
Review Problems for MTH 234

1. Let A = −5i + k,B = 2i + 10j +
√

17k. Find A ·B, A×B, |A| and projAB.

Solution:

A ·B = 〈−5, 0, 1〉 · 〈2, 10,
√

17〉 = −5 · 2 + 0 · 10 + 1 ·
√

17 =
√

17− 10 .

A×B =

∣∣∣∣∣∣∣∣∣
i j k

−5 0 1

2 10
√

17

∣∣∣∣∣∣∣∣∣ = 〈−10,−(−5
√

17− 2),−5 · 10〉 = 〈−10, 5
√

17 + 2,−50〉

|A| = |〈−5, 0, 1〉| =
√

(−5)2 + 1 =
√

26

projAB =
A ·B
A ·A

A =

√
17− 10

26
〈−5, 0, 1〉

2. Find the distance between the point P (1, 2, 3) and the plane 5x− 3y + z = 5.

Solution: Let n = 〈5,−3, 1〉. Note that Q(1, 0, 0) is a point on the plane and so the distant d of P from plane

r · n = 5 is the absolute value of the scalar projection of
−−→
QP onto n:

d =
|
−−→
QP · n|
|n|

=
|〈0, 2, 3〉 · 〈5,−3, 1〉|
|〈5,−3, 1〉|

=
|0− 6 + 3|√
25 + 9 + 1

=
3√
35

3. Find the equation of the line perpendicular to 5x − 3y + z = 5 and through the point Q(1, 2, 3). Compute the point of
intersection between this line and the plane.

Solution: Let n = 〈5,−3, 1〉. The vector equation for the line is

r =
−−→
OP + nt = 〈1, 2, 3〉+ 〈5,−3, 1〉t, −∞ < t <∞

r is on the plane if r · n = 5. So (
−−→
OP + nt) · n = 5, (n · n)t = 5−

−−→
OP · n and

t =
5−
−−→
OP · n
n · n

=
5− 〈1, 2, 3〉 · 〈5,−3, 1〉
〈5,−3, 1〉 · 〈5,−3, 1〉

=
5− (5− 6 + 3)

25 + 9 + 1
=

3

35

So the position vector of the intersection point is

〈1, 2, 3〉+ 〈5,−3, 1〉 3

35
=

1

35
〈35 + 15, 70− 9, 105 + 3〉 =

1

35
〈50, 61, 108〉

Thus the intersection point is

(
50

35
,

61

35
,

108

35

)



4. Find the parametric equations for the line that is tangent to the curve r(t) = cos(t)i+ sin(t)j+ sin(2t)k at t0 = π
2 . Find

the unit tangent vector T(t).

Solution:
r′(t) = 〈− sin t, cos t, 2 cos(2t)〉

and so

r′(
π

2
) = 〈−1, 0, 2〉

is parallel to the line.

Also the r(π2 ) = 〈0, 1, 0〉 is the position vector of a point on the line. So the vector equation is

r = 〈0, 1, 0〉+ 〈−1, 0, 2〉t, −∞ ≤ t ≤ ∞

and the parametric equations are

x = −t, y = 1, z = 2t, −∞ ≤ t ≤ ∞

The unit tangent vector is

T(t) =
1

|r′(t)|
r′(t) =

1√
sin2 t+ cos2 t+ 4 cos2(2t)

〈− sin t, cos t, 2 cos(2t)〉 =
1√

1 + 4 cos2(2t)
〈− sin t, cos t, 2 cos(2t)〉

5. Let w = w(x, y), x = x(u, v), y = y(u, v). Write out the formula for ∂w
∂u . For w = x2 + yx−1, x = 3u − 5v + 1 and

y = 5u− v + 3, find ∂w
∂u in terms of u and v only.

