
MTH 309-4 Linear Algebra I F11

Homework 6/Solutions

Section Exercises

3.6 1ab,2defi,4b,5af

3.4 1,2,7,8,9,12,13

(Section 3.6 Exercise 2 defi). Consider the basis

B =




2

0

3

 ,


1

1

1

 ,


0

1

−1




for R3. Find the following coordinate vectors:

d.



5

6

2



B

e.



2

1

5



B

f.



5

6

2

+


2

1

5



B

i.




5

6

2



B


B

We solve d. and e. simultaneously :


2 1 0 5 2

0 1 1 6 1

3 1 −1 2 5

 R3− R1→ R3

R1↔ R3


1 0 −1 −3 3

0 1 1 6 1

2 1 0 5 2

 R3− 2R1→ R3


1 0 −1 −3 3

0 1 1 6 1

0 1 2 11 −4



R3− R2→ R3


1 0 −1 −3 3

0 1 1 6 1

0 0 1 5 −5

 R1 + R3→ R1

R2− R3→ R2


1 0 0 2 −2

0 1 0 1 6

0 0 1 5 −5


Thus 


5

6

2



B

=


2

1

5

 and




2

1

5



B

=


−2

6

−5


1



For f. we compute


5

6

2

+


2

1

5



B

=




7

7

7


 =

7


1

1

1



B

=


0

7

0


where the last equality holds since (1, 1, 1) is the second member of B.

Using d. and e. we compute



5

6

2



B


B

=




2

1

5



B

=


−2

6

−5


(Section 3.6 Exercise 5af). Use the polynomials

p1 = x2 + 1, p2 = x2 + x + 2, p3 = 3x− 1

to form a basis B = (p1, p2, p3) of P2. Compute the following coordinate vectors:

a. [x2 + x + 1]B f.
[
p23
]
B

Since x2 + x + 1 = 0p1 + 1p2 + 0p3, [x2 + x + 1]B = (0, 1, 0).
We have p23 = (3x− 1)2 = 9x2 − 6x + 1. Let a, b, c ∈ R3. Then

a(x2 + 1) + b(x2 + x + 2) + c(3x− 1) = 9x2 − 6x + 1

if and only if

a + b = 9, b + 3c = −6 and a + 2b− c = 1

We use the Gauss Jordan algorithm to solve this linear system of equations:
1 1 0 9

0 1 3 −6

1 2 −1 1

 R3− R1→ R3

R1− R2→ R1


1 0 −3 15

0 1 3 −6

0 1 −1 −8

 R3− R2→ R3


1 0 −3 15

0 1 3 −6

0 0 −4 −2

 − 1
4
R3 → R3


1 0 −3 15

0 1 3 −6

0 0 1 1
2

 R1 + 3R3→ R1

R2− 3R3→ R2


1 0 0 33

2

0 1 0 −15
2

0 0 1 1
2


So
[
p23
]
B

= 1
2(33,−15, 1).
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(Section 3.4 Exercise 7). Show that the polynomials

p1 = x2 + 1, p2 = 2x2 + x− 1, p3 = x2 + x

form a basis for P2.

Let p = rx2 + sx + t ∈ P2 and a, b, c ∈ R. Then

ap1 + bp2 + cp3 = p

if and only if

a + 2b + c = r, b + c = s, and a− b = t

We use the Gauss Jordan algorithm to solve this linear system of equations


1 2 1 r

0 1 1 s

1 −1 0 t

 R3− R1→ R3


1 2 1 r

0 1 1 s

0 −3 −1 −r + t

 R1− 2R2→ R1

R3 + 3R2→ R3


1 0 −1 r − 2s

0 1 1 s

0 0 2 −r + 3s + t



1
2
R3→ R3


1 0 −1 r − 2s

0 1 1 s

0 0 1 −1
2r + 3

2s + 1
2 t

 R1 + R3→ R3

R2− R3→ R2


1 0 0 1

2r −
1
2s + 1

2 t

0 1 0 1
2r −

1
2s−

1
2 t

0 0 1 −1
2r + 3

2s + 1
2 t


So for each p ∈ P2 there exist unique a, b, c ∈ R with p = ap1 + bp2 + cp3. Thus by

Theorem 3.17 (p1, p2, p3) is a basis for P2.

(Section 3.4 Exercise 13). (a) Prove that if (v, w) is a basis for a vector space, then
(2v, w) is a basis for the vector space.

(b) Suppose (v, w) is a basis for a vector space. For what scalars a and b will (av, bw) be a
basis for the vector space? Prove your claim.

(c) Generalize your claim in part b to bases with more than two elements.

(c) Let (v1, . . . , vn) be basis for the vector space V. Let (a1, . . . , an) be a list in R. We
will show that (a1v1, . . . , anvn) is a basis for V if and only if ai 6= 0 for all 1 ≤ i ≤ n.

Suppose first that (a1v1, . . . , anvn) is a basis. Then (a1v1, . . . , anvn) is linearly indepen-
dent. Hence by Theorem 3.5 aivi /∈ span(a1v1, . . . , ai−1vi−1, . . . anvn) for all 1 ≤ i ≤ n.
Hence aivi 6= 0 and so by Theorem 1.4, ai 6= 0.

Suppose next that ai 6= 0 for all 1 ≤ i ≤ n. Let v ∈ V . Since (v1, . . . , vn) is a basis
Theorem 3.17 shows that
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(*) there exist a unique (r1, . . . , rn) ∈ R with r1v1 + . . . + rnvn = v.

Let (s1, . . . , sn) ∈ R. Then

s1(a1v1) + . . . + sn(anvn) = v

⇐⇒ (s1a1)v1 + . . . + (snan)vn = v − Axiom 7

⇐⇒ s1a1 = r1, . . . , snan = rn − (*)

⇐⇒ s1 = r1a
−1
1 , . . . , sn = rna

−1
n − ai 6= 0, Property of R

So for each v ∈ V there exist a unique (s1, . . . , sn) ∈ R with s1(a1v1) + . . . sn(anvn) = v.
Thus by Theorem 3.17, (a1v1, . . . , anvn) is basis for V.

(a) Note that (2v, w) = (2v, 1w), 2 6= 0 and 1 6= 0. Thus (a) follows from (c).

(b) By (c), (av, bw) is a basis if and only if a 6= 0 and b 6= 0.

A. Let V be a vector space and (v1, . . . , vn) a linearly independent list in V . Show that the
following two statements are equivalent:

(a) (v1, . . . , vn) is a basis for V.

(b) (v1, . . . , vn, v) is linearly dependent in V for all v ∈ V .

(a) =⇒ (b): Suppose first that (v1, . . . , vn) is a basis for V and let v ∈ V . Then
(v1, . . . , vn) spans V and so v ∈ span(v1, . . . , vn). Thus by Theorem 3.5, (v1, . . . , vn, v) is
linearly dependent.

(b) =⇒ (a): Suppose that (b) holds and let v ∈ V . Then (v1, . . . , vn, v) is linearly
dependent and so there exist r1, . . . , rn, r ∈ R, not all zero, such that

r1v1 + . . . + rnvn + rv = 0

Suppose that r = 0. Then r1v1 + . . . + rnvn = 0. Since (v1, . . . , vn) is linearly indepen-
dent, we conclude that r1 = 0, r2 = 0, . . . , rn = 0. Since also r = 0 this contradicts the
choice of r1, . . . , rn, r.

Thus r 6= 0. Hence by Lemma N3.3.2, v ∈ span(v1, . . . , vn). Since this holds for all
v ∈ V , (v1, . . . , vn) spans V . Since (v1, . . . , vn) is also linearly independent, it is a basis.
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