MTH 309-4 Linear Algebra I/Review for Final Exam F11

1. Let p be a polynomial of degree 2 in Ps, let p’ and p”’ be the first and second derivative of p. Show that
(p,p',p") is a basis for P,.

Solution: Let (a,b,c) € R? with ap + bp’ + cp” = 0. Note that p has degree 2, p’ has degree 1 and
p” has degree 0. So the coefficient of 22 in ap + bp’ + cp” = 0 is a. Thus a = 0. Hence bp’ +cp”’ =0
and looking at the coefficient of z we get b = 0. So ¢p” = 0 and thus ¢ = 0. We proved that
a=b=c=0and so (p,p’,p"”) is linearly independent. Since Py is three dimensional, any linearly
independent list of length 3 in P5 is a basis for Ps. So P5 is a basis.

2. Let L : R? — R? be a linear function defined by

X1 Xro — I
L Zo = T3 — T2
I3 Irs — I

(a) Determine the kernel of L.

(b) Find the matrix A of L with respect to the standard bases.

(¢) Find a basis for ImL.
)

(d) Find a basis for ker L.

Solution:

(a) (1,22, x3) € ker L if and only if L(x1,x9,23) = 0, if and only if x5 — 21 = 0,23 — z2 = 0 and
x3 — 21 = 0 and if and only if x1 = 29,25 = 3 and 1 = x3. So

ker L = {(z1,20,23) € R® | 21 = 20 = 23} = {(a,0,a) | a € R} = {a(1,1,1) | a € R}

(b) Solution 1: The standard basis for R? is E = (e, e, e3). Also [x]g = x for all z € R®. So

0-1 -1 1-0
L(el)]E = 0-0 = 0 5 [L(eg)]E = 0—-1
0-1/|, \-1 0-0
0-0 0 -1 0
[L(es)le=|[1—-0 =111, thus A= 0 -1 1
1-0/ 15 1 -1 0 1
Solution 2:
T1 o — T -1 1 0 -1 0 I
L T2 = | T3 — T2 =T 0 + X9 -1 + x3 1 = 0 -1 1 T2
T3 T3 — I —1 0 1 —1 0 1 T3

and so the matrix for L with respect to the standard bases is
-1 10
A= 0 -1 1
-1 0 1




(c) Note that L = L4 and so ImL = ColA. So we can use the Gauss Jordan algorithm to find a

basis:
-1 1 0 1 -1 0 1 -1 0
0 —1 1| ®pm=m 00 —1 1| ™20 10 1 -1
-1 0 1 0 -1 1 0 0 0

So the leading variables are x; and x5 and the first two colums of A form a basis for ImL. Thus

1 1
o], (-1
1 0

is a basis for ImL.

(d) From (a) see that ((1, 1, 1)) spans ker L. It also linearly independent and so ((1, 1, 1)) is a basis
for ker L.

3. Let A=

— O N
_= N O

0
0f.
1

Solution: (a)

A—2 0 0
det(A — A) = det 0 A—2 0 =(A—2)(A=2)(A—1)
“1 -1 A-1

and so the eigenvalues are 1 and 2
(b) We use the Gauss Jordan algorithm to find a basis for Nul(Al — A):

A=1:
-1 0 0 1 0 0
R3 — R1 — R2 — R3
0 -1 0 —R1 - R1 01 0
—R2 — R2
-1 -1 0 0 0 O

So x3 is free, x1 = 0,29 = 0,23 = x3 and

Ei(A) = {z3(0,0,1) | x3 € R}




0 0 0 1 1 -1
0 0 0] #7210 0 0
-1 -1 1 0 0 0
So xo and x3 are free, x1 = —x2 + T3, T2 = T3, 3 = x3 and

EQ(A) = {xl(ila 170) + ':63(1707 1) | Ta,T3 € R}

(c) and (d) By (b), ((0,0, 1)) is a basis for E4(1) and ((—1, 1,0), (1,0,1)) is a basis for E4(2).

