
MTH 309-4 Linear Algebra I F11

Homework 8/Solutions

Section Exercises

6.2 1,2,9,12,16,21

(Section 6.2 Exercise 2). For each of the following functions, either show the function
is onto by choosing an arbitrary element of the codomain and finding an element of the
domain that the function maps to the chosen element, or show the function is not onto by
finding an element of the codomain that is not in the image of the function.

(a) f : R→ R defined by f(x) = 1
3x− 2.

(b) p : R→ R defined by p(x) = x2 − 3x+ 2.

(c) s : R→ R defined by s(x) = (ex − e−x)/2.

(d) W : R→ {(x, y) ∈ R2 | x2 + y2 = 1} defined by W (t) = (cos t, sin t).

(e) L : R3 → R3 defined by L


x

y

z

 =


2x+ y − z

−x+ 2z

x+ y + z

.

(a): Let x, y ∈ R. Then

f(x) = y

⇐⇒ 1
3x− 2 = y

⇐⇒ 1
3x = y + 2

⇐⇒ x
=3(y + 2)

If follows that f
(
3(y + 2)

)
= y and so f is onto.

(b) Let x ∈ R. Then p(x) = (x2 − 3x + 2) = (x − 3
2)2 − (32)2 + 2 = (x3

2)2 − 1
4 ≤

1
4 . So

f(x) 6= −1 for all x ∈ R and so f is not onto.

(c) Let u ∈ {(x, y) ∈ R2 | x2 + y2 = 1}. Then u = (x, y) for some x, y ∈ R with
x2 + y2 = 1. Let (r, t) be the polar coordinates of (x, y). So x = r cos t and y = r sin t.
Since x2 + y2 = 1 we get r =

√
x2 + y2 = 1 and so

u = (x, y) = (r cos t, r sin t) = (cos t, sin t) = W (t)

Thus W is onto.
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(d) Let x, y ∈ R and put z = ex. Then z > 0. We have z + 1
z = 2y iff z2 − 2yz = 1

iff (z − y)2 = 1 + y2 and iff z = y ±
√

1 + y2. Since z is positive this holds if and only if
z = y +

√
1 + y2.

It follows that (ex − e−x)/2 = y iff z + 1
z = 2y and iff x = ln

(
y +

√
1 + y2

)
. Hence s is

onto.

(e) Let u ∈ R3. Then u = (a, b, c) for some a, b, c ∈ R3. To show that L is onto we need
the find (x, y, z) ∈ R3 with L(x, y, z) = (a, b, c). This is a linear system of equation and we
can solve it with the Gauss Jordan algorithm

2 1 −1 a

−1 0 2 b

1 1 1 c

 R3 + R2→ R2

−2R3 + R1→ R1

R1↔ R3


1 1 1 c

0 1 3 b+ c

0 −1 −3 a− 2c

 −R2 + R1→ R1

R2 + R3→ R3


1 0 −2 −b

0 1 3 b+ c

0 0 0 a+ b− c


If a+ b− c 6= 0, this has no solutions. So for example (1, 0, 0) is not in the image of L.

(Section 6.2 Exercise 12). Prove that the composition of 1-1 functions is 1-1.

Let f : I → J and g : J → K be 1-1 functions. Let a, b ∈ I with

(g ◦ f)(a) = (g ◦ f)(b).

Then the definition of composition yields

g
(
f(a)

)
= g
(
f(b)

)
.

Since g is 1-1 this implies

f(a) = f(b)

Since f is 1-1 we conclude that a = b. So g ◦ f is 1-1.

(Section 6.2 Exercise 16). For an element v0 of a vector space V, consider the translation
function τv0 : V → V defined by τv0(v) = v+ v0. Show that τv0 is invertible. Show that τ−1

v0
is also a translation function.

Let v, w ∈ V . Then

τv0(v) = w

⇐⇒ v + v0 = w − definition of τv0

⇐⇒ (v + v0) + (−v0) = w + (−v0) − Cancellation Theorem 1.8

⇐⇒ v = w + (−v0) − Lemma N1.3.1

⇐⇒ v = τ−v0(w) − definition of τ−v0
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Thus by Lemma A.5.6 in the appendix of the notes, τ−v0 is an inverse of τv0 . So τv0 is
invertible and τ−1

v0 is the translation function τ−v0 .

A. Let I be a set, V a vector space and F (I, V ) the set of function from I to V . For r ∈ R and
f, g ∈ F (I, V ) define the the functions f + g and rf from I to V by

(f + g)(i) = f(i) + g(i) and (rf)(i) = r
(
f(i)

)
for all i ∈ I. Prove that F (I, V ) with these operations is a vector space.

Properties (i),(ii) and (iii) of a vector space hold by definition of F (I, V ). We will now
verify the eight axioms of a vector space one by one. From Lemma A.2.2 in the appendix
of the notes we have

(*) Let f, g ∈ F (I, V ). Then f = g if and only if f(i) = g(i) for all i ∈ I.

