MTH 309-4 Linear Algebra I F11
Homework 12/Solutions

Section Exercises
8.1 5,6,7,8,13,14,15,16
8.2 4,9,15

(Section 8.1 Exercise 5). Suppose X is an eigenvalue of a linear operator T : R™ — R™.
Let A be the matrixz of T relative to the standard basis for R™ . Show that the eigenspace
Er(X) of the operator T' is equal to the eigenspace E4(X) of the matriz A.

By definition

Er(\) ={z eR" | T(z) = Az} and Es(\) ={z e R" | Az = Az}
By Theorem 6.10, T'(z) = Az for all x € R™ and so Ex(\) = Ea(A).

(Section 8.1 Exercise 6). Prove that if A is an n x n-matriz, then det(A\I — A) defines
an nth-degree polynomial in the variable .

We will first prove:

(*) Let A and B be n x n matrices. Define f: R — R by f(\) = det(AB — A). Then
f is a polynomial of degree at most n.

The proof is by induction on n. If n = 0, then f(A) = det[] = 1 for all A € R and so
f is a polynomial of degree 0. So (*) holds for n = 0. Suppose now that (*) holds for any
n —1 xn — 1-matrices. Let A and B be n x n-matrices. For 1 < j <n define f; : R — R by

f]()\) = det()\Blj — Alj)

By the induction assumption f; is a polynomial of degree at most n — 1.
Let A € R and put CAB — A. Then c¢1; = Ab1; — a;5 and C1j = AByj — Ayj. Thus

FO) = det(\B — A) = det(C)

n

= > (=1)Hey;det(Ciy)

=1

= Z(—l)prjclj det()\Blj — Alj)
=1

3

— Zn:(—l)”j(/\bu—alj)fj()\)

j=1



Thus

n

() FO) =Y (=D (Abyj — a1j) f5(N)

J=1

Since f; is polynomial of degree at most n, (—1)1%7(\by; —ay;) f;(\) defines a polynomial
of degree of at most n. The sums of polynomials of degree at most n is a polynomial of
degree at most n. So (**) shows that f is a polynomial of degree at most n.

The principal of induction now shows that (*) holds for all non-negative integers n.

Consider now the case B = I. By (*) f is polynomial of degree at most n. It remains
to show that

() If B =1, then f has degree n.

For n = 0, we have f =1 and so (***) holds for n = 0. Suppose now that (***) holds
for n — 1. Note that (I,)11 = I,—1 and so fi1(\) = det(Al,—1 — A11). Thus by the induction
assumption f; has degree n — 1. Since B =1, by =1 and by; =0 for 1 < j < n. So (**)
shows

n

(% %) FO) = =an) i) + (=1 a1 f;(N)

Jj=2

a1 fj(A) defines is a polynomial of degree at most n — 1 and so also Z?:2(—1)ja1jfj()\)
defines a polynomial of degree at most n — 1. Since f; has degree n — 1, (A — a11) f1(A)
defined a polynomial of degree n. (****) shows that f is a polynomial of degree n.

The principal of induction now shows that (***) holds for all non-negative integers n.

(Section 8.1 Exercise 8). Find the eigenvalues of the following matrices. For each
eigenvalue, find a basis for the corresponding eigenspace.

(6 —24 —4] [ 3 -7 —4
(a) |2 —10 —2|. (d) |-1 9 4.
1 4 1] | 2 14 -6

0 0 1
A i -1 -1 6
3 1 0 .

(¢c) |0 3 1f. PR
00 3 f) |5 0 —4].
) 3 -1 0




A—6 24 4
det -2 A+410 2
-1 —4 A-1
= (A 6)(()\+ 10)(A —1) — (—4)2) - 24( oA —1) - (—1)2) +4( S 2(—d) — (DA + 10))
= (A —6) (A2 + 9N\ —2) — 24(—2)\ +4) + 4(\ + 18)
A3 — 622 +9A% — 54N — 2\ + 12 4 48X\ — 96 + 4\ + 72
A3 +3X2 —4) — 12
(A2 —4)(\A+3)
— A=2)(A+2) (A +3)

And so the eigenvalues are

A=2, A=-2and A=-3

We now use the Gauss Jordan Algorithm to find a basis for E4(\) = Nul(Al — A) for
each of the three eigenvalues.