Thus
0 -1 1
0], 11,10
1 0 1

is a linearly independent list eigenvectors of A. Since this list has length 3 and dimR3 = 3, this list
is a basis of eigenvectors. So A is diagonalizable and

100 0 -1 1
P 'AP=10 2 0|, where P=1]0 1 0
00 2 1 01

4. Let A be an m x n-matrix with dim ColA = n.
(a) State the definition of linear independence for a list in a vector space V.
(b) Show that L, is 1-1.

(C) Let (Il,l’g, ..
that (y1,ye, ...

., k) be a linearly independent list in R™ and put y; = Az, for all 1 < i < k. Show
, Yk ) is linearly independent in R™.

Solution: (a) A list (vy,va,... ,Tn) €

R’n

, V) in a vector space V is linearly independent if for all (rq, . ..

rvy +rove+ ...+ v, =0=—17r =0,7=0,...,7, = 0.

(b) By the dimension formula, dim NulA+dim ColA = n. Since dim ColA = n, this gives dim NulA =
0. Thus ker L4 = NulA = {0} and so Ly is 1-1.

(c) Let (rq,...
is linear,

ri) € R™ with r1y1 + ... + ryr = 0. Note that y; = Ax; = La(x;) and so, since Ly

La(rizi+...+rger) =rmLa(z) + ...+ reLa(ag) =ryr + ...+ reyr = 0 = L4(0).

Since L4 is 1-1 we conclude that max1+...+7rpzr = 0. Since (z1,xa, ..., xk) is linearly independent
this implies 1 =7y =...7r, =0 and so (y1,...,yx) is linearly independent.

5. Consider the linear system of equations:

1+ T2 + 23
1 + 209 + a3 = 2
r1 + o + axs = b



(a) Find all values for a and b such that the system has no solution.
(b) Find all values for a and b such that the system has a unique solution.

(c¢) Find all values for a and b such that the system has infinitely many solutions.

Solution:
1111 11 1 1
0212 RE;QRL*R;” 01 : 1
1lab 00a—1b—1

If a # 1, then a — 1 # 0, we can divide the last row by a — 1. It follows that all columns but the
last contain a leading one, and the system has a unique solution.

Ifa=1and b#1,thena—1=0and b—1# 0. So the last row shows that the system has no
solution.

Ifa=1landb=1,thena—1=0and b —1=0. So the last two columns do not contain a leading
one. Thus the system has a solutions and 3 is a free variable. Thus the system has infinitely many
solutions.

6. Let A be an upper triangular matrix (that is an n x n-matrix with a;; =0 forall 1 < j <i <n. ) Prove
by induction that the determinant of A is equal to the product of the diagonal entries of A.

Solution: If n =1, then det(A) = a1; and the statement holds So suppose the statement holds for
n — 1 and let A be an n X n upper triangular matrix. Since a,; = 0 for all 1 <14 < n we have

det(A) = Z(_l)n-ﬂlani det(Anz) = (_1)n+nann det(Ann) = apy det Ay = det(Ann) Ann
i=1
Observe that A, is an (n—1) X (n—1) upper triangular matrix and so by the induction assumption,
det(Ann) = a11a22 . .. A(n—1)(n—1)- Thus det A = a1a22 ... ann
We proved that the statements holds for 1 and if it holds for n — 1 it holds for n. Thus by the
principal of induction it holds for all positive integers n.

7. Let A be an m x n-matrix. Prove that Nul(4) = {0} if and only if the columns of A are linearly
independent. (Do not use any theorems)

Solution:
Nul(A) = {0}
— {z e R" | Az = 0} = {0} — definition of Nul(A)
= foralz e R": Azxr=0<=2z=0 — Equality of sets
I X1
< forallzy,...,z, € R: A| ! | =0<+= | : | =0 — definition of R"
L L
<~ forall zq,...,2, € R, — definition of Ax
a1+ ...+zpa, =02, =0,...,2, =0
— (a1,...,ay) is linearly independent — definition of linearly independent




8. Let S be the subset of P3 defined by S = {p(z) € P3 | p(2) = 0}. Show that S is a subspace of P3.

Solution: Recall that the additive identity in Py is the zero polynomial 0. We have 0(2) = 0 and
so0€Ss.