Solution:

∂w

∂u
=
∂w

∂x

∂x

∂u
+
∂w

∂y

∂y

∂u

For w = x2 + yx−1, x = 3u− 5v + 1 and y = 5u− v + 3 we have

∂w

∂x
= 2x− yx−2 =

2x3 − y
x2

=
2(3u− 5v + 1)3 − (5u− v + 3)

(3u− 5v + 1)2

∂w

∂y
= x−1 =

1

3u− 5v + 1

∂x

∂u
= 3 and

∂y

∂u
= 5

and so

∂w

∂u
=

2(3u− 5v + 1)3 − (5u− v + 3)

(3u− 5v + 1)2
3 +

1

3u− 5v + 1
5

=
6(3u− 5v + 1)3 − 15u+ 3v − 9 + (15u− 25v + 5)

(3u− 5v + 1)2

=
6(3u− 5v + 1)3 − 22v − 4

(3u− 5v + 1)2



6. Consider x6yz3 + 4x+ 5y + 10z − 20 = 0. Find ∂x
∂y . Evaluate it at P0(1, 1, 1).

Solution:

We view x as a function of y and z. Differentiating both sides of x6yz3 + 4x+ 5y + 10z − 20 = 0 with respect to y
(and viewing z as a constant) we get:

6x5yz3
∂x

∂y
+ x6z3 + 4

∂x

∂y
+ 5 = 0

and so

∂x

∂y
= − 5 + x6z3

6x5yz3 + 4

At (1, 1, 1) this evaluates to

∂x

∂y

∣∣∣∣
(1,1,1)

= −5 + 1

6 + 4
= − 6

10
=

3

5

7. Let f(x, y) = xy+x2+5y2. Find L(x, y) at P0(1, 1). Find an estimate of the error E(x, y) on R : |x−1| ≤ 2
10 , |y−1| ≤ 2

10 .

Solution: Part 1: We have f(1, 1) = 1 + 1 + 5 = 7, ∇f = 〈y+ 2x, x+ 10y〉 and ∇f(1, 1) = 〈1 + 2, 1 + 10〉 = 〈3, 11〉.
Thus

L(x, y) = f(1, 1) +∇f(1, 1) · 〈x− 1, y − 1〉 = 7 + 〈3, 11〉 · 〈x− 1, y − 1〉 = 7 + 3x− 3 + 11y − 11 = 3x+ 11y − 7

Part 2 Recall that

E(x, y) ≤ 1

2
M(|x− x0|+ |y − y0|)2

where R is an upper bound for fxx, fxy and fyy on R. Since fx = y+ 2x and fy = x+ 10y we have fxx = 2, fxy = 1
and fyy = 10. So we can use M = 10. On R we have |x− 1| ≤ 2

10 = 1
5 and |y − 1| ≤ 2

10 = 1
5 . Thus

E(x, y) ≤ 1

2
10(

1

5
+

1

5
)2 = 5(

2

5
)2 =

4

5
=

8

10

8. Find the derivative of f(x, y, z) = ln(xy) + yz + zx at P0(1,−1, 2) in the direction of v =
√

8i + 3j−
√

8k.

Solution:
∇f = 〈y

x
+ z,

x

y
+ z, y + x〉

and so

∇f(P0) = 〈−1

1
+ 2,

1

−1
+ 2,−1 + 1〉 = 〈1, 1, 0〉,

|v| =
√

8 + 9 + 8 =
√

25 = 5



and so the direction of v is

u =
1

|v|
v =

1

5
〈
√

8, 3,−
√

8〉

Thus

fu = ∇f(P0) · u = 〈1,−1, 0〉 · 1

5
〈
√

8, 3,−
√

8〉 =

√
8− 3

5

9. Find the equation of the tangent plane to the level surface ln(xy) + yz + xz + 1 = ln(2) + 4 at the point P0(2, 1, 1).

Solution: Let f = ln(xy) + yz + xz + 1. Then

∇f = 〈y
x

+ z,
x

y
+ z, y + x〉

and so

∇f(P0) = 〈1
2

+ 1,
2

1
+ 1, 1 + 2〉 = 〈3

2
, 3, 3〉 =

3

2
〈1, 2, 2〉

So 〈1, 2, 2〉 is a normal vector to the tangent plane. P0(2, 1, 1) is on the plane and 〈1, 2, 2〉 · 〈2, 1, 1〉 = 2 + 2 + 2 = 6.
Thus the equation of the tangent plane is

x+ 2y + 2z = 6

10. Find all saddle points, all local maxima and local minima for f(x, y) = x3 + 3xy + y3.

Solution:

To find the critical points we solve the equation ∇f = ~0. We have

∇f = 〈3x2 + 3y, 3x+ 3y2〉

∇f = ~0

3x2 + 3y = 0 and 3x+ 3y2 = 0

y = −x2 and x = −y2

y = −x2 and x = −(−x2)2 = −x4

y = −x2 and (x = 0 or 1 = −x3)

y = −x2 and (x = 0 or x = −1)

(x = 0 and y = −02 = 0) or (x = −1 and y = −(−1)2 = −1)

So the critical points are (0, 0) and (−1,−1).

