MTH 309-4

Linear Algebra I/ Practice Exam 2

Solutions

#1. Use induction to prove that $2 \cdot 3^n \ge 7n - 1$ for all positive integers n.

Let S_n be the statement: $2 \cdot 3^n \ge 7n - 1$. S_1 is equivalent to $2 \cdot 3 \ge 7 - 1$ and so to $6 \ge 6$. Hence S_1 holds. Suppose now that S_n holds. Thus

$$2 \cdot 3^n \ge 7n - 1$$

We have

(*)

 $\begin{array}{rcl} 2 \cdot 3^{n+1} &=& 3(2 \cdot 3^n) \\ &\geq& 3(7n-1) &- (*) \text{ multiplied by } 3 \\ &=& 7n+14n-3 \\ &=& 7(n+1)-1+(14n-9) \\ &\geq& 7(n+1)-1 &- \text{ since } n \geq 1 \text{ and so } 14n-9 \geq 0 \end{array}$

Thus S_{n+1} holds. We proved that S_1 holds and that S_n implies S_{n+1} . So by the principal of induction, S_n holds for all positive integers n.

#2. Which of the following lists are linearly independent in the indicated vector space? (do not justify your answer)

(a)
$$((1,2,3), (1,1,1), (2,3,4))$$
 in \mathbb{R}^3 .

(b) $\left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \right)$ in $\mathbb{M}(2,2)$.

(c)
$$(1, \sin^2 x, \cos^2 x)$$
 in $\mathbf{F}(\mathbb{R})$.

(a): The third vector is the sum of the last two. So the list is linearly dependent by Theorem 3.5.

(b): Let (A_1, A_2, A_3) be the list in (b). Let $(x_1, x_2, x_3) \in \mathbb{R}^3$ and put $B = x_1A_1 + x_2A_2 + x_3A_3$. Suppose that $B = \mathbf{0}$. Since x_1 is the (1, 1)-entry of B we conclude that $x_1 = 0$. Hence x_2 is the (1, 2)-entry of B and so $x_2 = 0$. Thus x_3 is the (3, 1)-entry of B and so $x_3 = 0$. It follows that list is linearly independent.

(c) Since $\sin^2 x + \cos^2 x = 1$, the first vector is the sum of the first two. So the list is linearly dependent by Theorem 3.5.

#3. Let $A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 2 & 0 & 4 \\ 0 & 1 & 2 & 1 & 5 \\ 0 & 1 & 2 & 0 & 4 \end{bmatrix}$. Find bases for ColA, RowA and NulA.

Subtracting the second row of A from the third and fourth we obtain the matrix

$$B = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Note that B is in reduced echelon form.

By Theorem N3.7.5 the non-zero rows of B form a basis for RowA. Thus

is a basis for $\operatorname{Row} A$.

By Theorem N3.7.5 the columns of A corresponding to the lead variables of B form a basis for ColA. The lead variables are x_1, x_2 and x_4 and so

$$\left(\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1\end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\end{bmatrix} \right)$$

is a basis for ColA.

The free variables are x_3 and x_5 . Solving the homogeneous system of equation corresponding to B gives:

x_1	=	$-1x_{3}$	+	$-1x_{5}$
x_2	=	$-2x_{3}$	+	$-4x_{5}$
x_3	=	$1x_3$	+	$0x_5$
x_4	=	$0x_3$	+	$0x_5$
x_5	=	$0x_3$	+	$1x_5$

So by Theorem N3.7.5

$$\left(\begin{bmatrix} -1\\ -2\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} -1\\ -4\\ 0\\ 0\\ 1 \end{bmatrix} \right)$$

is a basis for NulA.

#4. Let **V** be a vector space, I a set and $x, y \in I$. Define the function $T : F(I, V) \to V$ by T(f) = f(x) + f(y) for all $f \in F(I, V)$. Show that T is linear.

Let $f, g \in F(I, V)$ and $r \in \mathbb{R}$. Then

T(f+g) = (f+g)(x) + (f+g)(y) - definition of T $= (f(x)+g(x)) + (f(y)+g(y)) - \text{definition of addition in } \mathbf{F}(I,V)$ = (f(x)+f(y)) + (g(x)+g(y)) - axioms of the vector space V = T(f) + T(g) - definition of T, twice

and

$$T(rf)$$

$$= (rf)(x) + (rf)(y) - \text{definition of } T$$

$$= r(f(x)) + r(f(y)) - \text{definition of multiplication in } \mathbf{F}(I, V)$$

$$= r(f(x) + f(y)) - \text{Axiom 5 of the vector space } V$$

$$= r(T(f)) - \text{definition of } T$$

So T is linear.

#5. True or false (do not justify your answer)

(a) Every vector space has a basis.

