
MTH 309-4 Linear Algebra I/Review for Final Exam F11

1. Let p be a polynomial of degree 2 in P2, let p′ and p′′ be the first and second derivative of p. Show that
(p, p′, p′′) is a basis for P2.

Solution: Let (a, b, c) ∈ R3 with ap+ bp′ + cp′′ = 0. Note that p has degree 2, p′ has degree 1 and
p′′ has degree 0. So the coefficient of x2 in ap+ bp′ + cp′′ = 0 is a. Thus a = 0. Hence bp′ + cp′′ = 0
and looking at the coefficient of x we get b = 0. So cp′′ = 0 and thus c = 0. We proved that
a = b = c = 0 and so (p, p′, p′′) is linearly independent. Since P2 is three dimensional, any linearly
independent list of length 3 in P2 is a basis for P2. So P2 is a basis.

2. Let L : R3 → R3 be a linear function defined by

L

x1x2
x3

 =

x2 − x1x3 − x2
x3 − x1


(a) Determine the kernel of L.

(b) Find the matrix A of L with respect to the standard bases.

(c) Find a basis for ImL.

(d) Find a basis for kerL.

Solution:

(a) (x1, x2, x3) ∈ kerL if and only if L(x1, x2, x3) = 0, if and only if x2 − x1 = 0, x3 − x2 = 0 and
x3 − x1 = 0 and if and only if x1 = x2, x2 = x3 and x1 = x3. So

kerL = {(x1, x2, x3) ∈ R3 | x1 = x2 = x3} = {(a, a, a) | a ∈ R} = {a(1, 1, 1) | a ∈ R}

(b) Solution 1: The standard basis for R3 is E = (e1, e2, e3). Also [x]E = x for all x ∈ R3. So

L(e1)]E =

0− 1
0− 0
0− 1


E

=

−1
0
−1

 , [L(e2)]E =

1− 0
0− 1
0− 0


E

=

 1
−1

0



[L(e3)]E =

0− 0
1− 0
1− 0


E

=

0
1
1

 , thus A =

−1 1 0
0 −1 1
−1 0 1


Solution 2:

L

x1x2
x3

 =

x2 − x1x3 − x2
x3 − x1

 = x1

−1
0
−1

+ x2

 1
−1

0

+ x3

0
1
1

 =

−1 1 0
0 −1 1
−1 0 1

x1x2
x3


and so the matrix for L with respect to the standard bases is

A =

−1 1 0
0 −1 1
−1 0 1





(c) Note that L = LA and so ImL = ColA. So we can use the Gauss Jordan algorithm to find a
basis: −1 1 0

0 −1 1
−1 0 1

 R3 − R1 → R3
−R1 → R1

1 −1 0
0 −1 1
0 −1 1

 R3 − R2 → R3
−R2 → R2

1 −1 0
0 1 −1
0 0 0


So the leading variables are x1 and x2 and the first two colums of A form a basis for ImL. Thus

−1
0
−1

 ,

 1
−1

0




is a basis for ImL.

(d) From (a) see that
(

(1, 1, 1)
)

spans kerL. It also linearly independent and so
(

(1, 1, 1)
)

is a basis

for kerL.

3. Let A =

2 0 0
0 2 0
1 1 1

.

(a) Find all eigenvalues of A.

(b) For each of the eigenvalues in a), find its corresponding eigenvectors.

(c) Determine whether A is diagonalizable, and justify your answer.

(d) If A is diagonalizable, find a matrix P such that P−1AP is a diagonal matrix.

Solution: (a)

det(λI −A) = det

λ− 2 0 0
0 λ− 2 0
−1 −1 λ− 1

 = (λ− 2)(λ− 2)(λ− 1)

and so the eigenvalues are 1 and 2

(b) We use the Gauss Jordan algorithm to find a basis for Nul(λI −A):

λ = 1: −1 0 0
0 −1 0
−1 −1 0

 R3 − R1 − R2 → R3
−R1 → R1
−R2 → R2

1 0 0
0 1 0
0 0 0


So x3 is free, x1 = 0, x2 = 0, x3 = x3 and

E1(A) = {x3(0, 0, 1) | x3 ∈ R}

λ = 2:



 0 0 0
0 0 0
−1 −1 1

 −R3 → R3
R1 ↔ R3

1 1 −1
0 0 0
0 0 0


So x2 and x3 are free, x1 = −x2 + x3, x2 = x2, x3 = x3 and

E2(A) = {x1(−1, 1, 0) + x3(1, 0, 1) | x2, x3 ∈ R}

(c) and (d) By (b),
(

(0, 0, 1)
)

is a basis for EA(1) and
(

(−1, 1, 0), (1, 0, 1)
)

is a basis for EA(2).