For A\ = 2:
2-6 24 4 —4 24 4] , 1 -6 -1
2 2410 ol = -2 12 2| “lreor |1 —6 -1
1 4 2-1 1 —4 1| ®r® o1 4 -1
R2 — R1 —+ R2 1 _6 _1 1 O 5
RBEQT)%)RQ 0 -10 -10 R_IT(IS%;Z_;R;I 0 11
0 0 0 0 0 0

So ©1 = —b5x3, xo = —x3, T3 = T3 and ((—57 -1, 1)) is a basis for E4(2).

For A\ = —2:
—-2-6 24 4 -8 24 4 . 1 -4 —1
-2 -2+10 2 = (-2 8 2 —%RzaRz -2 6 1
-1 —4 -2-1 -1 —4 -3 R1 & R2 1 _4 _3
1 74 71 R1 — 2R2 — R1 1 O 1
%23121511:1531 0 -2 -1 Riié?i}? 0 1 %
0 -8 —4 2 00 0
So x1 = —x3, T3 = —%l‘:g, x3 = z3 and (choosing r3 = —2) ((271’_2» is a basis for
Es(-2).



For A\ = —3:

-3—-6 24 4 -9 24 4 1 4 4
2 3410 2l =|—2 7 2| mom |2 7 2
-1 -4 -3-1 -1 —4 —4 -9 24 4
1 4 4 1 4 4 10 %
BIETE |0 15 10] MO Jo 1 2 meameom o1 2
0 60 40 0 0 O 0 0 O
So x1 = —%azg, Ty = —%xg, x3 = x3 and (choosing z3 = —3) ((4,2,—3)) is a basis for
E4(2).
(b)
A—T 24 6
det -2 AN+7 2
0 0 Xx—1
- (- 1)(()\ “TA+T) - (_2)24)
- (-1 1)

= A—1)2A4+1)
And so the eigenvalues are

A=1, A=-1

We now use the Gauss Jordan Algorithm to find a basis for E4(\) = Nul(A] — A) for
each of the two eigenvalues.

A=1
1-7 24 6 —6 24 6 1 —4 -1
9 147 20 =|-2 8 2| SimrR oo 0 0
0 0 1—-1 0O O 0 0 0 0

So x1 = 4x9 + 3, T2 = T9, x3 = x3 and <(4, 1,0), (1,0, 1)) is a basis for E4(1)

A=—1
—1-7 24 6 -8 24 6 1R1 > R1 1 -3 -1
-2 147 2| =1]-2 6 2| y@omo g4 12 3
0 0 —1—-1 0O 0 -2 Rl < R2 0 0 1
1 -3 -1 1 -3 0
Rl — R2 — R1
R2 + 4R1 — R2 0 0 -1 R3+R2—R3 |() 0 1
—R2 — R2
0 0 1 0 0 0



So x1 = 3x9, T3 = 22, x3 = 0 and ((3, 1,0)) is a basis for E4(—1)

(c)
A—3 —1

det 0 A—3 —
0 0 \N—

w = O

= (A =3)((A=3)(A=3) = 0(-1)) = (A~ 3)°

and so A = 3 is the only eigenvalue. We now use the Gauss Jordan Algorithm to find a
basis for F4(3) = Nul(3] — A).

3-3 -1 0 0 -1 0 010
0 3-3 —1|=1(0 0 —1| “B=E 10 0 1
0 0 3-3 0 0 0 00 0

Soxz1 =x1,z0=0, z3 =0 and ((1,0,0)) is a basis for E4(3)

(d)

A-3 7 4
det | 1 A—9 —4
2 14 A+6
= =3[ =90 +6)— 14(-1)) = 7(1(A +6) = (=2)(-40)) +4(1(14) - (-2)(A - 9))
= A=3) (A2 =3X+2) —T(A—2) +4(2\ — 4)
A=3)A—1)(A—2) = T(A—2) +8(A —2)
= (A2 —4A+3-T+8)(A—2)
N —aA+4)(A—-2)
— (A —2)3

and so A = 2 is the only eigenvalue. We now use the Gauss Jordan Algorithm to find a
basis for E4(2) = Nul(2] — A).