- (b) Let **V** be a vector space with dim $\mathbf{V} = 10$. Then any list of length 11 in V spans **V**.
- (c) If **W** is a 7-dimensional subspace of a 7-dimensional vector space **V**, then V = W.
- (d) If U and W are subspace of a vector space V, then $\dim U + \dim W \leq \dim V$.

- (e) Let (v_1, \ldots, v_n) be a list in the vector space **V**. Suppose that (v_1, \ldots, v_n, v) is linearly dependent for all $v \in V$. Then (v_1, \ldots, v_n) spans V.
 - (a) is false. For example \mathbb{P} is infinite dimensional and so does not have a basis.
 - (b) is false. For example the list (v_1, \ldots, v_{11}) with $v_i = \mathbf{0}$ for all $1 \le i \le 11$, does not span V.
 - (c) is true by exercise 3.6. # 21.
 - (d) is false. For example if U = V and W = V and $\dim \mathbf{V} > 0$, then $\dim \mathbf{U} + \dim \mathbf{W} = 2 \dim \mathbf{V} > \dim \mathbf{V}$.

(e) is false. For example if n = 1 and $v_1 = 0$, then (v_1, v) is linearly dependent for all $v \in V$. But if $\dim V > 0$, (0) does not span V.

- #6. Let V be a vector space, (v_1, \ldots, v_n) a list in V and $v \in V$. Prove that the following two statements are equivalent:
 - (a) (v_1, \ldots, v_n, v) is linearly dependent.
 - (b) (v_1, \ldots, v_n) is linearly dependent or $v \in \text{span}(v_1, \ldots, v_n)$

(a) \implies (b): Suppose that (v_1, \ldots, v_n, v) is linearly dependent. Then there exist $r_1, \ldots, r_n, r \in \mathbb{R}$, not all zero with

$$r_1v_1+\ldots+r_nv_n+rv=\mathbf{0}.$$

Note that either $r \neq 0$ or r = 0.

If $r \neq 0$, then by Lemma N3.3.2, $v \in \text{span}(v_1, \ldots, v_n)$. So (b) holds in this case. If r = 0, then $r_i \neq 0$ for some $1 \leq i \leq n$ and

$$r_1v_1+\ldots+r_nv_n=\mathbf{0}.$$

So (v_1, \ldots, v_n) is linearly dependent and again (b) holds.

(b) \implies (a): Suppose that (v_1, \ldots, v_n) is linearly dependent. Then there exist $r_1, \ldots, r_n \mathbb{R}$, not all zero with

$$r_1v_1+\ldots+r_nv_n=\mathbf{0}$$

Then

 $r_1v_1+\ldots+r_nv_n+0v=\mathbf{0}$

and so (v_1, \ldots, v_n, v) is linearly dependent.

Suppose that $v \in \text{span}(v_1, \ldots, v_n)$. Then by Theorem 3.5, (v_1, \ldots, v_n, v) is linearly dependent. So either of the two conditions in (b) imply (a) and so (b) implies (a).

#7. Define the function $T: \mathbb{P} \to \mathbb{P}$ by $T(a_0 + a_1x + \ldots + a_nx^n) = a_1 + a_2x + \ldots + a_nx^{n-1}$.

- (a) Is T linear?
- (b) Is T 1-1?
- (c) Is T onto?

(Justify all you answers)

(a): Yes, T is linear. Proof: Let $p, q \in \mathbb{P}$ and let n be the larger of the degrees of p and q. Then $p = a_0 + a_1 x + \ldots a_n x^n$ and $q = b_0 + b_1 x + \ldots b_n x^n$ for some real numbers $a_0, \ldots, a_n, b_0, \ldots, b_n$. Then

$$p + q = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

So using the definition of T three times

 $T(p+q) = (a_1+b_1) + (a_2+b_2)x + \ldots + (a_n+b_n)x^{n-1} = (a_1+a_2x + \ldots + a_nx^{n-1}) + (b_1+b_2x + \ldots + b_nx^{n-1}) = T(p) + T(q)$ Also for $r \in \mathbb{R}$, $rp = ra_0 + ra_1 \ldots + ra_nx^n$ and using the definition of T twice,

 $T(rp) = ra_1 + ra_2x + \ldots + ra_nx^{n-1} = r(a_1 + a_2x + \ldots + a_nx^{n-1}) = r(T(p))$

We proved that T(p+q) = T(p) + T(q) and T(rp) = r(T(p)) and so T is linear.

(b) We have T(0) = 0 = T(1) and so *T* is not 1-1.

(c) Let $p \in \mathbb{P}$. Then $p = a_0 + a_1 x + \ldots + a_n x^n$ for some a_0, \ldots, a_n is \mathbb{R} . Put $q = a_0 x + a_1 x^2 + \ldots + a_n x^{n+1}$. Then T(q) = p and so T is onto.