
MTH 309-4 Linear Algebra I F11

Homework 4/Solutions

Section Exercises

1.6 2,4,8

1.7 5b, 7(for axioms 5-8), 10

1.8 2,4,6,9a,12,19

7.1 4,5,8,12

(Section 1.6 Exercise 4). (a) Find values of the scalars r and s so that

r

 2 −5 0

−3 1 4

+ s

 7 0 8

1 −2 7

 =

 0 0 0

0 0 0


(b) Find values of the scalars r and s so that

r

 2 −5 0

−3 1 4

+ s

 7 0 8

1 −2 7

 =

 −1 −15 −8

−10 5 5


(c) Are there solutions to the equations in parts a and b other then the ones you found.

(a) Looking at the (1,3)-entry we see that 0r + 8s = 0. So s = 0. Looking at the
(1,2)-entry we see that −5r + 0s = 0. So r = 0. Clearly r = s = 0 is a solutions and so
r = 0, s = 0 is the unique solution.

(b) Looking at the (1,3)-entry we see that 0r + 8s = −8. So s = −1. Looking at the
(1,2)-entry we see that −5r + 0s = −15. So r = 3. Thus r = 3 and s = −1 is the only
possible solutions. We have

3

 2 −5 0

−3 1 4

− 1

7 0 8

1 −2 7

 =

 6− 7 −15− 0 0− 8

−9− 1 3 + 2 12− 7

 =

 −1 −15 −8

−10 5 5


and so r = 3 and s = −1 is the unique solution.

(c) No, since we proved in (a) and (b) that the solutions are unique.

(Section 1.7 Exercise 7 for axioms 5-8). Verify that the two operations defined on F (I)
satisfie Axiom 5-8 of a vector space.
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Let f, g ∈ F (I), i ∈ I and a, b ∈ R.

Ax 5: We have(
a(f + g)

)
(i) = a

(
(f + g)(i)

)
−Definition of multiplications for functions

= a
(
f(i) + g(i)

)
−Definition of ’+’ for functions

= a
(
f(i)

)
+ a
(
g(i)

)
− Property of R

= (af)(i) + (ag)(i) −Definition of multiplications for functions

= (af + ag)(i) −Definition of ’+’ for functions

So a(f + g) = af + ag by (*) and Ax 5 is proved.

Ax 6: We have(
(a + b)f

)
(i) =

(
a + b

)(
f(i)

)
−Definition of multiplications for functions

= a
(
f(i)

)
+ b
(
f(i)

)
− Property of R

= (af)(i) + (bf)(i) −Definition of multiplications for functions

= (af + bf)(i) −Definition of ’+’ for functions

So (a + b)f = af + bf by (*) and Ax 6 is proved.

Ax 7: We have(
(ab)f

)
(i) =

(
ab
)(
f(i)

)
− Definition of multiplications for functions

= a
(
b
(
f(i)

))
− Property of R

= a
(

(bf)(i)
)
− Definition of multiplications for functions

=
(
a(bf)

)
(i) − Definition of multiplications for functions

So (ab)f = a(bf) by (*) and Ax 7 is proved.

Ax 8

(1f)(i) = 1
(
f(i)

)
− Definition of multiplications for functions

= f(i) − Property of R

So 1f = f by (*) and Ax 8 is proved.

(Section 6.1 Exercise 2). Show that the line S = {(x, y) ∈ R2 | y = 2x + 1} is not a
subspace of R2.
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We have 0 6= 2 · 0 + 1 and so (0, 0) /∈ R2. Since (0, 0) is the additive identity of R2,
condition (1) of the Subspace Theorem is not fulfilled and so S is not a subspace.

(Section 6.1 Exercise 6). Show that

S =


a b

c d

∣∣∣∣∣∣ a = b and b + 2c = 0


is a subspace of M(2, 2)

By definition of S we have

(*) Let a, b, c, d ∈ R thena b

c d

 ∈ S if and only if a = b and b + 2c = 0.

We will now verify the three conditions of the subspace theorem

(1) Since 0 = 0 and 0 + 2 · 0 = 0, (*) shows that0 0

0 0

 ∈ S

So Condition (1) of the Subspace Theorem holds.

(2) Let a b

c d

 ∈ S and

ã b̃

c̃ d̃

 ∈ S.

Then by (*)

a = b, b + 2c = 0, ã = b̃ and b̃ + 2c̃ = 0.

Thus

a + ã = b + b̃ and (b + b̃) + 2(c + c̃) = (b + 2c) + (b̃ + 2c̃) = 0 + 0 = 0.

So using (*) and the definition of addition of matricesa b

c d

+

ã b̃

c̃ d̃

 =

a + ã b + b̃

c + c̃ d + d̃

 ∈ S.
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So Condition (2) of the Subspace Theorem holds.

(3) Let r ∈ R and

a b

c d

 ∈ S.

Then by (*)

a = b and b+2c=0.

Thus

ra = rb and rb + 2rc = r(b + 2c) = r0 = 0.

So using (*) and the definition of scalar multiplication for matrices

r

a b

c d

 =

ra rb

rc rd

 ∈ S.

So Condition (3) of the Subspace Theorem holds.

We verified all three conditions of the Subspace Theorem and so S is a subspace of
M(2, 2).

(Section 1.8 Exercise 19). Suppose S and T are subspaces of a vector space V. Show
that the intersection S ∩ T also a subspace of V.

Recall that S ∩ T = {v | v ∈ S and v ∈ T}. So

(*) For any object v, v ∈ S ∩ T if and only if v ∈ S and v ∈ T .

We will verify the three conditions of the Subspace Theorem.

(1) Since S and T are subspaces of V , the Subspace Theorem shows that 0 ∈ S and
0 ∈ T . So by (*) 0 ∈ S ∩ T .

So Condition (1) of the Subspace Theorem holds.

(2) Let x, y ∈ S ∩ T . Then by (*), x, y ∈ S and x, y ∈ T . Since S and T are subspaces
of V , the Subspace Theorem shows that x+ y ∈ S and x+ y ∈ T . So by (*) x+ y ∈ S ∩ T .

So Condition (2) of the Subspace Theorem holds.

(3) Let x ∈ S∩T and r ∈ R. Then by (*), x ∈ S and x ∈ T . Since S and T are subspaces
of V , the Subspace Theorem shows that rx ∈ S and rx ∈ T . So by (*) rx ∈ S ∩ T .

So Condition (3) of the Subspace Theorem holds.

We proved that the three conditions of the Subspace Theorem hold for S ∩ T and so
S ∩ T is a subspace of V .
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(Section 7.1 Exercise 4). Use induction to prove
n∑

k=1

k3 =
n2(n + 1)2

4
for all positive

integers n.

Let Sn be the statement

n∑
k=1

k3 =
n2(n + 1)2

4

S1 says 12 = 11·22
4 and so S1 is true.

Suppose that Sn is true. Then

∑n+1
k=1 k

3 =
(∑n

k=1 k
3
)

+ (n + 1)3 − definition of
∑

= n2(n+1)2

4 + (n + 1)3 − since Sn holds

= (n + 1)2
(
n2

4 + (n + 1)
)

= (n + 1)2
(
n2+4n+4

4

)
= (n + 1)2

(
(n+2)2

4

)
=

(
n+1
)2(

(n+1)+1
)2

4

Thus Sn+1 holds.
We proved that S1 holds and that Sn implies Sn+1. So the principal of induction shows

that Sn holds for all positive integers n.
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