Let p,g € S. Then p(2) = 0 and ¢(2) = 0 and so (p + ¢)(0) = p(0) + ¢(0) = 0+ 0 = 0. Thus
p+qges.

Let p € S and r € R. Then (rp)(0) = r(p(0)) =r0 =0 and so rp € S.

Hence all three conditions of the subspace theorem hold and so S is a subspace of Ps.

9. Let L : V — W be a linear function from a vector space V to a vector space W.
(a) State the definition of ker(L).
(b) Prove that ker(L) is subspace of V. (Do not quote any theorems other than the Subspace Theorem)

Solution: (a) ker(L) = {v € V| L(v) = 0}.
(b) By definition of ker L we have

*) Let v € V. Then v € ker L if and only if L(v) = 0.
By Theorem 6.2, L(0) = 0 and so by (*), 0 € ker L.

Let u,v € ker L. Then by (*) L(u) = 0 and L(v) = 0. Since L is linear we get L(u + v) =
L(u)+ L(v) =0+ 0=0 and so u + v € ker L by (*)

Let v € ker L and r € R. Then by (*), L(v) = 0. . Since L is linear we get L(rv) = rL(u) =r0=0
and so u + v € ker L by (*).

We verified that all three conditions of the Subspace Theorem holds for S and so S is a subspace of
V.

10. (a) State the definition of a linear function.
(b) Let L :R?® — R3 be a linear function with

L(1,1,0) = (0,2,3), L(1,0,0) = (0,2,0), L(1,1,1) = (4,3,3)

Compute L(0,1,0) and L(0,0,1).

Solution: (a) A linear function is a function T : V. — W where V and W are vector space and

(i) T(u+v)=T(u)+TW) for allu,v €V, and
(it) T(rv) =r(T(v)) for allr € R and v € V.
(b) L(0,0,1) = L((1, 1,1)+(=1)(1, 170)) = L(1,1,1)+ (~1)L(1,1,0) = (4,3,3)— (0,2,3) = (4,1,0)

and then
L(Oa 170) - L((]-v 1a0) + (71)(17070)) = L(L 170) + (71)L(1a070) - (032a3) - (0a270) - (ana?’)




11. Let A be a 3 x 5-matrix. Suppose the list of rows of A is linearly independent. Compute dim NulA.

Solution: By definition RowA is spanned by the list of rows of A. By assumption the list of
rows of A is linearly independent and so is a basis for RowA. Since A has three rows this gives
dim RowA = 3. Since dim ColA = dim RowA we conclude that dim ColA = 3. By the dimension
formula, dim NulA + dim ColA = 5. Thus dimNuld =5 —3 = 2.

12. Let A and B be m x m matrices with AB = BA. Use mathematical induction to show that A"B = BA"
for all positive integers n.

Solution: Let S(n) be the statement, A”B = BA™. For n = 1 this says AB = BA which is true
by assumption.

Suppose that S(n) holds. Then A”B = BA™. We compute

A" B = (A"A)B — definition of A™*!
= A"(AB) — matrix multiplication is associative
= A"(BA) — since AB = BA
= (A"B)A — matrix multiplication is associative
= (BA™)A — since S(n) holds
= B(A"A) — matrix multiplication is associative
= BA"™*l — definition of A"*!

So S(n) implies S(n + 1). Thus by the principal of induction S(n) holds for all positive integers n.

13. Let X = Span((l,O, 2,1),(1,2,3,0), (3,2,7,2), (0,0,1, 1))
(a) State the definitions of the span of a list of vectors in a vector space V.
(b) Find a basis for X.
(c¢) Is (3,4,9,2) € X
(d) Is X =R*?