Thus 
0

0
1

 ,

−1
1
0

 ,

1
0
1




is a linearly independent list eigenvectors of A. Since this list has length 3 and dimR3 = 3, this list
is a basis of eigenvectors. So A is diagonalizable and

P−1AP =

1 0 0
0 2 0
0 0 2

 , where P =

0 −1 1
0 1 0
1 0 1


4. Let A be an m× n-matrix with dim ColA = n.

(a) State the definition of linear independence for a list in a vector space V .

(b) Show that LA is 1-1.

(c) Let (x1, x2, . . . , xk) be a linearly independent list in Rn and put yi = Axi for all 1 ≤ i ≤ k. Show
that (y1, y2, . . . , yk) is linearly independent in Rm.

Solution: (a) A list (v1, v2, . . . , vn) in a vector space V is linearly independent if for all (r1, . . . , rn) ∈
Rn,

r1v1 + r2v2 + . . .+ rnvn = 0 =⇒ r1 = 0, r2 = 0, . . . , rn = 0.

(b) By the dimension formula, dim NulA+dim ColA = n. Since dim ColA = n, this gives dim NulA =
0. Thus kerLA = NulA = {0} and so LA is 1-1.

(c) Let (r1, . . . rk) ∈ Rn with r1y1 + . . .+ rkyk = 0. Note that yi = Axi = LA(xi) and so, since LA

is linear,

LA(r1x1 + . . .+ rkxk) = r1LA(x1) + . . .+ rkLA(xk) = r1y1 + . . .+ rkyk = 0 = LA(0).

Since LA is 1-1 we conclude that r1x1 + . . .+rkxk = 0. Since (x1, x2, . . . , xk) is linearly independent
this implies r1 = r2 = . . . rk = 0 and so (y1, . . . , yk) is linearly independent.

5. Consider the linear system of equations:

x1 + x2 + x3 = 1
x1 + 2x2 + x3 = 2
x1 + x2 + ax3 = b



(a) Find all values for a and b such that the system has no solution.

(b) Find all values for a and b such that the system has a unique solution.

(c) Find all values for a and b such that the system has infinitely many solutions.

Solution: 1 1 1 1
0 2 1 2
1 1 a b

 R3 − R1 → R3
1
2
R2 → R2

1 1 1 1
0 1 1

2 1
0 0 a− 1 b− 1


If a 6= 1, then a − 1 6= 0, we can divide the last row by a − 1. It follows that all columns but the
last contain a leading one, and the system has a unique solution.

If a = 1 and b 6= 1, then a − 1 = 0 and b − 1 6= 0. So the last row shows that the system has no
solution.

If a = 1 and b = 1, then a− 1 = 0 and b− 1 = 0. So the last two columns do not contain a leading
one. Thus the system has a solutions and x3 is a free variable. Thus the system has infinitely many
solutions.

6. Let A be an upper triangular matrix (that is an n×n-matrix with aij = 0 for all 1 ≤ j < i ≤ n. ) Prove
by induction that the determinant of A is equal to the product of the diagonal entries of A.

Solution: If n = 1, then det(A) = a11 and the statement holds So suppose the statement holds for
n− 1 and let A be an n× n upper triangular matrix. Since ani = 0 for all 1 ≤ i < n we have

det(A) =

n∑
i=1

(−1)n+iani det(Ani) = (−1)n+nann det(Ann) = ann detAnn = det(Ann) ann

Observe that Ann is an (n−1)×(n−1) upper triangular matrix and so by the induction assumption,
det(Ann) = a11a22 . . . a(n−1)(n−1). Thus detA = a11a22 . . . ann

We proved that the statements holds for 1 and if it holds for n − 1 it holds for n. Thus by the
principal of induction it holds for all positive integers n.

