MTH 309-4

Linear Algebra I

Homework 12/Solutions

Section	Exercises
8.1	$5,\!6,\!7,\!8,\!13,\!14,\!15,\!16$
8.2	4,9,15

(Section 8.1 Exercise 5). Suppose λ is an eigenvalue of a linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$. Let A be the matrix of T relative to the standard basis for \mathbb{R}^n . Show that the eigenspace $E_T(\lambda)$ of the operator T is equal to the eigenspace $E_A(\lambda)$ of the matrix A.

By definition

 $E_T(\lambda) = \{x \in \mathbb{R}^n \mid T(x) = \lambda x\}$ and $E_A(\lambda) = \{x \in \mathbb{R}^n \mid Ax = \lambda x\}$

By Theorem 6.10, T(x) = Ax for all $x \in \mathbb{R}^n$ and so $E_T(\lambda) = E_A(\lambda)$.

(Section 8.1 Exercise 6). Prove that if A is an $n \times n$ -matrix, then $det(\lambda I - A)$ defines an nth-degree polynomial in the variable λ .

We will first prove:

(*) Let A and B be $n \times n$ matrices. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(\lambda) = \det(\lambda B - A)$. Then f is a polynomial of degree at most n.

The proof is by induction on n. If n = 0, then $f(\lambda) = \det[] = 1$ for all $\lambda \in R$ and so f is a polynomial of degree 0. So (*) holds for n = 0. Suppose now that (*) holds for any $n-1 \times n-1$ -matrices. Let A and B be $n \times n$ -matrices. For $1 \leq j \leq n$ define $f_j : \mathbb{R} \to \mathbb{R}$ by

$$f_j(\lambda) = \det(\lambda B_{1j} - A_{1j})$$

By the induction assumption f_j is a polynomial of degree at most n-1. Let $\lambda \in R$ and put $C\lambda B - A$. Then $c_{1j} = \lambda b_{1j} - a_{ij}$ and $C_{1j} = \lambda B_{1j} - A_{1j}$. Thus

$$f(\lambda) = \det(\lambda B - A) = \det(C)$$

= $\sum_{j=1}^{n} (-1)^{1+j} c_{1j} \det(C_{ij})$
= $\sum_{j=1}^{n} (-1)^{1+j} c_{1j} \det(\lambda B_{1j} - A_{1j})$
= $\sum_{j=1}^{n} (-1)^{1+j} (\lambda b_{1j} - a_{1j}) f_j(\lambda)$

Thus

(**)
$$f(\lambda) = \sum_{j=1}^{n} (-1)^{1+j} (\lambda b_{1j} - a_{1j}) f_j(\lambda)$$

Since f_j is polynomial of degree at most n, $(-1)^{1+j}(\lambda b_{1j}-a_{1j})f_j(\lambda)$ defines a polynomial of degree of at most n. The sums of polynomials of degree at most n is a polynomial of degree at most n. So (**) shows that f is a polynomial of degree at most n.

The principal of induction now shows that (*) holds for all non-negative integers n.

Consider now the case B = I. By (*) f is polynomial of degree at most n. It remains to show that

(***) If B = I, then f has degree n.

For n = 0, we have f = 1 and so (***) holds for n = 0. Suppose now that (***) holds for n - 1. Note that $(I_n)_{11} = I_{n-1}$ and so $f_1(\lambda) = \det(\lambda I_{n-1} - A_{11})$. Thus by the induction assumption f_1 has degree n - 1. Since B = I, $b_{11} = 1$ and $b_{1j} = 0$ for $1 \le j \le n$. So (**) shows

(****)
$$f(\lambda) = (\lambda - a_{11})f_1(\lambda) + \sum_{j=2}^n (-1)^j a_{1j} f_j(\lambda)$$

 $a_{1j}f_j(\lambda)$ defines is a polynomial of degree at most n-1 and so also $\sum_{j=2}^n (-1)^j a_{1j}f_j(\lambda)$ defines a polynomial of degree at most n-1. Since f_1 has degree n-1, $(\lambda - a_{11})f_1(\lambda)$ defined a polynomial of degree n. (****) shows that f is a polynomial of degree n.

The principal of induction now shows that (***) holds for all non-negative integers n.

