Review Problems for MTH 234
1. Let A = —-5i+k,B=2i+10j+ +17k. Find A -B, A x B, |A| and proj,B.

Solution:

A-B=(-501)-(2,10,V/17) = =5-240-10+1-V17 = [/17— 10|

i j Ok
AxB=|_5 0 1| = (=10, —(=5V17 — 2), =5 - 10) = | (=10, 5V/17 + 2, —50)
2 10 V17

(Al = [(=5,0,1)] = V/(=5) + 1 =| 26

A-B V17 —10
i B = A= — 1
PToja AA 26 < 570a >

2. Find the distance between the point P(1,2,3) and the plane 5z — 3y + z = 5.

Solution: Let n = (5,—3,1). Note that @(1,0,0) is a point on the plane and so the distant d of P from plane

r-n =5 is the absolute value of the scalar projection of QP onto n:

d_|Qﬁ%~nl_|<0,2,3>-<5,73,1>|_ 0-6+3 [ 3
ol B, V254941 | V35

3. Find the equation of the line perpendicular to 52 — 3y + z = 5 and through the point Q(1,2,3). Compute the point of
intersection between this line and the plane.

Solution: Let n = (5,—3,1). The vector equation for the line is

r=0P +nt=(1,2,3)+ (5,—3,1)t, —o00<t< oo

r is on the plane if r-n = 5. So ((ﬁ+nt)~n:5, (n-n)t:5—0?-nand

n-n (5 -3,1)-(5-3,1) 25+94+1 35

t_5—O_ﬁn_5—<1,2,3>-<5,—3,1> 5-(5—6+3) 3

So the position vector of the intersection point is

3 1 1
1,2,3 9,—3,1)— = —(35+4+15,70 — 9,105 + 3) = —(50,61, 108
<7 7>+<7 ’>35 35< + ? ) + > 35< ) ) >

11
Thus the intersection point is @, 6—, 108
35357 35




4. Find the parametric equations for the line that is tangent to the curve r(t) = cos(t)i + sin(t)j + sin(2t)k at to = 5. Find
the unit tangent vector T(t).

Solution:
r'(t) = (—sint, cost, 2 cos(2t))

and so
¥'(5) = (-1,0.2)

is parallel to the line.

Also the r(5) = (0, 1,0) is the position vector of a point on the line. So the vector equation is

r=(0,1,0) + (—1,0,2)¢, —o00<t< o0
and the parametric equations are
‘:E:—t,y:l,z:%7 -0 <t<oo
The unit tangent vector is
1 1 . 1 .
T(t) = P (t) = (—sint,cost,2cos(2t)) = —2<— sint, cost, 2 cos(2t))
' (0)] \/Sin2t+0052t+4c082(2t) 1+ 4cos?(2t)

5. Let w = w(z,y), © = z(u,v), y = y(u,v). Write out the formula for %. For w = 2% + yz~!, 2 = 3u — 5v + 1 and
y=>5u—wv+3, find % in terms of u and v only.

Solution:

ow _owor 0wy
ou OxOu Oy du

1

For w=22+yz~ ', 2 =3u—5v+1and y = 5u — v + 3 we have

ow 5 20—y 2Bu—5v+1)3 - (bu—v+3)
— =2r—yr = =
Oz x? (Bu—5v+1)2
ow 1 1
—_— =X =
dy 3u—>5v+1
ox y
%—3and%—5
and so
ow  2(3u—5v+1)° = (5u —v+3) 1 5
ou (3u — 5v + 1)2 3u—5v+1
_ 6(Bu—5v+1)* —15u+ 3v — 9 + (15u — 250 + 5)
N (Bu—5v +1)2

6(3u — 5v +1)3 — 22v — 4
(3u —5v +1)?




