Show all your work

Your Name:_____

#1. Use induction to prove that

$$1^{2} + 3^{2} + 5^{2} + \ldots + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}$$

for all positive integers n.

- #2. Which of the following lists are linearly independent in the indicated vector space? (do not justify your answer)
 - (a) ((1,2,3,4),(1,0,1,0),(1,0,3,1)) in \mathbb{R}^4 .

(b) $\left(\begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 2 & 3\\ 4 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix} \right)$ in $\mathbb{M}(2, 2)$.

(c) $(x^2 + x + 1, x^2 - 1, 3x^2 + x - 1)$ in \mathbb{P}_2 .

	[1	1	1	0	0	1]
// 2 T at 1	2	2	2	0	0	2 Find bases for Col 4 Dam 4 and Nul 4
# 5 . Let $A =$	1	1	1	1	0	. Find bases for CoIA, RowA and NuIA.
	0	0	0	0	1	$\begin{bmatrix} 1\\2\\3\\2 \end{bmatrix}$. Find bases for Col <i>A</i> , Row <i>A</i> and Nul <i>A</i>

- #4. Let **V** be a vector space, I a non-empty set and $x, y \in I$. Define the function $T : F(I, \mathbf{V}) \to V$ by T(f) = f(x) f(y) for all $f \in F(I, \mathbf{V})$.
 - (a) Show that T is linear.

(b) If $x \neq y$, show that T is onto.

- #5. True or false (do not justify your answer)
 - (a) Every finite dimensional vector space has a basis.

(b) Let \mathbf{V} be a 12-dimensional vector space. Then \mathbf{V} has a unique 6-dimensional subspace.

(c) Let **V** be a vector space, (v_1, \ldots, v_n) a linearly independent list in **V** and (w_1, \ldots, w_m) a spanning list of **V**. Then there exists a sublist (u_1, \ldots, u_l) of (w_1, \ldots, w_m) such that $(v_1, \ldots, v_n, u_1, \ldots, u_l)$ is a basis of **V**.

(d) Let \mathbf{V} be a vector space with dim $\mathbf{V} = 4$. Then there exists a spanning list of \mathbf{V} which has length 7.

(e) If (v_1, \ldots, v_n) is a linearly dependent list in the vector space **V**, then v_n is a linear combination of (v_1, \ldots, v_{n-1}) in **V**.