(Section 8.1 Exercise 8). Find the eigenvalues of the following matrices. For each eigenvalue, find a basis for the corresponding eigenspace.

$(a) \begin{bmatrix} 6 & -24 & -4 \\ 2 & -10 & -2 \\ 1 & 4 & 1 \end{bmatrix}.$	$(d) \begin{bmatrix} 3 & -7 & -4 \\ -1 & 9 & 4 \\ 2 & -14 & -6 \end{bmatrix}.$
$(b) \begin{bmatrix} 7 & -24 & -6 \\ 2 & -7 & -2 \\ 0 & 0 & 1 \end{bmatrix}.$	$(e) \begin{bmatrix} -1 & -1 & 10\\ -1 & -1 & 6\\ -1 & -1 & 6 \end{bmatrix}.$
$ \begin{array}{c} (c) \\ \left[\begin{matrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{matrix} \right]. $	$(f) \begin{bmatrix} \frac{1}{2} & -5 & 5\\ \frac{3}{2} & 0 & -4\\ \frac{1}{2} & -1 & 0 \end{bmatrix}.$

(a)

$$\det \begin{bmatrix} \lambda - 6 & 24 & 4 \\ -2 & \lambda + 10 & 2 \\ -1 & -4 & \lambda - 1 \end{bmatrix}$$

= $(\lambda - 6) \left((\lambda + 10)(\lambda - 1) - (-4)2 \right) - 24 \left(-2(\lambda - 1) - (-1)2 \right) + 4 \left(-2(-4) - (-1)(\lambda + 10) \right)$
= $(\lambda - 6)(\lambda^2 + 9\lambda - 2) - 24(-2\lambda + 4) + 4(\lambda + 18)$
= $\lambda^3 - 6\lambda^2 + 9\lambda^2 - 54\lambda - 2\lambda + 12 + 48\lambda - 96 + 4\lambda + 72$
= $\lambda^3 + 3\lambda^2 - 4\lambda - 12$
= $(\lambda^2 - 4)(\lambda + 3)$
= $(\lambda - 2)(\lambda + 2)(\lambda + 3)$

And so the eigenvalues are

 $\lambda = 2, \quad \lambda = -2 \text{ and } \lambda = -3$

We now use the Gauss Jordan Algorithm to find a basis for $E_A(\lambda) = \text{Nul}(\lambda I - A)$ for each of the three eigenvalues.

For $\lambda = 2$:

$$\begin{bmatrix} 2-6 & 24 & 4\\ -2 & 2+10 & 2\\ -1 & -4 & 2-1 \end{bmatrix} = \begin{bmatrix} -4 & 24 & 4\\ -2 & 12 & 2\\ -1 & -4 & 1 \end{bmatrix} \xrightarrow{\begin{array}{c} -\frac{1}{4}R1 \to R1\\ -\frac{1}{2}R2 \to R2\\ -R3 \to R3 \end{bmatrix}} \begin{bmatrix} 1 & -6 & -1\\ 1 & -6 & -1\\ 1 & 4 & -11 \end{bmatrix}$$
$$\begin{bmatrix} R2-R1 \to R2\\ R3-R1 \to R2\\ R2 \leftrightarrow R3 \end{bmatrix} \begin{bmatrix} 1 & -6 & -1\\ 0 & -10 & -10\\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\begin{array}{c} -\frac{1}{10}R2 \to R2\\ R1+6R2 \to R1\\ 1 & 6R2 \to R1 \end{bmatrix}} \begin{bmatrix} 1 & 0 & 5\\ 0 & 1 & 1\\ 0 & 0 & 0 \end{bmatrix}$$

So $x_1 = -5x_3$, $x_2 = -x_3$, $x_3 = x_3$ and ((-5, -1, 1)) is a basis for $E_A(2)$.