6. Consider 2%y2® + 42 + 5y + 10z — 20 = 0. Find g—,j. Evaluate it at Py(1,1,1).

Solution:

We view z as a function of y and z. Differentiating both sides of z%y2® + 42 + 5y + 10z — 20 = 0 with respect to y
(and viewing z as a constant) we get:

styzga—m + 2822 + 4% +5=0
dy Ay

and so

ox 54 2623

dy  625yz3 +4

At (1,1,1) this evaluates to

Oz 5+l 6 [3

Wlaay 6+4 10 |5

7. Let f(z,y) = xy+2?+5y>. Find L(z,y) at Py(1,1). Find an estimate of the error E(z,y) on R: [z —1| < &, [y—1| < 3.

Solution: Part 1: We have f(1,1) =1+1+5=7, Vf = (y+2z,2+10y) and Vf(1,1) = (1+2,1+10) = (3,11).
Thus

Llz,y)=f(LH)+Vf(1,1) {fz—1,y—1)=7+3,11) - (z—1L,y—1)=7T+3x -3+ 1ly— 11 =3z + 11y — 7

Part 2 Recall that 1
E(x,y) < §M(|$ — 0|+ ly — wol)?

where R is an upper bound for f.s, fzy and f,, on R. Since f, =y + 2z and f, = v+ 10y we have f,. =2, foy =1
and fy, = 10. So we can use M = 10. On R we have |z — 1| < & = { and |y — 1| < & = £. Thus

Bla,y) < 510(z +2)? =503V =5 = o

8. Find the derivative of f(z,y, z) = In(zy) + yz + zx at Py(1,—1,2) in the direction of v = v/8i + 3j — v/8k.

Solution: y .
x Yy

and so

—1 1

V| =v8+9+8=Vv25=5




and so the direction of v is

1

v

u=

v = %(\/g,& —V8)

Thus

1<\/§733_\/§> = \/g_g

fu=Vf(P) u= (1,—1,0>~5

9. Find the equation of the tangent plane to the level surface In(zy) + yz + zz + 1 = In(2) 4 4 at the point Py(2,1,1).

Solution: Let f =In(zy) + yz + 2z + 1. Then
Vf=(L4z=+2y+a)
T Y

and so
VIP) = 1,214+ =3 3.8 = 301,22
0) — 2 ) 1 ’ - 2) ) - ) ) 4y
So (1,2,2) is a normal vector to the tangent plane. Py(2,1,1) is on the plane and (1,2,2) - (2,1,1) =2+2+ 2 = 6.

Thus the equation of the tangent plane is

‘x+2y+22=6‘

10. Find all saddle points, all local maxima and local minima for f(z,y) = 2 + 3xy + y>.

Solution:

To find the critical points we solve the equation V f = 0. We have

Vf = (322 + 3y, 3z + 3y

vVf = 0
3224+ 3y=0 and 3x+3y>=0
y=—2? and z=—1>
y=—2> and z=—(—2%?=-2*
y=—2? and (r=0or1=—2%)

y=—2? and (r=0orxz=—1)

(r=0andy=-0°=0) or (r=—-landy=—(-1)*=-1)

‘ So the critical points are (0,0) and (—1,—1). ‘

Put J(z,y) = foafyy — [2,- We compute

foe = (32% + 3y), = 6z, foy = (322 + 3y), = 3 and Jyy = Bz + 3y2)y = 6y.
So J(z,y) = (6z)(6y) — 3% = 36y — 9 = 9(4ay — 1).
Hence J(0,0) = 9(4-0—1) = —9 < 0 and J(~1, —1) = 9(4 S(=1)-(=1) — 1) =9.3=27>0.




Since J(0,0) < 0, the Second Order Derivative Test shows that ‘ (0,0) is a saddle point |
Since J(—1,—1) > 0 and fy,(—1,—1) =6-(—1) = —6 < 0, the Second Order Derivative Test shows that

‘ (1,1) is a local maximum. ‘

11. Find the area inside the cardioid r = 1 + cos(f) and outside the circle r = 1.

Solution: The area is described in polar coordinates by 1 < r < 1+cos#. This implies cos# > 0 and so —g <6< g
Thus
=z 1+cos 6 0=7% r2 1+cos 6 0=7% 1
Area :/ / rdrdf :/ — do = / —(2cos 6 + cos” 0)df
f=—= =1 f=—= 2 _ g=—= 2
2 2 r=1 2
9 3 1 11 =%
- cosf+ (1 +cos20) | df = |sin® + ~0 + = sin 20 :(1+ +o) ( 177+0) T
4 4 8 p_m 4

12. Evaluate fol fo f‘f 22z¢* dzdydz. Change the order of integration of f f fl Y dzdydz into dydzdz. Do not evaluate
the integral.

