Linear Algebra I

Homework 10

due on 11/18/11

- Section Exercises
- 6.4 1,2
- 6.5 1,2,3,4,6

A. Let **V** and **W** be vector spaces, let $B = (v_1, \ldots, v_n)$ be basis for **V** and let $E = (u_1, \ldots, u_n)$ be a list in W.

- (a) Show that $L_E \circ C_B$ is a linear and $(L_E \circ C_B)(v_j) = u_j$ for all $1 \le j \le n$.
- (b) Let $T: \mathbf{V} \to \mathbf{W}$ be a linear with $T(v_j) = u_j$ for all $1 \le j \le n$. Show that $T = L_E \circ C_B$.
- **B.** Let **V** and **W** be vector spaces with basis *B* and *D* respectively. Let $n = \dim V$ and $m = \dim W$. For a linear function *T* from **V** to **W** let A_T be the matrix of *T* with respect to *B* and *D*.

Define the function $\alpha : L(\mathbf{V}, \mathbf{W}) \to \mathbb{M}(m, n)$ by $\alpha(T) = A_T$ for all $T \in L(\mathbf{V}, \mathbf{W})$. Define the function $\beta : \mathbb{M}(m, n) \to L(\mathbf{V}, \mathbf{W})$ by $\beta(A) = L_D \circ L_A \circ C_B$ for all $A \in \mathbb{M}(m, n)$.

- (a) Show that α is linear.
- (b) Show that β is linear.
- (c) Show that β is an inverse of α .
- (d) Show that the vector space $\mathbf{L}(\mathbf{V}, \mathbf{W})$ is isomorphic to the vector space $\mathbb{M}(m, n)$.

C. Retain the notation from Exercise B. Suppose $B = (v_1, \ldots, v_n)$ and $D = (w_1, \ldots, w_m)$. For $1 \le i \le m$ and $1 \le j \le n$ let T_{ij} be unique linear function from **V** to **W** with

$$T_{ij}(v_k) = \begin{cases} w_i & \text{if } k = j \\ \mathbf{0}_{\mathbf{W}} & \text{if } k \neq j \end{cases}$$

for all $1 \leq k \leq n$. Also let A_{ij} be the $m \times n$ -matrix whose (i, j) entry is 1 and all other entries are zero. Show that

$$\alpha(T_{ij}) = A_{ij}$$
 and $T_{ij} = \beta(A_{ij})$