For
$$\lambda = -2$$
:

$$\begin{bmatrix}
-2 - 6 & 24 & 4 \\
-2 & -2 + 10 & 2 \\
-1 & -4 & -2 - 1
\end{bmatrix} =
\begin{bmatrix}
-8 & 24 & 4 \\
-2 & 8 & 2 \\
-1 & -4 & -3
\end{bmatrix}
\xrightarrow{-\frac{1}{4}R_1 \to R_1}
\begin{bmatrix}
1 & -4 & -1 \\
-2 & 6 & 1 \\
-1 & -4 & -3
\end{bmatrix}$$

$$\frac{R_2 + 2R_1 \to R_1}{R_3 + R_1 \to R_3}
\begin{bmatrix}
1 & -4 & -1 \\
0 & -2 & -1 \\
0 & -8 & -4
\end{bmatrix}
\xrightarrow{R_1 - 2R_2 \to R_1}
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 0
\end{bmatrix}$$

So $x_1 = -x_3$, $x_2 = -\frac{1}{2}x_3$, $x_3 = x_3$ and (choosing $x_3 = -2$) ((2, 1, -2)) is a basis for $E_A(-2)$.

For $\lambda = -3$:

$$\begin{bmatrix} -3-6 & 24 & 4\\ -2 & -3+10 & 2\\ -1 & -4 & -3-1 \end{bmatrix} = \begin{bmatrix} -9 & 24 & 4\\ -2 & 7 & 2\\ -1 & -4 & -4 \end{bmatrix}^{-R_{3} \to R_{3}} \begin{bmatrix} 1 & 4 & 4\\ -2 & 7 & 2\\ -9 & 24 & 4 \end{bmatrix}$$
$$\overset{R_{2}+2R_{1} \to R_{2}}{\underset{R_{3}+9R_{1} \to R_{3}}{R_{3}}} \begin{bmatrix} 1 & 4 & 4\\ 0 & 15 & 10\\ 0 & 60 & 40 \end{bmatrix} \overset{R_{3}-3R_{2} \to R_{2}}{\underset{15}{\overset{1}{15}R_{2} \to R_{2}}} \begin{bmatrix} 1 & 4 & 4\\ 0 & 1 & \frac{2}{3}\\ 0 & 0 & 0 \end{bmatrix} \overset{R_{1}-4R_{2} \to R_{1}}{\underset{0}{R_{1}}} \begin{bmatrix} 1 & 0 & \frac{4}{3}\\ 0 & 1 & \frac{2}{3}\\ 0 & 0 & 0 \end{bmatrix}$$

So $x_1 = -\frac{4}{3}x_3$, $x_2 = -\frac{2}{3}x_3$, $x_3 = x_3$ and (choosing $x_3 = -3$) ((4, 2, -3)) is a basis for $E_A(2)$.

(b)

$$\det \begin{bmatrix} \lambda - 7 & 24 & 6 \\ -2 & \lambda + 7 & 2 \\ 0 & 0 & \lambda - 1 \end{bmatrix}$$

= $(\lambda - 1) \Big((\lambda - 7)(\lambda + 7) - (-2)24 \Big)$
= $(\lambda - 1)(\lambda^2 - 1)$
= $(\lambda - 1)^2(\lambda + 1)$

And so the eigenvalues are

$$\lambda = 1, \quad \lambda = -1$$

We now use the Gauss Jordan Algorithm to find a basis for $E_A(\lambda) = \text{Nul}(\lambda I - A)$ for each of the two eigenvalues.

 $\lambda = 1$

$$\begin{bmatrix} 1-7 & 24 & 6\\ -2 & 1+7 & 2\\ 0 & 0 & 1-1 \end{bmatrix} = \begin{bmatrix} -6 & 24 & 6\\ -2 & 8 & 2\\ 0 & 0 & 0 \end{bmatrix} \xrightarrow[R_2 + 2R_1 \to R_2]{-\frac{1}{6}R_1 \to R_1} \begin{bmatrix} 1 & -4 & -1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$

So $x_1 = 4x_2 + x_3$, $x_2 = x_2$, $x_3 = x_3$ and ((4, 1, 0), (1, 0, 1)) is a basis for $E_A(1)$

$$\lambda = -1$$

$$\begin{bmatrix} -1-7 & 24 & 6\\ -2 & -1+7 & 2\\ 0 & 0 & -1-1 \end{bmatrix} = \begin{bmatrix} -8 & 24 & 6\\ -2 & 6 & 2\\ 0 & 0 & -2 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1 \to R_1}_{\begin{array}{c} -\frac{1}{2}R_2 \to R_2 \\ -\frac{1}{2}R_3 \to R_3 \\ R_1 \leftrightarrow R_2 \end{bmatrix}} \begin{bmatrix} 1 & -3 & -1\\ -4 & 12 & 3\\ 0 & 0 & 1 \end{bmatrix}$$
$$R_2 + 4R_1 \to R_2 \begin{bmatrix} 1 & -3 & -1\\ 0 & 0 & -1\\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 - R_2 \to R_1}_{\begin{array}{c} R_3 + R_2 \to R_3 \\ -R_2 \to R_2 \end{bmatrix}} \begin{bmatrix} 1 & -3 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{bmatrix}$$