23 7 4 -1 7 4 1 —7 —4
R3 +2R2 — R2

1 2—-9 —4| = 1 -7 —4 Rl,;f2}f2 0 0 0

—2 14 2+6 -2 14 8 ' 0 0 0

So x1 = Ty + 4x3, 9 = 22, r3 = x3 and ((7, 1,0), (4,0, 1)) is a basis for F4(2)

()

A+1 1 =10 A A 4 R1— R3 — R1
DAkl 6| BIESR L as1 —s| MafE
1 1 A—6 0 —=x A



1 2+1 —6 1 A+1 —6
A 0 —A—d4| o g A=A
0 A -2 0 —A2— X 5Ax—4
[1 A+1 —6

R3+(A+1)R2—R3 |() A -\

0 0 —(A—2)?

So the eigenvalues are A = 0 and A = 2. We now continue to use the Gauss Jordan
Algorithm to find a basis for E4(\) = Nul(A — A) for each of the two eigenvalues.

For A = 0.
0+1 0+1 —6 11 - n 110
R3+(A+1)— 143 R3
0 0 —-0l=1]0 0 0O RL+ 673 5 R1 0 01
2 < R3
0 0 —(0—2)2 0 0 —4 0 0 0

So 21 = —x9, x9 = x9, x3 = 0 and ((—1, 1,0)) is a basis for E4(0)

For A=2
1 241 —6 1 3 -6 1 0 -3
0 2 20 =10 2 —2| 2o 10 1 -1
0 0 —(2-2)? 00 0 00 0
So x1 = 3x3, T9 = w3, x3 = x3 and ((3, 1, 1)) is a basis for E4(2)

(f)

A-1 5 -5
det —% A4
_% 1
2A—-1 5 -5
= 5 det -3 A 4
-1 1 A

- {00 -sir ) cofian- o)
- %((2)\3—)\2—8)\+4)—5(4—3)\)_5()‘_3)>

_ J(28 - a2+ 22 -1)

_ T2A-1(N2+1)

and so A = % is the only eigenvalue. We now use the Gauss Jordan Algorithm to find a

basis for Ea(3) = Nul(31 — A).



2%_1 5 =5 0 5 =5 1Rl R1 1 -1 —%
=3 A= |3 4 RS |01 -
-1 1 % -1 1 % R2 +» R3 __3 % 4

1 0 -3 10 -3
1?331131?21:1523 0 1 —1| ms+3r2—rs |0 1 -—1
0o -3 3 00 0

So x1 = %I‘g, x9 = x3, 3 = x3 and (choosing z3 = 2) ((3, 2, 2)) is a basis for E4(3)

(Section 8.1 Exercise 8). Compute the eigenvalues of the matrices

(a) [—5 9] -2 8 7 4

0 3 () 0 3 59

0 019

o4 s L 0005
(b) |0 =3 9 [a b ¢
0 0 2 (d) |0 d e
00 f

(e) What feature of these matrices makes it relatively easy to compute their eigenvalues?
(f) Formulate a general result suggested by this observation.

(9) Prove your conjecture.

(e) They are upper triangular:
Definition IT An n xn matriz is called upper triangular if a;; = 0 for all1 < j <i < n.
(f): Conjecture III  Let A be an upper triangular n X n-matriz. Then

det A = a11a99 ... ann

Conjecture IV Let A be an upper triangular n X n-matriz. Then

XAA) = (A —a1n)(A—a)...(A— ann).

and so the eigenvalues of A are

A:all, )\:(1227 ey )\:ann



(g): Proof of Conjecture III: If n = 1 then det A = a3; and Conjecture IIT holds.
(Conjecture I1II also holds for n = 0 as long as one defines the product of an empty list of
elements to be 1)