Solution: First Part:
ry .1v7t
L v | 0t | [ [
0 =
1 =1 1 e

Second Part: For a fixed z in [0, 1], the region 22 <y < 1,0 < 2 < 1 — y in the yz-plane is the same as the region
OSZSI—xQ,xQSygl—z.

So

1 1 pl—y 1 pl—z? ,pl—z
/ / / dzdydr = / / / dydzdx
—1Jz2J0 -1J0 z?




13. Set up, do not evaluate, an integral in cylindrical coordinates for the volume of the solid D. The base of D is z = 0, the
top is in the plane z = 4 — y, the sides are given by r = 2sin(6).

Solution: D is described by 0 < z <4 —y and 0 < r < 2sinf. This implies sinf > 0 and so 0 < 0 < 7.
Since y = rsinf, 0 < z < 4 — y is equivalent to 0 < z < 4 — rsinf. (Note that this demands rsinf < 4, but since
rsind < 2sinf < 2, this is already fulfilled.) So the limits of integrations are

0<o<m, 0 <r <2sind, 0<z<4—rsinf

T 2sin 6 4—rsin 0
/ / / rdzdrdf
6=0 Jr=0 z=0

14. Use spherical coordinates to set up an integral for the volume of the solid bounded above by z = 1 and bounded below

by the cone z = /22 + y2.

and the integral is

Solution: The cone z = /22 + y? is in spherical coordinates described by ¢ = 7 and the region above this cone by
¢ < 7. z < 1is described by pcos¢ <1 and so p < —L_ Thus the limits

cos ¢’

of integrations are

—_

e

Cos ¢

and the integral is
2 T @
/ / / p*sin ¢ dp deo db
0=0 J =0 J p=0

15. Evaluate [ f(x,y,z)ds when C is given by r(t) = cos(t)i + sin(t)j + 6tk, (0 <t < 2w) and f(z,y,2) =2z +y+ 2.

Solution:

r' = (—sint, cost, 6)
Iv'| = Vsin?t + cos2 ¢ + 36 = /37
ds = |r'|dt = V/37dt
f(r(t)) = cost+sint + 6t
27
/ fds = / (cost -+ sint + 6t)v/37dt = V37 [sint — cost + 312] " = v/373(2m)? = 12/37x?
c t

=0

16. Find the work done by F = —3yi + 3zj + (z + y)k over the curve r(t) = cos(t)i + sin(¢)j + 4tk, (0 < ¢t < 27) in the
direction of increasing t.



Solution:

r = (cost,sint, 4t)
r’ = (—sint,cost,4)
dr = r'dt = (—sint, cost,4)dt
F = (-3y,3z,x +y) = (—3sint,3cost,cost + sint)
F - dr =(—3sint,3cost,cost + sint) - (—sint, cost, 4)dt
:(3 sin?t + 3 cos’ +4 cost + 4sin t)dt
(3+4cost +4sint)dt

27
W:/F-dr:/ (3+4cost +4sint)dt = [3t + 4sint — dcost]}", = 67
c ¢

=0

17. Consider F = (2xy32* + 9)i + (322y%2* + 2yz + 2)j + (4221°2% + y?)k. Show that F is conservative. Find f so that
Vf = F. Evaluate f((olbl’ol)) F - dr.

Solution: f, = 2zy%2* + y so f = 22y>2* + yx + g where ¢ is a function of y and z. Hence

fy = 32%y?z* + 2 + g, and since f, = 32%y?2* + 2yz + x we get g, = 2yz. So g = y*z + h, h a function of z. Thus
f=a2y2 4+ yr +y?2+hand f, = 422323 + y2 + h,. Since f, = 422y323 + y? this shows that h is a constant. We

choose h = 0 and so

f=42%y323 + yz + %2

So F has a potential and thus is conservative.

We could also have used the Component test to show that F' is conservative:

0 0
—(42%yP 23 + y?) =122 2% + 2y =— (32222 + 2yz + 1)

y 0z
ﬁ(ﬁlx?y?‘z?’ +9°) = 8z 23 :2(29:y324 +y)
ox 0z

%(33:21/224 +2yz42) =  6ryit +1 :(%(2xy3z4 +vy)

Since f is a potential for F, the Fundamental Theorem for Line Integrals tells us

0,0,0)

(1,1,1)
/ F-dr= f(1,1,1) — f(0,0,0)=4+1+1-0=6]
(

18. Quote the circulation form of Green’s Theorem. Use it to find § (22 + y* + 2y)dx + (2xy + 3y + 5x)dy where C is the
boundary of the triangle bounded by y =0, x =0 and = + y = 4.

