
MTH 309-4 Linear Algebra I/ Exam 2 F11 11/04/11

Solutions

#1. Use induction to prove that

12 + 32 + 52 + . . . + (2n− 1)2 =
n(2n− 1)(2n + 1)

3

for all positive integers n.

For a positive integer n, let Sn be the statement:

(Sn) 12 + 32 + 52 + . . . + (2n− 1)2 =
n(2n− 1)(2n + 1)

3

S1 is the statement 12 = 1(2·1−1)
3 , which is equivalent 1 = 1. Hence S1 holds.

Suppose now that Sn holds. We compute

12 + 32 + 52 + . . . + (2n− 1)2 + (2(n + 1)− 1)2

=
(
12 + 32 + 52 + . . . + (2n− 1)2

)
+ (2n + 1)2

= n(2n−1)(2n+1)
3 + (2n + 1)2 −(Sn)

= n(2n−1)(2n+1)+3(2n+1)(2n+1)
3

=
(2n+1)

(
n(2n−1)+3(2n+1)

)
3

= (2n+1)(2n2−n+6n+3)
3

= (2n+1)(2n2+5n+3)
3

= (2n+1)(n+1)(2n+3)
3

= (n+1)(2(n+1)−1)(2(n+1)+1)
3

Thus Sn+1 holds. We proved that S1 holds and that Sn implies Sn+1. So by the principal of induction,
Sn holds for all positive integers n.

#2. Which of the following lists are linearly independent in the indicated vector space? (do not justify your
answer)

(a)
(
(1, 2, 3, 4), (1, 0, 1, 0), (1, 0, 3, 1)

)
in R4.

Let a, b, c ∈ R with
a(1, 2, 3, 4) + b(1, 0, 1, 0) + c(1, 0, 3, 1) = (0, 0, 0, 0)

Considering the second entry we see that a = 0. Then considering the last entry gives c = 0 and finally
the first entry shows that b = 0. So the list is linearly independent.

(b)

1 2

3 4

 ,

2 3

4 5

 ,

1 1

1 1

 in M(2, 2).

The second matrix is the sum of the first and the last. So the list is linearly dependent by Theorem 3.5.

(c) (x2 + x + 1, x2 − 1, 3x2 + x− 1) in P2.

The third polynomial is the sum of the first and two times the second. So the list is linearly dependent
by Theorem 3.5.



#3. Let A =


1 1 1 0 0 1

2 2 2 0 0 2

1 1 1 1 0 3

0 0 0 0 1 2

. Find bases for ColA,RowA and NulA.

We use the Gauss Jordan Algorithm to compute the reduced row echelon form of A.

A
−2R1+R2→R2−−−−−−−−−−→
−R1+R3→R3


1 1 1 0 0 1

0 0 0 0 0 0

0 0 0 1 0 2

0 0 0 0 1 2


R2↔R3−−−−−→
R3↔R4


1 1 1 0 0 1

0 0 0 1 0 2

0 0 0 0 1 2

0 0 0 0 0 0

 = B.

Note that B is in reduced echelon form.
By Theorem N3.7.5 the non-zero rows of B form a basis for RowA. Thus(

(1, 1, 1, 0, 0, 1), (0, 0, 0, 1, 0, 2), (0, 0, 0, 0, 1, 2)
)

is a basis for RowA.

By Theorem N3.7.5 the columns of A corresponding to the lead variables of B form a basis for ColA.
The lead variables are x1, x4 and x5 and so 


1

2

1

0

 ,


0

0

1

0

 ,


0

0

0

1




is a basis for ColA.

The free variables are x2, x3 and x6. Solving the homogeneous system of equation corresponding to B
gives:

x1 = −1x2 + −1x3 + −1x6

x2 = 1x2 + 0x3 + 0x6

x3 = 0x2 + 1x3 + 0x6

x4 = 0x2 + 0x3 + −2x6

x5 = 0x2 + 0x3 + −2x6

x6 = 0x2 + 0x3 + −1x6

So by Theorem N3.7.5 



−1

1

0

0

0

0


,



−1

0

−1

0

0

0


,



−1

0

0

−2

−2

1







is a basis for NulA.

#4. Let V be a vector space, I a set and x, y ∈ I. Define the function T : F (I, V )→ V by T (f) = f(x)− f(y)
for all f ∈ F (I, V ).

(a) Show that T is linear.

Let f, g ∈ F (I, V ) and r ∈ R. Then

T (f + g)

= (f + g)(x)− (f + g)(y) − definition of T

=
(
f(x) + g(x)

)
−
(
f(y) + g(y)

)
− definition of addition in F(I, V )

=
(
f(x)− f(y)

)
+
(
g(x)− g(y)

)
− axioms of the vector space V, definition of −

= T (f) + T (g) − definition of T, twice

and

T (rf)

= (rf)(x)− (rf)(y) − definition of T

= r
(
f(x)

)
− r
(
f(y)

)
− definition of multiplication in F(I, V )

= r
(
f(x)− f(y)

)
− Thm 1.7(n) for the vector space V

= r
(
T (f)

)
− definition of

Thus T is linear.

(b) If x 6= y, show that T is onto.

Let v ∈ V . Define the function f : I → V by f(x) = v and f(z) = 0V for all z ∈ I with z 6= x. Since
x 6= y we have f(y) = 0. Thus

T (f) = f(x)− f(y) = v − 0 = v

and so T is onto.

#5. True or false (do not justify your answer)

(a) Every finite dimensional vector space has a basis.

True It follows from the definition of a finite dimensional vector space in the book, or by Theorem
N3.4.4 in my notes.

(b) Let V be a 12-dimensional vector space. Then V has a unique 6-dimensional subspace.

False. Let (v1, . . . , v12) be a basis for V. Then both span(v1, . . . , v6) and span(v7, . . . , v12) are 6-
dimensional subspaces of V. So V has a 6-dimensional subspace, but it is not unique.

(c) Let V be a vector space, (v1, . . . , vn) a linearly independent list in V and (w1, . . . , wm) a spanning list
of V. Then there exists a sublist (u1, . . . , ul) of (w1, . . . , wm) such that (v1, . . . , vn, u1, . . . , ul) is a basis
of V.

True. Let (u1, . . . , ul) be sublist of (w1, . . . , wm) maximal such that (v1, . . . , vn, u1, . . . , ul) is linearly
independent. Then by N3.4.1 (v1, . . . , vn, u1, . . . , ul) is a basis for V .

(d) Let V be a vector space with dimV = 4. Then there exists a spanning list of V which has length 7.

True Let (v1, . . . , v4) be a basis for V. Then for example (v1, v2, v3, v4, v1 + v2, v2 + v3, v3 + v4) is a
spanning list of length 7 for V.



(e) If (v1, . . . , vn) is a linearly dependent list in the vector space V, then vn is a linear combination of
(v1, . . . , vn−1) in V.

False For example (0, 1) is a linearly dependent list in R, but 1 is not a linear combination of (0).


