
MTH 309-4 Linear Algebra I F11

Homework 12/Solutions

Section Exercises
8.1 5,6,7,8,13,14,15,16
8.2 4,9,15

(Section 8.1 Exercise 5). Suppose λ is an eigenvalue of a linear operator T : Rn → Rn.
Let A be the matrix of T relative to the standard basis for Rn . Show that the eigenspace
ET (λ) of the operator T is equal to the eigenspace EA(λ) of the matrix A.

By definition

ET (λ) = {x ∈ Rn | T (x) = λx} and EA(λ) = {x ∈ Rn | Ax = λx}

By Theorem 6.10, T (x) = Ax for all x ∈ Rn and so ET (λ) = EA(λ).

(Section 8.1 Exercise 6). Prove that if A is an n× n-matrix, then det(λI − A) defines
an nth-degree polynomial in the variable λ.

We will first prove:

(*) Let A and B be n× n matrices. Define f : R→ R by f(λ) = det(λB − A). Then
f is a polynomial of degree at most n.

The proof is by induction on n. If n = 0, then f(λ) = det[] = 1 for all λ ∈ R and so
f is a polynomial of degree 0. So (*) holds for n = 0. Suppose now that (*) holds for any
n− 1×n− 1-matrices. Let A and B be n×n-matrices. For 1 ≤ j ≤ n define fj : R→ R by

fj(λ) = det(λB1j −A1j)

By the induction assumption fj is a polynomial of degree at most n− 1.
Let λ ∈ R and put CλB −A. Then c1j = λb1j − aij and C1j = λB1j −A1j . Thus

f(λ) = det(λB −A) = det(C)

=
n∑

j=1

(−1)1+jc1j det(Cij)

=
n∑

j=1

(−1)1+jc1j det(λB1j −A1j)

=
n∑

j=1

(−1)1+j(λb1j − a1j)fj(λ)
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Thus

(∗∗) f(λ) =

n∑
j=1

(−1)1+j(λb1j − a1j)fj(λ)

Since fj is polynomial of degree at most n, (−1)1+j(λb1j−a1j)fj(λ) defines a polynomial
of degree of at most n. The sums of polynomials of degree at most n is a polynomial of
degree at most n. So (**) shows that f is a polynomial of degree at most n.

The principal of induction now shows that (*) holds for all non-negative integers n.
Consider now the case B = I. By (*) f is polynomial of degree at most n. It remains

to show that

(***) If B = I, then f has degree n.

For n = 0, we have f = 1 and so (***) holds for n = 0. Suppose now that (***) holds
for n− 1. Note that (In)11 = In−1 and so f1(λ) = det(λIn−1−A11). Thus by the induction
assumption f1 has degree n − 1. Since B = I, b11 = 1 and b1j = 0 for 1 ≤ j ≤ n. So (**)
shows

(∗ ∗ ∗∗) f(λ) = (λ− a11)f1(λ) +
n∑

j=2

(−1)ja1jfj(λ)

a1jfj(λ) defines is a polynomial of degree at most n− 1 and so also
∑n

j=2(−1)ja1jfj(λ)
defines a polynomial of degree at most n − 1. Since f1 has degree n − 1, (λ − a11)f1(λ)
defined a polynomial of degree n. (****) shows that f is a polynomial of degree n.

The principal of induction now shows that (***) holds for all non-negative integers n.

(Section 8.1 Exercise 8). Find the eigenvalues of the following matrices. For each
eigenvalue, find a basis for the corresponding eigenspace.

(a)

6 −24 −4
2 −10 −2
1 4 1

.

(b)

7 −24 −6
2 −7 −2
0 0 1

.

(c)

3 1 0
0 3 1
0 0 3

.

(d)

 3 −7 −4
−1 9 4

2 −14 −6

.

(e)

−1 −1 10
−1 −1 6
−1 −1 6

.

