Linear Algebra I

Homework 7/Solutions

a	T •
Section	Exercises
DCCHOIL	LIACICISCS

3.5 6,9,21

6.1 1,2,4,6,9,10,19

(Section 3.5 Exercise 21). Let S be a subspace of a finite dimensional vector space V. Prove that if dim $S = \dim V$, then S = V.

Let $n = \dim \mathbf{V}$. Then also $n = \dim \mathbf{S}$ and so by N3.4.4 **S** has a basis (s_1, \ldots, s_n) of length n. Since $n = \dim \mathbf{V}$, N3.5.4 implies that (s_1, \ldots, s_n) is also basis for **V**. Since bases are spanning lists we conclude

$$V = \operatorname{span}(s_1, \ldots, s_n) = S.$$

(Section 6.1 Exercise 1). Show that $P : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $P\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ is linear. Find a matrix A such that $P\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A\begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

Put
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
. Then $A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = P \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

Hence $P = L_A$ and so by N6.1.7, P is linear.

A. Let V be a vector space and U and W subspaces of V with $U \cap W = \{0\}$. Let (u_1, \ldots, u_n) be a linearly independent list in U and (w_1, \ldots, w_m) a linearly independent list in W. Show that

$$(u_1,\ldots,u_n,w_1,\ldots,w_m)$$

is a linearly independent list in V.

Let $r_1, \ldots, r_n, s_1, \ldots, s_m$ be in \mathbb{R} with

(*)
$$r_1u_1 + \ldots + r_nu_n + s_1w_1 + \ldots + s_mw_m = \mathbf{0}$$

Put $u = r_1u_1 + \ldots + r_nu_n$ and $w = s_1w_1 + \ldots s_mw_m$. Since U and W are subspaces, Theorem 3.3 shows that $u \in U$ and $w \in W$. By (*), u + w = 0 and so u = -w. Since W is a subspace $u = -w = (-1)w \in W$. So $u \in U \cap W$ and since $U \cap W = \{0\}$ we conclude that u = 0. From u + w = 0 we also get w = 0. Thus by definition of u and w:

$$r_1u_1 + \ldots r_nu_n = \mathbf{0}$$
 and $s_1w_1 + \ldots s_mw_m = \mathbf{0}$

Since (u_1, \ldots, u_n) and (w_1, \ldots, w_m) are linearly independent this implies $r_1 = 0, r_2 = 0, \ldots, r_n = 0$ and $s_1 = 0, \ldots, s_m = 0$. So $(u_1, \ldots, u_n, w_1, \ldots, w_m)$ is linearly independent.

(Section 6.1 Exercise 19). Suppose the linear function $L: \mathbb{M}(2,2) \to \mathbb{M}(2,2)$ satisfies

$$L\left(\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix}\right) = \begin{bmatrix}1 & 0\\0 & 0\end{bmatrix}, \quad L\left(\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}\right) = \begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}$$
$$L\left(\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}\right) = \begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}, \quad L\left(\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}\right) = \begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}$$
Show that $L\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = \begin{bmatrix}a & c\\b & d\end{bmatrix}$ for all matrices $\begin{bmatrix}a & b\\c & d\end{bmatrix}$ in M(2, 2).

By definition of scalar multiplication and addition for matrices:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Applying L to both sides of this equation and using Theorem 6.2(c) we conclude

$$L\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = aL\left(\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix}\right) + bL\left(\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}\right) + cL\left(\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}\right) + dL\left(\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}\right)$$

and so by the assumption of the exercise:

$$L\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = a\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix} + b\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix} + c\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix} + d\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}$$

So using the definition of scalar multiplication and addition for matrices:

$$L\left(\begin{bmatrix}a & b\\ c & d\end{bmatrix}\right) = \begin{bmatrix}a & c\\ b & d\end{bmatrix}$$

 $\mathbf{B.} \ Let$

$$A = L \begin{bmatrix} 1 & 2 & 3 & 0 & 0 \\ 1 & 3 & 4 & 1 & 2 \\ 2 & 5 & 7 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix}$$

Find bases for ColA, RowA and NulA.

$$A = \begin{bmatrix} 1 & 2 & 3 & 0 & 0 \\ 1 & 3 & 4 & 1 & 2 \\ 2 & 5 & 7 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix} \xrightarrow{R2 - R1 \to R1} \begin{bmatrix} 1 & 2 & 3 & 0 & 0 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix} \xrightarrow{R1 - 2R2 \to R1} \begin{bmatrix} 1 & 0 & 1 & -2 & -4 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 2 & 2 \end{bmatrix}$$
$$\xrightarrow{R1 - R4 \to R1} \begin{bmatrix} 1 & 0 & 0 & -4 & -6 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 2 & 2 \\ -R_3 \to R_3 \\ R_3 \leftrightarrow R4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -4 & -6 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 + 6R_4 \to R_4} \begin{bmatrix} 1 & 0 & 0 & -4 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

