Linear Algebra I

Homework 10/Solutions

Section	Exercises
6.4	$1,\!2$
6.5	$1,\!2,\!3,\!4,\!6$

(Section 6.5 Exercise 1). Consider the linear map $T : \mathbb{P}_2 \to \mathbb{P}_3$ defined by T(p) = xp. Consider the basis $B = (1, x, x^2)$ for \mathbb{P}_2 and the basis $B^* = (1, x, x^2, x^3)$ for \mathbb{P}_3 .

- (a) Find the matrix A of T relative to B and B^*
- (b) Find the matrix A^* of the differentiation operator $D : \mathbb{P}_3 \to \mathbb{P}_2$ relative to B^* and B. (So D(p) = p' where p' is the derivative of p).
- (c) Use Theorem 6.11 to compute the matrix of the composition $D \circ T : \mathbb{P}_2 \to \mathbb{P}_2$ relative to B and B.
- (d) Confirm that this is the product A^*A .
- (e) Use Theorem 6.11 to compute the matrix of the composition $T \circ D : \mathbb{P}_3 \to \mathbb{P}_3$ relative to B^* and B^* .
- (f) Confirm that this is the product AA^* .
 - (a):

(b)

(c)

(c)

$$A^*A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} = A^{**}$$

(e)

(f)

$$AA^{*} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} = A^{***}$$

(Section 6.5 Exercise 2). Consider the basis $B^* = (1 + x, x, 1 - x^2)$ and $B = (x, 1 - x, 1 + x^2)$ of \mathbb{P}_2 . Find the change-of-basis matrix for changing from B^* to B.

$$1 + x = 2x + 1(1 - x) + 0(1 + x^{2})$$
$$x = 1x + 0(1 - x) + 0(1 + x^{2})$$
$$1 - x^{2} = 2x + 2(1 - x) + (-1)(1 + x^{2})$$

So the change-of-basis matrix is

$$\begin{bmatrix} 2 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$

(Section 6.5 Exercise 3). Show that the matrix for changing from an ordered basis (u_1, \ldots, u_n) for \mathbb{R}^n to the standard basis for \mathbb{R}^n consists of the columns u_1, \ldots, u_n in that order.

Let $B = (u_1, \ldots, u_n)$ and let $E = (e_1, \ldots, e_n)$. Let P be the change-of-matrix basis from B to E. Then by Theorem 6.15

(*)
$$P = \left[[u_1]_E, [u_2]_E, \dots, [u_n]_E \right]$$

By an example in class (see N3.4.6 in the notes) $[x]_E = x$ for all $x \in E$. In particular, $[u_j]_E = u_j$ for all $1 \le j \le n$ and so (*) gives

$$P = \left[u_1, u_2, \dots, u_n\right]$$

A. Let **V** and **W** be vector spaces, let $B = (v_1, \ldots, v_n)$ be basis for **V** and let $E = (u_1, \ldots, u_n)$ be a list in W.

(a) Show that $L_E \circ C_B$ is a linear and $(L_E \circ C_B)(v_j) = u_j$ for all $1 \le j \le n$.

(b) Let $T: \mathbf{V} \to \mathbf{W}$ be a linear with $T(v_j) = u_j$ for all $1 \le j \le n$. Show that $T = L_E \circ C_B$.

(a) By N6.2.8(c) C_B is an isomorphism, in particular C_B is linear. By N6.1.5 L_E is linear. By Theorem 6.7 a composition of linear function is linear and so $L_E \circ C_B$ is linear. We compute

$$(L_E \circ C_B)(v_j) = L_E(C_B(v_j)) - \text{definition of composition}$$
$$= L_E(e_j) - \text{N6.2.8d}$$
$$= v_j - \text{N6.1.5d}$$

(b) Using (a) and the assumptions in (b) we have $(L_E \circ C_B)(v_j) = u_j = T(v_j)$. Since B is a basis for V, B spans V. Also both $L_E \circ C_B$ and T are linear. Thus Theorem 6.3 implies $T = L_E \circ C_B$.

B. Let **V** and **W** be vector spaces with basis *B* and *D* respectively. Let $n = \dim V$ and $m = \dim W$. For a linear function *T* from **V** to **W** let A_T be the matrix of *T* with respect to *B* and *D*.

