Homework 6/Solutions

Section	Exercises
3.6	1ab,2defi,4

1,2,7,8,9,12,13 3.4

(Section 3.6 Exercise 2 defi). Consider the basis

$$B = \left(\begin{pmatrix} 2\\0\\3 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1 \end{pmatrix} \right)$$

for \mathbb{R}^3 . Find the following coordinate vectors:

$$d. \quad \begin{bmatrix} 5\\6\\2 \end{bmatrix}_{B} \quad e. \quad \begin{bmatrix} 2\\1\\5 \end{bmatrix}_{B} \quad \begin{bmatrix} f. \\ \begin{bmatrix} 5\\6\\2 \end{bmatrix} + \begin{pmatrix} 2\\1\\5 \end{bmatrix}_{B} \quad \begin{bmatrix} 5\\6\\2 \end{bmatrix} + \begin{pmatrix} 2\\1\\5 \end{bmatrix}_{B} \quad \begin{bmatrix} 5\\6\\2 \end{bmatrix}_{B} \end{bmatrix}_{B}$$

We solve d. and e. simultaneously :

$$\begin{bmatrix} 2 & 1 & 0 & 5 & 2 \\ 0 & 1 & 1 & 6 & 1 \\ 3 & 1 & -1 & 2 & 5 \end{bmatrix} \xrightarrow{R_3 - R_1 \to R_3} \begin{bmatrix} 1 & 0 & -1 & -3 & 3 \\ 0 & 1 & 1 & 6 & 1 \\ 2 & 1 & 0 & 5 & 2 \end{bmatrix} \xrightarrow{R_3 - 2R_1 \to R_3} \begin{bmatrix} 1 & 0 & -1 & -3 & 3 \\ 0 & 1 & 1 & 6 & 1 \\ 0 & 1 & 2 & 11 & -4 \end{bmatrix}$$

$$R_3 - R_2 \to R_3 \begin{bmatrix} 1 & 0 & -1 & -3 & 3 \\ 0 & 1 & 1 & 6 & 1 \\ 0 & 0 & 1 & 5 & -5 \end{bmatrix} \xrightarrow{R_1 + R_3 \to R_1} \begin{bmatrix} 1 & 0 & 0 & 2 & -2 \\ 0 & 1 & 0 & 1 & 6 \\ 0 & 0 & 1 & 5 & -5 \end{bmatrix}$$
Thus
$$\begin{bmatrix} 5 \\ 6 \\ 2 \end{bmatrix}_B = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} \text{ and } \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}_B = \begin{pmatrix} -2 \\ 6 \\ -5 \end{pmatrix}$$

For f. we compute

$$\begin{bmatrix} 5\\6\\2 \end{bmatrix} + \begin{pmatrix} 2\\1\\5 \end{bmatrix}_B = \begin{bmatrix} 7\\7\\7 \\7 \end{bmatrix} = \begin{bmatrix} 7\begin{pmatrix}1\\1\\1\\1 \end{bmatrix}_B = \begin{pmatrix} 0\\7\\0 \end{pmatrix}$$

where the last equality holds since (1, 1, 1) is the second member of B. Using d. and e. we compute

$$\left[\begin{bmatrix} 5\\6\\2 \end{bmatrix} \right]_{B} = \begin{bmatrix} 2\\1\\5 \end{bmatrix}_{B} = \begin{pmatrix} -2\\6\\-5 \end{pmatrix}$$

(Section 3.6 Exercise 5af). Use the polynomials

$$p_1 = x^2 + 1$$
, $p_2 = x^2 + x + 2$, $p_3 = 3x - 1$

to form a basis $B = (p_1, p_2, p_3)$ of \mathbb{P}_2 . Compute the following coordinate vectors: a. $[x^2 + x + 1]_B$ f. $[p_3^2]_B$

