Show all your work

- #1. Use induction to prove that $2 \cdot 3^n \ge 7n 1$ for all positive integers n.
- #2. Which of the following lists are linearly independent in the indicated vector space? (do not justify your answer)
 - (a) ((1,2,3),(1,1,1),(2,3,4)) in \mathbb{R}^3 .
 - (b) $\left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}\right)$ in $\mathbb{M}(2, 2)$.
 - (c) $(1, \sin^2 x, \cos^2 x)$ in $\mathbf{F}(\mathbb{R})$.
- #3. Let $A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 2 & 0 & 4 \\ 0 & 1 & 2 & 1 & 5 \\ 0 & 1 & 2 & 0 & 4 \end{bmatrix}$. Find bases for ColA, RowA and NulA.
- #4. Let **V** be a vector space, I a set and $x, y \in I$. Define the function $T : F(I, \mathbf{V}) \to V$ by T(f) = f(x) + f(y) for all $f \in F(I, \mathbf{V})$. Show that T is linear.
- #5. True or false (do not justify your answer)
 - (a) Every vector space has a basis.
 - (b) Let V be a vector space with dim V = 10. Then any list of length 11 in V spans V.
 - (c) If **W** is a 7-dimensional subspace of a 7-dimensional vector space **V**, then V = W.
 - (d) If **U** and **W** are subspace of a vector space **V**, then $\dim \mathbf{U} + \dim \mathbf{W} \leq \dim \mathbf{V}$.
 - (e) Let (v_1, \ldots, v_n) be a list in the vector space **V**. Suppose that (v_1, \ldots, v_n, v) is linearly dependent for all $v \in V$. Then (v_1, \ldots, v_n) spans V.
- #6. Let **V** be a vector space, (v_1, \ldots, v_n) a list in V and $v \in V$. Prove that the following two statements are equivalent:
 - (a) (v_1, \ldots, v_n, v) is linearly dependent.
 - (b) (v_1, \ldots, v_n) is linearly dependent or $v \in \text{span}(v_1, \ldots, v_n)$
- #7. Define the function $T: \mathbb{P} \to \mathbb{P}$ by $T(a_0 + a_1x + \ldots + a_nx^n) = a_1 + a_2x + \ldots + a_nx^{n-1}$.
 - (a) Is T linear?
 - (b) Is T 1-1?
 - (c) Is T onto?

(Justify all you answers)