(f)

1
2 −5 5
3
2 0 −4
1
2 −1 0

.
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(a)

det

λ− 6 24 4
−2 λ+ 10 2
−1 −4 λ− 1


= (λ− 6)

(
(λ+ 10)(λ− 1)− (−4)2

)
− 24

(
− 2(λ− 1)− (−1)2

)
+ 4
(
− 2(−4)− (−1)(λ+ 10)

)
= (λ− 6)(λ2 + 9λ− 2)− 24(−2λ+ 4) + 4(λ+ 18)

= λ3 − 6λ2 + 9λ2 − 54λ− 2λ+ 12 + 48λ− 96 + 4λ+ 72

= λ3 + 3λ2 − 4λ− 12

= (λ2 − 4)(λ+ 3)

= (λ− 2)(λ+ 2)(λ+ 3)

And so the eigenvalues are

λ = 2, λ = −2 and λ = −3

We now use the Gauss Jordan Algorithm to find a basis for EA(λ) = Nul(λI − A) for
each of the three eigenvalues.

For λ = 2:2− 6 24 4
−2 2 + 10 2
−1 −4 2− 1

 =

−4 24 4
−2 12 2
−1 −4 1

 − 1
4
R1→ R1

− 1
2
R2→ R2

−R3→ R3

1 −6 −1
1 −6 −1
1 4 −11


R2− R1→ R2
R3− R1→ R2
R2↔ R3

1 −6 −1
0 −10 −10
0 0 0

 − 1
10
R2→ R2

R1 + 6R2→ R1

1 0 5
0 1 1
0 0 0


So x1 = −5x3, x2 = −x3, x3 = x3 and

(
(−5,−1, 1)

)
is a basis for EA(2).

For λ = −2:−2− 6 24 4
−2 −2 + 10 2
−1 −4 −2− 1

 =

−8 24 4
−2 8 2
−1 −4 −3

 − 1
4
R1→ R1

− 1
2
R2→ R2

R1↔ R2

 1 −4 −1
−2 6 1
−1 −4 −3


R2 + 2R1→ R1
R3 + R1→ R3

1 −4 −1
0 −2 −1
0 −8 −4

 R1− 2R2→ R1
R3− 4R2→ R3

− 1
2
R2→ R2

1 0 1
0 1 1

2
0 0 0


So x1 = −x3, x2 = −1

2x3, x3 = x3 and (choosing x3 = −2)
(

(2, 1,−2)
)

is a basis for

EA(−2).
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For λ = −3:−3− 6 24 4
−2 −3 + 10 2
−1 −4 −3− 1

 =

−9 24 4
−2 7 2
−1 −4 −4

 −R3→ R3
R1↔ R3

 1 4 4
−2 7 2
−9 24 4


R2 + 2R1→ R2
R3 + 9R1→ R3

1 4 4
0 15 10
0 60 40

 R3− 3R2→ R2
1
15
R2→ R2

1 4 4
0 1 2

3
0 0 0

 R1− 4R2→ R1

1 0 4
3

0 1 2
3

0 0 0


So x1 = −4

3x3, x2 = −2
3x3, x3 = x3 and (choosing x3 = −3)

(
(4, 2,−3)

)
is a basis for

EA(2).

(b)

det

λ− 7 24 6
−2 λ+ 7 2

0 0 λ− 1


= (λ− 1)

(
(λ− 7)(λ+ 7)− (−2)24

)
= (λ− 1)(λ2 − 1)

= (λ− 1)2(λ+ 1)

And so the eigenvalues are

λ = 1, λ = −1

We now use the Gauss Jordan Algorithm to find a basis for EA(λ) = Nul(λI − A) for
each of the two eigenvalues.