Since $x^2 + x + 1 = 0p_1 + 1p_2 + 0p_3$, $[x^2 + x + 1]_B = (0, 1, 0)$. We have $p_3^2 = (3x - 1)^2 = 9x^2 - 6x + 1$. Let $a, b, c \in \mathbb{R}^3$. Then

$$a(x^{2}+1) + b(x^{2}+x+2) + c(3x-1) = 9x^{2} - 6x + 1$$

if and only if

$$a + b = 9, b + 3c = -6$$
 and $a + 2b - c = 1$

We use the Gauss Jordan algorithm to solve this linear system of equations:

$$\begin{bmatrix} 1 & 1 & 0 & 9 \\ 0 & 1 & 3 & -6 \\ 1 & 2 & -1 & 1 \end{bmatrix} \xrightarrow{R_3 - R_1 \to R_3} \begin{bmatrix} 1 & 0 & -3 & 15 \\ 0 & 1 & 3 & -6 \\ 0 & 1 & -1 & -8 \end{bmatrix} \xrightarrow{R_3 - R_2 \to R_3} \begin{bmatrix} 1 & 0 & -3 & 15 \\ 0 & 1 & -1 & -8 \end{bmatrix} \xrightarrow{R_3 - R_2 \to R_3} \begin{bmatrix} 1 & 0 & -3 & 15 \\ 0 & 1 & 3 & -6 \\ 0 & 0 & -4 & -2 \end{bmatrix} \xrightarrow{-\frac{1}{4}R_3 \to R_3} \begin{bmatrix} 1 & 0 & -3 & 15 \\ 0 & 1 & 3 & -6 \\ 0 & 0 & 1 & \frac{1}{2} \end{bmatrix} \xrightarrow{R_1 + 3R_3 \to R_1} \begin{bmatrix} 1 & 0 & 0 & \frac{33}{2} \\ 0 & 1 & 3 & -\frac{15}{2} \\ 0 & 0 & 1 & \frac{1}{2} \end{bmatrix}$$
So $\begin{bmatrix} p_3^2 \end{bmatrix}_B = \frac{1}{2}(33, -15, 1).$

(Section 3.4 Exercise 7). Show that the polynomials

$$p_1 = x^2 + 1$$
, $p_2 = 2x^2 + x - 1$, $p_3 = x^2 + x$

form a basis for \mathbb{P}_2 .

Let $p = rx^2 + sx + t \in \mathbb{P}_2$ and $a, b, c \in \mathbb{R}$. Then

$$ap_1 + bp_2 + cp_3 = p$$

if and only if

$$a+2b+c=r$$
, $b+c=s$, and $a-b=t$

We use the Gauss Jordan algorithm to solve this linear system of equations

$$\begin{bmatrix} 1 & 2 & 1 & r \\ 0 & 1 & 1 & s \\ 1 & -1 & 0 & t \end{bmatrix} \xrightarrow{R_3 - R_1 \to R_3} \begin{bmatrix} 1 & 2 & 1 & r \\ 0 & 1 & 1 & s \\ 0 & -3 & -1 & -r+t \end{bmatrix} \xrightarrow{R_1 - 2R_2 \to R_1} \begin{bmatrix} 1 & 0 & -1 & r-2s \\ 0 & 1 & 1 & s \\ 0 & 0 & 2 & -r+3s+t \end{bmatrix}$$

$$\xrightarrow{\frac{1}{2}R_3 \to R_3} \begin{bmatrix} 1 & 0 & -1 & r-2s \\ 0 & 1 & 1 & s \\ 0 & 0 & 1 & -\frac{1}{2}r + \frac{3}{2}s + \frac{1}{2}t \end{bmatrix} \xrightarrow{R_1 + R_3 \to R_3} \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2}r - \frac{1}{2}s + \frac{1}{2}t \\ 0 & 1 & 0 & \frac{1}{2}r - \frac{1}{2}s - \frac{1}{2}t \\ 0 & 0 & 1 & -\frac{1}{2}r + \frac{3}{2}s + \frac{1}{2}t \end{bmatrix}$$

So for each $p \in \mathbb{P}_2$ there exist unique $a, b, c \in \mathbb{R}$ with $p = ap_1 + bp_2 + cp_3$. Thus by Theorem 3.17 (p_1, p_2, p_3) is a basis for \mathbb{P}_2 .

