Linear Algebra I

Homework 11

due on 11/28/11

Section	Exercises
6.8	$3,\!4,\!5$
7.2	1,2b
7.3	$10,\!11,\!12$

A. Fill in all the ? in the proof of the following Theorem:

Theorem I. Let A be an $m \times n$ matrix and B its reduced row echelon form. Let x_{f_1}, \ldots, x_{f_t} be the free variables of B and let s be number of non-zero rows of B. Let (e_1, \ldots, e_n) be the standard basis for \mathbb{R}^n and let b^k be row k of B. Then (b^1, \ldots, b^s) is a basis for RowA and $(b^1, \ldots, b^s, e_{f_1}, \ldots, e_{f_t})$ is basis for \mathbb{R}^n .

Proof. Put

 $D = (b^1, \dots, b^s, e_{f_1}, \dots, e_{f_t})$

Note that (b^1, \ldots, b^s) is the list of non-zero rows of B. By Theorem ? (b^1, \ldots, b^s) is a basis for Row A. So we just need to show that D is a basis for \mathbb{R}^n . Note that s is the number lead variables and so n = s + t. Thus D is a list of length n in the ?-dimensional vector space \mathbb{R}^n . So by Theorem ?:

(*) D is basis of \mathbb{R}^n if and only if D is linearly independent.

To show that D is linearly independent, let $r_1, \ldots, r_s, u_1, \ldots, u_t \in ?$ such that

(*)
$$r_1 b^1 + \dots r_s b^s + u_1 e_{f_1} + \dots u_t e_{f_t} = ?$$

Let $1 \leq k \leq s$ and let b_{kl_k} be the leading 1 in b^k . Then b_{kl_k} is the only non-zero entry in Column l_k of B and so the l_k entry of b^j is ? for all $1 \leq j \leq s$ with $j \neq k$. Since x_{l_k} is a leading variable, $l_k \neq f_j$ for all $1 \leq j \leq t$ and so also the l_k entry of e_{f_j} is ?. Thus the l_k entry of the linear combination on the left side of the equation (*) is ?. Hence ? = 0 for all $1 \leq k \leq s$. Thus (*) implies

$$u_1e_{f_1}+\ldots+u_te_{f_t}=\mathbf{0}$$

Since (e_1, \ldots, e_n) is ? this gives $u_j = ?$ for all $1 \le j \le t$. Thus D is ?, and so by (*) D is a basis for \mathbb{R}^n .

B. Let $V = \text{span}\left((1,0,1,1,1),(3,3,0,3,3),(1,1,0,1,1)\right)$. Find a basis for V and extend it to a basis of \mathbb{R}^5 . (*Hint:* Use Theorem I to find both bases simultaneously).