7. Let A be an m × n-matrix. Prove that Nul(A) = {0} if and only if the columns of A are linearly
independent. (Do not use any theorems)

Solution:

Nul(A) = {0}
⇐⇒ {x ∈ Rn | Ax = 0} = {0} − definition of Nul(A)
⇐⇒ for all x ∈ Rn : Ax = 0⇐⇒ x = 0 − Equality of sets

⇐⇒ for all x1, . . . , xn ∈ R : A

x1...
xn

 = 0⇐⇒

x1...
xn

 = 0 − definition of Rn

⇐⇒ for all x1, . . . , xn ∈ R, − definition of Ax
x1a1 + . . .+ xnan = 0⇐⇒ x1 = 0, . . . , xn = 0

⇐⇒ (a1, . . . , an) is linearly independent − definition of linearly independent



8. Let S be the subset of P3 defined by S = {p(x) ∈ P3 | p(2) = 0}. Show that S is a subspace of P3.

Solution: Recall that the additive identity in P2 is the zero polynomial 0. We have 0(2) = 0 and
so 0 ∈ S.

Let p, q ∈ S. Then p(2) = 0 and q(2) = 0 and so (p + q)(0) = p(0) + q(0) = 0 + 0 = 0. Thus
p+ q ∈ S.

Let p ∈ S and r ∈ R. Then (rp)(0) = r
(
p(0)

)
= r0 = 0 and so rp ∈ S.

Hence all three conditions of the subspace theorem hold and so S is a subspace of P3.

9. Let L : V →W be a linear function from a vector space V to a vector space W .

(a) State the definition of ker(L).

(b) Prove that ker(L) is subspace of V . (Do not quote any theorems other than the Subspace Theorem)

Solution: (a) ker(L) = {v ∈ V | L(v) = 0}.

(b) By definition of kerL we have

(*) Let v ∈ V . Then v ∈ kerL if and only if L(v) = 0.

By Theorem 6.2, L(0) = 0 and so by (*), 0 ∈ kerL.

Let u, v ∈ kerL. Then by (*) L(u) = 0 and L(v) = 0. Since L is linear we get L(u + v) =
L(u) + L(v) = 0 + 0 = 0 and so u+ v ∈ kerL by (*)

Let v ∈ kerL and r ∈ R. Then by (*), L(v) = 0. . Since L is linear we get L(rv) = rL(u) = r0 = 0
and so u+ v ∈ kerL by (*).

We verified that all three conditions of the Subspace Theorem holds for S and so S is a subspace of
V .

10. (a) State the definition of a linear function.

(b) Let L : R3 → R3 be a linear function with

L(1, 1, 0) = (0, 2, 3), L(1, 0, 0) = (0, 2, 0), L(1, 1, 1) = (4, 3, 3)

Compute L(0, 1, 0) and L(0, 0, 1).

Solution: (a) A linear function is a function T : V →W where V and W are vector space and

(i) T (u+ v) = T (u) + T (v) for all u, v ∈ V , and

(ii) T (rv) = r
(
T (v)

)
for all r ∈ R and v ∈ V .

(b) L(0, 0, 1) = L
(

(1, 1, 1)+(−1)(1, 1, 0)
)

= L(1, 1, 1)+(−1)L(1, 1, 0) = (4, 3, 3)−(0, 2, 3) = (4, 1, 0)

and then

L(0, 1, 0) = L
(

(1, 1, 0) + (−1)(1, 0, 0)
)

= L(1, 1, 0) + (−1)L(1, 0, 0) = (0, 2, 3)− (0, 2, 0) = (0, 0, 3).



11. Let A be a 3× 5-matrix. Suppose the list of rows of A is linearly independent. Compute dim NulA.

Solution: By definition RowA is spanned by the list of rows of A. By assumption the list of
rows of A is linearly independent and so is a basis for RowA. Since A has three rows this gives
dim RowA = 3. Since dim ColA = dim RowA we conclude that dim ColA = 3. By the dimension
formula, dim NulA+ dim ColA = 5. Thus dim NulA = 5− 3 = 2.

