MTH 309-4 Linear Algebra I F11

Homework 4/Solutions

Section Exercises

1.6 2,4,8

1.7 5b, 7(for axioms 5-8), 10
1.8 2,4,6,92,12,19

7.1 4,5,.8,12

(Section 1.6 Exercise 4). (a) Find values of the scalars r and s so that

-3 1 4 1 -2 7 —10 5 5

(c) Are there solutions to the equations in parts a and b other then the ones you found.

(a) Looking at the (1,3)-entry we see that Or +8s = 0. So s = 0. Looking at the
(1,2)-entry we see that —5r + 0s = 0. So r = 0. Clearly r = s = 0 is a solutions and so
r =0,s = 0 is the unique solution.

(b) Looking at the (1,3)-entry we see that Or + 8s = —8. So s = —1. Looking at the
(1,2)-entry we see that —5r +0s = —15. So r = 3. Thus r = 3 and s = —1 is the only
possible solutions. We have

2 =5 0 ) 7 0 8 6-7 —-15—-0 0-38 -1 —-15 -8
-3 1 4 1 -2 7 —-9-1 3+2 12-7 —10 5 5
and so r = 3 and s = —1 is the unique solution.

(c) No, since we proved in (a) and (b) that the solutions are unique.

(Section 1.7 Exercise 7 for axioms 5-8). Verify that the two operations defined on F(I)
satisfie Aziom 5-8 of a vector space.



Let f,g€ F(I),i€ I and a,b € R.
Ax 5: We have

(a(f + g)) (1) = a((f + g)(l)) —Definition of multiplications for functions
= a(f(z') + g(z)> —Definition of '+’ for functions
= a(f(i)) +a(g(i)) — Property of R
= (af)(i) + (ag)(i) —Definition of multiplications for functions
= (af +ag)(i) —Definition of '+’ for functions

Soa(f+g)=af+ag by (*) and Ax 5 is proved.

Ax 6: We have

((a+b)f)@) = (a+0b)(f() —Definition of multiplications for functions
= a(f(i)) +b(f(i)) — Property of R
= (af)(i) + (bf)(i) —Definition of multiplications for functions
= (af +bf)(3) —Definition of *+’ for functions

So (a+b)f =af +bf by (*) and Ax 6 is proved.

Ax 7: We have

((ab)f)(i) = (ab)(f(i)) — Definition of multiplications for functions
= a(b(f(z))) — Property of R
= a((b f )(z)) — Definition of multiplications for functions
= (a(b f )) (1) — Definition of multiplications for functions
So (ab)f = a(bf) by (*) and Ax 7 is proved
Ax 8
(1f)(i) = 1(f(i)) — Definition of multiplications for functions
= f(i) — Property of R

So 1f = f by (*) and Ax 8 is proved.

(Section 6.1 Exercise 2). Show that the line S = {(x,y) € R? | y = 22 + 1} is not a
subspace of R?.



We have 0 # 2-0+ 1 and so (0,0) ¢ R2. Since (0,0) is the additive identity of R,
condition (1) of the Subspace Theorem is not fulfilled and so S is not a subspace.

(Section 6.1 Exercise 6). Show that
a b
S = a=bandb+2c=0
c d
is a subspace of M(2,2)
By definition of S we have
(*) Let a,b,c,d € R then

€S ifand only if a=0bandb+ 2¢c=0.
c d

We will now verify the three conditions of the subspace theorem

(1) Since 0 =0 and 0+2-0 =0, (*) shows that

es
0 0

So Condition (1) of the Subspace Theorem holds.

(2) Let
a a b
€ S and | €8s
c d ¢ d
Then by (*)
a=bb+2=0,a=0>band b+ 2¢=0.
Thus

a+a=b+band (b+0b)+2(c+¢&) = (b+2c)+ (b+28) =0+0=0.
So using (*) and the definition of addition of matrices

a b a b a+a b+b
+ | = €s

c d ¢ d c+é d+d



So Condition (2) of the Subspace Theorem holds.

a b
(3) Let » € R and €s.
c d
Then by (*)
a = b and b+2c¢=0.
Thus

ra=rband rb+ 2rc=r(b+2c) =r0 =0.
So using (*) and the definition of scalar multiplication for matrices
a b ra rb

T = eS.
c d rc rd

So Condition (3) of the Subspace Theorem holds.
We verified all three conditions of the Subspace Theorem and so S is a subspace of

M(2,2).

(Section 1.8 Exercise 19). Suppose S and T are subspaces of a vector space V. Show
that the intersection S NT also a subspace of V.

Recall that SNT ={v|v e Sand v e T}. So
(*) For any object v, v € SNT if and only if v € S and v € T.

We will verify the three conditions of the Subspace Theorem.

(1) Since S and T are subspaces of V, the Subspace Theorem shows that 0 € S and
0eT. Soby (*)0oeSNT.
So Condition (1) of the Subspace Theorem holds.

(2) Let z,y € SNT. Then by (*), xz,y € S and z,y € T. Since S and T are subspaces
of V, the Subspace Theorem shows that xt +y € Sand z+y €T. Soby (*) x+ye€ SNT.
So Condition (2) of the Subspace Theorem holds.

(3) Let z € SNT and r € R. Then by (*), x € S and z € T. Since S and T are subspaces
of V, the Subspace Theorem shows that rz € S and rz € T. So by (*) ra € SNT.
So Condition (3) of the Subspace Theorem holds.

We proved that the three conditions of the Subspace Theorem hold for S N'T and so
S NT is a subspace of V.



n
(Section 7.1 Exercise 4). Use induction to prove Zkg =

. k=1
mtegers n.

Let S,, be the statement
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1,92 .
S1 says 12 = % and so Sy is true.

Suppose that S, is true. Then

SR = (Sp k) +(n+1)°  — definition of Y

W +(n+1)3 — since S, holds

= (n+1)? (”Tf—l—(n—&—l))
'rL2 n
n+2)?
= (12 (2

(n+1)2 ((nt+1)+1)
1

Thus Sy,41 holds.

n?(n+1)2

for all positive

We proved that S holds and that S,, implies S, 1. So the principal of induction shows

that Sy, holds for all positive integers n.