Solution: (a) Let B = (v1,...,v,) be a list in V. Then the span of B, denoted span B, is the set
of linear combinations of V, that is

span B = {riv1 + ...+ rpv, | (r1,...,mn) € R"}

(b) We compute the row echelon form of the matrix A whose rows are the above four vectors:

1021 102 1 102 1 100 -1
= 1230| poomom [021 1] 53 r2o 6 014 —1 mioams o (010 -1
3272 #1021 —1 R3 > R4 001 1| ®-=2®=E 1001 1
0011 001 1 000 O 000 O

So




((1,0,0, ~1),(0,1,0, 1), (0,0, 1, 1))

is a basis for X.

(c) (3,4,9,2) is in X if and only if its is a linear combination of the basis we found in (c¢). Looking
at the first three entries, we see that the coefficients have to be (3,4,9) . We compute

3(1a 07 07 _1) + 4(07 170a _1) + 9(0’ Oa 17 1) = (3?4a 97 -3—-4+ 9) = (354797 2)

and so (3,4,9,2) is in X.

(d) By (b) X is three dimensional. Since R* is 4-dimensional, X # R*%.

Solution: We give a second solution for (b) and (c¢). We will compute a row echelon form of the
matrix B with columuns the four vectors spanning X augmented by the vector in (c):

11303 113 0 3 11303 11303
B |02204) mozmon | 001 1 0 2| gy g (011020 0 01102
23719 4m-m | 0 1 1 1 3| ®FEM=m 00011 00011
10212 0-1-1 1-1 00011 00000

The leading ones in the first four columns are in Columns 1, 3 and 4 and so Columns 1, 3 and 4
form basis for X. Hence

_= N O =
S W N
_ -0 O

is a basis for X.

There is no leading 1 in Column 5, so the linear system of equation corresponding to B has a
solution. So (3,4,9,2) is a linear combination of the columns of B, that is (3,4,9,2) € X.

14. Let f: X - Y and g : Y — Z be linear functions. Show that g o f is a linear. (Do not quote any
theorems).

Solution: Let u,v € X. Then

(go NHlu+v) = g (f(u + v)) — definition of composition
= g(f(u) + f(v)) — since f is linear
)

= g(f (u
= (go f)(u)+ (go f)(v) — definition of composition,twice

+ g(f(v)) — since g is linear




Let v € V and r € R. Then

(go f)(rv) = g(f(rv)) — definition of composition
=g r(f(v)) — since f is linear
=r g(f(v)) — since g is linear

= r((g o f)(v)) — definition of composition

Thus g o f is linear.

15. Let B = (x,1,22) and B’ = (1 + 2,1 — z,2%) be ordered bases for Ps.
(a) Find the change-of-bases matrix from B’ to B.
(b) Find then change-of-bases matrix from B to B’.
(c) Find the coordinate vector of 1 + 2x + x? with respect to B’.

1
Solution: (a) 1+x=1z+1-1+02?andso [1+z]p= (1
0
-1
l—x=(-1)z+1-1+0z? and so [l —z|g = 1
0

0
2?2 = —0x+0-1+ 122 and so [z%]p = | 0 |. Thus the change-of-bases matrix from B’ to B is
1

1-10
P=1(1 10
0 01

(b) We use the Gauss Jordan Algorithm to compute the inverse of P:

1-10100 1-10 100 ) 100 %%0
1 10010] rz-more |0 201100 “/25 " 1010 -5 50
0 01001 0 01 001 001 001
So the change of basis matrix from B to B’ is
%%0 110
P_lz —550 = = —110
001 002

() Wehave 1 +2x+ 22 =2r+1-1+ 122 and so [1 + 2z + 22]p =

2
1
1
110] /2 3 3
1
[1+2z+x2]3/:P*1[1+2x+x2]3:§ —110] |1 _% 1| = —?
002| \1 1




16. (a) State the definition of a basis for a vector space V.
(b) Show that the list
B= <x3 + 322, 2% + 3z, 2 + 3, 2% + 422 +4x—|—4)

is a basis for Ps.

