MTH 309-4

Linear Algebra I/ Exam 2

Solutions

#1. Use induction to prove that

$$1^{2} + 3^{2} + 5^{2} + \ldots + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}$$

for all positive integers n.

For a positive integer n, let S_n be the statement:

(S_n)
$$1^2 + 3^2 + 5^2 + \ldots + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$

 S_1 is the statement $1^2 = \frac{1(2 \cdot 1 - 1)}{3}$, which is equivalent 1 = 1. Hence S_1 holds. Suppose now that S_n holds. We compute

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n-1)^{2} + (2(n+1)-1)^{2}$$

$$= (1^{2} + 3^{2} + 5^{2} + \dots + (2n-1)^{2}) + (2n+1)^{2}$$

$$= \frac{n(2n-1)(2n+1)}{3} + (2n+1)^{2} - (S_{n})$$

$$= \frac{n(2n-1)(2n+1)+3(2n+1)(2n+1)}{3}$$

$$= \frac{(2n+1)(n(2n-1)+3(2n+1))}{3}$$

$$= \frac{(2n+1)(2n^{2}-n+6n+3)}{3}$$

$$= \frac{(2n+1)(2n^{2}+5n+3)}{3}$$

$$= \frac{(2n+1)(2n+1)(2n+3)}{3}$$

$$= \frac{(n+1)(2(n+1)-1)(2(n+1)+1)}{3}$$

Thus S_{n+1} holds. We proved that S_1 holds and that S_n implies S_{n+1} . So by the principal of induction, S_n holds for all positive integers n.

- #2. Which of the following lists are linearly independent in the indicated vector space? (do not justify your answer)
 - (a) ((1,2,3,4), (1,0,1,0), (1,0,3,1)) in \mathbb{R}^4 . Let $a, b, c \in \mathbb{R}$ with

$$a(1,2,3,4) + b(1,0,1,0) + c(1,0,3,1) = (0,0,0,0)$$

Considering the second entry we see that a = 0. Then considering the last entry gives c = 0 and finally the first entry shows that b = 0. So the list is linearly independent.

(b)
$$\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right)$$
 in $\mathbb{M}(2, 2)$.

The second matrix is the sum of the first and the last. So the list is linearly dependent by Theorem 3.5.

(c) $(x^2 + x + 1, x^2 - 1, 3x^2 + x - 1)$ in \mathbb{P}_2 .

The third polynomial is the sum of the first and two times the second. So the list is linearly dependent by Theorem 3.5.

#3. Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 \\ 2 & 2 & 2 & 0 & 0 & 2 \\ 1 & 1 & 1 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$
. Find bases for ColA, RowA and NulA.

We use the Gauss Jordan Algorithm to compute the reduced row echelon form of A.

$$A \xrightarrow[-R_1+R_3\to R_3]{-R_1+R_3\to R_3} \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow[R_2\leftrightarrow R_3]{R_3\leftrightarrow R_4} \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = B.$$

Note that B is in reduced echelon form.

By Theorem N3.7.5 the non-zero rows of B form a basis for RowA. Thus

$$((1,1,1,0,0,1),(0,0,0,1,0,2),(0,0,0,0,1,2))$$

is a basis for $\operatorname{Row} A$.

By Theorem N3.7.5 the columns of A corresponding to the lead variables of B form a basis for ColA. The lead variables are x_1, x_4 and x_5 and so

$$\left(\begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right)$$

is a basis for ColA.

The free variables are x_2 , x_3 and x_6 . Solving the homogeneous system of equation corresponding to B gives:

x_1	=	$-1x_{2}$	+	$-1x_{3}$	+	$-1x_{6}$
x_2	=	$1x_2$	+	$0x_3$	+	$0x_6$
x_3	=	$0x_2$	+	$1x_3$	+	$0x_6$
x_4	=	$0x_2$	+	$0x_3$	+	$-2x_{6}$
x_5	=	$0x_2$	+	$0x_3$	+	$-2x_{6}$
x_6	=	$0x_2$	+	$0x_3$	+	$-1x_{6}$

So by Theorem N3.7.5

$$\left(\begin{bmatrix} -1\\1\\0\\0\\-1\\0\\0\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} -1\\0\\-1\\0\\-2\\-2\\0\\0\\0\end{bmatrix}, \begin{bmatrix} -2\\-2\\1\\0\end{bmatrix} \right)$$

is a basis for NulA.