- (Section 3.4 Exercise 13). (a) Prove that if (v, w) is a basis for a vector space, then (2v, w) is a basis for the vector space.
- (b) Suppose (v, w) is a basis for a vector space. For what scalars a and b will (av, bw) be a basis for the vector space? Prove your claim.
- (c) Generalize your claim in part b to bases with more than two elements.

(c) Let (v_1, \ldots, v_n) be basis for the vector space **V**. Let (a_1, \ldots, a_n) be a list in \mathbb{R} . We will show that (a_1v_1, \ldots, a_nv_n) is a basis for **V** if and only if $a_i \neq 0$ for all $1 \leq i \leq n$.

Suppose first that (a_1v_1, \ldots, a_nv_n) is a basis. Then (a_1v_1, \ldots, a_nv_n) is linearly independent. Hence by Theorem 3.5 $a_iv_i \notin \text{span}(a_1v_1, \ldots, a_{i-1}v_{i-1}, \ldots, a_nv_n)$ for all $1 \leq i \leq n$. Hence $a_iv_i \neq \mathbf{0}$ and so by Theorem 1.4, $a_i \neq 0$.

Suppose next that $a_i \neq 0$ for all $1 \leq i \leq n$. Let $v \in V$. Since (v_1, \ldots, v_n) is a basis Theorem 3.17 shows that

(*) there exist a unique $(r_1, \ldots, r_n) \in \mathbb{R}$ with $r_1v_1 + \ldots + r_nv_n = v$.

Let $(s_1, \ldots, s_n) \in \mathbb{R}$. Then

$$s_1(a_1v_1) + \ldots + s_n(a_nv_n) = v$$

$$\iff (s_1a_1)v_1 + \ldots + (s_na_n)v_n = v - \text{Axiom 7}$$

$$\iff s_1a_1 = r_1, \ldots, s_na_n = r_n - (*)$$

$$\iff s_1 = r_1a_1^{-1}, \ldots, s_n = r_na_n^{-1} - a_i \neq 0, \text{ Property of } \mathbb{R}$$

So for each $v \in V$ there exist a unique $(s_1, \ldots, s_n) \in \mathbb{R}$ with $s_1(a_1v_1) + \ldots s_n(a_nv_n) = v$. Thus by Theorem 3.17, (a_1v_1, \ldots, a_nv_n) is basis for **V**.

- (a) Note that $(2v, w) = (2v, 1w), 2 \neq 0$ and $1 \neq 0$. Thus (a) follows from (c).
- (b) By (c), (av, bw) is a basis if and only if $a \neq 0$ and $b \neq 0$.
- **A.** Let **V** be a vector space and (v_1, \ldots, v_n) a linearly independent list in **V**. Show that the following two statements are equivalent:
 - (a) (v_1, \ldots, v_n) is a basis for **V**.
 - (b) (v_1, \ldots, v_n, v) is linearly dependent in **V** for all $v \in V$.

(a) \implies (b): Suppose first that (v_1, \ldots, v_n) is a basis for **V** and let $v \in V$. Then (v_1, \ldots, v_n) spans **V** and so $v \in \text{span}(v_1, \ldots, v_n)$. Thus by Theorem 3.5, (v_1, \ldots, v_n, v) is linearly dependent.

(b) \implies (a): Suppose that (b) holds and let $v \in V$. Then (v_1, \ldots, v_n, v) is linearly dependent and so there exist $r_1, \ldots, r_n, r \in \mathbb{R}$, not all zero, such that

$$r_1v_1 + \ldots + r_nv_n + rv = \mathbf{0}$$

Suppose that r = 0. Then $r_1v_1 + \ldots + r_nv_n = 0$. Since (v_1, \ldots, v_n) is linearly independent, we conclude that $r_1 = 0, r_2 = 0, \ldots, r_n = 0$. Since also r = 0 this contradicts the choice of r_1, \ldots, r_n, r .

Thus $r \neq 0$. Hence by Lemma N3.3.2, $v \in \text{span}(v_1, \ldots, v_n)$. Since this holds for all $v \in V$, (v_1, \ldots, v_n) spans V. Since (v_1, \ldots, v_n) is also linearly independent, it is a basis.