Solution: (a) A basis for a vector space V' is a linearly independent, spanning list in V.

(b) Let V = span(B). Then 3 + 422 + 4z + 3 = (2% + 322) + (% + 3x) + (z + 3) € V. Hence also

1= (2 +42” 440 +4) — (2® +42* + 42 +3) €V

Hence z = (#+3)—3-1€ V, 2? = (23 + 32) — 3z € V and 2% = (2% + 42?) — 422 € V. Since
(1,7, 2% 2) spans P3 we conclude that B spans P3. Since dim P; = 4 any list of length 4 which
spans P53 is a basis. So B is a basis for P3.

17. Let X and Y be subspaces of a vector space V. Put X +Y :={z+y|z e X,y e Y}.
(a) State the definition of a subspace of a vector space.
(b) State the Subspace Theorem
(¢) Prove that X +Y is a subspace of V.
(d) Prove that dim(X) < dim(X +7Y).

Solution: (a) Let V = (V,®,®) be a vector space and W a subset of V. Put W = (W, &, ).
Then W is called a subspace of V provided that W is a vector space.

(b) Let V = (V,®,®) be a vector space and W a subset of V. Put W = (W, ®,®). Then W is a
subspace of V if and only if the following three conditions hold:

(1) Ov e W,
(2) a+beW for all a,b € W, and
(3) rae W for all a € W and r € R.

(c) Observe first that by definition of X + Y

*) Let v be an object. Then v € X + Y if and only if there exist z € X and y € Y with
v=+Yy.

We will now verify that the three Conditions of the Subspace Theorem are fulfilled for X + Y.

(1) Since X and Y are subspace of V' the Subspace Theorem shows that 0 € X and 0 € Y. Since
0 = 0 + 0 we conclude from (*) that 0 € X + Y.

(2) Let a,b € X +Y. Then by (*) there exist z,2’ € X and y,y € Y witha=ax+yand b=2a'+y .
Since X and Y are subspaces of V, the Subspace Theorem shows that  + 2’ € X and y + ¢y’ € Y.
Sincea+b=(z+y)+ (¢’ +vy)=(x+2')+ (y+y') we conclude from (*) that a + b€ X + Y.

(3) Let @ € X and » € R. Then by (*) there exist z € X and y € Y with a = = + y. Since
X and Y are subspaces of V', the Subspace Theorem shows that ro € X and ry € Y. Since




ra =r(x +y) =rz + ry we conclude from (*) that a + b € X + Y.We verified the three conditions
of the Subspace Theorem and so X + Y is a subspace of V.
(d)Let z € X. Thenax =ax+0and soz € X +Y. Let n =dim(X) and let (z1,...,z,) be a basis

for X. Then (z1,...,z,) is linearly independent list in X + Y and so by the Comparison Theorem
n < dim(X +Y). So dim(X) < dim(X +Y)

18. Let V be a vector space and {vy,...,v,41} C V aset of linearly independent vectors of V. Prove without
quoting any theorem:

(a) The set {vy,...,v,} C V is linearly independent.
(b) vny1 ¢ spanf{vy,...,v,}

Solution: (a) Let r1,72...,7, € R with ryv1 +... 4+ r,v, = 0. Then

rvr+...+ 100+ 00 =rv1 4+ o+ +0=r101+ ...+ 100, =0

and since (v, . . ., U, Upt1) i8 linearly independent we conclude that ry = 0,79 =0,...,r, = 0,0 = 0.
Thus (v1,...,v,) is linearly independent.
(b) Suppose for a contradiction that v,11 € span{vy,...,v,}. Then there exist r1,...,7, € R with

Up41 = T101 + ...+ 7rp0,. Thus

101 + oo+ rpUn + (= 1)Upg1 = Vpg1 — Upgp1 =0

a contradiction since —1 # 0 and {vy,...,v,41} is linearly independent.