#4. Let **V** be a vector space, I a set and $x, y \in I$. Define the function $T : F(I, V) \to V$ by T(f) = f(x) - f(y) for all $f \in F(I, V)$.

(a) Show that T is linear.

Let $f, g \in F(I, V)$ and $r \in \mathbb{R}$. Then

$$T(f+g)$$

$$= (f+g)(x) - (f+g)(y) - definition of T$$

$$= (f(x) + g(x)) - (f(y) + g(y)) - definition of addition in \mathbf{F}(I, V)$$

$$= (f(x) - f(y)) + (g(x) - g(y)) - axioms of the vector space V, definition of -$$

$$= T(f) + T(g) - definition of T, twice$$

and

$$T(rf)$$

$$= (rf)(x) - (rf)(y) - \text{definition of } T$$

$$= r(f(x)) - r(f(y)) - \text{definition of multiplication in } \mathbf{F}(I, V)$$

$$= r(f(x) - f(y)) - \text{Thm 1.7(n) for the vector space } V$$

$$= r(T(f)) - \text{definition of}$$

Thus T is linear.

(b) If $x \neq y$, show that T is onto.

Let $v \in V$. Define the function $f: I \to V$ by f(x) = v and $f(z) = \mathbf{0}_V$ for all $z \in I$ with $z \neq x$. Since $x \neq y$ we have $f(y) = \mathbf{0}$. Thus

$$T(f) = f(x) - f(y) = v - \mathbf{0} = v$$

and so T is onto.

#5. True or false (do not justify your answer)

(a) Every finite dimensional vector space has a basis.

True It follows from the definition of a finite dimensional vector space in the book, or by Theorem N3.4.4 in my notes.

(b) Let \mathbf{V} be a 12-dimensional vector space. Then \mathbf{V} has a unique 6-dimensional subspace.

False. Let (v_1, \ldots, v_{12}) be a basis for **V**. Then both $\operatorname{span}(v_1, \ldots, v_6)$ and $\operatorname{span}(v_7, \ldots, v_{12})$ are 6-dimensional subspaces of **V**. So **V** has a 6-dimensional subspace, but it is not unique.

(c) Let **V** be a vector space, (v_1, \ldots, v_n) a linearly independent list in **V** and (w_1, \ldots, w_m) a spanning list of **V**. Then there exists a sublist (u_1, \ldots, u_l) of (w_1, \ldots, w_m) such that $(v_1, \ldots, v_n, u_1, \ldots, u_l)$ is a basis of **V**.

True. Let (u_1, \ldots, u_l) be sublist of (w_1, \ldots, w_m) maximal such that $(v_1, \ldots, v_n, u_1, \ldots, u_l)$ is linearly independent. Then by N3.4.1 $(v_1, \ldots, v_n, u_1, \ldots, u_l)$ is a basis for V.

(d) Let \mathbf{V} be a vector space with dim $\mathbf{V} = 4$. Then there exists a spanning list of \mathbf{V} which has length 7.

True Let (v_1, \ldots, v_4) be a basis for **V**. Then for example $(v_1, v_2, v_3, v_4, v_1 + v_2, v_2 + v_3, v_3 + v_4)$ is a spanning list of length 7 for **V**.

(e) If (v_1, \ldots, v_n) is a linearly dependent list in the vector space **V**, then v_n is a linear combination of (v_1, \ldots, v_{n-1}) in **V**.

False For example (0,1) is a linearly dependent list in \mathbb{R} , but 1 is not a linear combination of (0).