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Chapter 1

Rings

1.1 Definitions and Examples

Let A and B be sets. Then a € A means that a is a member of A. Recall from [A.4.3] that

AxB={(a,b)|aecAbeB}

(so A x B is the set consisting of all ordered pairs whose first coordinate is in A and the second in

B.)
Definition 1.1.1. A ring is a triple (R, +,-) such that

(i) R is a set;

(ii) + is a function (called ring addition) and Rx R is a subset of the domain of +. For (a,b) € RxR,

a+ b denotes the image of (a,b) under +;

(iii) - is a function (called ring multiplication) and R x R is a subset of the domain of -. For

(a,b) e Rx R, a-b (and also ab) denotes the image of (a,b) under -;

and such that the following eight statement hold:
) a+beR foralla,beR;

Ax2) a+(b+c)=(a+b)+c foralla,b,ceR;
) a+tb=b+a foralla,beR.

)

there exists an element in R, denoted by Or and called ‘zero R’,

such that a=a+0r anda=0gr+a for all ae R;

(Ax5) for each a € R there exists an element in R, denoted by —a

and called ‘negative a’, such that a+ (—a) =0g and (—a) +a =0g;

5

[closure of addition]
[associative addition]
[commutative addition]

[additive identity]

[additive inverses]
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(Ax6) abe R for all a,be R; [closure of multiplication]
(Ax7) a(be) = (ab)e  for all a,b,ce R; [associative multiplication]
(Ax8) a(b+c)=ab+ac and (a+b)c=ac+bc  for all a,b,c€ R. [distributive laws]

In the following we will often just write R for (R, +,-).
Definition 1.1.2. Let R be a ring. Then R is called commutative if
(Ax9) ab=ba for all a,be R. [commutative multiplication]

Definition 1.1.3. Let R be a ring. We say that R is a ring with identity if there exists an element,
denoted by 1r and called ‘one R’, such that

(Ax10) a=1g-a anda=a-1r  for allae R. [multiplicative identity]
Example 1.1.4. (a) (Z+,-) is a commutative ring with identity.

(b) (Q,+,-) is a commutative ring with identity.

(
(d

)

c) (R,+,-) is a commutative ring with identity.
) (C,+,-) is a commutative ring with identity.
)

(e

If R is a ring, then R cannot be the empty set. Indeed, [Ax4] implies that there exists an
element (namely Og) in R. But note that all other axioms do hold for R = @.

(f) Suppose R ={0g} and define an addition + and multiplication - on R by

+ |0 - 10
a and a
Or | OR Or | OR

Then (R, +,-) is a commutative ring with identity 15 = Opg.

(g) Let Zg = {0,1} and define an addition @ and a multiplication ® on Zy by

®|0 1 ©|0 1
0/0 1 and 0|0 0
111 0 110 1

Then (Z2,®,®) is a commutative ring with identity.

(h) Let 2Z be the set of even integers. Then (2Z, +, -) is a commutative ring without a multiplicative
identity.
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(i) Let n € Z with n > 1. The set M, (R) of n x n matrices with coefficients in R together with the
usual addition and multiplication of matrices is a non-commutative ring with identity.

(j) Let n € Z with n > 1. Then M,,(27Z) is non-commutative ring without an identity.
Example 1.1.5. Let R={0,1} and a,b € R. Define an addition and multiplication on R by

+10 1 10 1
0/0 1 and 0/0 0
111 a 110 b

For which values of a and b is (R, +,-) a ring?

Note first that 0 is the additive identity, so Og = 0.

Case 1. Suppose that a = 1:

+/10 1 10 1
0/0 1 and 0/0 O
111 1 110 b

Then 1+x=1%0=0g for all z € R and so 1 does not have an additive inverse. Hence R is not a
ring.

Case 2. Suppose that a =0 and b=1:

+/10 1 10 1
0/0 1 and 0/0 O
111 0 110 1

Then (R, +,-) is (Z2,®,0) and so R is commutative ring with identity 1.
Case 3. Suppose that a =0 and b=0:

+]0 1 10 1
010 1 and 0/0 0
1110 110 0

Then xy =0 for all z,y € R. Note also that 0+ 0 = 0. It follows that Axioms 6-8 hold, indeed all
expressions evaluate to 0. Axiom 1-5 hold since the addition is the same as in Zs. So R is a ring. R
is commutative, but does not have an identity.
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Example 1.1.6. Let R ={0,1}. Define an addition and multiplication on R by

B0 1 Z(0 1
01 0 and 00 1
110 1 111 1

Is (R,®,3) a ring?

Note that 1 is an additive identity, so Og = 1. Also 0 is a multiplicative identity. So 1 = 0. Using
the symbols Or and 1 we can write the addition and multiplication table as follows:

and

Indeed, most entries in the tables are determined by the fact that O and 1r are the additive
and multiplicative identity, respectively. Also 1B 1p=080=1=0g and Ogr@0gr=121=1=0g.
Observe now that the new tables are the same as for Zs. So (R,8,3) is a ring.

Theorem 1.1.7. Let R and S be rings. Recall from[A.].3 that Rx S ={(r,s)|r e R,seS}. Define

an addition and multiplication on R xS by

(r,s) + (r',s")

(r,s)(r',s")

(r+r',s+s")

(rr', ss")

for all r,r" € R and s,s' € S. Then
R x S is a ring;
Orxs = (Or,0s);

(a)
(b)
c) =(r,s) = (-r,~s) for allr € R,s€S;
)
)

b
(
(d) if R and S are both commutative, then so is R x S;

(e
Proof. See Exercise [1.1#0| O

if both R and S have an identity, then R x S has an identity and 1gxs = (1gr,1g).

Example 1.1.8. Determine the addition and multiplication table of the ring Zo x Zs.

Recall from (L.1.4)(b) that Zy = {0,1}. So

Ly x g = {(070)7 (Ov 1)7 (170)a (17 1)}
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+ (0,0) (0,1) (1,0) (1,1)
0,0) | (0,0) (0,1) (1,0) (1,1)
0,1) | (0,1) (0,0) (1,1) (1,0)
1,0) | (1,0) (1,1) (0,0) (0,1)
1,1) | (1,1) (1,0) (0,1) (0,0)

—_~ o~ o~ o~

and

(0,0) (0,1) (1,0) (1,1)
0,0) | (0,0) (0,0) (0,0) (0,0)
0,1) | (0,0) (0,1) (0,0) (0,1)
1,0) | (0,0) (0,0) (1,0) (1,0)
1,1) | (0,0) (0,1) (1,0) (1,1)

—_~ o~ o~ o~

Exercises 1.1:

1.1#1. Verify that the triple (Z2,®,®) from Example (1.1.4)(g) is a ring.

1.1#2. Let R be a ring and a,b,c,d € R. Prove that

(a+b)(c+d) = ((ac+ad) +bd) +be
In each step of your proof, quote exactly one axiom of a ring.
1.1#3. Prove or give a counterexample:
If R is a ring with identity, then 1 + OR.

1.1#4. Let E = {0,¢e,b, ¢} with addition and multiplication defined by the following tables. Assume
associativity and distributivity and show that R is a ring with identity. Is R commutative?

+10 e b ¢ 0 e b c
0[0 e b ¢ 0/0 0 0 O
ele 0 ¢ b e|l0 e b c
b|b c 0 e b|0 b b 0
clec b e 0 c|0 ¢ 0 ¢
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1.1#5. Below are parts of the addition table and parts of the multiplication table of a ring. Complete
both tables.

+lw z y =z clwozoy oz
w | w w

x Yy oz x Y

Y zZ w x Y

z w Y z

1.1#6. Prove Theorem [1.1.7]

1.2 Elementary Properties of Rings

Theorem 1.2.1. Let R be ring and a,be R. Then (a+b) + (=b) = a.

Proof.
(a+b)+(-b) = a+(b+(-b)) HAx2
= a+0p JAx5
= a Ax 4|

In the proof of the next theorem we will use the Principal of Substitution, see
Theorem 1.2.2 (Additive Cancellation Law). Let R be ring and a,b,c € R. Then

a=b
— cta=c+b
— a+c=b+c
Proof.
a = b

— ct+a = c+b — Principal of Substitution with ®(z) =c+x
= a+c = b+c - [Ax 3] twice
— (a+c)+(-c) = (b+c)+(-c) - Principal of Substitution with ®(x) =z + (-¢)
= a = b - [1.2.7] twice
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Definition 1.2.3. Let R be a ring and a € R. Then a is called an additive identity of R if
a+tc=c and cta=c

for all ce R.
Theorem 1.2.4 (Additive Identity Law). Let R be a ring and a,c € R. Then

a = Op
pEEN c+a = ¢
Re——g a+c = &

In particular, O is the unique additive identity of R.

Proof. By the Additive Cancellation Law
a=b < c+a=c+b <<= a+c=b+c
For b = 0p this gives
a=0p <= c+a=c+0p < a+c=0g+c
By[Ax4lc+0g=cand Og+c=c. So:
a=0p <= c+a=c < a+c=c.
O
Definition 1.2.5. Let R be a ring and c € R. An additive inverse of ¢ is an element a in R with
a+c=0p and c+a=0g.

Theorem 1.2.6 (Additive Inverse Law). Let R be a ring and a,c € R. Then

a = -c
— c+a = Op
— a+c = Op

In particular, —c is the unique additive inverse of c.
Proof. By the Additive Cancellation Law
a=b <= c+a=c+b <<= a+c=b+c
For b = —c this gives
a=0p <= c+a=c+(-¢) <= a+c=(-c)+c
By[Ax5lc+ (-¢) =0g and (-¢) +¢=0g. So:

a=0gp <= c¢c+a=0rp <= a+c=0pg.
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Definition 1.2.7. Let R be a ring and a,b € R. Then a—b:=a+ (=b). Note here that -b € R by
[Ax5l and so a—b=a+ (-b) € R by[Ax1l

Theorem 1.2.8. Let R be ring and a,b,c € R. Then

c = b-a
— c+a = b
— a+c = b
Proof.
a+c = b
c+a = b -[Ax 3

11

+(-a) - Additive Cancellation Law [1.2.2]
b-a -2 and Definition of b-a

(c+a)+(-a)

Cc

Theorem 1.2.9. Let R be a ring and a,b,c€ R. Then

(a) -0r =0g (g) —(a+b)=(-a)+(-b) = (-a)-b.

(b) a-0g =a. (h) =(a=b)=(-a)+b=b-a.

(G) a-(b-c)=ab-ac and (a-b)-c=ac-be.

(k) If R has an identity 1r, then

) )
) )

(¢) a-0g=0g=0g-a. (i) (=a)-(=b) = ab.
) )
) )
) b—a=0g if and only if a = b. (-1p)-a=-a=a-(-1g).

Proof. @) By[Ax4l0r + 0g = Og and so by the Additive Inverse Law 0r =-0p

@) a-0p "L - a+(-0gr) @ a+03@a.
We compute

a-OR@a-(ORJrOR) @G'OR-‘:-CL’OR,
and so by the Additive Identity Law a-0p =0g. Similarly Og-a =0g.
@ We have
ab+a-(-b) BER o b+ (-b)) PL a0, @ 0
So by the Additive Inverse Law [1.2.6} _ —(ab) = a- (=b). Similarly, (-a)-b=—(ab).
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() By[AXBl a + (-a) = 0 and so by the Additive Inverse Law a=-(-a).
() By Theorem applied with ¢ = Og:

OR:b—a <~ OR+a:b.

By [Ax4 0 + a = a and so the Principal of Substitution gives

Or=b-a — a=b.

(a+b) +((-a) + (-b)) (b+a)+((-a) + (-b)) ((b+a) + (~a)) + (=b)
s b+ (-b) Axo Or.
and so by the Additive Inverse Law —(a+b) =(-a) + (-b). By definition of ‘-’, (-a) + (-b) =
(—a) -0.
()
-0 " e ) @ ore) @ ayr
Bxd b+ (-a) D g

0 o)) @a(n) @a

B a -0 -+ (=) B8 abra-(-0) @ ab+ (~(ac))
Similarly (a—-0b)-c=ab-ac.

Def -
=" ab-ac.

Suppose now that R has an additive identity. Then

(-1r)a @ ~(1ga) -

Exercises 1.2:

1.2#1. Let R be a ring and a,b,c,d € R. Prove that

(a-b)(c—d) = ((ac—ad) +bd) - be
In each step of your proof, quote exactly one Axiom, Definition or Theorem.

1.2#2. Let R be a ring and let a,b,c,d, e € R. Show that

(ab+e)+b=d-ac — a(b+c)+b=d-e.
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1.2#3. Prove or give a counterexample:
If R is a ring with identity, then 1g # OR.
1.2#4. Let R be a ring such that a-a =0g for all a € R. Show that ab = —(ba) for all a,b € R.
1.2#5. Let R be a ring such that a-a = a for all a € R. Show that
(a) ata=0g forallae R

(b) R is commutative.

1.3 The General Associative, Commutative and Distributive Laws
in Rings
Example 1.3.1. Let a,b,c,d be elements in the ring R. Consider the expression

a+b+c+d

This is expression is not defined without parenthesis. How many ways are there to choose parenthe-
ses? Are the resulting sums the same?

(a+(b+c))+d, (a+b)+(c+d), ((a+b)+c)+d, a+(b+(c+d)), a+((b+c)+d)
Also
«a+w+c)+dmgz(a+(h+d)+dm§z(a+®+{c+d)Egz(a+(b+&HwD)E§Ea+(w+c)+®)
so all fives sums are the same.