So
$$x_1 = 3x_2, x_2 = x_2, x_3 = 0$$
 and $((3, 1, 0))$ is a basis for $E_A(-1)$
(c)
det $\begin{bmatrix} \lambda - 3 & -1 & 0 \\ 0 & \lambda - 3 & -1 \\ 0 & 0 & \lambda - 3 \end{bmatrix} = (\lambda - 3) ((\lambda - 3)(\lambda - 3) - 0(-1)) = (\lambda - 3)^3$

and so $\lambda = 3$ is the only eigenvalue. We now use the Gauss Jordan Algorithm to find a basis for $E_A(3) = \text{Nul}(3I - A)$.

$$\begin{bmatrix} 3-3 & -1 & 0\\ 0 & 3-3 & -1\\ 0 & 0 & 3-3 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0\\ 0 & 0 & -1\\ 0 & 0 & 0 \end{bmatrix} \xrightarrow[-R_1 \to R_1]{-R_1 \to R_1} \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{bmatrix}$$

So $x_1 = x_1, x_2 = 0, x_3 = 0$ and ((1, 0, 0)) is a basis for $E_A(3)$

(d)

$$\det \begin{bmatrix} \lambda - 3 & 7 & 4 \\ 1 & \lambda - 9 & -4 \\ -2 & 14 & \lambda + 6 \end{bmatrix}$$

$$= (\lambda - 3) \left((\lambda - 9)(\lambda + 6) - 14(-4) \right) - 7 \left(1(\lambda + 6) - (-2)(-4) \right) + 4 \left(1(14) - (-2)(\lambda - 9) \right)$$

$$= (\lambda - 3)(\lambda^2 - 3\lambda + 2) - 7(\lambda - 2) + 4(2\lambda - 4) \\ (\lambda - 3)(\lambda - 1)(\lambda - 2) - 7(\lambda - 2) + 8(\lambda - 2)$$

$$= (\lambda^2 - 4\lambda + 3 - 7 + 8)(\lambda - 2)$$

$$= (\lambda^2 - 4\lambda + 4)(\lambda - 2)$$

$$= (\lambda - 2)^3$$

and so $\lambda = 2$ is the only eigenvalue. We now use the Gauss Jordan Algorithm to find a basis for $E_A(2) = \text{Nul}(2I - A)$.

$$\begin{bmatrix} 2-3 & 7 & 4\\ 1 & 2-9 & -4\\ -2 & 14 & 2+6 \end{bmatrix} = \begin{bmatrix} -1 & 7 & 4\\ 1 & -7 & -4\\ -2 & 14 & 8 \end{bmatrix} \xrightarrow{R_3 + 2R_2 \to R_2 \\ R_1 + R_2 \to R_1 \\ R_1 \to R_1 \end{bmatrix} \begin{bmatrix} 1 & -7 & -4\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$

So $x_1 = 7x_2 + 4x_3, x_2 = x_2, x_3 = x_3$ and $((7, 1, 0), (4, 0, 1))$ is a basis for $E_A(2)$
(e)

$$\begin{bmatrix} \lambda+1 & 1 & -10\\ 1 & \lambda+1 & -6\\ 1 & 1 & \lambda-6 \end{bmatrix} \xrightarrow{R3 - R2 \to R3}_{R1 - R2 \to R1} \begin{bmatrix} \lambda & -\lambda & -4\\ 1 & \lambda+1 & -6\\ 0 & -\lambda & \lambda \end{bmatrix} \xrightarrow{R1 - R3 \to R1}_{R1 \leftrightarrow R2}_{-R3 \to R3}$$

$$\begin{bmatrix} 1 & \lambda+1 & -6\\ \lambda & 0 & -\lambda-4\\ 0 & \lambda & -\lambda \end{bmatrix} \xrightarrow{R_2 - \lambda R_1 \to R_2} \begin{bmatrix} 1 & \lambda+1 & -6\\ 0 & \lambda & -\lambda\\ 0 & -\lambda^2 - \lambda & 5\lambda - 4 \end{bmatrix}$$

$$R_3 + (\lambda+1)R_2 \to R_3 \begin{bmatrix} 1 & \lambda+1 & -6\\ 0 & \lambda & -\lambda\\ 0 & 0 & -(\lambda-2)^2 \end{bmatrix}$$