Put J(x, y) = fxxfyy − f2xy. We compute

fxx = (3x2 + 3y)x = 6x, fxy = (3x2 + 3y)y = 3 and fyy = (3x+ 3y2)y = 6y.

So J(x, y) = (6x)(6y)− 32 = 36xy − 9 = 9(4xy − 1).

Hence J(0, 0) = 9(4 · 0− 1) = −9 < 0 and J(−1,−1) = 9
(

4 · (−1) · (−1)− 1
)

= 9 · 3 = 27 > 0.



Since J(0, 0) < 0, the Second Order Derivative Test shows that (0, 0) is a saddle point .

Since J(−1,−1) > 0 and fxx(−1,−1) = 6 · (−1) = −6 < 0, the Second Order Derivative Test shows that

(1, 1) is a local maximum.

11. Find the area inside the cardioid r = 1 + cos(θ) and outside the circle r = 1.

Solution: The area is described in polar coordinates by 1 ≤ r ≤ 1+cos θ. This implies cos θ ≥ 0 and so −π2 ≤ θ ≤
π
2 .

Thus

Area =

ˆ θ=π
2

θ=−π
2

ˆ 1+cos θ

r=1

rdrdθ =

ˆ θ=π
2

θ=−π
2

[
r2

2

]1+cos θ

r=1

dθ =

ˆ θ=π
2

θ=−π
2

1

2
(2 cos θ + cos2 θ)dθ

=

ˆ θ=π
2

θ=−π
2

(
cos θ +

1

4
(1 + cos 2θ)

)
dθ =

[
sin θ +

1

4
θ +

1

8
sin 2θ

]θ=π
2

θ=−π
2

=
(

1 +
π

8
+ 0
)
−
(
−1− π

8
+ 0
)

= 2 +
π

4

12. Evaluate
´ 1
0

´ 1
0

´√y
0

2xzezy
2

dxdydz. Change the order of integration of
´ 1
−1
´ 1
x2

´ 1−y
0

dzdydx into dydzdx. Do not evaluate
the integral.

Solution: First Part:
ˆ 1

0

ˆ 1

0

ˆ √y
0

2xzezy
2

dxdydz =

ˆ 1

0

ˆ 1

0

[
x2
]x=√y
x=0

zezy
2

dydz =

ˆ 1

0

ˆ 1

0

yzezy
2

dydz =

ˆ 1

0

[
1

2
ezy

2

]y=1

y=0

dz

=

ˆ 1

0

1

2
(ez − 1) dz =

1

2
[ez − z]z=1

z=0 =
1

2

(
(e1 − 1)− (1− 0)

)
=
e

2
− 1

Second Part: For a fixed x in [0, 1], the region x2 ≤ y ≤ 1, 0 ≤ z ≤ 1 − y in the yz-plane is the same as the region
0 ≤ z ≤ 1− x2, x2 ≤ y ≤ 1− z.

0

1− x2

1

0 x2 1

z = 1− y

y = 1− z

So

ˆ 1

−1

ˆ 1

x2

ˆ 1−y

0

dzdydx =

ˆ 1

−1

ˆ 1−x2

0

ˆ 1−z

x2

dydzdx



13. Set up, do not evaluate, an integral in cylindrical coordinates for the volume of the solid D. The base of D is z = 0, the
top is in the plane z = 4− y, the sides are given by r = 2 sin(θ).

Solution: D is described by 0 ≤ z ≤ 4− y and 0 ≤ r ≤ 2 sin θ. This implies sin θ ≥ 0 and so 0 ≤ θ ≤ π.

Since y = r sin θ, 0 ≤ z ≤ 4 − y is equivalent to 0 ≤ z ≤ 4 − r sin θ. (Note that this demands r sin θ ≤ 4, but since
rsinθ ≤ 2 sin θ ≤ 2, this is already fulfilled.) So the limits of integrations are

0 ≤ θ ≤ π, 0 ≤ r ≤ 2 sin θ, 0 ≤ z ≤ 4− r sin θ

and the integral is

ˆ π

θ=0

ˆ 2 sin θ

r=0

ˆ 4−r sin θ

z=0

rdzdrdθ

14. Use spherical coordinates to set up an integral for the volume of the solid bounded above by z = 1 and bounded below
by the cone z =

√
x2 + y2.