Definition 1.3.2. Let R be a ring, n € I\E] and a1, a9, ...a, € R. Inductively, we say that z is a sum
of (a1,...,an) in R provided that one of the following holds:

(1) n=0 and z = Op.
(2) n=1and z=ay.
(3) m>1 and there exist an integer k with 1 <k <n and x,y € R such that

(i) x is sum of (a1,...,ax) in R,
(ii) y is a sum of (ags1,Gk+2,---,0yn) in R, and

(iii) z=x+y.

!N is the set on natural numbers: N = {0,1,2,3,...}
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Example 1.3.3. Let R be a ring and a,b,c,d € R. List all sums of (), (a), (a,b), (a,b,c) and
(a,b,c,d) in R.

Sums of (): We have n =0 and O is the only sum of ().
Sums of (a): We have n =1 and a is the only sum of (a).

Sums of (a,b): Then n =2 and k =1. Hence a + b is the only sum of (a,b).

Sums of (a,b,c): We have n =3 and k=1 or 2. Thus a + (b+c¢) is the only sum with k£ =1 and
(a+0b) + cis the only sum with k = 2.

Sums of (a,b,c,d): Wehaven=4and k=1,20r 3. Soa+(b+(c+d)) and a+ ((b+c)+d) are
the sums with k=1, (a+b) + (¢ +d) is the sum with k=2 and (a+ (b+c¢))+d and ((a+b)+¢)+d
are the sums with k£ = 3.

We remark that the numbers of formal sums of an n + 1-tuple is the n-th Catalan number

1 (2n) 2n!
Cn = = —————
n+1\n/ nl(n+1)!

For example the number of formal sums of a 4-tuple is C5 =

8 = 5.

6!
a1 =
Definition 1.3.4. Let R be a ring, n €N and ai,as,...a, € R. Suppose n >0 or R has an identity.

Products of (a1,...,a,) in R are defined similarly as in (@, just replace ‘sum’ by ‘product’,
‘+7 by (‘7 and ﬁ0R7 by ﬁlR’.

Theorem 1.3.5 (General Associative Law, GAL). Let R be a ring, n € N and a1, az,...,a, elements
of R.
(a) Let z and 2" be sums of (a1, asg,...,a,) in R. Then z =2'.

(b) Suppose n. >0 or R has an identity. Let z and z' be products of (ai,as,...,a,) in R. Then
A
z=2".

Proof. See[C.1.3] O
Notation 1.3.6. Let R be a ring, n €N and ay,as,...a, € R.

(a) We denote the unique sum of (a1,...,a,) in R by

Zai and also by a1 +as+...+ap;

(b) We define
n
na = ZCLZQ+CL+...+6L
— [ —
=1 n—times

Suppose n>0 or R has an identity:
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(¢) We denote the unique product of (a1,...,a,) by

n
Hai and also by aias...an.
i=1

(d) We define

n

a” :=Ha=aa...a
=1 )
n—times

Example 1.3.7. Let a,b,c,d,e be elements in a ring. Then by the GAL (for addition)

a+b+c+d+e= ((a+b)+(c+d))+e:a+((b+(c+d))+e) = (a+((b+c)+d))+e
and the GAL (for multiplication)
abede = (((ab)c)d)e = (ab)((cd)e)
Theorem 1.3.8 (General Commutative Law,GCL). Let R be a ring, n € Zﬂ ai,as,...,a, € R and
f+ {L2,....,n}—>{1,2,...,n}

a bijection.

(a) . .
> ai= E; as(is

i=1
that is, if z is sum of (a1,...,an) and 2’ is a sum if (ag1y, ..., a5n)), then z = 2"

(b) Suppose that R is commutative. Then
n n
[Tai=Tasq):
i=1 i=1
that is, if z is product of (a1,...,an) and 2" is a product of (ag1),---,ap(xn)), then z = 2",

Proof. See O
Example 1.3.9. Let R be a ring and a,b,c,d,e in R. Then by the General Commutative Law:

a+b+c+d+e=d+c+a+b+e=b+a+c+d+e.

and if R is commutative:
abc = acb = bac = bea = cab = cba.

27" is the set of positive integers: Z* = {1,2,3,4,...}
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Theorem 1.3.10 (General Distributive Law,GDL). Let R be a ring, n,m € Z* and ai,...,an,

bi,...,bym € R. Then
) 5) 2] 566

J=1 i=1 \j=1 J=1\i=1
Proof. See[C.3.2] O

Example 1.3.11. Let R be a ring and a,b,¢,d,e in R. Then by the General Distributive Law:

(a+b+c)(d+e)=(ad+ae) + (bd + be) + (cd + ce)
= (ad + bd + ed) + (ae + be + de)

Exercises 1.3:

1.3#1. Prove or give a counterexample:
Let R be a ring and a,be R. Then

(a+b)?=a®+2ab + b2

(Recall here that according to Notation (1.3.6)(b) 2d := d +d for any d in R.)
1.3#2. Let R be a commutative ring with identity. Suppose that 1z + 1r = Og. Prove that
(a+b)?=a®+0°
for all a,b € R.

1.3#3. Let S :={a,b,c,d} and let + be the addition on S defined by

S

o
ST
(=

Q

Compute all possible sums of (a,b,c,d), where ‘sum’ is defined as in (1.3.2) (3).
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1.4 Divisibility and Congruence in Rings

Definition 1.4.1. Let R be ring and a,b € R. Then we say that a divides b in R and write a|b if
there exists c € R with b = ac O

Example 1.4.2. (1) Does 7|133 in Z?
Yes, since 133 =7-19.

(2) Does 2|3 in Z?
No since 2 -k is even, 3 # 2k for all k € Z.
(3) Does 2|3 in Q7
Yes, since 3 =2- %
(4) Does 2|2 in 27 (the ring of even integers)?
No, if k£ is an even integers, then 2k is divisible by 4 and so 2 # 2k.

10 a b
(5) For which a,b,c,d € R does divide in Ma(R)?
d

00 c
1 0 a
0 0 c d
1 0 a b
— “A = for some A € My(R) — definition of ‘divide’
0 0 c d
1 0|l |a b| [a b S
— . | = for some a,b,é,de R — definition of Ma(R)
0 0| ¢ d c d
a b a b - -
— = for some a,b,¢,d e R — definition of matrix multiplication
0 0 c d
— a= a,l;: b,0 =c and 0 = d for some a, E,G,Je R - definition of a matrix
<~ <c¢=0andd=0

For example

but
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Note that

So ca = b does not imply that a|b.
Theorem 1.4.3. Let R be a ring and a € R.
(a) a|Og.
(b) Or|a if and only of a = 0g.
(¢) If R is a ring with identity, then 1grla and ala.

Proof. (&) By (L.2.9)(d), Or = a-0g and so a|Og.

() By (&) applied with a = 0 we have Og|0g.
Suppose now that a € R with Og|a. Then there exists b € R with a = Ogb. By (1.2.9)(d) we have
Ogrb=0g and so a = 0g.

By [AXx10k = 1ga, and so 1g|a. Also a = alg and so dla. d
Theorem 1.4.4. Let R be a ring and a,b,c,u,v € R.
(a) | is transitive, that is if a|b and b|c, then a|c.
(b) alb <= al(=b) <= (-a)[(-b) <= (-a)]b.
(c) Suppose that a|b and a|c. Then
a|(b+c), a|(b-c), a|(bu+c), a|(bu—c), a|(bu+tcv), albu - cv a|(b+cv), a|(b-cv), and a|(bu—c).

Proof. () Let a,b,c € R such that a|b and b|c. Then by definition of ‘divide’ there exist  and s in
R with

(%) b=ar and c=bs.
Hence

c bs (ar)s a(rs).

Since R is closed under multiplication, rs € R and so a|c by definition of ‘divide’.

(]E[) Let a,be R. We will first show

(%%) alb = a|(-b) and (-a)l|b.
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Suppose that a divides b. Then by definition of ‘divide’ there exists r € R with b = ar. Thus

-b=—(ar) C29@ a(-r) b=ar (—a)(-r)

and
By [AX5l -7 € R and so a|(-b) and (—a)|b by definition of ‘divide’. Thus holds.

Suppose a|b. Then by a|(-b).
Suppose that a|(-b), then by applied with —b in place of b, (-a)|(-b).
Suppose that (-a)|(=b). Then by applied with —a and -b in place of a and b, (-a)|-(-b).

By (1.2.9)(€), —(-b) = b and so —alb.
Suppose that (-a) |b. Then by applied with —a in place of a, —=(-a) | b. By @,
—(-a) = a and so ab.

Let a,b,c € R with a|b and a|c. Then by definition of ‘divide’ there exist  and s in R with

(% % %) b=ar and c=as
Thus
b B2 ar+as@a(r+s) and b—car—as €230 a(r—s).

By [Ax 1l and R is closed under addition and subtraction. Thus r + s € R and r - s € R and
SO

(+) alb+c and  alb-c.

By definition of ‘divide’, b|bu. By (@) ‘divide’ is transitive. Since a|b and b|bu we conclude that
a|bu. Thus a|bu and a|c and applied with bu in place of b gives

al(bu+c) and a|(bu - c).

Similarly, as a|c and ¢|cv we have a|cv. So alb and a|cv and(+])) applied with cv in place of ¢
gives

a|(b+ cv) and al(b-cv).

Moreover, since a|bu and a|cv, we can apply with bu and cv in place of b and ¢. So
al|(bu + cv) and a|(bu - cv).
O]
Definition 1.4.5. Let R be a ring and n € R. Then the relation = (modn)’ on R is defined by
a=b (modn) <= nla-b.

Ifa=b (modn) we say that a is congruent to b modulo n in R.
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Example 1.4.6. (1) Consider the ring Z:
6=4 (mod2) is true since 2 divides 6 — 4.
But 3=8 (mod2) is false since 2 does not divide 3-8. Thus 3 #8 (mod?2).

Suppose a and b are integers. Then

a=b (mod2) <= 2|b-a <= b-aiseven
Thus a=b (mod2) if and only if either both a and b are even, or both a and b are odd.

Hence a #b (mod?2) if and only if one of a and b is even and the other is odd.

For example

2=6 (mod2), 3=-7 (mod2), 5#12 (mod2), -14%#7 (mod2).

(2) Consider the ring Q:

Is3=8 (mod2) ? Yes: 3-8=-5and -5 = 2-(—%). Hence 2 divides 3 -8 in Q and thus
3=8 (mod?2).

(3) Let R be a ring and a,b € R. Then

a=b (modOg)
> Orla—0b — Definition of ‘a=b (modOg)’
—  a-b-0g 3@
= asb =90

So congruence modulo O is the equality relation.

(4) Let R be a ring with identity and a,b € R. By (1.4.3)(d) we have 1z|a-b and so

a=b (modlp) for all a,be R

1 0
mod

(5) When is

IS
o
<Y
o

o

S8
™\
S8

in M2 (R)?
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a bl |a b 10
= _| [ mod
c d ¢ d 0 0
1 of{la b| |a b
— - ~ — definition of ‘ =~
0 Of|]|c d ¢ d
1 0f|la-a b-b
— B
0 0 c—¢ d-d
— ¢-¢=0 and d-d=0 - see Example ([1.4.2) (5]
«— c¢=¢ and d=d
Theorem 1.4.7. Let R be a ring and n € R. Then the relation = (modn)’ is an equivalence
relation on R.
Proof. We have to show that ‘= (modn )’ is reflexive, symmetric and transitive. Let a,b,c € R.

Reflexive: By (1.2.9)(f) we have a —a =0gr =n-0g. Hence n|a—a and so a =a (modn).
Thus ‘= (modn)’ is reflexive.

Symmetric: Suppose that a =b (modn). Then n|(a-b). By (1.4.4)(b) this gives n|-(a - b).
By (1.2.9)(h) we have —(a —b) =b-a. Hence n|b—a and so b=a (modn). Thus ‘= (modn)’ is

symmetric.

Transitive: Suppose that a =b (modn) and b=c¢ (modn). Then n|a-b and n|b-c. Thus

([1.4.4)(d shows that
n|(a-0b)+(b-c).

A routine calculation shows that (a—b) + (b—c¢) = a - c. Indeed:

(a=b)+(b-c)=(a+(-b))+(b+(-c)) - definition of ‘-~
:(a+(cb)+®)+(—@ ~ GAL

=(a+0g) + (-0) -[Ax 5l
=a+(-c) -[Ax 4
=a-c — definition of * -’
Hence n|a-cand a=c¢ (modn). Thus ‘= (modn)’ is transitive. O

Definition 1.4.8. Let R be a ring and n € R. Recall fmm that the relation = (modn)’is an
equivalence relation.
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(a) For a € R we denote the equivalence class of = (modn)’ containing a by [a],. So
[a],={beR|a=b (modn)}.
[a]y is called the congruence class of a modulo n in R.

(b) R, denotes the set of equivalence classes of = (modn)’. So

Ry ={[a]s|acR}.

Theorem 1.4.9. Let R be a ring and a,b,n € R. Then the following statements are equivalent

(a) a=b+nk for some keR (g) [aln = [b]n
(b) a—-b=nk for some ke R (h) ae[bln

(c) nla—b (i) b=a (modn)

(d) a=b (modn). j) nlb-a

(e) be[aln (k) b—a=nl for some | € R.
(f) [alnn[b]n @ (1) b=a+nl for some l € R.

Proof. (&) <= (b): Apply with ¢ = nk.
() <= (): Follows from the definition of ‘divide’.
<= (d): Follows from the definition of ‘= (modn)’.

By ‘= (modn)’ is an equivalence relation. So Theorem implies that (d)-({) are

equivalent.

