Show all your work

#1. Determine the solution set of

#2. Determine the solution set of

#3. For a, b in \mathbb{R} define $a \oplus b = a + b$ and $a \odot b = ab^2$. Is \mathbb{R} a vector space with these operations?

We will show that axiom 5 fails. Axiom 5 says:

(1)
$$a \odot (v \oplus w) = (a \odot v) \oplus (a \odot w)$$

for all $a \in \mathbb{R}$ and $v, w \in V$. Note that $V = \mathbb{R}$ in this exercise, so $a, v, w \in \mathbb{R}$. Using the definition of \oplus , (1) is equivalent to

(2)
$$a \odot (v+w) = (a \odot v) + (a \odot w)$$

Using the definition of \odot , (2) is equivalent to

(3)
$$a(v+w)^2 = av^2 + aw^2$$

Computing in $\mathbb R$ we see that this is equivalent to

(4)
$$a(v^2 + 2vw + w^2) = av^2 + aw^2$$

and so also equivalent to

$$(5) 2avw = 0$$

Note that (5) is false for a = 1, v = 1 and w = 1 and so Axiom 5 fails. Thus $(\mathbb{R}, \oplus, \cdot)$ is not a vector space.

#4. Let a, b, c be vectors in a vector space V. Show that

$$2((4a+7c)+b) = (8a+2b)+14c$$

(Show all your steps. In each step use at most one of the vector space axioms, and indicate which axiom your are using)

$$2((4a + 7c) + b) = 2(4a + 7c) + 2b - Ax 5$$

= $(2(4a) + 2(7c)) + 2b - Ax 5$
= $((2 \cdot 4)a + (2 \cdot 7)c) + 2b - Ax 7$, twice
= $(8a + 14c) + 2b - Properties of \mathbb{R}$
= $8a + (14c + 2b) - Ax 2$
= $8a + (2b + 14c) - Ax 1$
= $(8a + 2b) + 14c - Ax 2$

#5. Let I be a set, a a fixed element of I and put

$$W = \{ f \in F(I) \mid f(a) = 0 \}.$$

Show that W is a subspace of F(I).

Recall first that F(I) consists of all real valued function with domain I and that the vector addition and scalar multiplication on F(I) are defined by

(*)
$$(f+g)(i) = f(i) + g(i)$$

and

$$(**) (rf)(i) = rf(i)$$

for all $f, g \in F(I), r \in \mathbb{R}$ and $i \in I$.

Next we determine when a given element f in F(I) is an element of W. The definition of W says:

(***) Let $f \in F(I)$. Then $f \in W$ if and only if f(a) = 0.

We are now able to verify that the three conditions in the Subspace Theorem hold:

Condition (1): We need to show that $0_{F(I)} \in W$.

Recall that the additive identity in F(I) is the real valued function 0^{*} defined by $0^*(i) = 0$ for all $i \in I$. In particular, $0^*(a) = 0$ and so (*) implies that $0^* \in W$. So Condition (1) is verified.

Condition (2): We need to show that $f + g \in W$ for all $f, g \in W$.

To check whether $f + g \in W$ we use (***):

$$\begin{array}{rcl} (f+g)(a) &=& f(a)+g(a) &-(*)\\ &=& 0+0 &-\text{follows from (***) since } f,g\in W\\ &=& 0 &-\text{Properties of real numbers} \end{array}$$

Thus (f+g)(a) = 0 and so $f+g \in W$ by (***). So Condition (2) is verified.

Condition (3): We need to show that $rf \in W$ for all $r \in \mathbb{R}$ and $f \in W$.

To check whether $rf \in W$ we use (***):

$$(rf)(a) = rf(a) -(^{**})$$

= $r0$ -follows from (*) since $f \in W$
= 0 -Properties of real numbers

Thus (rf)(a) = 0 and so $rf \in W$ by (***). So Condition (3) is verified.

We verified all three conditions of the Subspace Theorem and so W is a subspace of F(I).