Solution: The cone z =
√
x2 + y2 is in spherical coordinates described by φ = π

4 and the region above this cone by
φ ≤ π

4 . z ≤ 1 is described by ρ cosφ ≤ 1 and so ρ ≤ 1
cosφ . Thus the limits

of integrations are

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

4
, 0 ≤ r ≤ 1

cosφ

and the integral is

ˆ 2π

θ=0

ˆ π
4

φ=0

ˆ 1
cosφ

ρ=0

ρ2 sinφdρ dφ dθ

15. Evaluate
´
C
f(x, y, z)ds when C is given by r(t) = cos(t)i + sin(t)j + 6tk, (0 ≤ t ≤ 2π) and f(x, y, z) = x+ y + z.

Solution:

r′ = 〈− sin t, cos t, 6〉

|r′| =
√

sin2 t+ cos2 t+ 36 =
√

37

ds = |r′|dt =
√

37dt

f(r(t)) = cos t+ sin t+ 6tˆ
C

fds =

ˆ 2π

t=0

(
cos t+ sin t+ 6t

)√
37dt =

√
37
[
sin t− cos t+ 3t2

]2π
t=0

=
√

373(2π)2 = 12
√

37π2

16. Find the work done by F = −3yi + 3xj + (x + y)k over the curve r(t) = cos(t)i + sin(t)j + 4tk, (0 ≤ t ≤ 2π) in the
direction of increasing t.



Solution:

r = 〈cos t, sin t, 4t〉
r′ = 〈− sin t, cos t, 4〉

dr = r′dt = 〈− sin t, cos t, 4〉dt
F = 〈−3y, 3x, x+ y〉 = 〈−3 sin t, 3 cos t, cos t+ sin t〉

F · dr =〈−3 sin t, 3 cos t, cos t+ sin t〉 · 〈− sin t, cos t, 4〉dt
=
(
3 sin2 t+ 3 cost +4 cos t+ 4 sin t

)
dt

=(3 + 4 cos t+ 4 sin t)dt

W =

ˆ
C

F · dr =

ˆ 2π

t=0

(
3 + 4 cos t+ 4 sin t

)
dt = [3t+ 4 sin t− 4 cos t]

2π
t=0 = 6π

17. Consider F = (2xy3z4 + y)i + (3x2y2z4 + 2yz + x)j + (4x2y3z3 + y2)k. Show that F is conservative. Find f so that

∇f = F. Evaluate
´ (1,1,1)
(0,0,0)

F · dr.

Solution: fx = 2xy3z4 + y so f = x2y3z4 + yx+ g where g is a function of y and z. Hence

fy = 3x2y2z4 + x+ gy and since fy = 3x2y2z4 + 2yz + x we get gy = 2yz. So g = y2z + h, h a function of z. Thus
f = x2y3z4 + yx+ y2z+ h and fz = 4x2y3z3 + y2 + hz. Since fz = 4x2y3z3 + y2 this shows that h is a constant. We
choose h = 0 and so

f = 4x2y3z3 + yx+ y2z

So F has a potential and thus is conservative.

We could also have used the Component test to show that F is conservative:

∂

∂y
(4x2y3z3 + y2) =12x2y2z3 + 2y =

∂

∂z
(3x2y2z4 + 2yz + x)

∂

∂x
(4x2y3z3 + y2) = 8xy3z3 =

∂

∂z
(2xy3z4 + y)

∂

∂x
(3x2y2z4 + 2yz + x) = 6xy2z4 + 1 =

∂

∂y
(2xy3z4 + y)

Since f is a potential for F, the Fundamental Theorem for Line Integrals tells us

ˆ (1,1,1)

(0,0,0)

F · dr = f(1, 1, 1)− f(0, 0, 0) = 4 + 1 + 1− 0 = 6

18. Quote the circulation form of Green’s Theorem. Use it to find
¸
C

(2x + y2 + 2y)dx + (2xy + 3y + 5x)dy where C is the
boundary of the triangle bounded by y = 0, x = 0 and x+ y = 4.