So the eigenvalues are $\lambda = 0$ and $\lambda = 2$. We now continue to use the Gauss Jordan Algorithm to find a basis for $E_A(\lambda) = \text{Nul}(\lambda I - A)$ for each of the two eigenvalues.

 $\begin{bmatrix} 0+1 & 0+1 & -6\\ 0 & 0 & -0\\ 0 & 0 & -(0-2)^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -6\\ 0 & 0 & 0\\ 0 & 0 & -4 \end{bmatrix} \xrightarrow{R3 + (\lambda+1) - \frac{14}{R}3 \to R3}_{R1 + 6R3 \to R1} \begin{bmatrix} 1 & 1 & 0\\ 0 & 0 & 1\\ R^{2 \leftrightarrow R3} \end{bmatrix}$

So $x_1 = -x_2$, $x_2 = x_2$, $x_3 = 0$ and ((-1, 1, 0)) is a basis for $E_A(0)$

For $\lambda = 2$ $\begin{bmatrix} 1 & 2+1 & -6 \\ 0 & 2 & -2 \\ 0 & 0 & -(2-2)^2 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -6 \\ 0 & 2 & -2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2 \to R_2}_{R_1 - 3R_2 \to R_1} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

So $x_1 = 3x_3$, $x_2 = x_3$, $x_3 = x_3$ and ((3, 1, 1)) is a basis for $E_A(2)$

(f)

For $\lambda = 0$.

$$\det \begin{bmatrix} \lambda - \frac{1}{2} & 5 & -5 \\ -\frac{3}{2} & \lambda & 4 \\ -\frac{1}{2} & 1 & \lambda \end{bmatrix}$$

$$= \frac{1}{2} \left((2\lambda - 1) \left(\lambda^2 - 4 \right) - 5 \left((-3)\lambda - (-1)4 \right) + (-5) \left((-3)1 - (-1)\lambda \right) \right)$$

$$= \frac{1}{2} \left((2\lambda^3 - \lambda^2 - 8\lambda + 4) - 5(4 - 3\lambda) - 5(\lambda - 3) \right)$$

$$= \frac{1}{2} \left((2\lambda^3 - \lambda^2 - 8\lambda + 4) - 5(4 - 3\lambda) - 5(\lambda - 3) \right)$$

$$= \frac{1}{2} \left((2\lambda^3 - \lambda^2 + 2\lambda - 1) \right)$$

$$= \frac{1}{2} (2\lambda - 1) (\lambda^2 + 1)$$

and so $\lambda = \frac{1}{2}$ is the only eigenvalue. We now use the Gauss Jordan Algorithm to find a basis for $E_A(\frac{1}{2}) = \text{Nul}(\frac{1}{2}I - A)$.

$$\begin{bmatrix} 2\frac{1}{2} - 1 & 5 & -5 \\ -3 & \frac{1}{2} & 4 \\ -1 & 1 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 5 & -5 \\ -3 & \frac{1}{2} & 4 \\ -1 & 1 & \frac{1}{2} \end{bmatrix} \xrightarrow{\begin{smallmatrix} \frac{1}{5}R1 \to R3 \\ -R_3 \to R3 \\ R_1 \leftrightarrow R3 \\ R_2 \leftrightarrow R3 \end{bmatrix}} \begin{bmatrix} 1 & -1 & -\frac{1}{2} \\ 0 & 1 & -1 \\ -3 & \frac{1}{2} & 4 \end{bmatrix}$$
$$\overset{R_3 + 3R_1 \to R3 \\ R_1 + R_2 \to R2 \\ \begin{bmatrix} 1 & 0 & -\frac{3}{2} \\ 0 & 1 & -1 \\ 0 & -\frac{5}{2} & \frac{5}{2} \end{bmatrix} \xrightarrow{R_3 + \frac{5}{2}R_2 \to R_3} \begin{bmatrix} 1 & 0 & -\frac{3}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
So $x_1 = \frac{3}{2}x_3, x_2 = x_3, x_3 = x_3$ and (choosing $x_3 = 2$) $\left((3, 2, 2) \right)$ is a basis for $E_A(3)$