λ = 1 1− 7 24 6
−2 1 + 7 2

0 0 1− 1

 =

−6 24 6
−2 8 2

0 0 0

 − 1
6
R1→ R1

R2 + 2R1→ R2

1 −4 −1
0 0 0
0 0 0


So x1 = 4x2 + x3, x2 = x2, x3 = x3 and

(
(4, 1, 0), (1, 0, 1)

)
is a basis for EA(1)

λ = −1−1− 7 24 6
−2 −1 + 7 2

0 0 −1− 1

 =

−8 24 6
−2 6 2

0 0 −2

 1
2
R1→ R1

− 1
2
R2→ R2

− 1
2
R3→ R3

R1↔ R2

 1 −3 −1
−4 12 3

0 0 1



R2 + 4R1→ R2

1 −3 −1
0 0 −1
0 0 1

 R1− R2→ R1
R3 + R2→ R3
−R2→ R2

1 −3 0
0 0 1
0 0 0


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So x1 = 3x2, x2 = x2, x3 = 0 and
(

(3, 1, 0)
)

is a basis for EA(−1)

(c)

det

λ− 3 −1 0
0 λ− 3 −1
0 0 λ− 3

 = (λ− 3)
(

(λ− 3)(λ− 3)− 0(−1)
)

= (λ− 3)3

and so λ = 3 is the only eigenvalue. We now use the Gauss Jordan Algorithm to find a
basis for EA(3) = Nul(3I −A).3− 3 −1 0

0 3− 3 −1
0 0 3− 3

 =

0 −1 0
0 0 −1
0 0 0

 −R1→ R1
−R2→ R2

0 1 0
0 0 1
0 0 0


So x1 = x1, x2 = 0, x3 = 0 and

(
(1, 0, 0)

)
is a basis for EA(3)

(d)

det

λ− 3 7 4
1 λ− 9 −4
−2 14 λ+ 6


= (λ− 3)

(
(λ− 9)(λ+ 6)− 14(−4)

)
− 7
(

1(λ+ 6)− (−2)(−4)
)

+ 4
(

1(14)− (−2)(λ− 9)
)

= (λ− 3)(λ2 − 3λ+ 2)− 7(λ− 2) + 4(2λ− 4)

(λ− 3)(λ− 1)(λ− 2)− 7(λ− 2) + 8(λ− 2)

= (λ2 − 4λ+ 3− 7 + 8)(λ− 2)

= (λ2 − 4λ+ 4)(λ− 2)

= (λ− 2)3

and so λ = 2 is the only eigenvalue. We now use the Gauss Jordan Algorithm to find a
basis for EA(2) = Nul(2I −A).2− 3 7 4

1 2− 9 −4
−2 14 2 + 6

 =

−1 7 4
1 −7 −4
−2 14 8

 R3 + 2R2→ R2
R1 + R2→ R2
−R1→ R1

1 −7 −4
0 0 0
0 0 0


So x1 = 7x2 + 4x3, x2 = x2, x3 = x3 and

(
(7, 1, 0), (4, 0, 1)

)
is a basis for EA(2)

(e) λ+ 1 1 −10
1 λ+ 1 −6
1 1 λ− 6

 R3− R2→ R3
R1− R2→ R1

λ −λ −4
1 λ+ 1 −6
0 −λ λ

 R1− R3→ R1
R1↔ R2
−R3→ R3
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1 λ+ 1 −6
λ 0 −λ− 4
0 λ −λ

 R2− λR1→ R2
R2↔ R3

1 λ+ 1 −6
0 λ −λ
0 −λ2 − λ 5λ− 4


R3 + (λ + 1)R2→ R3

1 λ+ 1 −6
0 λ −λ
0 0 −(λ− 2)2


So the eigenvalues are λ = 0 and λ = 2. We now continue to use the Gauss Jordan

Algorithm to find a basis for EA(λ) = Nul(λI −A) for each of the two eigenvalues.