19. Let V be an infinite dimensional vector space. Use induction to show that for every n € N there is a
subspace S, C V with dim(S,,) = n.

Solution: For a non-negative integer n let @,, be the statement:
There exists a subspace S of V with dim .S = n.

Note that {Ov} is a 0-dimensional subspace of V' and so Sy is true.

Suppose that Q,, is true. Then there exists an n-dimensional subspace S of V. Since V is infinite
dimensional, S # V and so there exists v € V' \ S. Let (v1,...,v,) be a basis for S and put
T = span(vy,...,V,,v). Then T has a spanning list of length n 4+ 1 and a linear independent list of
length n. So by the Comparison Theorem, n < dim7T < n+1. If dim T = n, then (vy,...,v,) would
be a basis for T, a contradiction since v € T but v ¢ S = span(vy,...,v,). Thus dimT =n+ 1. So
Qn+1 1s true.

The principal of induction now show that ,, holds for all non-negative integers n.

20. Let T : R® — R? be the linear function given by:

a a+b
T b {a—2b+20]'



(a) Find the matrix of T with respect to the standard bases of R? and R3.
(b) Is T one-to-one? Justify your answer!

(c) Is T onto? Justify your answer!

Solution: (a) We have

Z [ a+b ] 110 Z
T la—2b+2¢| " |1 —-22
c c
. .1 10
and so the matrix of T is [1 9 2}
(b) Note that
2 0
T —2 = {8] =T 0
) 0
and so T is not 1-1.
(c) Let LCZ] € R2. Then
¢ c
T 0 =
d—a M

and so 7T’ is onto.

Solution: We will give a second, more systematic, solution.

(a)

0 0

and so the matrix of A with respect to the standard bases is

110

1-22
(b) and (c¢) We use the Gauss-Jordan algorithm to determine dim ColA = dimIm7T and dim NulAd =
dim ker T™:

110 1 1 0] rigirem |10 %
R2 — R1 — R1 13 9
1-22 0-32 zh2 -~ R2 Ol—g

Since A has one free variable, dim NulA = 1. Thus ker T'= NulA # {0} and T is not 1-1. Since A
has two lead variables, dim ColA = 2. Thus ImT = Col4A = R? and T is onto.

21. Let T : R® — M(3,2) be a linear function. Show:

(a) If T is one-to-one, then T is onto.



(b) If T is onto, then T is one-to-one.

Solution: Note that dimR® = 6 = dimM(3,2). Also dimker T + dimIm7 = dim M(3,2) by the
dimension formula. Thus

T is 1-1
ker T = {0}
dimkerT =0
dim M(3,2) = dim ImT
M(3,2) = ImT
T is onto

1rees

22. Let A be an m x n matrix and pa : R™ — R™ the linear function defined by pa(v) = Av. Let b € R™.
Show that b lies in the image of p4 if and only if the linear system Az = b has a solution.

Solution: We have

belm(pa)
<  b={pa(z) |z €R"}  — definition of Im(p4)
<= b= pa(z) for some x € R™ — definition of {ua(x) |z € R"}
<= b= Ax for some x € R® — definition of p4
<= Az =0 has asolution  — definition of solution

23. Let A be an n x n matrix and v,w € R™ \ {0} with Av = v and Aw = 3w . Show directly that the set
{v,w} is linearly independent. (Don’t just quote a theorem!)

Solution: Let r,s € R with

(%) ™0+ sw =0

Then 0 = A0 = A(rv + sw) = rAv + sAw = r(—v) + s(3w) = —rv + 3sw. So

—rv+3sw =0

Adding this equation to (*) we get 4sw = 0. Since w # 0 this gives 4s = 0 and so s = 0. Thus (*)
implies v = 0 and since v # 0, r = 0. So (v, w) is linearly independent.