Suppose now that Conjecture III holds for all upper triangular (n—1) x (n—1)-matrices.
Let A be an upper triangular n x n-matrix. Expanding the determinant along row n we get

det A = Z(—l)”+janj det Ap;.
j=1

Since A is upper triangular, a,; =0 for all 1 < j < n. Also (=1)"*" =1 and so

det A = ayny, det Ay, = (det Apy)ann

Since A is upper triangular, a;; = 0 for all 1 < j <7 <n—1. So A, is upper triangular,
and the det 4,,,, = a11a92 . .. A(n—1)(n—1) by the induction assumption. Hence

det A = (det App)ann = a11a22 - - - A(n—1)(n—1)nn

So if Conjecture III holds for n—1 it also holds for n. Thus by the principal of induction,
the Conjecture holds for all positive integers n.

Proof of Conjecture IV: Let A be an upper triangular matrix and A € R. Put B=AI—A
Note that Al is upper triangular and so also B is upper triangular. Thus by Conjecture 111

detB:bH...bm

We have b;; = A — a;; and so

XA()\) = det()\I — A) =det B = b11 .. bnn = ()\ — an)()\ — CLQQ) .. ()\ — ann)

Since the eigenvalues of A are the roots of x4, we conclude that the eigenvalues of A
are A = a1, A = ag9,...,\ = any, and Conjecture IV is proved.

The proven conjecture 4 now allows us to solve (a)-(d)
(a) The eigenvalues are —5 and 3.
(b) The eigenvalues are 7, —3 and 2.

(c) The eigenvalues are —2, 3, 1 and 5.
(d) The eigenvalues are a, d and f.

(Section 8.1 Exercise 13). Suppose v is an eigenvector of an nxn n matriz A associated
with the eigenvalue \. Suppose P is a invertible n x n-matriz. Show that P~ v is an
eigenvector of P~YAP associated to \.



Since v is an eigenvector of A associated to A, v # 0 and Av = Av.
Since P71 is invertible, NulP~! = {2} and since v # 0 we conclude that P~1v # 0.
Also

(P~LAP)(P~Lv) = P! <A((PP_1)U)) = P7Y(A(Iv)) = P (Av) = P~ (\) = A(P 1)

and so P~'v is an eigenvector of P~! AP associated to .

(Section 8.1 Exercise 14). Suppose that A and A" are n X n- matrices. Suppose v is an
eigenvector of A associated with the eigenvalue \. Suppose v is also an eigenvector of A’
associated with the eigenvalue X'. Show that v is an eigenvector of A+ A’ associated with
A+ N

Since v is an eigenvector of A associated with the eigenvalue A we have v # 0 and
Av = Mv. And since v is also an eigenvector of A’ associated with the eigenvalue X,
A'v = Nv. Thus

(A+Aw=Av+Av= +Nv=A+XN)v
Hence v is an eigenvector of A + A’ associated with A + \.

(Section 8.1 Exercise 15). Suppose v is an eigenvector of an n x n matriz A associated
with the eigenvalue X

(a) Show that v is an eigenvector of A%. With what eigenvalue is it associated?
(b) State and prove a generalization of your result in part a to higher powers of A

(c) What can you say about eigenvalues and eigenvectors of A1 and other negative powers

of A.
(b) We will prove:
(*) Let n be a non-negative integer. Then v is an eigenvector of A™ associated to A".

We have A% = Iv = v = 1v = A\’ and so (*) holds for n = 0. Suppose (*) holds for n.
Then A™v = A"v. Also since v is an eigenvector of A associated to A, v # 0 and Av = Awv.
Thus

Ay = (A" Ay = A" (Av) = A™(\v) = MA™) = A(\™) = (A7) (v) = Ay

Hence v is an eigenvector of A"*! associated to A"*!. Thus (*) holds for n + 1 and by
the Principal of Induction, (*) holds for all non-negative integers n.

(a) By (*) applied with n = 2, v is an eigenvector of A? associated to A\2.