For λ = 0.0 + 1 0 + 1 −6
0 0 −0
0 0 −(0− 2)2

 =

1 1 −6
0 0 0
0 0 −4

 R3 + (λ + 1)− 14
R

3→ R3
R1 + 6R3→ R1

R2↔ R3

1 1 0
0 0 1
0 0 0


So x1 = −x2, x2 = x2, x3 = 0 and

(
(−1, 1, 0)

)
is a basis for EA(0)

For λ = 21 2 + 1 −6
0 2 −2
0 0 −(2− 2)2

 =

1 3 −6
0 2 −2
0 0 0

 1
2
R2→ R2

R1− 3R2→ R1

1 0 −3
0 1 −1
0 0 0


So x1 = 3x3, x2 = x3, x3 = x3 and

(
(3, 1, 1)

)
is a basis for EA(2)

(f)

det

λ− 1
2 5 −5
−3

2 λ 4
−1

2 1 λ


= 1

2 det

2λ− 1 5 −5
−3 λ 4
−1 1 λ


= 1

2

(
(2λ− 1)

(
λ2 − 4

)
− 5
(

(−3)λ− (−1)4
)

+ (−5)
(

(−3)1− (−1)λ
))

= 1
2

(
(2λ3 − λ2 − 8λ+ 4)− 5(4− 3λ)− 5(λ− 3)

)
= 1

2

(
2λ3 − λ2 + 2λ− 1

)
= 1

2(2λ− 1)(λ2 + 1)

and so λ = 1
2 is the only eigenvalue. We now use the Gauss Jordan Algorithm to find a

basis for EA(12) = Nul(12I −A).
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21
2 − 1 5 −5
−3 1

2 4
−1 1 1

2

 =

 0 5 −5
−3 1

2 4
−1 1 1

2

 1
5
R1→ R1
−R3→ R3
R1↔ R3
R2↔ R3

 1 −1 −1
2

0 1 −1
−3 1

2 4


R3 + 3R1→ R3
R1 + R2→ R2

1 0 −3
2

0 1 −1
0 −5

2
5
2

 R3 + 5
2
R2→ R3

1 0 −3
2

0 1 −1
0 0 0


So x1 = 3

2x3, x2 = x3, x3 = x3 and (choosing x3 = 2)
(

(3, 2, 2)
)

is a basis for EA(3)

(Section 8.1 Exercise 8). Compute the eigenvalues of the matrices

(a)

[
−5 9

0 3

]

(b)

7 4 −3
0 −3 9
0 0 2

.

(c)


−2 8 7 4

0 3 5 9
0 0 1 9
0 0 0 5



(d)

a b c
0 d e
0 0 f


(e) What feature of these matrices makes it relatively easy to compute their eigenvalues?

(f) Formulate a general result suggested by this observation.

(g) Prove your conjecture.

(e) They are upper triangular:

Definition II An n×n matrix is called upper triangular if aij = 0 for all 1 ≤ j < i ≤ n.

(f): Conjecture III Let A be an upper triangular n× n-matrix. Then

detA = a11a22 . . . ann

Conjecture IV Let A be an upper triangular n× n-matrix. Then

χA(λ) = (λ− a11)(λ− a22) . . . (λ− ann).

and so the eigenvalues of A are

λ = a11, λ = a22, . . . , λ = ann

.
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(g): Proof of Conjecture III: If n = 1 then detA = a11 and Conjecture III holds.
(Conjecture III also holds for n = 0 as long as one defines the product of an empty list of
elements to be 1)

Suppose now that Conjecture III holds for all upper triangular (n−1)×(n−1)-matrices.
Let A be an upper triangular n×n-matrix. Expanding the determinant along row n we get

detA =

n∑
j=1

(−1)n+janj detAnj .

Since A is upper triangular, anj = 0 for all 1 ≤ j < n. Also (−1)n+n = 1 and so

detA = ann detAnn = (detAnn)ann

Since A is upper triangular, aij = 0 for all 1 ≤ j < i ≤ n−1. So Ann is upper triangular,
and the detAnn = a11a22 . . . a(n−1)(n−1) by the induction assumption. Hence

detA = (detAnn)ann = a11a22 . . . a(n−1)(n−1)ann

So if Conjecture III holds for n−1 it also holds for n. Thus by the principal of induction,
the Conjecture holds for all positive integers n.