Solution:




Part 1: Green’s Theorem (Circulation-Curl-Form) Let R be a region in the plane whose boundary is a piece-
wise smooth simple closed, curve C. Let F be a vector field with continuous first order partial derivatives on an open

region containing C. Then
%Fdr = // curl FdA
C R

Part 2:
F = (22 + 4> + 2y, 22y + 3y + 5x)
o il
curl F = O Oy =2y +5)—(2y+2) =3
20+ 2 +2y 2xy+ 3y + 5z
and so

%Fdr://curleA://BdA:?)// dA:3Area(R):3-1~4~4:24
c R R R 2

19. Find the area of the surface cut from z = 10 + 4xy by the cylinder 22 + y? = 4.

Solution:

Let f = 4oy — z and p = k = (0,0,1). The surface S in question is the part of surface f = 10 above the circle
R : 2% + 4% < 4. We compute

vf = <4y74x, _1>

IVf] =+/1622 4+ 16y% + 1

IV fl
o= dA = /1622 + 16y> + 1
IVf-pl

In polar coordinates R can be described as 0 < r <2, 0 <6 < 27. Also dA = rdrdf and so

2m 2
Area(S) = //S do = //R V1622 + 16y% + 1dA = /970 /70 V1672 + 1rdrdf

211 32 ™ 3
—or |2 Z(16r2 + 1)} :7( *—1).
77{3162( 67 + )2]0 ol 652

20. Use the divergence theorem to evaluate ffs F -ndo, where F = 22%i 4+ y%j + 3zk and S is the surface of the cube bounded
by x = +1,y = £1,2 = +1.

Solution:
divF =22+ 2y + 3

and so by the Divergence Theorem




=1 py=1 pz=1
// F - ndo= / / / (2z + 2y + 3)dzdydx
s @ y z

=—1Jy=—1Jz=-1

= (0= (1) = (FD)RE=L) + (1= ) = DL ) + (1= (D)) = (~1)B2L)
=2.2.3(1—(-1))=24

21. Integrate the function f(z,y) = 2®/y along the plane curve C given by y = 2%/2 for z € [0,2], from the point (0,0) to
(2,2).

Solution: Using t = x, C' can be parameterized by r = (¢, %>, 0<t<2. So

r' = (1,t)
ds = |v'|dt = /1 + t2dt
3 t3
f=t ==
y
? 2 212 2, s

/deZ/ 2t\/1+t2dt:{3(1+t2)2} :§(5§_1)
C 0 0

22. Find the work done by the force F = (yz, zx, —xy) in a moving particle along the curve r(t) = (t3,t2,t) for t € [0, 2].

Solution: Recall that Work = fc F - dr. We compute

r=(t3,1%,1)
dr =1r'dt = (3t 2t,1)dt
F = (yz, zx, —xy) = (%, 113, —t3t?) = (3, ¢*, —1°)
F-dr= (3, t4, —5) - (3t2,2t, 1)dt = (3t° + 2° — £7)dt = 4t°dt

2 2 7
4 2 2
Work:/F~dr:/ 43dt = {tﬂ =296 =
c 0 6 |, 3 3

23. Find the flow of the velocity field F = (xy,y?, —yz) from the point (0,0,0) to the point (1,1,1) along the curve of
intersection of the cylinder y = z? with the plane z = z.

Solution: Recall that Flow = [, F -dr. Using t = x, the curve of intersection from (0,0,0) to (1,1,1) can be
parameterized by

r=(t,t%,1), 0<t<1




24.

25.

So
dr =r'dt = (1,2t,1)dt
F = (zy,y?, —yz) = (t12, (t*)?, —%t) = (¢3¢, %)
F-dr = (t3,t4 —t3) - (1,2t,1)dt = (t3 + 2t° — t*)dt = 2t°

1 2 1Y 1
FIOW:/F~dr:/ 245dt = {tﬁ} ==
c 0 6 0 3

Find the flux of the field F = (—z,z — y) across the loop C given by the circle r(t) = (acos(t), asin(t)) for ¢ € [0, 27].

Solution: Recall that Flux = [, F -nds = [, Mdy — Ndz.