12. Let A and B be m×m matrices with AB = BA. Use mathematical induction to show that AnB = BAn

for all positive integers n.

Solution: Let S(n) be the statement, AnB = BAn. For n = 1 this says AB = BA which is true
by assumption.

Suppose that S(n) holds. Then AnB = BAn. We compute

An+1B = (AnA)B − definition of An+1

= An(AB) − matrix multiplication is associative
= An(BA) − since AB = BA
= (AnB)A − matrix multiplication is associative
= (BAn)A − since S(n) holds
= B(AnA) − matrix multiplication is associative
= BAn+1 − definition of An+1

So S(n) implies S(n+ 1). Thus by the principal of induction S(n) holds for all positive integers n.

13. Let X = Span
(

(1, 0, 2, 1), (1, 2, 3, 0), (3, 2, 7, 2), (0, 0, 1, 1)
)

(a) State the definitions of the span of a list of vectors in a vector space V .

(b) Find a basis for X.

(c) Is (3, 4, 9, 2) ∈ X
(d) Is X = R4?

Solution: (a) Let B = (v1, . . . , vn) be a list in V . Then the span of B, denoted spanB, is the set
of linear combinations of V , that is

spanB = {r1v1 + . . .+ rnvn | (r1, . . . , rn) ∈ Rn}

(b) We compute the row echelon form of the matrix A whose rows are the above four vectors:

A =


1 0 2 1
1 2 3 0
3 2 7 2
0 0 1 1

 R2 − R1 → R2
R3 − 3R1 → R3


1 0 2 1
0 2 1 −1
0 2 1 −1
0 0 1 1

 R3 − R2 → R2
1
2
R2 → R2

R3 ↔ R4


1 0 2 1
0 1 1

2 −
1
2

0 0 1 1
0 0 0 0

 R1 − 2R3 → R1

R2 − 1
2
R3 → R2


1 0 0 −1
0 1 0 −1
0 0 1 1
0 0 0 0


So



(
(1, 0, 0,−1), (0, 1, 0,−1), (0, 0, 1, 1)

)
is a basis for X.

(c) (3, 4, 9, 2) is in X if and only if its is a linear combination of the basis we found in (c). Looking
at the first three entries, we see that the coefficients have to be (3, 4, 9) . We compute

3(1, 0, 0,−1) + 4(0, 1, 0,−1) + 9(0, 0, 1, 1) = (3, 4, 9,−3− 4 + 9) = (3, 4, 9, 2)

and so (3, 4, 9, 2) is in X.

(d) By (b) X is three dimensional. Since R4 is 4-dimensional, X 6= R4.

Solution: We give a second solution for (b) and (c). We will compute a row echelon form of the
matrix B with columns the four vectors spanning X augmented by the vector in (c):

B =


1 1 3 0 3
0 2 2 0 4
2 3 7 1 9
1 0 2 1 2

 R3 − 2R1 → R3
R4 − 2R1 → R4

1
2
R2 → R2


1 1 3 0 3
0 1 1 0 2
0 1 1 1 3
0 −1 −1 1 −1

 R3 − R1 → R3
R4 + R1 → R4


1 1 3 0 3
0 1 1 0 2
0 0 0 1 1
0 0 0 1 1

 R4 − R3 → R4


1 1 3 0 3
0 1 1 0 2
0 0 0 1 1
0 0 0 0 0


The leading ones in the first four columns are in Columns 1, 3 and 4 and so Columns 1, 3 and 4
form basis for X. Hence 


1
0
2
1

 ,


1
2
3
0

 ,


0
0
1
1




is a basis for X.

There is no leading 1 in Column 5, so the linear system of equation corresponding to B has a
solution. So (3, 4, 9, 2) is a linear combination of the columns of B, that is (3, 4, 9, 2) ∈ X.