Proof of Conjecture IV: Let A be an upper triangular matrix and λ ∈ R. Put B = λI−A
Note that λI is upper triangular and so also B is upper triangular. Thus by Conjecture III

detB = b11 . . . bnn

We have bii = λ− aii and so

χA(λ) = det(λI −A) = detB = b11 . . . bnn = (λ− a11)(λ− a22) . . . (λ− ann)

Since the eigenvalues of A are the roots of χA, we conclude that the eigenvalues of A
are λ = a11, λ = a22, . . . , λ = ann and Conjecture IV is proved.

The proven conjecture 4 now allows us to solve (a)-(d)

(a) The eigenvalues are −5 and 3.

(b) The eigenvalues are 7, −3 and 2.

(c) The eigenvalues are −2, 3, 1 and 5.
(d) The eigenvalues are a, d and f .

(Section 8.1 Exercise 13). Suppose v is an eigenvector of an n×n n matrix A associated
with the eigenvalue λ. Suppose P is a invertible n × n-matrix. Show that P−1v is an
eigenvector of P−1AP associated to λ.
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Since v is an eigenvector of A associated to λ, v 6= 0 and Av = λv.
Since P−1 is invertible, NulP−1 = {z} and since v 6= 0 we conclude that P−1v 6= 0.

Also

(P−1AP )(P−1v) = P−1
(
A
(
(PP−1)v

))
= P−1

(
A(Iv)

)
= P−1(Av) = P−1(λv) = λ(P−1v)

and so P−1v is an eigenvector of P−1AP associated to λ.

(Section 8.1 Exercise 14). Suppose that A and A′ are n× n- matrices. Suppose v is an
eigenvector of A associated with the eigenvalue λ. Suppose v is also an eigenvector of A′

associated with the eigenvalue λ′. Show that v is an eigenvector of A + A′ associated with
λ+ λ′.

Since v is an eigenvector of A associated with the eigenvalue λ we have v 6= 0 and
Av = λv. And since v is also an eigenvector of A′ associated with the eigenvalue λ′,
A′v = λ′v. Thus

(A+A′)v = Av +A′v = λv + λ′v = (λ+ λ′)v

Hence v is an eigenvector of A+A′ associated with λ+ λ′.

(Section 8.1 Exercise 15). Suppose v is an eigenvector of an n× n matrix A associated
with the eigenvalue λ

(a) Show that v is an eigenvector of A2. With what eigenvalue is it associated?

(b) State and prove a generalization of your result in part a to higher powers of A

(c) What can you say about eigenvalues and eigenvectors of A−1 and other negative powers
of A.

(b) We will prove:

(*) Let n be a non-negative integer. Then v is an eigenvector of An associated to λn.

We have A0v = Iv = v = 1v = λ0v and so (*) holds for n = 0. Suppose (*) holds for n.
Then Anv = λnv. Also since v is an eigenvector of A associated to λ, v 6= 0 and Av = λv.
Thus

An+1v = (AnA)v = An(Av) = An(λv) = λ(Anv) = λ(λnv) = (λλn)(v) = λn+1v

Hence v is an eigenvector of An+1 associated to λn+1. Thus (*) holds for n+ 1 and by
the Principal of Induction, (*) holds for all non-negative integers n.

(a) By (*) applied with n = 2, v is an eigenvector of A2 associated to λ2.
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(c) Suppose now that A is invertible. We will show

(**) λ 6= 0 and v is an eigenvector of A−1 associated to λ−1.

We have

Av = λv − v is an eigenvector of A associated to λ
=⇒ A−1(Av) = A−1(λv)
=⇒ (A−1A)v = λ(A−1v)
=⇒ Iv = λ(A−1v)
=⇒ v = λ(A−1v)

Since v 6= 0 and 0x = 0 for all x ∈ Rn we conclude that λ 6= 0. Then multiplying the
previous equation by λ−1 gives A−1v = λ−1v. So (**) holds. Next we prove

(***) Let n be an integer. Then v is an eigenvector of An associated to λn.

From (*) we know that (***) holds if n ≥ 0. So suppose n < 0 and put m = −n. By
(**) we can apply (*) to m,A−1 and λ−1 in place of n,A and λ. Thus

v is an eigenvector of (A−1)m associated to (λ−1)m.

