Show all your work

#1. Determine the solution set of

x_1	+	$2x_2$	—	$2x_3$	=	1
x_1	+	$3x_2$	+	x_3	=	6
$2x_1$	+	$4x_2$	+	x_3	=	3

#2. Determine the solution set of

#3. For a, b in \mathbb{R} define $a \oplus b = a + b$ and $a \odot b = a^2 b$. Is \mathbb{R} a vector space with these operations?

#4. Let V be a vector space, $r, s \in \mathbb{R}$ and $v, w \in V$. Prove that

$$(r-s)(v-w) = (rv - sv) + (sw - rw).$$

At each step use only one Definition, Theorem or Axiom and indicated exactly which Definition, Theorem or Axiom you are using.

#5. Let V be the vector space and U and W subspaces of V. Prove that $U \cap W$ is a subspace of V.