
MTH 309-4 Linear Algebra I F11

Homework 2/Solutions

Section Exercises

2.2 2,3,5,7

2.3 2,7

1.2 8

(Section 2.2 Exercise 2). For each type of row operation show that there is a row
operation that will undo it. That is, if M is transformed into M ′ by a certain row operation,
determined a row operation that can be applied to M ′ to yield M .

1. Suppose M ′ is obtained by interchanging row i and row j of M . Then interchanging
row i and j of M ′ yields M .

2. Suppose that M ′ is obtained by multiplying row i of M by a non-zero real number
c. Then multiplying row i of M ′ by 1

c yields M .

3. Suppose that M ′ is obtained by adding c times row i of M to row j of M . Then
adding −c-times row i of M ′ to row j of M ′ yields M .

So Ri ↔ Rj is undone by Ri ↔ Rj ; cRi → Ri is undone by 1
cRi → Ri; and Rj+cRi → Rj

is undone by Rj − cRi → Rj .

(Section 2.2 Exercise 3). If two row operation are applied in succession to transform
the matrix M into the matrix M ′, describe the row operations that will transform M ′ back
to M .

Let S be the first row operation and T the second row operations used to transform M
into M ′. So if M ′′ is the matrix obtained from M via S, then M ′ is the matrix obtained
from M ′′ via T . Let S∗ be the row operations which undoes S and T ∗ be the row operation
which undoes T (see Section 2.2 Exercise 2). Then M can be obtain from M ′ by first
applying T ∗ and then S∗. Indeed, since T transforms M ′′ to M ′, T ∗ transform M ′ to M ′′.
And since S transforms M to M ′′, S∗ will transform M ′′ into M .

The preceding proof can be summarized in the following diagram

M
S−−−−→ M ′′

T−−−−→ M ′

M
S∗←−−−− M ′′

T ∗←−−−− M ′

(Section 2.3 Exercise 7). Determine the solutions set for each of following systems of
linear equation.
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a. x1 + 2x2 − x3 + x4 − 2x5 = 7

2x1 − x2 + x3 + x4 = 3

x1 − 3x2 + 2x3 + 2x5 = −4

b. x1 + 2x2 − x3 + x4 − 2x5 = 6

2x1 − x2 + x3 + x4 = 3

x1 − 3x2 + 2x3 + 2x5 = −4

c. x1 + 2x2 − x3 + x4 − 2x5 = 7

2x1 − x2 + x3 + x4 = 3

x1 − 3x2 + 2x3 + x4 + 2x5 = −4

d. x1 + 2x2 − x3 + x4 − 2x5 = 0

2x1 − x2 + x3 + x4 = 0

x1 − 3x2 + 2x3 + 2x5 = 0

We will solve systems a,b and d simultaneously by using a matrix with two augmented
columns:


1 2 −1 1 −2 7 6

2 −1 1 1 0 3 3

1 −3 2 0 2 −4 −4

 R2− 2R1→ R2

R3− R1→ R3


1 2 −1 1 −2 7 6

0 −5 3 −1 4 −11 −9

0 −5 3 −1 4 −11 −10



R3− R2→ R3

R1 + 2
5
R2→ R1

− 1
5
R2→ R2


1 0 1

5
3
5 −2

5
13
5 ∗

0 1 −3
5

1
5 −4

5
11
5 ∗

0 0 0 0 0 0 −1


The −1 in the last columns shows that system b does not have a solution.
To solve system a, we ignore the last column of the above matrix and observe that x1

and x2 are the lead variables and x3, x4, x5 are the free variables. Moving the free variables
to the right we get
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x1 = − 1
5x3 − 3

5x4 + 2
5x5 + 13

5

x2 = + 3
5x3 − 1

5x4 + 4
5x5 + 11

5

x3 = + 1x3 + 0x4 + 0x5 + 0

x4 = + 0x3 + 1x4 + 0x5 + 0

x5 = + 0x3 + 0x4 + 1x5 + 0

Thus the solution set for system a is

S =


x3



−1
5

3
5

1

0

0


+ x4



−3
5

−1
5

0

1

0


+ x5



2
5

4
5

0

0

1


+



13
5

11
5

0

0

0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x3, x4, x5 ∈ R


So the solutions set for the homogeneous system d is

S =


x3



−1
5

3
5

1

0

0


+ x4



−3
5

−1
5

0

1

0


+ x5



2
5

4
5

0

0

1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x3, x4, x5 ∈ R


It remains to solve system c:

1 2 −1 1 −2 7

2 −1 1 1 0 3

1 −3 2 1 2 −4

 R2− 2R1→ R2

R3− R1→ R3


1 2 −1 1 −2 7

0 −5 3 −1 4 −11

0 −5 3 0 4 −11


R3− R2→ R2

R1 + 2
5
R2→ R1

− 1
5
R2→ R2


1 0 1

5
3
5 −2

5
13
5

0 1 −3
5

1
5 −4

5
11
5

0 0 0 1 0 0

 R1− 3
5
R3→ R1

R2− 1
5
R3→ R2


1 0 1

5 0 −2
5

13
5

0 1 −3
5 0 −4

5
11
5

0 0 0 1 0 0


So x1, x2 and x4 are the lead variables and x3, x5 are the free variables. Moving the free

variables to the right we get
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x1 = − 1
5x3 + 2

5x5 + 13
5

x2 = + 3
5x3 + 4

5x5 + 11
5

x3 = + 1x3 + 0x5 + 0

x4 = + 0x3 + 0x5 + 0

x5 = + 0x3 + 1x5 + 0

Thus the solution set for system c is

S =


x3



−1
5

3
55

1

0

0


+ x5



2
5

4
5

0

0

1


+



13
5

11
5

0

0

0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x4, x5 ∈ R


(Section 2.3 Exercise 7). Which of the following subsets of R are closed under ordinary

multiplication? In each case, prove that the set is closed or provide an explicit counter-
example.

