Linear Algebra I

Homework 3/Solutions

Section	Exercises
1.3	1,6,8,12,14
1.4	$1,\!4,\!11,\!12$
1.5	$1,\!2,\!8,\!10$

(Section 1.3 Exercise 6). Prove Theorem 1.5, part b: $r\mathbf{0} = \mathbf{0}$. In other words, multiplying any real number r times the additive identity vector $\mathbf{0}$ yields the additive identity vector $\mathbf{0}$.

Let **V** be a vector space and $r \in \mathbb{R}$. By Axiom 4 $\mathbf{0} + \mathbf{0} = \mathbf{0}$ and so by substitution $r(\mathbf{0} + \mathbf{0}) = r\mathbf{0}$. Thus Axiom 5 gives $r\mathbf{0} + r\mathbf{0} = r\mathbf{0}$. Hence by Theorem 1.2(b) applied with $v = r\mathbf{0}$ and $w = r\mathbf{0}$, $r\mathbf{0} = \mathbf{0}$.

(Section 1.3 Exercise 12). Prove Theorem 1.5, part i: if $v \neq 0$ and rv = sv, then r = s.

Let V be vector space, $v \in V$ with $v \neq \mathbf{0}$ and $r, s \in \mathbb{R}$ with rv = sv. We have

	rv = sv	
\implies	rv + (-(sv)) = sv + (-(sv))	- substitution
\implies	rv + (-(sv)) = 0	– Axiom 4
\implies	rv + (-s)v = 0	– Theorem 1.5g
\implies	(r + (-s))v = 0	– Axiom 6
\implies	r + (-s) = 0 or $v = 0$	– Theorem 1.5c
\implies	r + (-s) = 0	– since $v \neq 0$ by assumption
\implies	r = s	– Property of \mathbb{R}

(Section 1.4 Exercise 12). Prove Theorem 1.7, part n: (r-s)v = rv - (sv).

Let V be vector space, $v \in V$ and $r, s \in \mathbb{R}$. We compute

$$(r-s)v = (r + (-s))v - \text{Property of } \mathbb{R}$$
$$= rv + (-s)v - \text{Axiom 6}$$
$$= rv + (-(sv)) - \text{Theorem 1.5g}$$
$$= rv - (sv) - \text{Definition of substraction}$$

(Section 1.5 Exercise 1). Determine whether we obtain a vector space from \mathbb{R}^2 with operations defined by

$$(v_1, v_2) + (w_1, w_2) = (v_2 + w_2, v_1 + w_1)$$

 $r(v_1, v_2) = (rv_1, rv_2)$

We will show that Axiom 2 fails. Let $(v_1, v_2), (w_1, w_2), (x_1, x_2) \in \mathbb{R}^3$. Then

$$\left((v_1, v_2) + (w_1, w_2)\right) + \left(x_1, x_2\right) = (v_2 + w_2, v_1 + w_1) + (x_1, x_2) = \left((v_1 + w_1) + x_2, (v_2 + w_2) + x_1\right)$$

and

$$(v_1, v_2) + ((w_1, w_2) + (x_1, x_2)) = (v_1, v_2) + (w_2 + x_2, w_1 + x_1) = (v_2 + (w_1 + x_1), v_1 + (w_2 + x_2))$$

Note that these two elements in \mathbb{R}^2 are usually different. For example if we choose $v_1 = 1$ and $v_2 = w_1 = w_2 = x_1 = x_2 = 0$, then the first element is (1,0) and the second is (0,1). Thus the addition is not associative and so \mathbb{R}^2 with these operations is not a vector space.

(Section 1.5 Exercise 8). Determine whether we obtain a vector space from the following subset of \mathbb{R}^2 with the standard operations:

$$S = \{(v_1, v_2) \in \mathbb{R}^2 \mid v_1 \text{ and } v_2 \text{ are integers}\}$$

This is not a vector space. Note that $(1,1) \in S$ but $\frac{1}{2}(1,1) = (\frac{1}{2},\frac{1}{2}) \notin S$. So property (iii) of a vector space (Closure of multiplication) fails.