14. Let f : X → Y and g : Y → Z be linear functions. Show that g ◦ f is a linear. (Do not quote any
theorems).

Solution: Let u, v ∈ X. Then

(g ◦ f)(u+ v) = g
(
f(u+ v)

)
− definition of composition

= g
(
f(u) + f(v)

)
− since f is linear

= g
(
f(u)

)
+ g
(
f(v)

)
− since g is linear

= (g ◦ f)(u) + (g ◦ f)(v) − definition of composition,twice



Let v ∈ V and r ∈ R. Then

(g ◦ f)(rv) = g
(
f(rv)

)
− definition of composition

= g

(
r
(
f(v)

))
− since f is linear

= r

(
g
(
f(v)

))
− since g is linear

= r
(

(g ◦ f)(v)
)
− definition of composition

Thus g ◦ f is linear.

15. Let B = (x, 1, x2) and B′ = (1 + x, 1− x, x2) be ordered bases for P3.

(a) Find the change-of-bases matrix from B′ to B.

(b) Find then change-of-bases matrix from B to B′.

(c) Find the coordinate vector of 1 + 2x+ x2 with respect to B′.

Solution: (a) 1 + x = 1x+ 1 · 1 + 0x2 and so [1 + x]B =

1
1
0


1− x = (−1)x+ 1 · 1 + 0x2 and so [1− x]B =

−1
1
0

.

x2 = −0x+ 0 · 1 + 1x2 and so [x2]B =

0
0
1

. Thus the change-of-bases matrix from B′ to B is

P =

1 −1 0
1 1 0
0 0 1


(b) We use the Gauss Jordan Algorithm to compute the inverse of P :1 −1 0 1 0 0

1 1 0 0 1 0
0 0 1 0 0 1

 R2 − R1 → R2

1 −1 0 1 0 0
0 2 0 −1 1 0
0 0 1 0 0 1

 R1 + 1
2
R2 → R1

1
2
R2 → R2

1 0 0 1
2

1
2 0

0 1 0 − 1
2

1
2 0

0 0 1 0 0 1


So the change of basis matrix from B to B′ is

P−1 =

 1
2

1
2 0

− 1
2

1
2 0

0 0 1

 =
1

2

 1 1 0
−1 1 0

0 0 2


(c) We have 1 + 2x+ x2 = 2x+ 1 · 1 + 1x2 and so [1 + 2x+ x2]B =

2
1
1

. Thus

[1 + 2x+ x2]B′ = P−1[1 + 2x+ x2]B =
1

2

 1 1 0
−1 1 0

0 0 2

2
1
1

 =
1

2

 3
−1

2

 =

 3
2
− 1

1
1





16. (a) State the definition of a basis for a vector space V .

(b) Show that the list

B =
(
x3 + 3x2, x2 + 3x, x+ 3, x3 + 4x2 + 4x+ 4

)
is a basis for P3.

Solution: (a) A basis for a vector space V is a linearly independent, spanning list in V .

(b) Let V = span(B). Then x3 + 4x2 + 4x+ 3 = (x3 + 3x2) + (x2 + 3x) + (x+ 3) ∈ V . Hence also

1 = (x3 + 4x2 + 4x+ 4)− (x3 + 4x2 + 4x+ 3) ∈ V

Hence x = (x + 3) − 3 · 1 ∈ V , x2 = (x3 + 3x) − 3x ∈ V and x3 = (x3 + 4x2) − 4x2 ∈ V . Since
(1, x, x2, x3) spans P3 we conclude that B spans P3. Since dimP3 = 4 any list of length 4 which
spans P3 is a basis. So B is a basis for P3.

17. Let X and Y be subspaces of a vector space V . Put X + Y := {x+ y | x ∈ X, y ∈ Y }.
(a) State the definition of a subspace of a vector space.

(b) State the Subspace Theorem

(c) Prove that X + Y is a subspace of V .

(d) Prove that dim(X) ≤ dim(X + Y ).

Solution: (a) Let V = (V,⊕,�) be a vector space and W a subset of V . Put W = (W,⊕,�).
Then W is called a subspace of V provided that W is a vector space.

(b) Let V = (V,⊕,�) be a vector space and W a subset of V . Put W
¯

= (W,⊕,�). Then W is a
subspace of V if and only if the following three conditions hold:

(1) 0V ∈W ,

(2) a+ b ∈W for all a, b ∈W , and

(3) ra ∈W for all a ∈W and r ∈ R.