(Section 8.1 Exercise 8). Compute the eigenvalues of the matrices

$$(a) \begin{bmatrix} -5 & 9 \\ 0 & 3 \end{bmatrix}$$

$$(b) \begin{bmatrix} 7 & 4 & -3 \\ 0 & -3 & 9 \\ 0 & 0 & 2 \end{bmatrix}.$$

$$(c) \begin{bmatrix} -2 & 8 & 7 & 4 \\ 0 & 3 & 5 & 9 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

$$(d) \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}$$

(e) What feature of these matrices makes it relatively easy to compute their eigenvalues?

(f) Formulate a general result suggested by this observation.

(g) Prove your conjecture.

(e) They are upper triangular:

Definition II An $n \times n$ matrix is called upper triangular if $a_{ij} = 0$ for all $1 \le j < i \le n$.

(f): Conjecture III Let A be an upper triangular $n \times n$ -matrix. Then

$$\det A = a_{11}a_{22}\dots a_{nn}$$

Conjecture IV Let A be an upper triangular $n \times n$ -matrix. Then

$$\chi_A(\lambda) = (\lambda - a_{11})(\lambda - a_{22})\dots(\lambda - a_{nn}).$$

and so the eigenvalues of A are

.

$$\lambda = a_{11}, \quad \lambda = a_{22}, \quad \dots, \quad \lambda = a_{nn}$$

(g): Proof of Conjecture III: If n = 1 then det $A = a_{11}$ and Conjecture III holds. (Conjecture III also holds for n = 0 as long as one defines the product of an empty list of elements to be 1)

Suppose now that Conjecture III holds for all upper triangular $(n-1) \times (n-1)$ -matrices. Let A be an upper triangular $n \times n$ -matrix. Expanding the determinant along row n we get

$$\det A = \sum_{j=1}^{n} (-1)^{n+j} a_{nj} \det A_{nj}.$$

Since A is upper triangular, $a_{nj} = 0$ for all $1 \le j < n$. Also $(-1)^{n+n} = 1$ and so

$$\det A = a_{nn} \det A_{nn} = (\det A_{nn})a_{nn}$$

Since A is upper triangular, $a_{ij} = 0$ for all $1 \le j < i \le n-1$. So A_{nn} is upper triangular, and the det $A_{nn} = a_{11}a_{22}\ldots a_{(n-1)(n-1)}$ by the induction assumption. Hence

$$\det A = (\det A_{nn})a_{nn} = a_{11}a_{22}\dots a_{(n-1)(n-1)}a_{nn}$$

So if Conjecture III holds for n-1 it also holds for n. Thus by the principal of induction, the Conjecture holds for all positive integers n.

Proof of Conjecture IV: Let A be an upper triangular matrix and $\lambda \in \mathbb{R}$. Put $B = \lambda I - A$ Note that λI is upper triangular and so also B is upper triangular. Thus by Conjecture III

$$\det B = b_{11} \dots b_{nn}$$

We have $b_{ii} = \lambda - a_{ii}$ and so

$$\chi_A(\lambda) = \det(\lambda I - A) = \det B = b_{11} \dots b_{nn} = (\lambda - a_{11})(\lambda - a_{22}) \dots (\lambda - a_{nn})$$

Since the eigenvalues of A are the roots of χ_A , we conclude that the eigenvalues of A are $\lambda = a_{11}, \lambda = a_{22}, \ldots, \lambda = a_{nn}$ and Conjecture IV is proved.

The proven conjecture 4 now allows us to solve (a)-(d)

- (a) The eigenvalues are -5 and 3.
- (b) The eigenvalues are 7, -3 and 2.
- (c) The eigenvalues are -2, 3, 1 and 5.
- (d) The eigenvalues are a, d and f.

(Section 8.1 Exercise 13). Suppose v is an eigenvector of an $n \times n$ n matrix A associated with the eigenvalue λ . Suppose P is a invertible $n \times n$ -matrix. Show that $P^{-1}v$ is an eigenvector of $P^{-1}AP$ associated to λ . Since v is an eigenvector of A associated to λ , $v \neq 0$ and $Av = \lambda v$.