Define the function $\alpha : L(\mathbf{V}, \mathbf{W}) \to \mathbb{M}(m, n)$ by $\alpha(T) = A_T$ for all $T \in L(\mathbf{V}, \mathbf{W})$. Define the function $\beta : \mathbb{M}(m, n) \to L(\mathbf{V}, \mathbf{W})$ by $\beta(A) = L_D \circ L_A \circ C_B$ for all $A \in \mathbb{M}(m, n)$.

- (a) Show that α is linear.
- (b) Show that β is linear.
- (c) Show that β is an inverse of α .

(d) Show that the vector space $\mathbf{L}(\mathbf{V}, \mathbf{W})$ is isomorphic to the vector space $\mathbb{M}(m, n)$.

(a) Let $T, S \in L(\mathbf{V}, \mathbf{W})$. Then by Lemma N6.4.2(a), the matrix for T + S with respect to B and D is $A_T + A_S$. So

$$\alpha(T+S) = A_{T+S} = A_T + A_S = \alpha(T) + \alpha(S).$$

Let $r \in \mathbb{R}$. Then by Lemma N6.4.2(b) the matrix for rT (with respect to B and D is rA_T . So

$$\alpha(rT) = rA_T = rA_T = r\alpha(T)$$

Thus α is linear.

(c) Let $A \in \mathbb{M}(m, n)$ and $T \in L(\mathbf{V}, \mathbf{W})$. Then Theorem 6.11(a,e) in the notes:

$$A = A_T \iff T = L_D \circ L_A \circ C_B$$

So by definition of α and β :

$$(*) A = \alpha(T) \Longleftrightarrow T = \beta(A)$$

Thus by Lemma A.5.6(a,g) in the appendix of the notes, β is an inverse of α .

(b) By (a) α is linear and by (c), β is the inverse of α . So by Theorem 6.8, β is linear.

(d) By (a) α is linear and by (c) α is invertible. Thus by definition, α is an isomorphism. Since α is a function from $\mathbf{L}(\mathbf{V}, \mathbf{W})$ to $\mathbb{M}(m, n)$, this implies that $\mathbf{L}(\mathbf{V}, \mathbf{W})$ is isomorphic to $\mathbb{M}(m, n)$.

C. Retain the notation from Exercise B. Suppose $B = (v_1, \ldots, v_n)$ and $D = (w_1, \ldots, w_m)$. For $1 \le i \le m$ and $1 \le j \le n$ let T_{ij} be unique linear function from **V** to **W** with

$$T_{ij}(v_k) = \begin{cases} w_i & \text{if } k = j \\ \mathbf{0}_{\mathbf{W}} & \text{if } k \neq j \end{cases}$$

for all $1 \le k \le n$. Also let A_{ij} be $m \times n$ matrix whose (i, j) entry is 1 and all other entries zero. Show that

$$\alpha(T_{ij}) = A_{ij} \text{ and } T_{ij} = \beta(A_{ij})$$

Fix $1 \leq i \leq m$ and $1 \leq j \leq n$. Let $A = \alpha(T_{ij})$. So $A = A_{T_{ij}}$ is the matrix of T_{ij} with respect to B and D. Let $1 \leq k \leq n$. By definition of A, column k of A is

$$a_k = [T_{ij}(v_k)]_D$$

Suppose that $k \neq j$. Then by definition of T_{ij} , $T_{ij}(v_k) = 0$ and so

$$a_k = [T_{ij}(v_k)]_D = [\mathbf{0}]_D = \mathbf{0}$$

Thus

 $a_{lk} = 0$ for all $1 \le l \le m$ and $1 \le k \le n$ with $k \ne j$

Suppose that k = j. By definition of T_{ij} , $T_{ij}(v_j) = w_i$. Thus

$$a_j = [T_{ij}(v_j)]_D = [w_i]_D = C_D(w_i) = e_i$$

where the last equality follows for example from N6.2.8d.

Hence

$$a_{ij} = 1$$
 and $a_{lj} = 0$ for all $1 \le l \le m$ with $l \ne i$

So the (i, j)-entry of A is 1, while all other entries are 0. Thus $A = A_{ij}$. We proved that $\alpha(T_{ij}) = A_{ij}$. Thus statement (*) in Exercise B shows that $\beta(A_{ij}) = T_{ij}$.