(c) Observe first that by definition of X + Y :

(*) Let v be an object. Then v ∈ X + Y if and only if there exist x ∈ X and y ∈ Y with
v = x+ y.

We will now verify that the three Conditions of the Subspace Theorem are fulfilled for X + Y .

(1) Since X and Y are subspace of V the Subspace Theorem shows that 0 ∈ X and 0 ∈ Y . Since
0 = 0 + 0 we conclude from (*) that 0 ∈ X + Y .

(2) Let a, b ∈ X+Y . Then by (*) there exist x, x′ ∈ X and y, y′ ∈ Y with a = x+y and b = x′+y′.
Since X and Y are subspaces of V , the Subspace Theorem shows that x+ x′ ∈ X and y + y′ ∈ Y .
Since a+ b = (x+ y) + (x′ + y′) = (x+ x′) + (y + y′) we conclude from (*) that a+ b ∈ X + Y .

(3) Let a ∈ X and r ∈ R. Then by (*) there exist x ∈ X and y ∈ Y with a = x + y. Since
X and Y are subspaces of V , the Subspace Theorem shows that rx ∈ X and ry ∈ Y . Since



ra = r(x+ y) = rx+ ry we conclude from (*) that a+ b ∈ X + Y .We verified the three conditions

of the Subspace Theorem and so X + Y is a subspace of V .

(d) Let x ∈ X. Then x = x+ 0 and so x ∈ X + Y . Let n = dim(X) and let (x1, . . . , xn) be a basis
for X. Then (x1, . . . , xn) is linearly independent list in X + Y and so by the Comparison Theorem
n ≤ dim(X + Y ). So dim(X) ≤ dim(X + Y )

18. Let V be a vector space and {v1, . . . , vn+1} ⊆ V a set of linearly independent vectors of V . Prove without
quoting any theorem:

(a) The set {v1, . . . , vn} ⊆ V is linearly independent.

(b) vn+1 /∈ span{v1, . . . , vn}

Solution: (a) Let r1, r2 . . . , rn ∈ R with r1v1 + . . .+ rnvn = 0. Then

r1v1 + . . .+ rnvn + 0vn+1 = r1v1 + . . .+ rnvn + 0 = r1v1 + . . .+ rnvn = 0

and since (v1, . . . , vn, vn+1) is linearly independent we conclude that r1 = 0, r2 = 0, . . . , rn = 0, 0 = 0.
Thus (v1, . . . , vn) is linearly independent.

(b) Suppose for a contradiction that vn+1 ∈ span{v1, . . . , vn}. Then there exist r1, . . . , rn ∈ R with
vn+1 = r1v1 + . . .+ rnvn. Thus

r1v1 + . . .+ rnvn + (−1)vn+1 = vn+1 − vn+1 = 0

a contradiction since −1 6= 0 and {v1, . . . , vn+1} is linearly independent.

19. Let V be an infinite dimensional vector space. Use induction to show that for every n ∈ N there is a
subspace Sn ⊆ V with dim(Sn) = n.

Solution: For a non-negative integer n let Qn be the statement:

There exists a subspace S of V with dimS = n.

Note that {0V} is a 0-dimensional subspace of V and so S0 is true.

Suppose that Qn is true. Then there exists an n-dimensional subspace S of V . Since V is infinite
dimensional, S 6= V and so there exists v ∈ V \ S. Let (v1, . . . , vn) be a basis for S and put
T = span(v1, . . . , vn, v). Then T has a spanning list of length n+ 1 and a linear independent list of
length n. So by the Comparison Theorem, n ≤ dimT ≤ n+1. If dimT = n, then (v1, . . . , vn) would
be a basis for T , a contradiction since v ∈ T but v /∈ S = span(v1, . . . , vn). Thus dimT = n+ 1. So
Qn+1 is true.

The principal of induction now show that Qn holds for all non-negative integers n.

20. Let T : R3 → R2 be the linear function given by:

T

ab
c

 =

[
a+ b

a− 2b+ 2c

]
.



(a) Find the matrix of T with respect to the standard bases of R2 and R3.

(b) Is T one-to-one? Justify your answer!

(c) Is T onto? Justify your answer!

