U \text{ and } \mathbf{w}\in W\}$

is a subspace of V.