Since P^{-1} is invertible, $\operatorname{Nul}P^{-1} = \{z\}$ and since $v \neq \mathbf{0}$ we conclude that $P^{-1}v \neq \mathbf{0}$. Also

$$(P^{-1}AP)(P^{-1}v) = P^{-1}\Big(A\big((PP^{-1})v\big)\Big) = P^{-1}\big(A(Iv)\big) = P^{-1}(Av) = P^{-1}(\lambda v) = \lambda(P^{-1}v)$$

and so $P^{-1}v$ is an eigenvector of $P^{-1}AP$ associated to λ .

(Section 8.1 Exercise 14). Suppose that A and A' are $n \times n$ -matrices. Suppose v is an eigenvector of A associated with the eigenvalue λ . Suppose v is also an eigenvector of A' associated with the eigenvalue λ' . Show that v is an eigenvector of A + A' associated with $\lambda + \lambda'$.

Since v is an eigenvector of A associated with the eigenvalue λ we have $v \neq \mathbf{0}$ and $Av = \lambda v$. And since v is also an eigenvector of A' associated with the eigenvalue λ' , $A'v = \lambda' v$. Thus

$$(A + A')v = Av + A'v = \lambda v + \lambda' v = (\lambda + \lambda')v$$

Hence v is an eigenvector of A + A' associated with $\lambda + \lambda'$.

(Section 8.1 Exercise 15). Suppose v is an eigenvector of an $n \times n$ matrix A associated with the eigenvalue λ

- (a) Show that v is an eigenvector of A^2 . With what eigenvalue is it associated?
- (b) State and prove a generalization of your result in part a to higher powers of A
- (c) What can you say about eigenvalues and eigenvectors of A^{-1} and other negative powers of A.
 - (b) We will prove:
 - (*) Let n be a non-negative integer. Then v is an eigenvector of A^n associated to λ^n .

We have $A^0 v = Iv = v = 1v = \lambda^0 v$ and so (*) holds for n = 0. Suppose (*) holds for n. Then $A^n v = \lambda^n v$. Also since v is an eigenvector of A associated to λ , $v \neq \mathbf{0}$ and $Av = \lambda v$. Thus

$$A^{n+1}v = (A^n A)v = A^n(Av) = A^n(\lambda v) = \lambda(A^n v) = \lambda(\lambda^n v) = (\lambda\lambda^n)(v) = \lambda^{n+1}v$$

Hence v is an eigenvector of A^{n+1} associated to λ^{n+1} . Thus (*) holds for n+1 and by the Principal of Induction, (*) holds for all non-negative integers n.

(a) By (*) applied with n = 2, v is an eigenvector of A^2 associated to λ^2 .

(c) Suppose now that A is invertible. We will show

(**) $\lambda \neq 0$ and v is an eigenvector of A^{-1} associated to λ^{-1} .

We have

 $\begin{array}{rcl} Av &=& \lambda v & -v \text{ is an eigenvector of } A \text{ associated to } \lambda \\ \Longrightarrow & A^{-1}(Av) &=& A^{-1}(\lambda v) \\ \Longrightarrow & (A^{-1}A)v &=& \lambda(A^{-1}v) \\ \Longrightarrow & Iv &=& \lambda(A^{-1}v) \\ \Longrightarrow & v &=& \lambda(A^{-1}v) \end{array}$

Since $v \neq \mathbf{0}$ and $0x = \mathbf{0}$ for all $x \in \mathbb{R}^n$ we conclude that $\lambda \neq 0$. Then multiplying the previous equation by λ^{-1} gives $A^{-1}v = \lambda^{-1}v$. So (**) holds. Next we prove

(***) Let n be an integer. Then v is an eigenvector of A^n associated to λ^n .

From (*) we know that (***) holds if $n \ge 0$. So suppose n < 0 and put m = -n. By (**) we can apply (*) to m, A^{-1} and λ^{-1} in place of n, A and λ . Thus

v is an eigenvector of $(A^{-1})^m$ associated to $(\lambda^{-1})^m$.

Since $A^n = A^{-m} = (A^{-1})^m$ and $\lambda^n = \lambda^{-m} = (\lambda^{-1})^m$ we conclude that (***) holds.