The lead variables are x_1, x_2, x_3, x_5 and so by Theorem N3.7.5 columns 1, 2, 3 and 5 of A form a basis for ColA. So

$$\left(\begin{array}{c} \begin{pmatrix} 1\\1\\2\\0 \end{pmatrix}, \begin{pmatrix} 2\\3\\5\\1 \end{pmatrix}, \begin{pmatrix} 3\\4\\7\\2 \end{pmatrix}, \begin{pmatrix} 0\\2\\1\\4 \end{pmatrix} \right)$$

is a basis for ColA.

By Theorem N3.7.5 non-zero rows of B form a basis for ColA. Hence

$$((1,0,0,-4,0),(0,1,0,-1,0),(0,0,1,2,0),(0,0,0,0,1))$$

is a basis for Row A.

Using the reduced row echelon form to solve for the lead variables we obtain

 $x_1 = 4x_4, \quad x_2 = 1x_4, \quad x_3 = -2x_4, \quad x_4 = 1x_4, \quad x_5 = 0x_4,$

and so by Theorem N3.7.5

$$\left((4,1,-2,1,0)\right)$$

is a basis for $\mathrm{Nul}A$

C. Consider the following vectors in \mathbb{R}^6 :

$$u_{1} = \begin{pmatrix} 1\\0\\1\\0\\1\\0 \end{pmatrix}, u_{2} = \begin{pmatrix} 1\\1\\1\\1\\1\\1 \end{pmatrix}, u_{3} = \begin{pmatrix} 3\\1\\3\\1\\1\\1 \end{pmatrix}, w_{1} = \begin{pmatrix} 1\\1\\1\\0\\0\\0\\0 \end{pmatrix}, w_{2} = \begin{pmatrix} 0\\0\\0\\1\\1\\1\\1 \end{pmatrix}, and w_{3} = \begin{pmatrix} 1\\2\\3\\4\\5\\6 \end{pmatrix}$$

Put $U = \operatorname{span}(u_1, u_2, u_3)$ and $W = \operatorname{span}(u_1, u_2, u_3, w_1, w_2, w_3)$. Find a sublist (x_1, \ldots, x_n) of (u_1, u_2, u_3) and a sublist (y_1, \ldots, y_m) of (w_1, w_2, w_3) , such that (x_1, \ldots, x_n) is basis for U and $(x_1, \ldots, x_n, y_1, \ldots, y_m)$ is a basis for W.

We compute the reduced row echelon form of the matrix A formed by $u_1, u_2, u_3, w_1, w_2, w_3$:

$$A = \begin{bmatrix} 1 & 1 & 3 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 2 \\ 1 & 1 & 3 & 1 & 0 & 3 \\ 0 & 1 & 1 & 0 & 1 & 4 \\ 1 & 1 & 3 & 0 & 1 & 5 \\ 0 & 1 & 1 & 0 & 1 & 6 \end{bmatrix} \xrightarrow{R_3 - R_1 \to R_3} \begin{bmatrix} 1 & 1 & 3 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 & 1 & 4 \\ 0 & 0 & 0 & -1 & 1 & 4 \\ 0 & 1 & 1 & 0 & 1 & 6 \end{bmatrix} \xrightarrow{R_1 - R_2 \to R_1} \begin{bmatrix} 1 & 0 & 2 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 & 1 & 4 \\ 0 & 0 & 0 & -1 & 1 & 4 \\ 0 & 0 & 0 & -1 & 1 & 4 \\ 0 & 1 & 1 & 0 & 1 & 6 \end{bmatrix}$$

So the leading variables are x_1, x_2, x_4 and x_6 . By Theorem 3.7.5 (applied to the first three columns of A), (a_1, a_2) is a basis for $\operatorname{Col}[a_1, a_2, a_3]$ and by Theorem 3.7.5 applied to A, (a_1, a_2, a_4) is basis for $\operatorname{Col}A$. Since $a_i = u_i$ and $a_{i+3} = w_i$ for $1 \le i \le 3$ we conclude that (u_1, u_2) is a basis for $\operatorname{Col}[u_1, u_2, u_3] = \operatorname{span}(u_1, u_2, u_2) = U$, and (u_1, u_2, w_1) is a basis for $\operatorname{Col}[u_1, u_2, w_3] = \operatorname{span}(u_1, u_2, u_3, w_1, w_2, w_3) = W$.