Since An = A−m = (A−1)m and λn = λ−m = (λ−1)m we conclude that (***) holds.

(Section 8.1 Exercise 16). Suppose T : V → V and T ′ : V → V are linear operators
on a vector space V . Suppose v is an eigenvector of T associated with the eigenvalue λ.
Suppose v is also an eigenvector of T ′ associated with the eigenvalue λ′. Show that v is an
eigenvector of the composition T ′ ◦ T . What is the eigenvalue?

Since v is an eigenvector of T associated with the eigenvalue λ, v 6= 0 and T (v) = λv.
Since v is an eigenvector of T ′ associated with the eigenvalue λ′, T ′(v) = λ′v. Thus

(T ′ ◦ T )(v) = T ′
(
T (v)

)
= T ′(λv) = λ

(
T ′(v)

)
= λ(λ′v) = (λλ′)v

So v is an eigenvector of T ′ ◦ T associated to λλ′.

(Section 8.2 Exercise 4). (a) Show that

[
2 0
0 3

]
is similar to

[
3 0
0 2

]
.

(b) Show that

2 0 0
0 3 0
0 0 7

 is similar to

7 0 0
0 2 0
0 0 3

.

(a) Put A =

[
2 0
0 3

]
and A′ =

[
3 0
0 2

]
. Consider the basis E′ = (e2, e1) of R2. Since

LA(e2) = Ae2 = a2 = 3e2 = 3e2 +0e1 and LA(e1) = Ae1 = a1 = 2e1 = 0e2 +2e1, the matrix
of LA with respect to E′ is
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[
[LA(e2)]E′ , [LA(e1)]E′

]
=

[
3 0
0 2

]
= A′.

Note also that A is the matrix of LA with respect to the standard basis, and so by
Lemma N8.2.2, A′ is similar to A.

(b) Put A =

2 0 0
0 3 0
0 0 7

 and A′ =

7 0 0
0 2 0
0 0 3

. Consider basis E′ = (e3, e1, e2) of R2.

Since LA(e3) = Ae3 = a3 = 7e3 = 7e3+0e1+0e2, LA(e1) = Ae1 = a1 = 2e1 = 0e3+2e1+0e2,
and LA(e2) = Ae2 = 3a2 = 3e2 = 0e3 + 0e1 + 3e2 the matrix of LA with respect to E′ is

[
[LA(e3)]E′ , [LA(e1)]E′ , [LA(e2)]E′

]
=

7 0 0
0 2 0
0 0 3

 = A′.

Note also that A is the matrix of LA with respect to the standard basis, and so by
Lemma N8.2.2, A′ is similar to A

(Section 8.2 Exercise 9). Find two matrices that have the same characteristic polynomial
but are not similar.

Let A =

[
0 0
0 0

]
and A′ =

[
0 1
0 0

]
. Note that both A and A′ are upper triangular and

so by Conjecture IV, χA(λ) = (λ − 0)(λ − 0) = χA′(λ). Thus A and A′ have the same
characteristic polynomial. Let P be an invertible 2 × 2-matrix, then P−1AP = AP = A
and so A′ 6= P−1AP . Thus A′ is not similar A.

(Section 8.2 Exercise 15). Suppose A is the matrix of a linear map T : V→ V relative
to the basis B of the n-dimensional vector space V .

(a) Prove that if v is an eigenvector of T associated to λ then [v]B is an eigenvector for A
associated to λ.

(b) Prove that if x ∈ Rn is an eigenvector of A associated to λ then LB(x) is an eigenvector
for T associated to λ.

Let v ∈ V and put x ∈ Rn. Since CB is the inverse of LB, x = [v]B if and only of LB(x).
Suppose that x = [v]B Then

Tv = λv
⇐⇒ [Tv]B = [λv]B − since CB is 1-1
⇐⇒ A[v]B = λ[v]B − Theorem 6.11 , CB is linear
⇐⇒ Ax = λx − since x = [v]B

The forward direction gives (a) and since v = LB(x), the backward direction gives (b).
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