Applying the fact that statements @ to @ are equivalent with a and b interchanged, shows that

to are equivalent.
We proved that @—@ are equivalent, that @ to are equivalent and that to are
equivalent. Hence @- are equivalent. O

Theorem 1.4.10. Let R be a ring and a,n € R. Then

[a]n, ={a+nl|leR}.
Proof. Let be R. Then

belaln
<~ b=a+nlforsomeleR -[1.4.9
<~ bel{a+nl|leR} — Definition of {a + nk | k € R}

Hence [a], ={a+nl|le R} by[A.3.1] O
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Example 1.4.11. (1) Consider the ring Z.

3]s T2 (3450 1z} = {...,-12,-7~2,3,8,13,18,...}.

(2) Consider the ring Q:

3]s T2 (34501 Q) = {3+k|keQ}=Q.

(3) Consider the ring Ma(R).

0 0 01

Ace MQ(R)}

10 0 0| [a b
= + . a,b,c,deR
0 0 0 1| [c d

a,b,c,deR}
10
c d

(4) Consider any ring R and a € R. Then

Il
o —
o [a)
+
e} [a)
2 O

[a)o, 2O {a+0gl 1Ry B2DO (410,11 r) B

Exercises 1.4:

1.4#1. Which of the following statements are true in the given ring:
(a) 7=21 (mod3) in Z.
(

RINGS
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(f) 5=5 (mod0) in Z.
1.4#2. Compute the following congruence classes in the given ring:
(a) [7]3 in Z.
(b) [7]s in Q.
(¢) [11]; in R.
(d) [-5]-3 in Z
(e) [5]o in Z.

1.4#3. Consider the ring Ms(R).

(a) Does divide in Ma(R)?

(b) Does divide in Ma(R)?

(c) Compute

o IS
[STEES
Il
o N
Q, ™
—_
.
= =
—_ =
N —

if and only of

1.5 Congruence in the ring of integers

For a general ring it is difficult to explicitly determine all the equivalence classes of relation =
(modn ). But thanks to the division algorithm it is fairly easy for the ring of integers. In the proof
of the Division Algorithm we will use the Well-Ordering Axiom of the natural numbers, see|B.4.2
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Theorem 1.5.1 (The Division Algorithm). Let a and b be integers with b > 0. Then there exist
unique integers q and r such that

a=bg+r and 0<r<b.

Proof. We will first show that ¢ and r exist. Put

S:={a-bx|xeZand a-bxr>0}.

Note that S ¢ N. We would like to apply the Well-Ordering Axiom [B:4.2] to S, so we need to
verify that S is not empty. That is we need to find x € Z such that a — bx > 0.

If a >0, then a— b0 =a >0 and we can choose x = 0.

So suppose a < 0. Let’s try x = a. Then a —bz = 1la—ba = (1 -b)a. Since b >0 and b is an integer,
b>1andso1-b<0. Since a < 0, this implies (1-b)a > 0 and so a—bx > 0. So we can indeed choose
T = a.

We proved that S is non-empty subset of N. Hence by the Well-ordering Axiom S has a
minimal element r. Thus

(%) resS and r<s forall selS.

Since r € S, the definition of S implies that there exists q € Z with r = a—bg. Then a = r+bq = bg+r
and it remains to show 0 < r < b. Since r € S, we know that r > 0. Suppose for a contradiction that
r>b. Then r—-b>0. Hence

a-blg+1)=(a-bg)-b=r-b2>0

and g+ 1€Z. Thus r—b € S. Since r is a minimal element of S this implies r < r — b, see . It
follows that b < 0, a contradiction since b > 0 by the hypothesis of the theorem.

This contradiction shows that r < b, so the existence assertion in the theorem is proved. To show
the uniqueness let ¢,7,¢ and 7 be integers with

(%) (azbq+rand0$7’<b) and (a:b(j+FandO$F<b).

We need to show that ¢ = ¢ and r = 7.
From a = bg +r and a = bg + 7 we have

bg+r=0G+7

and so

(% % %) b(q—q)=7-r.
By we have 0 < r <b. Multiplying with —1 gives 0 > —r > —b and so

-b<-r<Qo.
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By (x*)

0<7r<b

and adding the last two equations yields

-b<r-r<b
By we have b(q - G) =7 —r. Thus
-b<b(qg-q)<b.
Since b > 0 we can divide by b and get
-l<qg-qg<1.

The only integer strictly between —1 and 1 is 0. Hence ¢ — ¢ = 0 and so ¢ = ¢. Hence (*) gives
7—r=b(qg—q)=0b0=0 and so also 7 =r. O

Theorem 1.5.2 (Division Algorithm). Let a and ¢ be integers with ¢ # 0. Then there exist unique
integers q and v such that
a=cq+r and 0<r<|c.

Proof. See Exercise [1.5#1] O

Definition 1.5.3. Let a and b be integers with b+ 0. According to the Division Algorithm there exist
unique integers q and r with a = bg+1r and 0 < r < |bl. Then r is called the remainder of a when
divided by b in Z. q is called the integral quotient of a when divided by b in Z.

Example 1.5.4. (1) What is the remainder of 42 when divided by 8 in Z?
42=8-5+2 and 0 <2< 8. So the remainder of 42 when divided by 8 is 2.

(2) What is the remainder of —42 when divided by 8 in Z?
—-42=8--6+6 and 0 <6 < 8. So the remainder of —42 when divided by 8 is 6.

Theorem 1.5.5. Let a,b,n be integers with n + 0. Then
a=b (modn)

if and only if
a and b have the same remainder when divided by n.

Proof. By the division algorithm there exist integers q1,71, g2, 72 with

(%) a=nqy+m and 0<7r <|n|

and
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(%) b=ngy+19 and 0<ry<|nl

Note that, by definition, r; and r9 are the remainders of a and b, respectively when divided by
n in Z.

—=: Suppose a =b (modn). Then by we have a = b+ nk for some integer k. Thus

a=b+nk (ng2 +r2) + nk =n(qa + k) + ro.
Since g2 + k € Z and 0 < rg < |n|, we conclude that 72 is the remainder of a when divided by n. So

r1 =79 and a and b have the same remainder when divided by n.

<=: Suppose a and b have the same remainder when divided by n. Then r; = o and so

() (=)
a-b (nq1+71) = (ng2 +r2) =n(q1 - g2) + (r1 - 72) =n(q1 - q2).

Thus n|la—-band so a=b (modn). O
Example 1.5.6. Is 42 = -42 (mod8)?

By Example the remainders of 42 and —42 when divided by 8 are 2 and 6 respectively. As

2 + 6 we conclude from [[.5.5] that
42 # -42 (mod8)?

Theorem 1.5.7. Let n be positive integer.

(a) Let a € Z. Then there exists a unique r € Z with 0 < r <n and [a], =[], namely r is the
remainder of a when divided by n.

(b) There are exactly n distinct congruence classes modulo n, namely

[0],[1],[2],...,[n—1].
(¢) |Zn| = n, that is Z,, has exactly n elements.

Proof. @ Let a € Z, let s be the remainder of a when divided by n and let r € Z with 0 <r <n. We
need to show that [a], = [r], if and only if r = s.

Since r =n0+ 7 and 0 <7 < n, we see that r is the remainder of r when divided by n. By
[a], = [r]n if and only if mod abn and so by if and only a and r have the same remainder
when divided by n, that is if and only if r = s.

(b) By definition each congruence class modulo n is of the form [a],, with a € Z. By (@), [a], is
equal to exactly one of

[0]7 [1]7 [2]’ SRR [n - 1]
So (]ED holds.
Since Z,, is the set of congruence classes modulo n, follows from (]E[) O
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Example 1.5.8. Determine Zs.

Zs = {[015, [115, [2]5. 315, [4]s } = {015, (115, [2]s, [-20s, [-1]s } = {[0]s, [+1]s, [+2]s }
Note here that 3—5=-2 and 4-5=-1. So [3]5 = [-2]5 and [4]5 = [-1]5.
Exercises 1.5:
1.5#1. Let a and c¢ be integers with ¢ # 0. Prove that there exist unique integers ¢ and r such that
a=cq+rand 0<r<|c

1.5#2. Prove that the square of an integer is either of the form 3k or the form 3k + 1 for some
integer k.

1.5#3. Use the Division Algorithm to prove that every odd integer is of the form 4k + 1 or 4k + 3
for some integer k.

1.54#4. (a) Divide 52, 72, 112, 15? and 27% by 8 and note the remainder in each case.
(b) Make a conjecture about the remainder when the square of an odd number is divided by 8.

(¢) Prove your conjecture.

1.5#5. Prove that the cube of any integer has be exactly one of these forms: 9k, 9k + 1 or 9k + 8
for some integer k.

1.5#6. (a) Let k be an integer with £ =1 (mod4). Compute the remainder of 6k+5 when divided
by 4.

(b) Let r and s be integer with » =3 (mod 10) and s = -7 (mod 10). Compute the remainder of
2r + 3s when divided by 10.

1.6 Modular Arithmetic in Commutative Rings
Theorem 1.6.1. Let R be a commutative ring and a,a, b,lN) and n elements of R. Suppose that

[a]n =[a]n and [b]n = [b]n-
or that

a=a (modn) and b=b (modn)

Then

[a+b],=[a+b], and [ab],, = [ab],.

and

a+b=a+b (modn) and ab=ab (modn)
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Proof. Since

or

a=a (modn) and b=b (modn)

we conclude from [[.4.9] that
a=a+nk and b=b+nl

for some k,l € R. Hence

G4 b= (a+nk)+ (b+nl) S (a+b)+ (nk +nl) BEB (1) wn(h+1).
By [AXT k +1 € R, so[1.4.9] gives

[a+Db],=[a+b], and a+b=a+b (modn)
Since R is commutative, we can use the General Commutative Law for multiplication:

a-b = (a+nk)(b+nl) SBL 4b + nkb + anl + nknl

SEL 0b + nkb + nal + nknl 2% ab + n(al + kb + knl),

BylAx1land [Ax 6l al + kb + knl € R, so implies

[ab]y, = [ab]n and ab=ab (modn).

In view of [I.6.1] the following definition is well-defined.
Definition 1.6.2. Let R be commutative ring and a,b and n elements of R. Define
[a], ® [b]n:=[a+b], and [a],® [b],:=][ab]n.

The function
R,xR,—>R,, (A,B)~AeB

is called the addition on R,, and the function
R, xR, - R,, (A,B)—>AeB

1s called the multiplication on R,,.

RINGS
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Example 1.6.3. (1) Compute [3]s® [7]s.

[3]8 © [7]8 = [3 . 7]8 = [21]8 = [8 -2+ 5]8 = [5]8.
Note that [3]g = [11]s and [7]s = [-1]s. So we could also have used the following computation:

[11]s @ [-1]s = [11--1]s = [-11]s = [-11 +8-2]5 = [5]s.

Theorem ensures that we will always get the same answer, not matter what representative
we pick for the congruence class.

(2) Compute [21]31 @ [18]31

[21]31 (&) [18]31 = [21 + 18]31 = [39]31 = [39 —31]31 = [8]31.
Note that [21]31 = [21 - 31]31 = [—10]31 and [18]31 = [18 - 31]31 = [—13]31. Also
[—10]31 (&) [—13]31 = [—10 — 13]31 = [—23]31 = [—23 + 31]31 = [8]31.

(3) Warning: Congruence classes can not be used as exponents:

We have

[2']s=[16]3=[1]s and [2']3=[2]s

So

[2']3 #[2']3  even though [4]5=[1]3
Theorem 1.6.4. Let R be a commutative ring and n € R.
(R, ®,0) is a commutative ring.
Or, = [0r]n-
—la]n = [-a]n for all a € R.

(a
(b
(c
(d) If R has an identity, then [1g], is an identity for R,.

)
)
)
)

Proof. We need to verify the eight Axioms of a ring. If d € R we will just write [d] for [d],.
Let A, B,C € R,,. By definition of R,, there exist a,b and ¢ in R with

(%) A=[a], B=[b], and C=][c].
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[Ax1l We have

Ao B=[a]®][b]
=[a+0b]

= ()
— Definition of &
Since a + b € R we conclude that A® B e R,,.

[Ax 2}

= ()

— Definition of &
— Definition of &
-[Ax2

— Definition of &
— Definition of &

-

= ()
] — Definition of @
] -[Ax2

[ — Definition of @

= (%)
Or,, = [OR]

A ORn [a] ® [OR]

= (%) and (*#)

[a+0gr] — Definition of &
[a] -[Ax 4]
A -

CHAPTER 1.

RINGS



1.6. MODULAR ARITHMETIC IN COMMUTATIVE RINGS 33

and so, using [Ax 3| for R,,:

Or,, eaAAeB Og, = A.
Thus [Ax4] holds.
[Ax5l Put
(* * %) - A:=[-a]

Then -A € R,, and

Ae-A=la]®[-a] - () and (x*+)
=[a+(-a)] - Definition of &
= [0g] -[Ax4]
=0p, = (% %]

and so, using [AX 3] for R,,:
[Ax 3l

“-Ae AT =" Ao -A=0p,.
Thus [Ax 5] holds.
[AXx6l Similarly to[AxT]we have A® B =[a] ©® [b] = [ab] and so A® B € R,,.

Similarly to[Ax 2] we can use the definition of ® and the fact that multiplication in R is
associative to compute

Ao (BoC) = [a]Jo([b]o[c]) = [a] © [bc] = [la(be)] = [(ad)]
= [ab] @ [c] = ([a]lo[b])olc] = (AoB)oC.
[Ax 8t

Ao (BeC)=[a]o([b]®][c]) = ()
=[a] @ [b+c] — Definition of &
=[a(b+c)] — Definition of ®
= [ab + bc] -[AxS8
= [ab] ® [ac] — Definition of ®
=[a]o[b])® ([a]®[c]) - Definition of ®
=(AoB)e (A6 ) -
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and similarly

(AeB)oC = ([a]®[b])o[c] = [a+b]lo[c] = [(a+b)c]
= [ac +bc] = [ac]e[bc] = ([a]o[c]) @ ([b]@[c])
= (AeC)a (Bo0).