Solution:



Part 1: Green’s Theorem (Circulation-Curl-Form) Let R be a region in the plane whose boundary is a piece-
wise smooth simple closed, curve C. Let F be a vector field with continuous first order partial derivatives on an open
region containing C. Then

‰
C

Fdr =

¨
R

curlFdA

Part 2:

F = 〈2x+ y2 + 2y, 2xy + 3y + 5x〉

curlF =

∣∣∣∣∣∣
∂
∂x

∂
∂y

2x+ y2 + 2y 2xy + 3y + 5x

∣∣∣∣∣∣ = (2y + 5)− (2y + 2) = 3

and so

‰
C

Fdr =

¨
R

curlFdA =

¨
R

3dA = 3

¨
R

dA = 3 Area(R) = 3 · 1

2
· 4 · 4 = 24

19. Find the area of the surface cut from z = 10 + 4xy by the cylinder x2 + y2 = 4.

Solution:

Let f = 4xy − z and p = k = 〈0, 0, 1〉. The surface S in question is the part of surface f = 10 above the circle
R : x2 + y2 ≤ 4. We compute

∇f = 〈4y, 4x,−1〉

|∇f | =
√

16x2 + 16y2 + 1

|∇f · p| = |〈4y, 4x,−1〉 · 〈0, 0, 1〉| = | − 1| = 1

dσ =
|∇f |
|∇f · p|

dA =
√

16x2 + 16y2 + 1

In polar coordinates R can be described as 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π. Also dA = rdrdθ and so

Area(S) =

¨
S

dσ =

¨
R

√
16x2 + 16y2 + 1dA =

ˆ 2π

θ=0

ˆ 2

r=0

√
16r2 + 1rdrdθ

= 2π

[
2

3

1

16

1

2
(16r2 + 1)

3
2

]2
0

=
π

24

(
65

3
2 − 1

)
.

20. Use the divergence theorem to evaluate
˜
S
F ·ndσ, where F = x2i+ y2j+ 3zk and S is the surface of the cube bounded

by x = ±1, y = ±1, z = ±1.

Solution:
divF = 2x+ 2y + 3

and so by the Divergence Theorem



¨
S

F · n dσ =

ˆ x=1

x=−1

ˆ y=1

y=−1

ˆ z=1

z=−1
(2x+ 2y + 3)dzdydx

=
(

(1− (−1))(1− (−1))[x2]x=1
x=−1

)
+
(

(1− (−1))(1− (−1))[y2]y=1
y=−1

)
+
(

(1− (−1))(1− (−1))[3z]z=1
z=−1

)
= 2 · 2 · 3(1− (−1)) = 24

21. Integrate the function f(x, y) = x3/y along the plane curve C given by y = x2/2 for x ∈ [0, 2], from the point (0, 0) to
(2, 2).

Solution: Using t = x, C can be parameterized by r = 〈t, t
2

2 〉, 0 ≤ t ≤ 2. So

r′ = 〈1, t〉

ds = |r′|dt =
√

1 + t2dt

f =
x3

y
=
t3

t2

2

= 2t

ˆ
C

fds =

ˆ 2

0

2t
√

1 + t2dt =

[
2

3
(1 + t2)

3
2

]2
0

=
2

3
(5

3
2 − 1)

22. Find the work done by the force F = 〈yz, zx,−xy〉 in a moving particle along the curve r(t) = 〈t3, t2, t〉 for t ∈ [0, 2].

Solution: Recall that Work =
´
C
F · dr. We compute

r = 〈t3, t2, t〉
dr = r′dt = 〈3t2, 2t, 1〉dt

F = 〈yz, zx,−xy〉 = 〈t2t, tt3,−t3t2〉 = 〈t3, t4,−t5〉
F · dr = 〈t3, t4,−t5〉 · 〈3t2, 2t, 1〉dt = (3t5 + 2t5 − t5)dt = 4t5dt

Work =

ˆ
C

F · dr =

ˆ 2

0

4t5dt =

[
4

6
t6
]2
0

=
2

3
26 =

27

3
.

23. Find the flow of the velocity field F = 〈xy, y2,−yz〉 from the point (0, 0, 0) to the point (1, 1, 1) along the curve of
intersection of the cylinder y = x2 with the plane z = x.