(Section 8.1 Exercise 16). Suppose $T: V \to V$ and $T': V \to V$ are linear operators on a vector space V. Suppose v is an eigenvector of T associated with the eigenvalue λ . Suppose v is also an eigenvector of T' associated with the eigenvalue λ' . Show that v is an eigenvector of the composition $T' \circ T$. What is the eigenvalue?

Since v is an eigenvector of T associated with the eigenvalue λ , $v \neq \mathbf{0}$ and $T(v) = \lambda v$. Since v is an eigenvector of T' associated with the eigenvalue λ' , $T'(v) = \lambda' v$. Thus

$$(T' \circ T)(v) = T'(T(v)) = T'(\lambda v) = \lambda(T'(v)) = \lambda(\lambda' v) = (\lambda \lambda')v$$

So v is an eigenvector of $T' \circ T$ associated to $\lambda \lambda'$.

(Section 8.2 Exercise 4). (a) Show that
$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
 is similar to $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$.

(b) Show that $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{bmatrix}$ is similar to $\begin{bmatrix} 7 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.

(a) Put $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ and $A' = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$. Consider the basis $E' = (e_2, e_1)$ of \mathbb{R}^2 . Since $L_A(e_2) = Ae_2 = a_2 = 3e_2 = 3e_2 + 0e_1$ and $L_A(e_1) = Ae_1 = a_1 = 2e_1 = 0e_2 + 2e_1$, the matrix of L_A with respect to E' is

$$\begin{bmatrix} [L_A(e_2)]_{E'}, [L_A(e_1)]_{E'} \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} = A'$$

Note also that A is the matrix of L_A with respect to the standard basis, and so by Lemma N8.2.2, A' is similar to A.

(b) Put
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$
 and $A' = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. Consider basis $E' = (e_3, e_1, e_2)$ of \mathbb{R}^2 .

Since $L_A(e_3) = Ae_3 = a_3 = 7e_3 = 7e_3 + 0e_1 + 0e_2$, $L_A(e_1) = Ae_1 = a_1 = 2e_1 = 0e_3 + 2e_1 + 0e_2$, and $L_A(e_2) = Ae_2 = 3a_2 = 3e_2 = 0e_3 + 0e_1 + 3e_2$ the matrix of L_A with respect to E' is

$$\left[[L_A(e_3)]_{E'}, [L_A(e_1)]_{E'}, [L_A(e_2)]_{E'} \right] = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} = A'.$$

Note also that A is the matrix of L_A with respect to the standard basis, and so by Lemma N8.2.2, A' is similar to A

(Section 8.2 Exercise 9). Find two matrices that have the same characteristic polynomial but are not similar.

Let $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $A' = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Note that both A and A' are upper triangular and so by Conjecture IV, $\chi_A(\lambda) = (\lambda - 0)(\lambda - 0) = \chi_{A'}(\lambda)$. Thus A and A' have the same characteristic polynomial. Let P be an invertible 2×2 -matrix, then $P^{-1}AP = AP = A$ and so $A' \neq P^{-1}AP$. Thus A' is not similar A.

(Section 8.2 Exercise 15). Suppose A is the matrix of a linear map $T : \mathbf{V} \to \mathbf{V}$ relative to the basis B of the n-dimensional vector space V.

- (a) Prove that if v is an eigenvector of T associated to λ then $[v]_B$ is an eigenvector for A associated to λ .
- (b) Prove that if $x \in \mathbb{R}^n$ is an eigenvector of A associated to λ then $L_B(x)$ is an eigenvector for T associated to λ .

Let $v \in V$ and put $x \in \mathbb{R}^n$. Since C_B is the inverse of L_B , $x = [v]_B$ if and only of $L_B(x)$. Suppose that $x = [v]_B$ Then

$$Tv = \lambda v$$

$$\iff [Tv]_B = [\lambda v]_B - \text{since } C_B \text{ is } 1\text{-}1$$

$$\iff A[v]_B = \lambda[v]_B - \text{Theorem } 6.11, C_B \text{ is linear}$$

$$\iff Ax = \lambda x - \text{since } x = [v]_B$$

The forward direction gives (a) and since $v = L_B(x)$, the backward direction gives (b).