Ax 9 Similarly to [Ax 3] we can use the definition of ® and the fact that multiplication in R is
commutative to compute

AeB = [a]o[b] = [ab] = [ba]=[b]@[a]=BoA.
Ax 10 Suppose R is a ring with identity. Put

(+) 1R, = [1r]n

Similarly to [Ax 4] we can use the definition of ® and the fact that 1 is a multiplicative identity in
R to compute

A@an :A®[1R] = [a]@[lR] = [alR] = [a] = A,

and

1p, ® A=[1g] @ [a] = [1r] © [a] = [1ra] = [a] = A.
Thus 1g, is an identity for R,,.

Theorem 1.6.5. Let R be a commutative ring, a,n € R and k € Z*. Then [a]* = [a*],

Proof. We will do a proof by induction (see section in the appendix). First we will show that
the statement holds for k = 1:

We have [a]! = [a] = [a'] and so statement indeed holds for &k = 1.

Next we assume the statement holds for k and show that it also holds for k + 1. So we assume
that

(*) [a*] = [a"]

Then
[a]* =[a]*®[a] - Definition of [a]**', L34
=[a*]®[a] -Induction assumption (¥
= [d*a — Definition of ®,
[

— Definition of a**!
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Hence the statement also holds for k + 1. So by the Principal of Induction shows that the
Theorem holds for all k£ € N. O

Notation 1.6.6 (R,-notation). Let R be a commutative ring and a,b,n € R. . We will often just
write a for [a]n, a+b for [a], ® [b], and ab (or a-b) for [a], ® [b],. This notation is only to be
used if it clear from the context that the symbols represent congruence classes modulo n. Exponents
are always integers and never congruences class.

Remark 1.6.7. Consider the expression
2°+3.7

in Ly-notation. It is not clear which element of 7, this represents, indeed it could be any of the
following:

[2°+3-7]
[2°], @[3 7n
[2°]n @ ([3]n @ [7]n)
[2]) @[3 7],
(2], @ ([3]n @ [7]n)

But thanks to Theorem and Theorem all these elements are actually equal. So our
simplified notation is not ambiguous. In other words, our use of the simplified notation is only
justified by Theorem and Theorem [1.6.5]

Example 1.6.8. (1) Compute [1334567];5 in Z1,.

[1334567]12 _ [13]?3567 _ [1]?3567 [134567] 12= [1]12

In Zi9-notation this becomes
1334567 _ 134567 _ |

Why is the calculation shorter? In simplified notation the expression

[1334567]12 a.nd [13]?421567

are both written as
1334567

So the step
[1334567]12 - [13]?421567
is invisibly performed by the simplified notation. Similarly, the step

[1]34567 [134567]

12 12

disappears through our use of the simplified notation.
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(2) Compute [7]:08 in Zso.
In Zsp-notation:
7198 _ (72)99 _ 4999 _ (_1)99 = _1=49.

(3) Determine the remainder of 53 - 7190 + 47771 + 4.73 when divided by 50.

In Zsp-notation:

537100 4 47. 77 4 4. 73 3-(7TH0 3. (). 7+4-72.7

3-(-1)°0-3.(-1)*® - 7+4--1-7

3+21-28=3-7=-4=46.

In regular notation we have [53- 7190 + 4777 + 4. 7%]50 = [46]50. Since 0 < 46 < 50, (1.5.7) ()
shows that the remainder in question is 46.

(4) Let Fun(R) be the set of functions from R to R. Define an addition and multiplication on
Fun(R) by

(f+9)(a)=f(a)+g(a) and  (fg)(a)= f(a)g(a).
for all f,g € Fun(R) and a € R. Given that (Fun(R),+,-) is a commutative ring (see Exercise
1.6#£5) . Compute

2

[Sin x]COS x*

Note that cosz =0 (modcosz).
So in Fun(R)esz-notation:
sinz=1-cos’z=1-0%=1.

Thus [sinz]?,, = [1]cosz-

Exercises 1.6:
1.6#1. Let a,m,n € Z with m,n > 0. Prove that [a™]s = [a"]2.
1.6#2. (a) Show that 10" =1 (mod9) for every positive integer n.

(b) Prove that every positive integer is congruent to the sum of its digits mod 9. [for example,
38 =11 (mod9)].
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1.6#3. Compute the remainder of 52°'® when divided by 31 in Z.

1.6#4. Let a be an integer with a = 2 (mod4). Prove that do not exist integers ¢ and d with
2 _ 72
a=c“-d°.

1.6#5. Let R be a ring and I a set. Let Fun(I,R) be the set of functions from I to R. For
figeFun(I,R) let f + g and f-g be the functions from I to R defined by

(f+9)(@) = f(@)+g(i) and  (f-9)(@) = f(i)-g()-
for all ¢ € I. Show that
(a) (Fun(l,R),+,-) is a ring.
(b) If R has an identity, then Fun(Z, R) has an identity.

(c) If R is commutative, then Fun(/, R) is commutative.

1.7 Subrings

Definition 1.7.1. Let (R,+,-) be a ring and S a subset of R. Then (S,+,-) is called a subring of
(R, +,-) provided that (S,+,-) is a ring.

Theorem 1.7.2 (Subring Theorem). Suppose that R is a ring and S a subset of R. Then S is a
subring of R if and only if the following four conditions hold:

(I) Or e S.
(IT) S is closed under addition (that is : if a,be S, then a+be S);
(III) S is closed under multiplication (that is: if a,be S, then abe S);
)

(IV) S is closed under negatives (that is: if a € S, then —a € S)

Proof. =: Suppose first that S is a subring of R.
By [Ax 4l for S there exists 0g € S with 0g +a = a for all a € S. In particular, Og +0g = 0g. So the
Additive Identity Law implies that
(*) 05 = Opg.
Since Og € S, this gives Or € S and holds.
By[Ax1lfor S, a+be S for all a,be S. So holds.
By[Ax6lfor S, abe S for all a,be S. So holds.

Let s € S. Then by [Ax Bl for S, there exists t € S with s+t = 0g. By 0g =0g and so s+t = 0p.
The Additive Inverse Law shows that ¢ = —s. Since t € S this gives —s € S and holds.
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<—=: Suppose now that — hold.
Since S is a subset of R, S is a set. Hence Condition (i) in the definition of a ring holds for S.

Since S is a subset of R, S x S is a subset R x R. By Conditions (ii) and (iii) in the definition of
a ring, R x R is a subset of the domains of + and -. Hence also S x S is a subset of the domains of +
and -. Thus Conditions (ii) and (iii) in the definition of a ring hold for S.

By () a+beS for all a,be S and so[AxTl holds for S.

By[Ax2|(a+b)+c=a+(b+c) for all a,b,c € R. Since S ¢ R we conclude that (a+b)+c=a+(b+c)
for all a,b,c € S. Thus [Ax 2| holds for S.

Similarly, since [Ax 3] holds for all elements in R it also holds for all elements of S.

Put Og := 0g. Then () implies Og € S. By [Ax 4l for R, a =0r +a and a = a + 0g for all a € R.
Thus a =0g +a and a = a + 0g for all a € S and so [Ax4] holds for S.

Let s€S. By[Ax6ls+ (-s) =0g and (-s) + s = 0g. Since Og = Og, the Principal of Substitution
gives s+ (-s) = 0g and (-s) + s =0g. By -s € S and so[Ax 5| holds for S.

By abe S for all a,be S and so[Ax 6l holds for S.

Since [Ax 7] and [Ax 8 hold for all elements of R they also holds for all elements of S. Thus
and [Ax 8 holds for S.

We proved that [AXTHAX 8| hold for (S, +,-) and so (S, +,-) is a ring. Hence, by definition, S is
a subring of R. 0

Example 1.7.3. (1) Show that Z is a subring of Q, and Q is a subring of R.

Note that Z ¢ Q and Q ¢ R. By example Z and Q are rings. So by definition of a subring,
Z is a subring of Q and Q is a subring of R.

(2) Is N a subring of Z7

2 eN, but -2 ¢ N. Thus conditions (V] of the Subring Theorem fails. Hence N is not a
subring of Z. Alternatively, N is not a ring since [Ax 5] fails, so N is not a subring of Z.

(3) Let R be aring and n € R. Put nR:= {nk| k€ R}. Show that nR is subring of R.

Note first that since R is closed under multiplication, nR is a subset of R. We will now verify
the four conditions of the Subring Theorem for S = nR.

Observe first that since nR = {nk |k € R},

(%) aenk — there exists k € R with a = nk.

Let a,benR. Then by

(%) a=nk and b=nl for some k,l € R
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(I): Or n0r. By[Ax4l O € R and so shows that Op € nR
(IT): a+b nk+nl@n(l€+l). By[Ax2l k+1€ R and so shows a+be R. So nR is

closed under addition.

(II): ab (& (nk)(n l) n(k(nl)). Using [AX 6] twice gives k(nl) € R and so shows

abe R. So nR is closed under multiplication.

(IV): —a —(nk) Cz3@ n(-k). By[AX5] -k € R and so (|*)) shows —a € R. So nR is closed

under negatives.

Thus all four conditions of the Subring Theorem hold and hence nR is a subring of R.

(4) Show that {[0]4,[2]4} is a subring of Z,.
We use Z4-notation.

0z, =0¢€{0,2} and so Condition (I) of the Subring Theorem holds. Moreover,

+10 2 - 10 2

x |0 2
0|0 2, 00 O and

-z |0 2
212 0 210 0

So {0,2} is closed under addition, multiplication and negatives. Thus {0, 2} is a subring of Z,4
by the Subring Theorem.

Exercises 1.7:

1.7#1. Which of the following nine sets are subrings of My(R)? Which ones have an identity? (You
don’t need to justify your answers)

0 r a b 0 a
(1) { re@}. (4) { aeQ,beZ}. (7) { aeR}.
0 0 0 0 a 0
(2) o b b,ceZ (5) —a a‘ beR a 0
0 e ' : bob ’ : (8){0 . aeR}.
@ " *||aezbea © 1" || acr (0 0
0 0 ’ ' a 0 ' 9) { ¢ aeR}.

1.74#2. Let Z[i] denote the set {a +bi|a,beZ}. Show that Z[i] is a subring of C.
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1.7#3. Let R be a ring and d a fixed element of R. Let
S:={a€R|ad=da}
Show that S is a subring of R.
1.7#4. Let R be a ring and S and T subrings of R. Show that SnT is a subring of R.

1.74#5. Let R be a ring and S and T subrings of R. Show that SuT is a subring of R if and only
ifScTorTcs.

1.8 Units in Rings

Definition 1.8.1. Let R be a ring with identity.

(a) Let u € R. Then u is called a unit in R if there exists an element in R, denoted by u™' and

called ‘u-inverse’, with

wut=1p and uwlu=1p

(b) Let u,ve R. Then v is called an (multiplicative) inverse of u if uv = 1 and vu = 1g.
(¢) Let ee R. Then e is called an (multiplicative) identity of R, if ea = a and ae = a for all a € R.
Example 1.8.2. (1) Units in Z: Let u be a unit in Z. Then uv =1 for some v € Z. Thus u = £1.

(2) Units in Q: Let u be a non-zero rational number. Then u = - for some n,m € Z with n # 0
and m # 0. Thus % = is rational. So all non-zero elements in Q are units.

(3) Units in Zg: By Zg ={0,1,2,3,4,5,6,7} and so Zg = {0,+1,+2,+3,4}. We compute

0
010
1|0
2|0 2 4 +£2
3|0
0

S = O e O

4 4 0 4

So +1,£3 (that is 1,3,5,7 ) are the units in Zs.
Theorem 1.8.3. (a) Let R be a ring and e, e’ € R. Suppose that
(*) ea=a and (++) a€ =a

for all a € R. Then e =¢€' and e is a multiplicative identity in R. In particular, a ring has at
most one multiplicative identity.
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(b) Let R be a ring with identity and x,y,u € R with

(+) zu=1p and (++) wy=1p.
Then x =y, u is a unit in R and x is an inverse of u. In particular, u has at most one inverse

in R.

Proof. @

()

(+) AxT (++) [AXT0]
y = lry = (zu)y "= z(uy) = xlg "= w

O]

Theorem 1.8.4 (Multiplicative Inverse Law). Let R be a ring with identity and u,v € R. Suppose

u 18 a unit. Then
-1

vo= u
— vu = 1pg
<~ w = 1pg
Proof. Recall first that by definition of a unit:
(*) wul=1p and (++) wlu=1g
‘First Statement == Second Statement’: Suppose v = u™'. Then vu =u"'u () 1R.

‘Second Statement == Third Statement’: Suppose that vu = 1. By (*) uu™! = 1. Hence

vu=1p and uu - =1p

and (|1.8.3 (Eb applied with z = v and y = u™! gives v = «~!. Thus uv = uu™" ) 1g.

“Third Statement == First Statement’: Suppose that uv = 1z. By (**) v u = 15. Hence

wlu=1p and uv =1g

and (1.8.3) (]EI) applied with z = 4! and y = v gives u™! = v. O
Theorem 1.8.5. Let R be a ring with identity and a and b units in R.
(a) a™t is a unit and (a )7 = a.

(b) ab is a unit and (ab)™ =b"ta7t.