Solution: Recall that Flow =
´
C
F · dr. Using t = x, the curve of intersection from (0, 0, 0) to (1, 1, 1) can be

parameterized by
r = 〈t, t2, t〉, 0 ≤ t ≤ 1



So

dr = r′dt = 〈1, 2t, 1〉dt
F = 〈xy, y2,−yz〉 = 〈tt2, (t2)2,−t2t〉 = 〈t3, t4,−t3〉

F · dr = 〈t3, t4,−t3〉 · 〈1, 2t, 1〉dt = (t3 + 2t5 − t3)dt = 2t5

Flow =

ˆ
C

F · dr =

ˆ 1

0

2t5dt =

[
2

6
t6
]1
0

=
1

3

24. Find the flux of the field F = 〈−x, x− y〉 across the loop C given by the circle r(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π].

Solution: Recall that Flux =
´
C
F · nds =

´
C
Mdy −Ndx.

x = a cos t y = a sin t

dx = −a sin t dt dy = a cos t dt

M = −x = −a cos t N = x− y = a cos t− a sin t

and so

Mdy −Ndx = (−a cos t)(a cos t) dt+ (a cos t− a sin t)(−a cos t) dt

= −a2(sin2 t+ cos2 t− sin t cos t) dt

= −a2(1− sin t cos t) dt

Thus

Flux =

ˆ
C

Mdy −Ndx = −a2
ˆ 2π

0

((1− sin t cos t)dt = −a2
[
t− 1

2
sin2 t

]2π
0

= −2πa2

25. (a) Is the field F = 〈y sin(z), x sin(z), xy cos(z)〉 conservative?

(b) If yes, then find the potential function.

(c) Compute I =
´
C
y sin(z)dx + x sin(z)dy + xy cos(z)dz, where C is given by r(t) =

〈
cos(2πt), 1 + t5, cos2(2πt)π/2

〉
for t ∈ [0, 1].

Solution: (a)

∂

∂y
(xy cos z) =x cos z =

∂

∂z
(x sin z)

∂

∂x
(xy cos z) =y cos z =

∂

∂z
(y sin z)

∂

∂x
(x sin z) = sin z =

∂

∂y
(y sin z)

and so F is conservative by the component test.

(b) Let f be a potential for F. Then ∇f = F and so

fx = y sin z, fy = x sin z, fz = xy cos z



From fx = y sin z we get f = xy sin z + g, g a function of y and z. Thus fy = x sin z + gy and since fy = x sin z,
gy = 0 and so g = h, h a function of z. Hence f = xy sin z + h and fz = xy cos z + hz. Since fz = xy cos z we get
hz = 0 and so h is a constant. We may choose h = 0 and so f = xy cos z is a potential for F.

(c) Note that C is a curve from r(0) = 〈1, 1, π2 〉 to r(1) = 〈1, 2, π2 〉. By the Fundamental Theorem of Line Integrals,

I =

ˆ
C

y sin(z)dx+ x sin(z)dy + xy cos(z)dz = f
(

1, 2,
π

2

)
− f

(
1, 2,

π

2

)
= 1 · 1 · sin π

2
= 1 · 1 · sin π

2
= 2− 1 = 1

26. Show that the differential form in the integral below is exact,ˆ
C

[
3x2dx+

z2

y
dy + 2z ln ydz

]
, y > 0

Solution: Let F = 〈3x2, z
2

y , 2z ln y〉. Recall that the differential form is exact if and only if the vector field F is a
conservative. So we can use the component test:

∂

∂y
(2z ln y) =

2z

y
=
∂

∂z
(
z2

y
)

∂

∂x
(2z ln y) = 0 =

∂

∂z
3x2

∂

∂x
(
z2

y
) = 0 =

∂

∂y
(3x2)

So F is conservative and corresponding differential form is exact.

27. Compute ˆ (1,−1,0)

(0,0,0)

2x cos(z)dx+ zdy + (y − x2 sin(z))dz

Solution: The notion
´ (1,−1,0)
(0,0,0)

2x cos(z)dx+ zdy + (y − x2 sin(z))dx is only defined if the vector field

F = 〈2x cos z, y − x2 sin z〉

is conservative (since otherwise the integral would depended on actual path from (0, 0, 0) to (1,−1, 0).) So we will
compute a potential f for F and then use the Fundamental Theorem to evaluate the integral.