(c) Suppose now that A is invertible. We will show

(**) A #0 and v is an eigenvector of A~! associated to A7

We have
Av = v — v is an eigenvector of A associated to A
= A 1(Av) = A7'(w)
= (A 1A = XA M)
= Iv = XA )
= v = ANAl)

Since v # 0 and Ox = 0 for all x € R™ we conclude that A # 0. Then multiplying the
previous equation by A~! gives A~'v = A~!v. So (**) holds. Next we prove

(***) Let n be an integer. Then v is an eigenvector of A™ associated to A".
From (*) we know that (***) holds if n > 0. So suppose n < 0 and put m = —n. By
(**) we can apply (*) to m, A=* and A~! in place of n, A and A\. Thus
v is an eigenvector of (A~1)™ associated to (A~1)™.
Since A" = A™™ = (A7) and A" = A7 = (A~1)™ we conclude that (***) holds.
(Section 8.1 Exercise 16). Suppose T : V. — V and T' : V. — V are linear operators
on a vector space V. Suppose v is an eigenvector of T associated with the eigenvalue \.

Suppose v is also an eigenvector of T' associated with the eigenvalue N'. Show that v is an
eigenvector of the composition T' o T. What is the eigenvalue?

Since v is an eigenvector of T' associated with the eigenvalue A, v # 0 and T'(v) = Av.
Since v is an eigenvector of 7" associated with the eigenvalue A, T"(v) = N'v. Thus

(T'oT)(v) =T (T(v)) =T' (M) = A(T'(v)) = ANv) = (AN )v

So v is an eigenvector of T” o T associated to A)'.

(Section 8.2 Exercise 4). (a) Show that B g] is similar to [g g] .

2 00 7 0 0
(b) Show that |0 3 0] is similar to |0 2 0.
007 0 0 3

2 0
(a)PutA—{O 3

Ly(ez) = Aes = ag = 3ea = 3e2+0e1 and Lg(e1) = Aep = a1 = 2e3 = Oeg + 2e1, the matrix
of L4 with respect to E’ is

] and A" = B g} Consider the basis E' = (eg,e1) of R?. Since

10



[atedlen [Laeler] = 5 | =4

Note also that A is the matrix of L4 with respect to the standard basis, and so by
Lemma N8.2.2, A’ is similar to A.

2
(b) Put A = |0
0

o w o
N O O

7
and A’ = [0
0

O N O

0
0|. Consider basis E' = (es,e1,e2) of R2.
3

Since L4 (e3) = Aes = a3 = Teg = Teg+0e1+0e2, La(e1) = Ae; = a1 = 2e; = Oez+2e1+0ea,
and Ly (eg) = Aes = 3as = 3e2 = Oes + Oey + 3e2 the matrix of Ly with respect to E' is

7 0
0 0
00 3

0
Laea)ler. [Lalen]er [La(ea)]r] = [0 2 0f =4

Note also that A is the matrix of L4 with respect to the standard basis, and so by
Lemma N8.2.2, A’ is similar to A

(Section 8.2 Exercise 9). Find two matrices that have the same characteristic polynomial
but are not similar.

Let A = [8 8 and A’ = (1)] Note that both A and A’ are upper triangular and

0

0
so by Conjecture IV, x4(A) = (A = 0)(A = 0) = xa/(\). Thus A and A’ have the same
characteristic polynomial. Let P be an invertible 2 x 2-matrix, then P71AP = AP = A
and so A’ # P"1AP. Thus A’ is not similar A.

(Section 8.2 Exercise 15). Suppose A is the matriz of a linear map T : V. — 'V relative
to the basis B of the n-dimensional vector space V.

(a) Prove that if v is an eigenvector of T associated to X then [v]p is an eigenvector for A
associated to A.

(b) Prove that if x € R™ is an eigenvector of A associated to X then Lg(x) is an eigenvector
for T associated to A.

Let v € V and put € R". Since Cp is the inverse of Lp, x = [v]p if and only of Lp(z).
Suppose that = [v]p Then

Tv = M
< [Tv]p = [M]p — since Cpis 1-1
<= Avl]p = Apv]p — Theorem 6.11 ,Cp is linear
< Ar = Az —sincez=[v|p

The forward direction gives (a) and since v = Lp(x), the backward direction gives (b).
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