T = acost Yy =asint
dr = —asintdt dy = acostdt
M = —x = —acost N =x—y=acost —asint

and so
Mdy — Ndxz = (—acost)(acost)dt + (acost — asint)(—acost) dt
= —a®(sin®t 4 cos® t — sint cost) dt
= —a*(1 —sintcost) dt
Thus
2m 1 2
Flux = / Mdy — Ndz = —a2/ ((1 — sint cost)dt = —a® [t ~3 sin? t} = —27ma?
c 0 0

(a) Is the field F = (ysin(z), x sin(2), zy cos(z)) conservative?
(b) If yes, then find the potential function.
¢ ompute I = ysin(z)dx + x sin(z)dy + xy cos(z)dz, where C' 1s given by r(¢) = (cos(2nt), 1 + ¢°, cos*(27t)m
C I cysi d i d d here C' is gi b 2 140 22 2
for t €]0,1].

Solution: (a)

—(zycosz) =xcosz =3, (xsin z)

y
%(:cy COS 2) =Y CoS z :&(y sin z)
%(xsmz) = sinz :a—y(ysmz)

and so F is conservative by the component test.
(b) Let f be a potential for F. Then Vf = F and so

fe=ysinz, f,=xsinz, f,=xycosz




From f, = ysinz we get f = zysinz + g, g a function of y and z. Thus f, = xsinz + g, and since f, = xsinz,
gy = 0 and so g = h, h a function of z. Hence f = zysinz + h and f. = xycosz + h,. Since f, = xycosz we get
h, =0 and so h is a constant. We may choose h = 0 and so f = zycos z is a potential for F.

(c) Note that C' is a curve from r(0) = (1,1, §) to r(1) = (1,2, 7). By the Fundamental Theorem of Line Integrals,

I:/ ysin(z)dx+xsin(z)dy+xycos(z)dz:f(1,2, g) —f(l,lg) :1-1~sing :1-1~sing =2-1=1
c

26. Show that the differential form in the integral below is exact,

2
/ [3x2dx + z—dy + 2z 1nydz] ,y>0
e} Y

Solution: Let F = (322, %, 2zIny). Recall that the differential form is exact if and only if the vector field F is a
conservative. So we can use the component test:

0
a*y(%lny) — &(g)
0 a0,
%(2,2 Iny)= 0 —8231‘
a9 22 0, 5
%(g)— O—a*y(:%)

So F is conservative and corresponding differential form is exact.

27. Compute

(1,-1,0)
/ 22 cos(2)dx + zdy + (y — 2° sin(z))dz
(0,0,0)

(1,—1,0)

Solution: The notion f(o 0,0)

2z cos(z)dx + zdy + (y — 2 sin(z))dx is only defined if the vector field

2

F = (2zcosz,y — x°sin z)

is conservative (since otherwise the integral would depended on actual path from (0,0,0) to (1,—1,0).) So we will
compute a potential f for F and then use the Fundamental Theorem to evaluate the integral.

We have Vf = F and so

fe=2xcosz, fy=2 f.=y— z?sin z
From f, = 2z cosz we get f = 2% cosz + g, g a function of y and z. Thus f, = g, and since f, = z, g, = z and so
g = zy + h, h a function of z. Hence f = x?cosz + zy +h and f, = —a?sinz +y + h,. Since f, = y — 22sinz we

get h, = 0 and so h is a constant. We may choose h = 0 and so f = 2% cos z + zy is a potential for F. Therefore

(1,-1,0)
/ 2 cos(z)dx+zdy+(y—a? sin(2))dz = f(1,—1,0)—£(0,0,0) = ((=1)*cos 0+0-—1)—(0-cos 0+0-0) = 1-1-0 = 1
(0,0,0)




28. Use Green’s Theorem in the plane to evaluate the line integral given by ¢ (6y + x)dx + (y + 2z)dy on the circle C' defined
by (z—1)2 4 (y—3)2 = 4.