Solution: (a) We have ab
c

 =

[
a+ b

a− 2b+ 2c

]
=

[
1 1 0
1 −2 2

]ab
c


and so the matrix of T is

[
1 1 0
1 −2 2

]
.

(b) Note that

T

 2
−2
−3

 =

[
0
0

]
= T

0
0
0

 .

and so T is not 1-1.

(c) Let

[
c
d

]
∈ R2. Then

T

 c
0

d−a
2

 =

[
c
d

]
and so T is onto.

Solution: We will give a second, more systematic, solution.

(a)

T

1
0
0

 =

[
1
1

]
, T

0
1
0

 =

[
1
−2

]
, T

0
0
1

 =

[
0
2

]
and so the matrix of A with respect to the standard bases is[

1 1 0
1 −2 2

]
(b) and (c) We use the Gauss-Jordan algorithm to determine dim ColA = dim ImT and dim NulA =
dim kerT : [

1 1 0
1 −2 2

]
R2 − R1 → R1

[
1 1 0
0 −3 2

]
R1 + 1

3
R2 → R1

− 1
3
R2 → R2

[
1 0 2

3
0 1 − 2

3

]
Since A has one free variable, dim NulA = 1. Thus kerT = NulA 6= {0} and T is not 1-1. Since A
has two lead variables, dim ColA = 2. Thus ImT = ColA = R2 and T is onto.

21. Let T : R6 →M(3, 2) be a linear function. Show:

(a) If T is one-to-one, then T is onto.



(b) If T is onto, then T is one-to-one.

Solution: Note that dimR6 = 6 = dimM(3, 2). Also dim kerT + dim ImT = dimM(3, 2) by the
dimension formula. Thus

T is 1-1
⇐⇒ kerT = {0}
⇐⇒ dim kerT = 0
⇐⇒ dimM(3, 2) = dim ImT
⇐⇒ M(3, 2) = ImT
⇐⇒ T is onto

22. Let A be an m× n matrix and µA : Rn → Rm the linear function defined by µA(v) = Av. Let b ∈ Rm.
Show that b lies in the image of µA if and only if the linear system Ax = b has a solution.

Solution: We have

b ∈ Im(µA)
⇐⇒ b = {µA(x) | x ∈ Rn} − definition of Im(µA)
⇐⇒ b = µA(x) for some x ∈ Rn − definition of {µA(x) | x ∈ Rn}
⇐⇒ b = Ax for some x ∈ Rn − definition of µA

⇐⇒ Ax = b has a solution − definition of solution

23. Let A be an n× n matrix and v, w ∈ Rn \ {0} with Av = v and Aw = 3w . Show directly that the set
{v, w} is linearly independent. (Don’t just quote a theorem!)

Solution: Let r, s ∈ R with

(∗) rv + sw = 0

Then 0 = A0 = A(rv + sw) = rAv + sAw = r(−v) + s(3w) = −rv + 3sw. So

−rv + 3sw = 0

Adding this equation to (*) we get 4sw = 0. Since w 6= 0 this gives 4s = 0 and so s = 0. Thus (*)
implies rv = 0 and since v 6= 0, r = 0. So (v, w) is linearly independent.

24. Consider the ordered basis

B =


0

0
1

 ,
0

1
1

 ,
1

1
1


of R3 and the linear function T : R3 → R3 given by:



T

ab
c

 =

 a+ c
2a+ b+ c
b+ c

 .
Find the matrix of T with respect to the bases B and B.

Solution: Let E = (e1, e2, e3) be the standard basis for R3. Since

T

ab
c

 =

 a+ c
2a+ b+ c
b+ c

 =

1 0 1
2 1 1
0 1 1

ab
c


the matrix of T with respect to E and E is

A =

1 0 1
2 1 1
0 1 1


Since [x]E = x for all x ∈ R3, the change-of-basis matrix from B to E is

P =

0 0 1
0 1 1
1 1 1


Thus the matrix A′ for T with respect to B and B is P−1AP . We use the Gauss-Jordan algorithm
to compute that inverse of P :0 0 1 1 0 0