42 CHAPTER 1. RINGS
Proof. @ By definition of ™!, aa™' = 1 and a™'a = 1z. Hence also a™'a = 1z and aa™! = 1z. Thus
a~! is a unit and by the Multiplicative Inverse Law a=(a"H)™t

@ See Exercise |[1.8#6 O

Definition 1.8.6. A ring R is called an integral domain provided that
(i) R is commutative,

(ii

)
(ii) R has an identity,
) 1gr #Og, and

)

(Ax11) whenever a,b e R with ab=0g, then a =0g or b=0g.

Theorem 1.8.7 (Multiplicative Cancellation Law for Integral Domains). Let R be an integral domain
and a,b,ce R with a #+ 0r. Then

ab = ac
— b = ¢
— ba = ca

Proof. 1t = 2"d:  Suppose ab = ac. Then

a(b-c)=ab-ac (L2.9)()

=ab—ab Principal of Substitution, ab = ac
=0r (2.9 (@

Since R is an integral domain, [Ax 11l holds. As a(b-c) = Og this implies a = 0g or b—c = Op.
By assumption a # 0g and so b—c¢ = 0g. Thus by @, b=c.
ond —, 3rd.  If h = ¢, then ba = ca by the Principal of Substitution.

39 — 1%%:  Suppose ba = ca. Since integral domains are commutative, we conclude that

ab = ac. O
Definition 1.8.8. A ring R is called a field provided that

(i) R is commutative,
(ii

(iii

(Ax12

R has an identity,

1r #Og, and

)
)
)
) each a € R with a # O is a unit in R.

Example 1.8.9. Which of the following rings are fields? Which are integral domains?
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1) z. (3) Zs. (5) Ma(R).

All of the rings have a non-zero identity. All but Ms(R) are commutative. If a,b are non zero
real numbers then ab # 0. So [Ax11] holds for R and so also for Z and Q. Thus Z,Q and R are
integral domains.

2 does not have an inverse in Z. So Z is an integral domain, but not a field.
By (1.8.2) (1) all non-zero elements on Q are units. So Q is an integral domain and a field.

+1 are the only non-zero elements in Z3. 1-1=1and —1--1=1. So +1 are units and Zs is a
field. Also £1-+1 =21+ 0 and so Z3 is an integral domain.

By Example the units in Zg are +1 and +3. Thus 2 is not a unit and so Zg is not a field.
Note that 2-4 =8 =0 in Zg and so Zg is not an integral domain

By |D Ms(R) is not commutative. Also for all a,b,c,d e R:

= * = 1M2(R)‘

0 1 0 1]10 1 0 0
Thus is not a unit, so [Ax12] fails. Moreover, = = Oy () and so [Ax11]

00 0 0f|0 0 00
fails. Hence My(R) fails all conditions of a field and integral domain, except that My(R) has a
non-zero identity.

Theorem 1.8.10. Every field is an integral domain.

Proof. Let F be a field. Then by definition, F' is a commutative ring with identity and 1r # Op. So
it remains to verify [Ax1T1in For this let a,b € F with

(*) ab = OF.

Suppose that a # Op. Then by the definition of a field, a is a unit. Thus a has multiplicative
inverse a~!. We compute

ab=0p -

a '(ab) =a '0p - Principal of Substitution
(a"ta)b=0p -[AxT and
1pb=0p — Definition of a™*

b=0p - [Ax10

Ll
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We have proved that a # 0 implies b= 0p. So a =0p or b=0p. Hence [Ax11holds and F is an
integral domain. O
Theorem 1.8.11. Every finite integral domains is a field.

Proof. Let R be a finite integral domain. Then R is a commutative ring with identity and 1 # Og.
So it remains to show that every a € R with a # Og is a unit in R. Put

S:={ar|reR}.

and define
f: R->S, rear

We will show that f is a bijection. Let b,c € R with f(b) = f(¢). Then ab = ac. As a # Op the
Multiplicative Cancellation Law for Integral Domains gives b = c. Thus f is injective. Let s € S.
The definition of S implies that s = ar for some r € R. Then f(r) = ar = s and f is surjective. Hence
f is a bijection and so |R| =|S|. Since S ¢ R and R is finite we conclude R = S. In particular, 1 € S
and so there exists b € R with ab = 1. Since R is commutative, this gives ba = 1z and so a is a
unit. ]

Definition 1.8.12. Let R be a ring with identity, a a unit of R and n € Z*. Then

a "= (a—l)n'

Exercises 1.8:

1.8#1. Let R be a ring and a € R. Let n,m € Z such that a" and o™ are defined. (So n,meZ*, or
R has an identity and n,m € N, or R has an identity, a is a unit and n,m € Z. ) Show that

(a) a™a™ =a™"m.
(b) a™™ = (a™)™.
1.8#2. Find all units in Fun(R,R).
1.8#3. Find all units in Zs.
1.8#t4. An element e of a ring is said to be an idempotent if e? = e.
(a) Find four idempotents in Ma(R).
(b) Find all idempotents in Zjs.
(c¢) Prove that the only idempotents in an integral domain R are Or and 1p.

1.8#5. Prove or give a counter example:

(a) If R and S are integral domains, then R x S is an integral domain.
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(b) If R and S are fields, then R x S is a field.
1.84#6. (a) If @ and b are units in a ring with identity, prove that ab is a unit with inverse b1a™!.

(b) Give an example to show that if a and b are units, then o 'b! does not need to be the
multiplicative inverse of ab.

1.84£7. Let R be a ring with identity. If ab and a are units in R, prove that b is a unit.

1.8#8. Let R be a commutative ring with identity 1 # Or. Prove that R is an integral domain if
and only if cancellation holds in R, (that is whenever a,b,c € R with a # Or and ab = ac then b = ¢.)

1.8449. Let R be a ring with identity and a,b,c € R. Suppose that a is a unit in R. Show that
(a) ab=ac <= b=c <= ba-=ca.

(b) ab=0r <= b=0gr <= ba=0pg.

1.9 The Euclidean Algorithm for Integers

Theorem 1.9.1. Let a and b be integers and suppose that b|la and a +0. Then
1< b <|al.

Proof. Since a|b we have a = bk for some k in Z. Since a # 0 we get b # 0 and k # 0. Hence [b| and
|k| are positive integers and so 1 < |b| and 1 < |k|. Hence also |b|-1 < |b| - |k| and so
1< b = [b] - 1 < [b] - [K| = [bK| = |al.
O

Definition 1.9.2. (a) Let R be a ring and a,b,c € R. We say that c is a common divisor of a and
b in R provided that

cla and c|b.

(b) Let a,b and d be integers. We say that d is a greatest common divisor of a and b in Z , and

we write
d = ged(a,b),

provided that

(i) d is a common divisor of a and b in Z; and

(ii) if ¢ is a common divisor of a and b in Z, then ¢ < d.

Example 1.9.3. (1) The largest integer dividing both 24 and 42 is 6. So 6 is a greatest common
divisor of 24 and 42.
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(2) All integers divide 0 and 0. So there does not exist a greatest common divisor of 0 and 0.
(3) Let a be a non-zero integer, then |a| = ged(a,0).
Theorem 1.9.4. Let a,b,q, r and d be integers with
a=bqg+r and d = ged(b, ).

Then
d = ged(a,b).

Proof. We need to verify the two conditions (i) and (ii) of the ged.

(i): Since d = ged(b,r) we know that d|b and d|r. As a = bgq +r we conclude that d divides a, see
([1.4.4)(d). Thus d is a common divisor of a and b.

(ii) Let ¢ be a common divisor of a and b. Since a = bg + r we have r = a — bq, see Since

cla and c|b we get c|r, see (1.4.4)(c). Thus c is a common divisor of b and 7. Since d = ged(b,r) this
gives ¢ < d. O

Theorem 1.9.5 (Euclidean Algorithm). Let a and b be integers not both 0. Define m € N and
equations

E. : r, = awu, + b-axp 0<k<m
Frp, @ s = awv + byp 0<k<m.
G, + tp = aw, + bz, 1<k<m
as follows:
1 ifry >0 )
() If Ex has been defined for some k € N, put € = L 0 and let Fy be the equation
- 1 T <
obtained by multiplying Ej, with €y:
Fk = Ek c €k
(¢)
Ey a = a-1 + b-0

Ei b :a~0+b-1'
Suppose now that i € N with ¢ > 1 and Ej has been defined for all 0 < k < 1.
(o) If s; =0, put m =i and the Algorithm stops.

() Suppose s; #0. Let q; be any integer such that |s;-1 —s;q;| < s;. (Note here that s; = rie; = |r;] >0
and so such q; exist by the division algorithm .
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Let G; be the equation obtained by multiplying F; with —q; and let E;,1 be the equation obtained
by adding F;_1 and G;:

Gi=Fi-—q
Ein1=Fia1+G;

Then the algorithm stops after finitely many steps. Put d = Spm-1, T = Um-1 and Yy = Ym-1- Then
x,y €Z and
d =ged(a,b) and ax+ by =ged(a,b).

Proof. We call r,ug,yr the coeflicients of Ej, sp,vr,yr the coefficients of Fj and tg,wy, 2z, the
coefficients of G. We will first show that each of these coefficients are integers. By definition of Ey
and FEj the coefficients of Fy and E7 are a,1,0 and b, 0, 1 respectively, and so all are integers. Let i € N
with ¢ > 1 and suppose inductively that the coefficients of E are integers forall0 < k <i. Let 0 < k < 4.
Since Fj = Ej - €, and € is an integer, also the coefficients of Fj, are integers. As Gy = F, - (—qx) and
gk is an integer, also the coefficients of (G, are integers. Hence since F;.1 = F;_1 + G;, the coefficients
of E;.1 are integers. The principal of induction now shows that

(*)  The coefficients of E;, F; and G; are integers, whenever E;, F; or G; is defined.

By definition of F;;1 and G; we have E;,1 = F; + G; = F; + F;_1 - —q; = F;_1 — F;q; and considering
the first coeflicient we see that

() Ti+l = Si-1 — Siq;

By definition of F;,1 we have F;.1 = F;.1€;41 and considering the first coefficient we see that

(x* %) Si+l = Tit1€ir1 = [Tiv1| = = [Si—1 — 8igi]

Suppose for a contradiction that Euclidean Algorithm does not stop. Then s; is defined for all
i € N. By choice of g; we have |s;_1 — s;¢;| < s; and so shows that s;41 < s;. Hence

§1>82>83>83>...8;,>8i+1> ...

It follows that the set {s; | i > 1} does not have a minimal element. As s; € N, this contradicts the
Well Ordering Axiom.

By Tis1 = Si—1 — 8;q; and so

(+) 8i-1 = 8iQi + Ti41

We now can show that d = ged(a,b). Indeed
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d= Sm-1

= [sm-1]
= ged(8m-1,0)

= ged(Sm-1,8m)

CHAPTER 1. RINGS

Definition of d

|

| Sm—-1 > 0

| Example (1.9.3)
| s$m=0

()
:ng(Sm—273m—1)| Sm—-2 ! Sm-14¢m-1 + T'm, and [L.9.4]

—gcd 51, 52)

= ged(so, 1)

=ged

|7“0| r1])

= ged(ro,71)
= ged(a, b)

(
(
(
(
(

+
| so 51q1 + 12, and [[LO.4]

| s =1 by (x * %)

| Definition of Ey and E;

As F,,,_1 is the equation $,,-1 = a-Vm_1 +b- Ym_1, We get

d=azx+by.

By the coefficients of F;,_1 are integers, so x,y € Z and all parts of the Theorem have been

proved.

O

Example 1.9.6. Let a = -1492 and b = 1066. Find integers x and y with azx + by = ged(a, b).

Ey: -1492 = «a 1 + b - 0

Fy: 1492 = a - -1 + b 0 | Ey- -1
i =F: 1066 = a 0O+ b - 1

Gi: -1066 = a 0+ b - -1 |Fy -1
Fy = Ey 426 = a -1 + b - -1 | Fo + G1

Go: -852 = a 2 + b - 2 | Fy- -2
F3 = Ey 214 = a 2 + b - 3 | Fy + G

Gs: -428 = a -4 + b - -6 | F3--2

Ey: -2 = a -5 + b - -7 | B2 + G3

Fy: 2 = a 5 + b - T | By -1

Gy: 214 | Fy - —112
Fs=Es: 0 | Fy + Gy
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So 2 = ged(-1492,1066) and 2 = (-1492) - 5 + 1066 - 7.

Theorem 1.9.7. Let a and b be integers, not both zero, and let d € Z with d = ged(a,b). Then d is
the smallest positive integer of the form au + bv with u,v € Z.

Proof. By the Euclidean Algorithm d = ax + by for some x,y € Z and so has the required form.

Now let e be any positive integer of the form e = au + bv for some u,v € Z. Since d = ged(a,b), d
divides a and b. Thus by (L.4.4)(c)), d divides e. Hence shows that d <|d| < |e| = e. Thus d is
the smallest possitive integer of the form au + bv with u,v € Z. O

Theorem 1.9.8. Let a,b be integers. Then 1 = ged(a,b) if and only if there exist integers u and v
with 1 = au + bv.

Proof. If 1 = gcd(a,b), then 1 = au + bv for some u,v € Z by the Euclidean Algorithm [1.9.5]

Conversely, suppose that 1 = au + bv for some u, v € Z. Since 1 is the smallest positive integer this
shows that 1 is the smallest positive integer of the form au + bv,u,v € Z. From [1.9.7 we conclude

that 1 = ged(a,b). O
Theorem 1.9.9. Let n be a non-zero integer and a € Z. Then 1 = ged(a,n) if and only if [a], is a
unit in Zn,.
Proof.
1 =gcd(a,n)

<~ l=au+nv for some u,veZ -[1.95

— [1], =[au], for some u € Z -9

— [1]n =[a]nl[u]n for some u € Z — Definition of multiplication in Z,,

— [1]n =[alU for some U € Z,, - Definition of Z,

= 1z, =[a] U for some U € Z,, -1z, =[1], by

<~ 1y, =[a],U and 1z, = Ula], for some U € Z,, -7, is commutative

<= [a], is a unit in Z, — Definition of a unit

O]

Theorem 1.9.10. Let a and b be integers and let d a positive integer. Then d = ged(a,b) if and
only if

(I) d is a common divisor of a and b; and

(IT) if ¢ is a common divisor of a and b, then c|d.