24. Consider the ordered basis

0] fo] [t
B={ o], |1], |1
1 1] |1

of R? and the linear function 7 : R? — R? given by:



a a—+c
T b = |2a+b+c
b+c

Find the matrix of T" with respect to the bases B and B.

Solution: Let E = (e1, ez, e3) be the standard basis for R®. Since

a a+c 101| |a
T b = |2a+b+c| =1211 b
b+c 011 |e

the matrix of T" with respect to E' and F is

Since [z]g = z for all x € R3, the change-of-basis matrix from B to E is

0
P=|0
1

—= = O

1
1
1

Thus the matrix A’ for T with respect to B and B is P~ AP. We use the Gauss-Jordan algorithm
to compute that inverse of P:

001100 111001 100 0-11
011010 mer |011010| HB-E=-521010-1 10
111001 001100 001 1 00
So
0-11 0-11][101 -200
Pl=|-1 10, P'4=|-1 10| |211|=| 110
1 00 1 00f|011 101
and
-200] [001 00 —2
A=rP'tAP=]| 110/ |011|=|01 2
101 111 11 2

25. Let V,W be finite dimensional vector spaces and X a subspace of V. Prove that the following two
statements are equivalent

(a) dim X +dim W > dim V.
(b) There exists a linear function T': V' — W with kerT' = X.



Solution:

(a) = (b): Suppose that dim X +dim W > dimV. Let | = dim X, n = dimV and m = dim W.
Then l+m >nandson—1 <m. Ptk =n—-10. Thenn =101+k = dimV and &£ < m.
Let (x1,...,x;) be a basis for X. By the Expansion Theorem, (z1,...,2;) can be expanded to a
basis (z1,...,z,v1,...,05) of V. Let (wq,...,wy) be basis for W. By Theorem 6.9 there exists
unique linear function T' : V. — W such that T'(x;) = 0 for 1 < ¢ < [ and T'(v;) = w; for
1 <i < k. We claim that kerT = X. Let v € V. Since (21,...,%,v1,...,0;) is a basis for V,
v =112y + ... +1rx; + S1v1 + ...+ spvg for some rq,...7r,81,...,8; in R. Then since T is linear,
Theorem 6.2 shows that

Tw) =rmT(x) 4+ ...+ 7T (x) + 1T (v1) + ... + s.T(vx)
=r0+...70+ 51wy + ...+ spwi
= S{wy + ...+ SpwWk

Thus v € ker T if and only if T'(v) = 0 and if and only if s;wq + ...+ sgpwg = 0. Since (w1, ..., Wy, )
is linearly independent, this holds if and only of s;1 = s9 = ... = s, = 0.

Thus v € ker T if and only if v = riz1 + ... 4+ ma; for some rq,...7, € R and if and only if v € X.
Thus ker T'= X. Hence (b) holds.

(b) = (a): Suppose T : V — W is a linear function with ker 7’ = X. By the dimension formula,
dimker T4+ dim ImT = dim V. Since ker T = X, dimker T' = dim X and since Im7 < W, dim ImT <
W. Thus

dim X +dim W > dimker T + dimIm7T = dim V'

So (a) holds.

123
26. Compute the inverse and determinant of |1 4 5
258
Solution:
123100 123 100 101 2-10
145010 -2 (022-110] L2 1012-2 01
258001 012-201 022-1 10

10 1 2-1 0] .\ 10 [100 3
r3—-2r2—>Rr3 |01 2 -2 0 1 R2T2R3—>I‘22 010 1
00-2 3 1-2| ™7™ Joo1-2

So the inverse is

7 1

IT—4-1] ([7-1-2
1 1-1|==|12 2-2
3 1
-3 -1 1 -3 -1 2

All but two of the row operations were adding one row to another and so did not change the
determinant. One of the operation was interchanging two rows and one was multiplication of a row




by —%. So the determinant of the original matrix is