0 1 1 0 1 0
1 1 1 0 0 1

 R1 ↔ R3

1 1 1 0 0 1
0 1 1 0 1 0
0 0 1 1 0 0

 R1 − R2 → R1
R2 − R3 → R2

1 0 0 0 −1 1
0 1 0 −1 1 0
0 0 1 1 0 0


So

P−1 =

 0 −1 1
−1 1 0

1 0 0

 , P−1A =

 0 −1 1
−1 1 0

1 0 0

1 0 1
2 1 1
0 1 1

 =

−2 0 0
1 1 0
1 0 1


and

A′ = (P−1A)P =

−2 0 0
1 1 0
1 0 1

0 0 1
0 1 1
1 1 1

 =

0 0 −2
0 1 2
1 1 2



25. Let V,W be finite dimensional vector spaces and X a subspace of V . Prove that the following two
statements are equivalent

(a) dimX + dimW ≥ dimV .

(b) There exists a linear function T : V →W with kerT = X.



Solution:

(a) =⇒ (b): Suppose that dimX + dimW ≥ dimV . Let l = dimX, n = dimV and m = dimW .
Then l + m ≥ n and so n − l ≤ m. Put k = n − l. Then n = l + k = dimV and k ≤ m.
Let (x1, . . . , xl) be a basis for X. By the Expansion Theorem, (x1, . . . , xl) can be expanded to a
basis (x1, . . . , xl, v1, . . . , vk) of V . Let (w1, . . . , wm) be basis for W . By Theorem 6.9 there exists
unique linear function T : V → W such that T (xi) = 0 for 1 ≤ i ≤ l and T (vi) = wi for
1 ≤ i ≤ k. We claim that kerT = X. Let v ∈ V . Since (x1, . . . , xl, v1, . . . , vk) is a basis for V ,
v = r1x1 + . . . + rlxl + s1v1 + . . . + skvk for some r1, . . . rl, s1, . . . , sk in R. Then since T is linear,
Theorem 6.2 shows that

T (v) = r1T (x1) + . . .+ rlT (xl) + s1T (v1) + . . .+ skT (vk)
= r10 + . . . rl0 + s1w1 + . . .+ skwk

= s1w1 + . . .+ skwk

Thus v ∈ kerT if and only if T (v) = 0 and if and only if s1w1 + . . .+ skwk = 0. Since (w1, . . . , wm)
is linearly independent, this holds if and only of s1 = s2 = . . . = sk = 0.

Thus v ∈ kerT if and only if v = r1x1 + . . .+ rlxl for some r1, . . . rk ∈ R and if and only if v ∈ X.
Thus kerT = X. Hence (b) holds.

(b) =⇒ (a): Suppose T : V → W is a linear function with kerT = X. By the dimension formula,
dim kerT+dim ImT = dimV . Since kerT = X, dim kerT = dimX and since ImT ≤W , dim ImT ≤
W . Thus

dimX + dimW ≥ dim kerT + dim ImT = dimV

So (a) holds.

26. Compute the inverse and determinant of

1 2 3
1 4 5
2 5 8


Solution: 1 2 3 1 0 0

1 4 5 0 1 0
2 5 8 0 0 1

 R2 − R1 → R2
R3 − 2R1 → R3

1 2 3 1 0 0
0 2 2 −1 1 0
0 1 2 −2 0 1

 R1 − R2 → R1
R2 ↔ R3

1 0 1 2 −1 0
0 1 2 −2 0 1
0 2 2 −1 1 0



R3 − 2R2 → R3

1 0 1 2 −1 0
0 1 2 −2 0 1
0 0 −2 3 1 −2

 R1 + 1
2
R3 → R1

R2 + R3 → R2

− 1
2
R3 → R3

1 0 0 7
2 −

1
2 −1

0 1 0 1 1 −1
0 0 1 − 3

2 −
1
2 1


So the inverse is  7

2 −
1
2 −1

1 1 −1
− 3

2 −
1
2 1

 =
1

2

 7 −1 −2
2 2 −2
−3 −1 2


All but two of the row operations were adding one row to another and so did not change the
determinant. One of the operation was interchanging two rows and one was multiplication of a row



by − 1
2 . So the determinant of the original matrix is

(−1)
1

− 1
2

= 2.