Proof. =>: Suppose first that d = ged(a,b). Then holds by the definition of ged. By
d = ax + by for some x,y € Z. So if ¢ is a common divisor of a and b, then (1.4.4)(c|) shows that c|d.
Thus holds.

<—: Suppose next that and holds. Then by d is a common divisor of @ and b. Let
¢ be a common divisor of a and b. Then by (II), c|d. Thus by ¢ < el <1d| = d. Hence by
definition, d = ged(a, b). O
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Theorem 1.9.11. Let a and b integers with 1 = ged(a,b). Let ¢ be an integer with a|bc. Then alc.
Proof. Since 1 = ged(a,b), shows that 1 = ax + by for some z,y € Z. Hence

c¢=1c=(ax+by)c=a(xc)+ (bc)y.

Note that ala and albc, and that zc and y are integers. So by (1.4.4)(d), a divides a(zc) + (bc)y.
Thus alc. O

Exercises 1.9:
1.9#1. Let a,b and ¢ be integers. If a|c and b|e, must ab divide ¢? What if ged(a,b) =17

1.94#2. Let a,b and e be integers. Suppose a and b are not both zero and that e is a positive common
divisor of a and b. Let d € Z with d = ged(a,b).

(a) Show that there exist integers a,b and d with a = ae,b = be and d = de.
(b) Prove that d = ged(a, b).
(c) Show that there exist integers é and b with a = ad and b = bd
(d) Prove that ged(a,b) = 1.
1.94#£3. Prove or disprove each of the following statements.
(a) If 2+a, then 4|(a® - 1).
(b) If 2+a, then 8 (a? - 1).

1.9#4. Let n be a positive integers and a and b integers with ged(a,b) = 1. Use induction to show
that ged(a,b™) = 1.

1.94#£5. Let a, b, ¢ be integers with a, b not both zero. Prove that the equation ax + by = ¢ has integer
solutions if and only if ged(a,b)|c.

1.9#6. Prove that ged(n,n+1) =1 for any integer n.
1.9#47. Prove or disprove each of the following statements.
(a) If 2+a, then 24|(a®-1).
(b) If 2+a and 3 +a, then 24|(a® - 1).
1.9#8. Let n be an integer. Then ged(n+1,n? -n+1) =1 or 3.

1.9#9. Let a,b, ¢ be integers with a|bc. Show that there exist integers b, é with b|b,é|c and a = bé.
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1.10 Integral Primes

Definition 1.10.1. An integer p is called a prime if p ¢ {0,1,-1} and the only divisors of p in Z
are 1, =1, p and —p.

Theorem 1.10.2. (a) Let p be an integer. Then p is a prime if and only if —p is prime.

(b) Let p be a prime integer and a an integer. Then either (p|a and |p| = ged(a, p) ) or (p+a and
1 =ged(a,p) )

(c) Let p and q be primes with p|q. Then p=q orp=—q.
Proof. @) Note that
(%) p¢{0,+1} ifand only if -—p¢{0,+1},

By [L.4.4alp < a|-p. So

(%)  p and —p have the same divisors.
Moreover,
(% % %) +p==(-p)

Thus the following statements are equivalent:

p is a prime

— p ¢ {0,+1} and the only divisors of p are +1 and +p - Definition of a prime.
<= -p¢{0,£1} and the only divisors of —p are +1 and +(-p) - , and (* * *
— —p is a prime. - Definition of a prime.

So holds.

[): Let d € Z with d = ged(a,p). Then d|p and since p is prime, d € {+1,+p}. Since d is positive
we conclude that

(+) d=1 or d=|p|.

Case 1: Suppose p|a.

Since p|p, we conclude that p is a common divisor of a and p. Thus by (]ED also —p is a
common divisor of a and p. Thus |p| is a common divisor of a and p. As d = ged(a,p) this gives
Ip| < d. By definition of a prime we have p ¢ {0,+1}, so |p| > 1. Hence also d > 1 and thus d # 1.
Together with we get d = |p|. So |p| = ged(a,p) and, by the hypothesis of case 1, p|a. Thus (]ED
holds in this case.

Case 2: Suppose p+a.
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Since p +a, ([1.4.4)(b) shows that —p+a. So also |p|+a. As d = ged(a,p), we have d|a and so
d # |p|. Hence by (+]) d = 1. Thus 1 = ged(a,p) and by the hypothesis of case 2, p+a So (b)) also
holds in this case.

: Suppose p and ¢ are primes with p|gq. Since ¢ is a prime we get p € {1,+q}. Since p is
prime, we know that p ¢ {1} and so p € {£q}. O

Theorem 1.10.3. Let p be an integer with p ¢ {0,+1}. Then the following two statements are
equivalent:

(a) p is a prime.
(b) If a and b are integers with p|ab, then p|a or p|b.

Proof. “ ==:7 Suppose p is prime and let a and b be integers with p|ab. We need to show that p|a

or p|b. So we may assume that p+a. Then [1.10.2| gives 1 = ged(a,p). Since p|ab,|[1.9.11 now implies
that p|b.

‘<=:" For the converse, see Exercise |[I.10#2)] ]

Theorem 1.10.4. Let n € Z with n # 0 and n # +1. Then n is the product of primes in Z. In
particular, there exists prime p with p|n in Z.

Proof. We will prove the Theorem by complete induction on |n|.

Suppose first that n is a prime. Then n = n is the product of one prime.

Suppose next that n is not a prime. Then the definition of a prime shows there exists an integer
m with m|n, m # £1 and m # +n. Then n = mk for some k € Z. Since m # +1 and m # +n we get
|m| < |n| and |k| < |n|. By induction we conclude that both m and & are products of primes. So also
n =mk is a product of primes. ]

Theorem 1.10.5. Let p be a prime integer. Then Z, is a field.

Proof. By Zy is a commutative ring with identity [1], # [0],. So we just need to show that
every non-zero A € Z, is a unit. Note that A = [a], for some a € Z with p+a. Thus 1.10.2@ gives

ged(a,p) =1. So A =[a], is a unit in Z, by O

Exercises 1.10:

1.10#1. Let p be an integer other than 0,+1. Prove that p is a prime if and only if it has this
property: Whenever r and s are integers such that p =rs, then r=+1 or s = +1.

1.10#2. Let p be an integer other than 0,+1 with this property
(*)  Whenever b and ¢ are integers with p | bc, then p | b or p | c. Prove that p is a prime.

1.10#3. Prove that 1 = ged(a,b) if and only if there does not exist a prime integer p with p|a and
plb.
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1.10#4. Prove or disprove each of the following statements:
(a) If p is a prime and p|a? + b? and p|c? + d?, then p|(a? - ¢?)
(b) If p is a prime and p|a® + b% and p|c?® + d?, then p|(a® + c?)
(c) If p is a prime and p|a and p|a® + b2, then p|b

1.10#5. Let a and b be integers. Then a|b if and only if a®|b3.

1.10#6. Prove or disprove: Let n be a positive integer, then there exists p, a € Z such that n = p+a?
and either p=1 or p is a prime.

1.11 TIsomorphism and Homomorphism

Definition 1.11.1. Let (R,+,-) and (S,®,®) be rings and let f: R — S be a function.
(a) f is called a homomorphism from (R,+,) to (S,®,®) if

fla+b)=f(a)® f(b) [f respects addition]

and
fla-b)=f(a)o f(b) [ f respects multiplication]

for all a,b e R.

(b) f is called an isomorphism from (R, +,-) to (S,®,®), if f is a homomorphism from (R, +,-) to
(S,®,0) and f is bijective.

(¢) (R,+,) is called isomorphic to (S,®,®), if there exists an isomorphism from (R,+,-) to
(S,@,0).

Example 1.11.2. (1) Consider the function

g: R->R, a~ —-a.

Let a,b € R. Then

gla+b)=—=(a+b)=-a+(-b) =g(a)+g(b).

and so g respects addition.

g(ab) =—(ab)  and  g(a)g(b) = (-a)(-b) =ab

For a =b =1 we conclude that

g(1-1)=-(1-1)=-1 and g(1)g(l)=1-1=1.

So g(1-1) #g(1)-g(1). Thus g does not respect multiplication, and ¢ is not a homomorphism.
But note that g is a bijection.
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(2) Let R and S be rings and consider the function

h: R—>S, Tl—>05.

Let a,b € R. Then

h(a+0b)=0g=0g+0g=h(a)+h(d) and h(ab) =0g =050g = h(a)h(d).

So h is a homomorphism. h is injective if and only if R = {0} and h is surjective if and only
if S ={0g}. Hence h is an isomorphism if and only if R = {0g} and S = {0g}.

(3) Let S be a ring and R a subring of S. Consider the function

idps: R—-S, rer.

Let a,b € R. Then
idR’S(a-f-b) = a+b:idR,5(a) +idR7s(b) and idR75(ab) =ab= idR7S(a)idR75(b)

and so idg g is a homomorphism. Note that idg g is injective. Moreover, idg g is surjective if
and only if R=S. Hence idg :=idg g is an isomorphism.

(4) Let R be a commutative ring and n € R. Consider the function

k: R—-R,, aw~ [a],.

Let a,b € R. By definition of the addition and multiplication in R,
k(a+b) = [a+b]y, = [a],®[b], = k(a)®k(D) and k(ab) = [ab], = [a]n0[b], = k(a)©k(b).

So k is homomorphism.

Let A € R,,. The definition of R,, shows that A = [a],, for some a € R. Hence k(a) = A and so
k is surjective.

Note that
k(n) = [n]n = [Or]n = k(OR).

If n # Og we conclude that k is not injective.

Suppose n = 0g. Then by Example (1.4.6)(3)) a =b (modn) if and only of a = b. Hence also
[a]n = [b]p if and only if @ = b. Thus k is injective.

Example 1.11.3. Consider the function

f: C->My(R), r+sim



1.11. ISOMORPHISM AND HOMOMORPHISM

Let a,b e C. Then a =7+ si and b =7 + §i for some r,s,7,5 € R. So

f(a+b) f((r+sz’)+(f+§z’))

f((r+77) + (s+§)i>

T+T s+ 5§
—(s+38) r+r

1]
s
[V
— %
+
| ——
c,|31 <
il W

f(r+si)+ f(7+35i)
f(a) + f(b)

and

f(ab) F((r+si)(F + 50))
f((rf——s§)+(r§-+sf)i)

rT — 8§ TS+ Sr

—(r§+sr) rr-ss

1l
| — |
L
)
= »
 S——
| — |
|
o R
= w
S — |

f(r+si)f(F+38i)
f(a)f(b).

Thus f is a homomorphism.

If f(a)= f(b), then

and sor =7 and s=5. Hence a=r+si =7+ 35i=b and so f is injective.

+5
S

Since 1 # 0 we have that [ ] # [ :| for all r,s € R. Thus f is not surjective.
r

1 0 r
0 0 -
r,seR}.

S:_Im(f)-{[r s}

Put

95
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Using the Subring theorem it is straight forward to check that S is a subring of My(R). Alter-
natively, Theorem [1.11.11| below also shows that S is a subring of My (R). It follows that

- . ros
f: C->S5 r+isw—
-s T
is an isomorphism of rings. Thus
r oS
C and r,seR
-5 T

are isomorphic rings.

Notation 1.11.4. (a) ‘f: R— S is a ring homomorphism’ stands for the more precise statement
(R,+,-) and (S,®,®) are rings and f is a ring homomorphism from (R,+,-) to (S,®,®).’

(b) Usually we will use the symbols + and - also for the addition and multiplication on S and so
the two conditions for a homomorphism become

fla+b)=f(a)+f(b) and f(ab)=f(a)f(b).

Remark 1.11.5. Let R = {r1,r2,...,7} be a ring with n elements. Suppose that the addition and
multiplication table is given by

+ 1 T Tn 71 T T™n

T | aipr ... alj AT T1 b11 e blj e bln
A: L ’ ’ ’ ) and M :

T a;1 co aij e Qi T bz‘l ‘e bz‘j v bm

Tn | Qpl ... Qpj ... Qpn Tn | bpt .. bnj ... bpp

So v+ 1 =a;; and rirj =b;; for all1<i,5<n.
Let S be a ring and f : R — S a function. For r € R put v’ = f(r). Consider the tables A" and
M'" obtain from the tables A and M by replacing all entries by its image under f:
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Lo TG Ty Lo TG Th
!/ ! / / / / / !/
Ty a4y ... Gy, Ty by . by bi,,
/. : : : : : : /.
A and M
! ! ! ! ! / / /
T G e G e Gy il by e by by,
/ !/ / / / / / /
Tp | Gpp oer Gpj oen Gy Tp | Opt oo by oo by,

(a) f is a homomorphism if and only if A" and M’ are the tables for the addition and multiplication
of the elements r,...,r; in S, that is r] + r;~ = a;j and r{rg. = b;j forall1<i,j<n.