We have ∇f = F and so
fx = 2x cos z, fy = z, fz = y − x2 sin z

From fx = 2x cos z we get f = x2 cos z + g, g a function of y and z. Thus fy = gy and since fy = z, gy = z and so
g = zy + h, h a function of z. Hence f = x2 cos z + zy + h and fz = −x2 sin z + y + hz. Since fz = y − x2 sin z we
get hz = 0 and so h is a constant. We may choose h = 0 and so f = x2 cos z + zy is a potential for F. Therefore

ˆ (1,−1,0)

(0,0,0)

2x cos(z)dx+zdy+(y−x2 sin(z))dz = f(1,−1, 0)−f(0, 0, 0) = ((−1)2·cos 0+0·−1)−(0·cos 0+0·0) = 1·1−0 = 1



28. Use Green’s Theorem in the plane to evaluate the line integral given by
¸
C

(6y+x)dx+(y+2x)dy on the circle C defined
by (x− 1)2 + (y − 3)2 = 4.

Solution: C is the boundary of the disk R defined by (x − 1)2 + (y − 3)2 ≤ 4. Let F = 〈6y + x, y + 2x〉. By the
circulation-curl form of Green’s Theorem

‰
C

Fdr =

¨
R

curlFdA

We compute

curlF =

∣∣∣∣∣∣
∂
∂x

∂
∂y

6y + x y + 2x

∣∣∣∣∣∣ = 2− 6 = −4

¨
R

curlF dA =

¨
R

−4dA = −4

¨
R

1dA = −4 Area(R) = −4π22 = −16π

So ˛
C

(6y + x)dx+ (y + 2x)dy = −12π

29. Use Green’s Theorem in the plane to find the flux of F = (x− y2)i + (x2 + y)j through the ellipse 9x2 + 4y2 = 36.

Solution: The ellipse C is the boundary of the region R described by 9x2 + 4y2 ≤ 36. So by the flux-divergence
form of Green’s Theorem

‰
C

F · n ds =

¨
R

divF dA

We compute

divF = ∇ · F =
∂

∂x
(x− y2) +

∂

∂y
(x2 + y) = 1 + 1 = 2

¨
R

divF dA =

¨
R

2dA = 2

¨
R

1dA = 2 Area(R) = 2(3 · 2 · π) = 12π

Remark: Let a > 0 and b > 0. The area of an ellipse R : a2x2 + b2y2 ≤ a2b2 is abπ. Indeed, R can be
described as (xb )2 + (ya )2 ≤ 1 and using u = x

b and v = y
a we can parameterize R via r = 〈bu, av, 0〉, (u, v) in

the region S : u2 + v2 ≤ 1. Then ru = 〈b, 0, 0〉, rv = 〈0, a, 0〉, ru × rv = 〈0, 0, ab〉 and so |ru × rv| = ab. Thus
dσ = |ru × rv|dA = ab dA and Area(R) =

´
R
dσ =

´
S
abdA = ab

´
S
dA = abArea(S) = abπ.

30. Set up the integral for the area of the surface cut from the parabolic cylinder z = 4−y2/4 by the planes x = 0, x = 1, z = 0.

Solution: (x, y, z) is on the surface S, if and only if z = 4− y2

4 , 0 ≤ x ≤ 1 and z ≥ 0. From z ≥ 0 and z = 4− y2

4 we
get y2 ≤ 16 and so −4 ≤ y ≤ 4. Thus the projection of S onto the xy-plane is the rectangle R : 0 ≤ x ≤ 1,−4 ≤ y ≤ 4.

Put f = 4− y2

4 . Then S can be parameterized by



r = 〈x, y, f(x, y)〉 0 ≤ x ≤ 1,−4 ≤ y ≤ 4

Thus

Area, S =

¨
S

1dσ =

¨
R

√
f2x + f2y + 1 dA =

¨
R

√
02 + (

−2y

4
)2 + 1 dA =

ˆ x=1

x=0

ˆ y=4

y=−4

√
1 +

y2

4
dydx

31. Integrate the function g(x, y, z) = x
√

4 + y2 over the surface cut from the parabolic cylinder z = 4− y2/4 by the planes
x = 0, x = 1 and z = 0.