(a) [5,∞).

(b) [0, 1).

(c) (−1, 0].

(d) {−1, 1, 0}

(e) {1, 2, 4, 8, 16, . . .}.

(a) Let a, b ∈ [5,∞). Then a ≥ 5 and b ≥ 5. In particular, a ≥ 1 and b > 0. So
ab ≥ 1b = b ≥ 5 and thus ab ∈ [5,∞). Hence [5,∞) is closed under multiplication.

(b) Let a, b ∈ [0, 1]. The 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. Since b ≥ 0 we get 0 = 0b ≤ ab ≤
1b ≤ 1 and so 0 ≤ ab ≤ 1 and ab ∈ [0, 1]. Thus [0, 1] is closed under multiplication.

(c) −1
2 ∈ (−1, 0] but (−1

2)(−1
2) = 1

4 /∈ (−1, 0]. So (−1, 0] is not closed under multiplica-
tion.

(d) Let a, b ∈ {−1, 1, 0}. If a = 0 or b = 0, then ab = 0 and if a 6= 0 and b 6= 0,
then ab = 1 or ab = −1. In either case ab ∈ {−1, 1, 0} and so {−1, 1, 0} is closed under
multiplication.

(e) Let a, b ∈ {1, 2, 4, 8, 16, . . .}. Then a = 2n and b = 2m for some non-negative integers
n and m. Thus ab = 2n2m = 2n+m. Note that n + m is a non-negative integer and so
ab ∈ {1, 2, 4, 8, 16, . . .}. Thus {1, 2, 4, 8, 16, . . .} is closed under multiplication.
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A. Define
⊕ : R× R→ R, (v, w)→ max(v, w)

and
� : R× R→ R, (a, v)→ av

Which of the eight axioms of a vector space hold for (R,⊕,�)? Is (R,⊕,�) a vector
space?

Let v, w, x, a, b ∈ R.
(Ax 1) v ⊕ w = max(v, w) = max(w, v) = w ⊕ v. So Ax 1 holds.

(Ax 2) (v ⊕ w) ⊕ x = max
(

max(v, w), x
)

= max(v, w, x) = max
(
v,max(w.x)

)
=

v ⊕ (w ⊕ x). So Ax 2 holds.

(Ax 3) Let z ∈ R. Then (z − 1) ⊕ z = max(z − 1, z) = z 6= z − 1 and so z is not an
additive identity. Thus Ax 3 does not hold.

(Ax 4) Since there does not exist an additive identity, Ax 4 is not applicable..

(Ax 5) (−1)� (0⊕ 1) = −1 ·max(0, 1) = −1 · 1 = −1 and
(

(−1)� 0
)
⊕
(

(−1)� 1
)

=

max(−1 · 0,−1 · 1) = max(0,−1) = 0. Since −1 6= 0, Ax 5 does not hold.

(Ax 6) (1 + 1)� 1 = 2 · 1 = 2 and (1� 1)⊕ (1� 1) = max(1 · 1, 1 · 1) = max(1, 1) = 2.
Since 1 6= 2, Ax 6 does not hold.

(Ax 7) (ab)� v = (ab)c = a(bc) = a� (b� c) so Ax 7 holds.

(Ax 8) 1� v = 1v = v and so Ax 8 holds.
In summary: Ax 1,2,7 and 8 holds. Ax 3,5 and 6 fail and Ax 4 is not applicable. Hence

R with these operations is not a vector space.

B. Define

⊕ : R× R→ R, (v, w)→ 3
√

v3 + w3

and
� : R× R→ R, (a, v)→ 3

√
a v

Which of the eight axioms of a vector space hold for (R,⊕,�)? Is (R,⊕,�) a vector
space?

Let v, w, x, a, b ∈ R. Then
(Ax 1) v ⊕ w = 3

√
v3 + w3 = 3

√
w3 + v3 = w ⊕ v and so Ax 1 holds.

(Ax 2) (v ⊕ w) ⊕ x = 3

√(
3
√
v3 + w3

)3
+ x3 = 3

√
(v3 + w3) + x3) = 3

√
v3 + (w3 + x3) =

3

√
v3 +

(
3
√
w3 + x3

)3
= v ⊕ (w ⊕ x) and so Ax 2 holds.

(Ax 3) v⊕ 0 = 3
√
v3 + 03 =

3
√
v3 = v and so 0 is an additive identity. Hence Ax 3 holds.
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(Ax 4) v ⊕ (−v) = 3
√

v3 + (−v)3 = 3
√
v3 − v3 = 3

√
0 = 0. Hence Ax 4 holds.

(Ax 5) a�(v⊕w) = 3
√
a 3
√
v3 + w3 = 3

√
a(v3 + w3) = 3

√
av3 + aw3 = 3

√
( 3
√
av)3 + ( 3

√
aw)3 =

(a� v)⊕ (a� w) and so Ax 5 holds.

(Ax 6) (a + b)� v = 3
√
a + bv = 3

√
a + b

3
√
v3 = 3

√
(a + b)v3 = 3

√
av3 + bv3 =

3

√(
3
√
av
)3

+
(

3
√
bv
)3

= (a� v)⊕ (b� 3) and so Ax 6 holds.

(Ax 7) (ab)� v = 3
√
ab v = ( 3

√
a 3
√
b)v = 3

√
a( 3
√
bv) = a� (b� v) and so Ax 7 holds.

(Ax 8) 1� v = 3
√

1v = 1v = v and so Ax 8 holds.

We proved that all eight axioms holds and so R with these operations is a vector space.
.
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