(b) f is injective if and only if v, ..., 7, are pairwise distinct.
(c) f is surjective if and only if S ={r{,rh, ..., }.
(d) f is an isomorphism if and only if A" is an addition table for S and M' is a multiplication
table for S.
Proof. @ f is a homomorphism if and only if

fla+b)=a+b and f(ab)= f(a)f(b)
for all a,be R. Since R = {rq,...,r,}, this holds if and only if

fri+ry)=f(r)+ f(r;) and  f(riry) = f(ri) f(r))

for all 1 <4,j <n. Since r; +r; = a;; and r;r; = b;; this holds if and only if

flaij) = f(ri)+ f(r;) and  f(bij) = f(ri) f(rs)
for all 1 <1i,5 <n. Since f(r) =r', this is equivalent to

!/

ro_
Qj =T; +7;

ro_
j and  b;; =r;r

!/
J
forall1<i,5<n

(]E[) f is injective if and only if (for all a,b e R) f(a) = f(b) implies a = b and so if and only if a # b
implies f(a) # f(b). Since for each a € R there exists a unique 1< <n with a = r;, f is injective if
and only (for all 1<4,j <n) i+ jimplies f(r;) # f(r;), that is i # j implies r{ # 7.

f is surjective if and only if Im f = S. Since R = {r1,...,rm}, Im f = {f(r1),..., f(rn)} =

{ri,...,r}. So f is surjective if and only if S = {r{,... 7 }.

@ Follows from @—. O
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Example 1.11.6. Let R be the ring with additions and multiplication table

B0 1 Z(0 1
01 0 and 00 1
110 1 111 1

Note here that R is indeed a ring, see Example Show that
fr R—->Zy, 01, 1~0
is an isomorphism.

We will use [1.11.5. So we will replace 0 by 0" = f(0) =1 and 1 by 1’ = f(1) = 0 in the above
tables:

10 10
110 1 and 1/1 0.
0/1 0 0]0 O

Note that these are addition and multiplication tables for Zo and so [1.11.5 shows that f is indeed
an isomorphism.

Theorem 1.11.7. Let f: R S be a homomorphism of rings. Then
(a) f(Og)=0s.
() f(=a) = —f(a) for all a € R.
(¢) Fla-b) = f(a) - f(b) for all a,be R.

Proof. (&) We have

f(0R) + f(Og) = f(Ogr +0Rr) - f respects addition
= f(Or) -[Ax4] for R.
So the Additive Identity Law for S implies that f(0Ogr) =0g.
We compute

f(a)+ f(-a) = f(a+(-a)) - f respects addition
= f(Or) -[Ax5l for R.
=0g - by (a)
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So the Additive Inverse Law for S implies that f(-a) = -f(a).
(8

f ¢

Fla=b) E7 fla+ (b)) ™ pa) + 1(-b) @ fla)+ (1) “LT £(a) - £ (D).

Example 1.11.8. Show that Z, and Zs x Zo are not isomorphic.

Put R :=7Zy x Zsy. Since x + x = [0] for all z € Zy we also have

(z,y) + (z,y) = (z+ 2,y +y) = ([0]2,[0]2) = 0.
for all ,y € Zo. Thus

(%) r+r=0g

for all r € R. Let S be any ring isomorphic to R. We claim that s + s = 0g for all s €.S. Indeed, let
f R — S be an isomorphism and let s € S. Since f is surjective, there exists r € R with f(r) = s.
Thus

ses= 1)+ f0) T2 prer) © p0p) EEDE

Since [1]4 + [1]4 =[2]4 # [0]4 we conclude that Z4 is not isomorphic to Zg x Zs.

Theorem 1.11.9. Let f: R — S be a homomorphism of rings. Suppose that R has an identity and
that f is surjective. Then

(a) S is a ring with identity and f(1g) =1g.
(b) If u is a unit in R, then f(u) is a unit of S and f(u™') = f(u)7 .

Proof. @ We will first show that f(1g) is an identity of S. For this let s € S. Since f is surjective,
we know that s = f(r) for some r € R. Thus

f hom

s-f(Ir) = f(r)f(1R) frig) BEY p(r) = s,

and similarly f(1g)-s=s. So f(1g) is an identity of S. By (|1.8.3] 1.8.3@ S has at most one identity
and so f(1g) =1g.

(@ Let u be a unit in R. We will first show that f(u™!) is an inverse of f(u):

F)f™) T2 pluuty CE pa) @ g

Similarly f(u™)f(u) = 1g. Thus f(u') is an inverse of f(u) and so f(u) is a unit. By flu)™t
is the unique inverse of f(u) and so f(u™t) = f(u)~t. O
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Example 1.11.10. Find all surjective homomorphisms from Zg to Zg x Zs.

We start with setting up some convenient notation. For a,b € Z and h a function from Zg to
ZQ X Zg define

[a]=[als  Ala]=h(lals), and [a,b] = ([ala,[b]s).
Let a,b,c,d € Z. Then

[a,b] + [c,d] = ([a]g, [b]g) + ([6]2, [d]g) = ([G]Q +[c]2, [b]3 + [d]g) = ([a+ cla, [b+d]3) =[a+e,b+d].

Thus

(*) [a,b] + [c,d] = [a+c,b+d] and similarly [a,b] - [c,d] =[a-c,b-d]

‘Uniqueness of a surjective homomorphism’:

Let f :Z¢ — Z2 x Z3 be a surjective homomorphism. We will compute f[r] for 0 < r < 5 and
thereby prove that f is uniquely determined. Since f is an surjective homomorphism, @
gives f(1z,) = 1z,xz,. Since [1] is the identity in Zg and [1,1] is the identity in Zs x Zs this gives
f[1]=[1,1]. Similarly, by (L.I11.7)(a]), f(0z,) = 0z,xz, and thus f[0] = [0,0]. We compute

f10]=10,0]

=111
1=+ 1] = F0+ fIU] = [1,1] + [1,1] = [2,2] = [0, 2]
FBI=r2+1] = f[2]+ fI1] = [2,2] + [1,1] = [3,3] = [1, 0]
f1A]=FB+1] = FB] + f1] = [3,3] + [1,1] = [4,4] = [0, 1]
fI5] = fl4+1] = f[A] + f1] = [4,4] + [1,1] = [5,5] = 1, 2]

By Ze¢ = {[0],[1],[2],[3],[4],[5]}. Hence f is uniquely determined.

‘Existence of a surjective homomorphism’:

Define the function g: Zg — Zo x Zs by

() glr]=[r,r] for all r € Z with 0 < r < 5.

We will show that g is a isomorphism, and so also a surjective homomorphism. For this we first
show that g[m] = [m,m] for all m € Z. Indeed, by the Division Algorithm, m = 6g+r for some gq,r € Z
with 0 <r < 6. Then by [m]e = [r]¢. Moreover, m = 2(3q) +r =3(2¢) +r and so [m]s = [r]2 and
[m]s = [r]s. Hence [m] = [r] and [m,m] = [r,r] and we conclude
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(% %) glm] =g[r] =[r,r]=[m,m].
Thus
gln+m] b2 [n+m,n+m] © [n,n]+[m,m] ) g[n] +g[m],
and
glnm] “= [nm,nm] @ [, n)fm,m] ©= g[nlgm).

So ¢ is a homomorphism of rings. Since Zy = {[0]2,[1]2} and Zs = {[0]3,[1]3,[2]3} we have

)

ZoxZs={(z,y) | xeZyyeZs}={[00],[0,1 [1
= {[070] [474 7[37
={g[0], g[4], g[2], g[3], g[1], g[5

and so g is surjective. Note that g is also injective. Thus ¢ is an isomorphism and so

) ]7[072]7 17]‘]7[
[4,4],12,2] L], {

) )

—_
——

(+) Ze is isomorphic to Zgy x Zs.

Theorem 1.11.11. Let f: R — S be a homomorphism of rings. Then Im f is a subring of S. (Recall
here that Im f = {f(r) |r € R}).

Proof. 1t suffices to verify the four conditions in the Subring Theorem [I.7.2] Observe first that for
s€es,

(%) selm f — s = f(r) for some r € R

Let z,y € Im f. Then by :

(%) x=f(a) and y=f(b) forsome a,beR.

(I) By ([L.1L.7)(d) f(0r)=0s. By[Ax4 0 € R and so Og € Im f by

(I) z+y f(a)+ f(b) f hom f(a+b). By[AxdTla+be R. So z+yeIm f by .

(II)  =xy f(a)f(b) f hom f(ab). By[Ax6labe R. So zy € Im f by (¥).

(IvV) -z -f(a) COAE f(-a). By[Ax5l-a € R. So —z € Im f by (*). O
Definition 1.11.12. Let R be a ring. For n € Z and a € R define na € R as follows:

(i) Oa =0g.
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(ii) If n >0 and na already has been defined, define (n +1)a = na + a.

(iii) If n <0 define na = —((—n)a).

Exercises 1.11:
1.11#1. Let R be ring, n,m € Z and a,b € R. Show that

(a) la=a. (¢) (n+m)a=na+ma. (e) n(a+b) =na+nb.

(b) (-1)a = -a. (d) (nm)a=n(ma). (f) n(ab) = (na)b = a(nb)
1.11#2. Let f: R — S be a ring homomorphism. Show that f(na) =nf(a) for all n€Z and a € R.
1.11#3. Let R be a ring. Show that:

(a) If f:Z — R is a homomorphism, then f(1)% = f(1).

(b) Let a € R with a? = a. Then there exists a unique homomorphism g :Z — R with g(1) = a.

a
1.11#4. Let S = {

b a+b
isomorphic to the ring R from Exercise [1.1#4]

a,be ZQ}. Given that S is a subring of Ms(Z2). Show that S is

1.11#5. (a) Give an example of a ring R and a function f: R — R such that f(a+b) = f(a)+ f(b)
for all a,be R, but f(ab) # f(a)(f(b) for some a,b e R.

(b) Give an example of a ring R and a function f : R - R such that f(ab) = f(a)f(b) for all
a,be R, but f(a+0b)# f(a)+ (f(b) for some a,b € R.

a 0
1.11#6. Let L be the ring of all matrices in My(Z) of the form with a, b, c € Z. Show that the
b c

a 0

function f: L — 7Z given by f (
c

) = a is a surjective homomorphism but is not an isomorphism.

1.11#7. Let n and m be positive integers with n =1 (modm). Define f : Zy, = Zpm, [2]m = [21]nm-
Show that

(a) f is well-defined. (That is if =,y are integers with [z], = [y]m, then [zn]nm = [yn]nm)
(b) f is a homomorphism.

(c) f is injective.
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(d) If n > 1, then f is not surjective.

1.11#8. Let f: R — S be a ring homomorphism. Let B be a subring of .S and define
A={reR| f(r) e B}.
Show that A is a subring of R.

1.11#9. Show that the two rings are not isomorphic.

(a) 2Z and Z. (¢) Zg x Z14 and Zqg. (e) Z xZsy and Z.
(b) RxRxRxR and Ma(R). (d) Q and R. (f) Zy x Zy and Z;s.

1.11#10. Let f: R— S and g: S — T be homomorphism of rings.
(a) Show that go f: R — T is a homomorphism of rings.
(b) If f and g are isomorphisms, show that go f is an isomorphism.

(¢) Suppose f is an isomorphism. For s € S let s’ be the unique element of R with f(s’) = s. Show
that the function h: S - R,s+ s’ is an isomorphism of rings.

1.11#11. Let f: R - S be an isomorphism of rings. If R is an integral domain, show that S is an
integral domain.

1.12 The ‘Associated’ Relation on a Ring

Definition 1.12.1. Let R be ring with identity and let a,be R. We say that a is associated to b, or
that b is an associate of a and write a ~p b if there exists a unit v of R with au =b.

Remark 1.12.2. (a) We will usually just write a ~ b for the more precise a ~g b.

(b) Until now we have used ‘~’ to denote an arbitrary relation. From now on the symbol ‘~’ will
be reserved for the relation ‘associated’ on a ring R.

Example 1.12.3. (1) Let n € Z. Find all associates of n in Z.
By the units in Z are +1. So the associates of n are n-+1, that is +n.
(2) Find all associates of 0,1,2 and 5 in Zo.

By Z1o=1{0,1,2,3,4,5,6,7,8,9} and so Zig = {0, +1, +2, +3, +4, 5}.
We compute (in Z)
n ‘ 0 +1 +2 +3 +4 5

gcd(n,lO)‘lO 2 2 5
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and so by the units in Zqg are +1 and +3.

Hence the associates of a € Z1g are a-+1 and a - +3, that is +a and +3a. We compute

a | associates of a | associates of a, simplified
0 +0,+3-0 0

+1 +1,+£3-1 +1,+3

+2 +2,+£3-2 +2,+4

5 +5,+3-5 )

Theorem 1.12.4. Let R be a ring with identity. Then the relation ~ (’is associated to’) is an
equivalence relation on R.

Proof. Reflexive: Let a € R. By [Ax10l 15 = 1glg. Hence 1 is a unit in R. By [Ax10klgr =a
and so a ~ a by definition of ‘~’. Thus ~ is reflexive.

Symmetric: Let a,b € R with a ~ b. By definition of ‘~’ this means that exists a unit v € R
with au = b. Since u is a unit, u has an inverse u™'. As b= au the Principal Of Substitution gives

but = (a,u)u_1 a(uu_l) def u™ alp a
By w ! is a unit in R and so b~ a. Thus ~ is symmetric.
Transitive: Let a,b,ce R with a ~b and b~ ¢c. Then
(*) au=b and bv=c
for some units u and v in R. Hence
c = b = (au)v Ax2 a(uv)
By (]ED uv is a unit in R and so a ~ c. Thus ~ is transitive.

Since ~ is reflexive, symmetric and transitive, ~ is an equivalence relation. O

Example 1.12.5. Determine the equivalence classes of Z1y with respect to ~.