Solution: In the previous problem we saw that

r = 〈x, y, f(x, y)〉 0 ≤ x ≤ 1,−4 ≤ y ≤ 4

is a parametrization of the surface S and dσ =
√

1 + y2

4 dydx. We have

g(r) = g(x, y, f(x, y)) = x
√

4 + y2

So

ˆ
S

gdσ =

¨
R

x
√

4 + y2

√
1 +

y2

4
dydx =

1

2

¨
R

x
√

4 + y2
√

4 + y2dydx

=
1

2

ˆ x=1

x=0

ˆ y=4

y=−4
x(4 + y2)dydx =

1

2

ˆ x=1

x=0

x

[
4y +

1

3
y3
]y=4

y=−4
dx

=
1

2

ˆ x=1

x=0

x

(
(16 +

64

3
)− (−16− 64

3
)

)
dx =

1

2

[
1

2
x2
(

32 +
128

3

)]x=1

x=0

= 8 +
32

3
=

56

3

32. Use Stokes’ Theorem to find the flux of ∇× F outward through the surface S, where F = 〈−y, x, x2〉 and

S = {x2 + y2 = a2, z ∈ [0, h]} ∪ {x2 + y2 ≤ a2, z = h}.

Solution: Stokes’ Theorem says that ˆ
C

Fdr =

¨
S

∇× F · n dσ

where C is the boundary of S. S consists of the side

x2 + y2 = a2, 0 ≤ z ≤ h

and the top
x2 + y2 ≤ a2, z = h



of the cylinder
x2 + y2 ≤ a2, 0 ≤ z ≤ h.

But the bottom
x2 + y2 ≤ a2, z = 0

is missing. So C is the circle
x2 + y2 = a2, z = 0

Note that C can be parameterization by

r = 〈a cos t, a sin t, 0〉, 0 ≤ t ≤ 2π

We have

dr = r′dt = 〈−a sin t, a cos t, 0〉dt
F = 〈−y, x, x2〉 = 〈−a sin t, a cos t, a2 cos2 t〉

F · dr = a2 sin2 t+ a2 cos2 t+ 0 = a2

and so

¨
S

∇× F · n dσ =

ˆ
C

Fdr =

ˆ 2π

0

a2dt = a2π

33. Use the Divergence Theorem to find the outward flux of the field F = 〈x2,−2xy, 3xz〉 across the boundary of the region

D = {x2 + y2 + z2 ≤ 4, x ≥ 0, y ≥ 0, z ≥ 0}.

Solution: The Divergence Theorem says

¨
S

F · ndσ =

˚
D

divF dV

where S is the boundary of D.

divF = ∇ · F =
∂

∂x
x2 +

∂

∂y
(−2xy) +

∂

∂z
(3xz) = 2x− 2x+ 3x = 3x

In spherical coordinates D is described by

0 ≤ ρ ≤ 2, 0 ≤ φ ≤ π

2
, 0 ≤ θ ≤ π

2

Also

dV = ρ2 sinφdθdφdρ

divF = 3x = 3ρ sinφ cos θ

divF dV = 3ρ3 sin2 φ cos θdθdφdρ



¨
S

F · ndσ =

˚
D

divF dV =

ˆ ρ=2

ρ=0

ˆ φ=π
2

φ=0

ˆ θ=π
2

θ=0

3ρ3 sin2 φ cos θdθdφdρ = 3

ˆ ρ=2

ρ=0

ˆ φ=π
2

φ=0

ρ3 sin2 φ [sin θ]
θ=π

2

θ=0 dφdρ

= 3

ˆ ρ=2

ρ=0

ˆ φ=π
2

φ=0

ρ3 sin2 φ · 1dφdρ = 3

ˆ ρ=2

ρ=0

ˆ φ=π
2

φ=0

ρ3
1

2
(1− cos(2φ))dφdρ

= 3

ˆ ρ=2

ρ=0

ρ3
1

2

[
φ− 1

2
sin(2φ)

]φ=π
2

φ=0

dρ = 3

ˆ ρ=2

ρ=0

ρ3
1

2

π

2
dρ

=
3π

4

[
1

4
ρ4
]ρ=2

ρ=0

=
3π

4

24

4
= 3π