Solution: C is the boundary of the disk R defined by (z — 1)? + (y — 3)? < 4. Let F = (6y + z,y + 2z). By the

circulation-curl form of Green’s Theorem
%Fdr = // curl FdA
c R

) ¥l
curlF = | 9 W |=9-_6=—4
6y +x y+2zx

// curl FdA = // —4dA = —4// 1dA = —4 Area(R) = —472*> = —167
R R R

515 (6y + 2)dx + (y + 2z)dy = —127
c

We compute

So

29. Use Green’s Theorem in the plane to find the flux of F = (z — 32)i + (22 + y)j through the ellipse 922 + 43 = 36.

Solution: The ellipse C is the boundary of the region R described by 922 + 4y? < 36. So by the flux-divergence

form of Green’s Theorem
yg F -nds= // divF dA
c R

We compute

divF:VF:i(x—y2)+§(x2+y):1+1=2

Ox ) Y
// diVFdA:// 2dA:2// 1dA =2Area(R)=2(3-2-m) = 127
R R R

Remark: Let ¢ > 0 and b > 0. The area of an ellipse R : a?z? + b%y? < a?b? is abr. Indeed, R can be
described as (¥)* 4+ (£)* < 1 and using u = ¥ and v = ¥ we can parameterize R via r = (bu,av,0), (u,v) in
the region S : u? +v* < 1. Then r, = (b,0,0), r, = (0,a,0), v, x v, = (0,0,ab) and so |r, x r,| = ab. Thus

do = |r, x ry|dA = abdA and Area(R) = [, do = [;abdA = ab [ dA = abArea(S) = abm.

30. Set up the integral for the area of the surface cut from the parabolic cylinder z = 4—y?/4 by the planes x = 0,7 = 1,z = 0.

Solution: (xz,y, z) is on the surface S, if and only if z =4 — y4—2, 0<z<landz>0. Fromz>0and z=4— % we

get 42 < 16 and so —4 < y < 4. Thus the projection of S onto the zy-plane is the rectangle R: 0 < z <1, -4 < y < 4.
2

Put f =4 — % Then S can be parameterized by




r=(z,y, f(z,y) 0<2r<1,-4<y<4

Thus
_2y r=1 y=4 y2
AremSz//ldaz//,/f%—i—f;—&—ldA:// 02+(—)2+1dA=/ / 1+ = dydx
S R R 4 z=0 y=—4 4

31. Integrate the function g(x,y,2) = x1/4 + 32 over the surface cut from the parabolic cylinder z = 4 — y2/4 by the planes
r=0,r=1and z =0.

Solution: In the previous problem we saw that

r=(z,y,f(r,y) 0<a<l,-4<y<4

is a parametrization of the surface S and do = /1 + %dydm. We have

g(r) = g(z,y, f(x,y)) = z/4 + y?
So

2
/gdaz//x\/4+y2 1+y—dydx
S R

1
:7/ / z(4 + y?)dydx =
2 r= =—4

:%/FO ((16+634) (16—634))de

1

2
32 56

3

/ x4+ y?\/4 + y?dydx
r=1 1. y=4

/ T {4y + yd} dx
=0 3 y=—4

1 128

— 32 +

()]

N |~ [\D\H

32. Use Stokes’ Theorem to find the flux of V x F outward through the surface S, where F = (—y, z, z?) and

S={r*+y*=a*2€[0,h}uU{z?+y* <a* 2z=h}

Solution: Stokes’ Theorem says that

/Fdr://VxF~nd0
c s

where C' is the boundary of S. S consists of the side

and the top




of the cylinder

22 4+ 9? < a?, 0<z<h
But the bottom
% + y2 < a2, z=0
is missing. So C'is the circle
22 +y? = d?, z=0
Note that C' can be parameterization by
r = (acost,asint,0), 0<t<2rm
We have
dr =1'dt = (—asint,acost,0)dt
F = (—y,z,2?) = (—asint,acost,a® cos® t)
F.dr =a?sin®t 4 a®cos?t + 0 = a?
and so
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//VxF~ndJ:/Fdr:/ a?dt = a’n
s c 0

33. Use the Divergence Theorem to find the outward flux of the field F = (2%, —2xy, 3z2) across the boundary of the region

D={a?+y*+22<4,2>0,y>0,2>0}.

Solution: The Divergence Theorem says

//SF~nda:///DdideV

where S is the boundary of D.

divF =V .- F = %:ﬁ + %(—Zmy) + %(3:&2) =2z —-2x+ 3z =3z
In spherical coordinates D is described by
0<p<2,  0<@<z, 0<6<Z

Also
dV = p? sin pdfdgdp
divF = 3z = 3psin ¢ cos b
divF dV = 3p®sin® ¢ cos 0dfdpdp
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