Let f, g, h ∈ F (I, V ), a, b ∈ R and i ∈ I.

Ax 1: We have

(f + g)(i) = f(i) + g(i) −Definition of ’+’ for functions

= g(i) + f(i) −Axiom 1 of V

= (g + f)(i) −Definition of ’+’ for functions

So f + g = g + f by (*) and Ax 1 is proved.

Ax 2: We have

(
(f + g) + h

)
(i) = (f + g)(i) + h(i) −Definition of ’+’ for functions

=
(
f(i) + g(i)

)
+ h(i) −Definition of ’+’ for functions

= f(i) +
(
g(i) + h(i)

)
−Axiom 2 of V

= f(i) + (g + h)(i) −Definition of ’+’ for functions

=
(
f + (g + h)

)
(i) −Definition of ’+’ for functions

So (f + g) + h = f + (g + h) by (*) and Ax 2 is proved.

Ax 3: Define a function, denoted by 0∗, in F (I, V ) by 0∗(i) = 0 for all i in I. We will
show that 0∗ is an additive identity:
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(f + 0∗)(i) = f(i) + 0∗(i) −Definition of ’+’ for functions

= f(i) + 0 −Definition of 0∗

= f(i) −Axiom 3 of V

So f + 0∗ = f by (*) and Ax 3 is proved.

Ax 4 Define a function, denoted by −f , in F (I, V ) by (−f)(i) = −(f(i)) for all i. We
will show that −f is an additive inverse of f .(

f + (−f)
)

(i) = f(i) + (−f)(i) −Definition of ’+’ for functions

= f(i) + (−(f(i)) −Definition of − f

= 0 −Axiom 4 of V

= 0∗(i) −Definition of 0∗

So f + (−f) = 0∗ by (*) and Ax 4 is proved.
Ax 5: We have

(
a(f + g)

)
(i) = a

(
(f + g)(i)

)
−Definition of multiplications for functions

= a
(
f(i) + g(i)

)
−Definition of ’+’ for functions

= a
(
f(i)

)
+ a
(
g(i)

)
−Axiom 5 of V

= (af)(i) + (ag)(i) −Definition of multiplications for functions

= (af + ag)(i) −Definition of ’+’ for functions

So a(f + g) = af + ag by (*) and Ax 5 is proved.

Ax 6: We have

(
(a+ b)f

)
(i) =

(
a+ b

)(
f(i)

)
−Definition of multiplications for functions

= a
(
f(i)

)
+ b
(
f(i)

)
−Axiom 6 of V

= (af)(i) + (bf)(i) −Definition of multiplications for functions

= (af + bf)(i) −Definition of ’+’ for functions

So (a+ b)f = af + bf by (*) and Ax 6 is proved.

Ax 7: We have
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(
(ab)f

)
(i) =

(
ab
)(
f(i)

)
− Definition of multiplications for functions

= a
(
b
(
f(i)

))
− Axiom 7 of V

= a
(

(bf)(i)
)
− Definition of multiplications for functions

=
(
a(bf)

)
(i) − Definition of multiplications for functions

So (ab)f = a(bf) by (*) and Ax 7 is proved.

Ax 8

(1f)(i) = 1
(
f(i)

)
− Definition of multiplications for functions

= f(i) − Axiom 8 of V

So 1f = f by (*) and Ax 8 is proved.

B. Let T : V →W be linear and let Y be a subspace of W . Put

X = {x ∈ V | T (x) ∈ Y }

Show that X is a subspace of V .

Observe that by definition of X:

(*) Let v ∈ V . Then v ∈ X if and only if T (v) ∈ Y .

We will now verify the three conditions of the subspace theorem.
(1) Since T is linear, Theorem 6.2 yields T (0) = 0. Since Y is subspace of W , the

subspace theorem gives 0 ∈ Y . So T (0) ∈ Y and thus 0 ∈ X by (*). So Condition (1) of
the subspace theorem holds.

(2) Let a, b ∈ X. By (*), T (a) ∈ Y and T (b) ∈ Y . Since Y is subspace of W , the
subspace theorem gives T (a) + T (b) ∈ Y . Since T is linear, T (a+ b) = T (a) + T (b) and so
T (a+ b) ∈ Y . Thus by (*), a+ b ∈ X. So Condition (2) of the subspace theorem holds.

(3) Let a ∈ X and r ∈ R. By (*), T (a) ∈ Y . Since Y is subspace of W , the subspace
theorem gives r

(
T (a)

)
∈ Y . Since T is linear, r

(
T (a)

)
= T (ra) and so T (ra) ∈ Y . Thus by

(*), ra ∈ X. So Condition (3) of the subspace theorem holds.

We verified the three conditions of the subspace theorem and so X is a subspace of V .
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