Note that for a € Zg, [a]. = {b€ Z1p | a ~ b} is the set of associates of a. So by Example [1.12.3

[0]. = {0}
[1]. = {#1,+3}
[2]. = {%2,+4}
[5]-

5 (5}
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By Zio =40,1,...,9} = {0,+1,+2,+3,+4,5}. Each of these elements appears in one of the
four classes listed above, so for each x € Z1g there exists y € {0,1,2,5} with x € [y].. Thus by
[z]. = [y]~. Hence [0].,[1].,[2]~,[5]~ are all the equivalence classes of ~.

Theorem 1.12.6. Let R be a ring with identity and a,be R with a ~b. Then a|b and bla in R.

Proof. Since a ~ b, au = b for some unit u € R. So alb.
By the relation ~ is symmetric and so a ~ b implies b ~ a. Hence we can apply the result
of the previous paragraph with a and b interchanged and conclude that b|a. O

Theorem 1.12.7. Let R be a commutative ring with identity and r € R. Then the following four
statements are equivalent:

1g ~

(a)
(b) r|1g
()
(d) r is a unit.
Proof. @ — (]ED: If 1R~rthengives r|1g.
(]E[) — : Follows from the definition of ‘divide’.

There exists s in R with rs = 1.

— @: Suppose that rs = 1g for some s € R. Since R is commutative, we get sr = 1g. So
r is a unit.

(d) = (&):  Suppose r is a unit. By [AXT0] 1pr =r. Since r is a unit, the definition of ‘~’
shows that 15 ~ r. ]

Theorem 1.12.8. Let R be a ring with identity and a,b,c,d € R with a ~b and ¢ ~d. Then alc if
and only if b|d.

Proof. ‘==": Suppose that a|c. Since a ~ b[1.12.6[shows b|a. Hence we have b|a and a|c and since
7 is transitive by (1.4.4) () we conclude that b|c. As ¢ ~ d we know that c|d, see[1.12.6] Thus b|c
and c|d and since { is transitive we get b|d.

‘<=": Observe the set-up is symmetric. So the backward direction follows from the forward
direction applied with (¢, d, a,b) in place of (a,b,c,d). O

Definition 1.12.9. Let R be a ring and a,b € R. We say that a and b divide each other in R and
write a = b if

alb and bla.

Exercises 1.12:

1.12#1. Let R = Zlg.
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(a) Find all units in R.
(b) Determine the equivalence classes of the relation ~ on R.
1.12#2. Let R be a ring with identity. Prove that:
(a) ~ is an equivalence relation on R.
(b) Let a,b,c,d € R with a ~b and ¢~ d. Then alc if and only if b|d.
1.12#3. Let n be a positive integer and a,b € Z. Put d = ged(a,n) and e = ged(b,n). Prove that:

(a) [a]n‘[d]n in Zy,.

(c) Let r,s € Z with r|n in Z. Then [r],|[s], in Z, if and only if r|s in Z.
(d) [d]n|[e]n in Z, if and only if d|e in Z.

(e) [aln
(f) [d]n ~ [e]n if and only if d = e.

[b],, in Z,, if and only if d|e in Z.

(g) [a]n ~ [b]n if and only if d = e.
1.12#4. Let R be an integral domain and a,b,c € R such that a # O and ba|ca. Then b|ec.

1.12#5. Is A associated to B in My(R)?

2 4 10 6
(a) A= and B = .

3 6 15 9

2 4 12 20
(b) A= and B = .

3 6 15 25



Chapter 2

Polynomial Rings

2.1 Addition and Multiplication

Definition 2.1.1. Let R and P be rings and x € P. Then P is called a polynomial ring in x with
coefficients in R provided that the following four conditions hold:

(i) R has an identity, and R is subring of P.
(i) ax =za for all a € R.

(iii) For each f € P, there exist n € N and fo, f1,..., fn € R such that

F=S gt (= fo+ fro bt fua?).
=0

(iv) Whenever n,m € N with n <m and fo, f1,..., fn,90,---,9m € R with
n oom )
Y fir' =) gia,
i=0 i=0

then f; = g; for all 0<i<n and g; =0g for alln < <m.
Remark 2.1.2. Let P be a polynomial ring in x with coefficients in the ring R.

(a) The elements of P are called polynomials in x with coefficients in R. Polynomials are not
functions. See section[2.7 for the connections between polynomials and polynomial functions.

(b) x is a fized element of P. x is not a variable.

We remark that by there exists a ring P and x € P such that P is polynomial ring in x
with coefficients in R, namely the elements of P are the sequences

(ai)fjo = (ao,al,ag, ey Qgy . )

67
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such that a; € R for all i € N and there exists n € N with a; = Og for all i > n. Also

.T=(OR,lR,OR,OR,...,OR,...)
(ao,al,ag...,ai,...)+(b0,bl,b2...,bi,...)=(a0+b0,a1+b1,a2+b2,...,ai+bi,...)

and

(ao,al,ag...,ai,...)'(bo,bl,bg...,bi,...)
= (aobo, a0b1 + albo, aobg + a1b1 + agbo, ey aobi + albi_l + ai_lbl + aibo, .. )

Theorem 2.1.3. Let R be ring with identity and a,b € R.
(a) a™™ =a"a™ for all n,m e N.
(b) If ab = ba, then ab™ =b"a for alln eN

Proof. @ If n =0, then ™™ = a™ = 1ra™ = aa™. So we may assume that n > 0. Similarly we may
assume that m > 0. Then

a"a™ = (aa...a)(aa...a) CAL Ga...a =a™™.
N~—— ~—
n—times m-—times n+m-—times
(]E[) Suppose that
(*) ab = ba.

For n = 0 we have ab® = alg = a = 1ga = b%a. Thus @ holds. Suppose (]EI) holds for n = k. Then

(%%) ab® = b*a.

We compute

ab™*! = a(b"b) - definition of b
= (ab)p  -[AXT
= (a)b - ()
=bi(ab) -[AXT
=b¥(ba) -
= ("b)a  -[AXT

=b*a. - definition of bF*!

Thus (]ED also holds for n = k+ 1. So by the Principal Of Induction, @ holds for all n € N. O
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Theorem 2.1.4. Let R be a ring with identity and P a polynomial ring in x with coefficients in R.
Then 1g is an identity of P. In particular, 1p =15 and x = 1gx.

Proof. To show that 1g is an identity of P, let f € P. Then by Condition ([2.1.1) of a polynomial
ring there exist n € N and fo, fi1,... fn € R with

(+) F=3 fidt.

1=0

Let 1 <4 <n. By Condition (2.1.1))(i) of an polynomial ring 1gz = 21 and so by (2.1.3))(b)

(**) 1R£Ci = l‘ilR.
Thus

; Ax Tl i (I* *)) i 1 for R 1
(+ % %) (i) 1e BB fi(aitg) & fi(1pat) BED (fi1p)at BEIDIor R g
and

flr (i fixi) 17 2 i(fiwi)lR ifﬂ?i [
i=0 i=0

i=0
Similarly,

() N, i) GDL i\ BT ; AXI0 for B <~ , i ()
Irf = 1gr (Z fﬂz) =" Y 1er(fir') °=" Y (1rfi)a’ =Ty it 2T
i=0 i=0 i=0 i=0

and so 1g is a multiplicative identity of P. Thus 1z = 1p. Since x € P this gives lgx =1px=2z. O
Theorem 2.1.5. Let P be a ring with identity, R a subring of P, x € P and f,g € P. Suppose that

(i) ax =za for all a € R;

(ii) there exist n €N and fo,..., fn € R with f = ¥%, fix'; and

(iii) there ewist m € N and go, ..., gm € R with g = ¥ g;x".
Put f;:=0g fori>n and g; :=0g for i>m. Then

max(n,m) )
(a) f+g= Zg (fi+gi)x".
(b) —f =Xio(=fi)z".

(c)
n [m o n+m min(n,k) n+m [ k
fg=>, (Z fz‘gij]) = ( > figk—i) b= 3 (Z figk—i) a®

=0 \j=0 k=0 \i=max(0,k-m) k=0 \i=0

n+m-2

= fnngC + (fn—lgm + fngm—l)$ + (fn—QQm + fn—lgm—l + fngm—2)37 +...
o+ (foga + frgr + f290)2* + (fogr + frgo)z + fogo-

n+m n+m-1
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Proof. @ Put p := max(n,m). Then f; =0 =0p for all n<i <p and g; = 0p for all m < < p. Hence

b ) p )
(*) f= Zfixl and g= Zgif
1=0 i=0
Thus
f+g = (21;:0 fle) + (Zg):o gixi) "
= > o (fiat + gia®) ~GCL
= P o (fi + gi)a -[Ax8

So @ holds.
(]E[) Using @ we compute

f+ io(—foxi S+ (L)) = 3 0pat = 3 0p = 0p.
7= =0 =0 =0

and so —f = ¥ (- f;)z' by the Additive Inverse Law.
Let a € R and b € N. By hypothesis (fif) we have ax = xa and so by (2.1.3) (]ED

() ax™ = 2"a.

We compute fg:

fg = (ifixi)-(igjxj) ~ (i) and
i= j=
= Z(i(fixi)(gjxj)) - GDL
i=0 \ j=0
= 2| X (fila'gn))a’ | - GAL
(* * *) i;O 7;0
= Z(:) ;)(fi(gjxl))xj - TG = g% by
= Zn(:)(i(fzga)(ﬂf l’])) - GAL

Let 4,7,k € Z with k =1+ 7. We will show that

(+) 0<i<nand 0<j<m <= 0<k<n+m and max(0,k—m) <i<min(k,n)
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Suppose first that 0 < i <nand 0<j<m. Then 0 <k =49+ j <nm+m. Since j < m we have
m-—j>0andsok-m=i+j—-m=1i-(m-j) <i. Together with 0 <7 this gives max(0,k —m) <.
Since j > 0 we have i <i+ j = k. Together with i <n we get i < min(k,n).

Suppose next that 0 <k <n+m and max(0,k-m) <i <min(k,n). Then 0 << n. Since i < k we
get 0<k—-i=j. Ask<n+mandi<n wehave j=k—-i<(n+m)-n<m. We proved that 0<i<n

and 0 <j<m, so holds.
Put

A:={(i,j) €ZxZ|0<i<n, 0<j<m}
B:={(k,i) € ZxZ|0<k<n+m, max(0,k-m) <i<min(k,n)}.
It follows that the function
A - B, (Z,])»—>(1+]71)

is a bijection with inverse

B— A, (k,i)~ (i,k-1).
Hence the substitution k& =i+ j (and so j = k—) and the GCL and GAL imply that

n [ m o n+m min(k,n)
> (Z figjfb“z”) = > ( > figk—z‘xk)
=0 \ j=0 k=0 \i=max(0,k—m)

(++) ’ nam [ min(kn) :
> ( > figki) 2" -GDL

k=0 \i=max(0,k—-m)

Suppose 0 < i < max(0,k—m). Then i < k—=m, so k—i >m and gx_; = Or. Hence figr_; = fiOr =0gr

(by ([L:2.9)(d))-
Suppose min(k,n) < i < k. Then min(n, k) # k and so min(n, k) = n. Hence n < i, so f; = Og.
Thus f;gr_i = 0rgr_; = Or. It follows that

min(k,n) k
> figh=i =Y figh-i
t=max(0,k-m) 1=0
and so

n+m min(k,n) n+m [ k
(+++) Z( > figk_z-)a:’% > (Zfigk_,-)x’“.

k=0 \i=max(0,k-m) k=0 \i=0

Combining (* * %)), (4] and (+++) gives (d). O

Example 2.1.6. Let P be a polynomial ring in x with coefficients in Zg. Let

f=1+2z+32> and g=1+4x+5z% + 22°.
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Compute f+gand f-gin P.

f+g= 1422 + 322
+ 144z + 5z? +22°
= 2+6x + 822 +22°

=92 +92224923.

fg=(1+2x+32*) (1 +4x + 52° + 22°)
=(1-D)+(1-4+2-Dx+(1-5+2-4+3-1)z?
+(1-2+42-5+3-4)2° +(2-2+3-5)z? + (3-2)2°
=1+ 6z + 162 + 2423 + 192" + 62°

=1 + 4x? + ot

Exercises 2.1:

2.1#1. Let P be a polynomial ring in « with coefficients in R. Perform the indicated operation in
P and simplify your answer:

0 1 0 1
(e) (:v+ )(x— ) if R =Ma(R).
-1 0 -1 0

2.1#2. For b e R define
Q[b] == {a0+a1b+a2b2+...anb” |neN,ag,aq,...,a, €Q}.
Given that (for each b€ R) Q[b] is a subring of R.
(a) Is Q[v/2] a polynomial ring in \/2 with coefficients in Q?

(b) Is Q[7] a polynomial ring in 7 with coefficients in Q? (You don’t need to justify your answer

for .
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2.2 The degree of a polynomial

Definition 2.2.1. Let R be a ring with identity.
(a) R[z] denotes a polynomial ring in x with coefficients in R.

(b) Let f € R[z] and let n € N and ag,a1,...a, € R with f = ¥qa;x’. LetieN. If i <n define
fi =a;. If i >n define f; = 0r. Then f; is called the coefficient of 2* in f.(Observe that this is
well defined by

(¢) N*:=Nu{-o0}. ForneN* we define n+(—oc0) = —co and —co+n = —co. We extend the relation
"<" on N to N* via —oco <n for all n e N*,

(d) Let f € R[x]. If f =0g define deg f := —co and lead(f) = Og. If f = Xy fix® with f; € R and
fn 0, define deg f :=n and lead(f) = fp.

(e) A polynomial f € R[x] is called constant if f € R.

Theorem 2.2.2. Let R be a ring with identity and f € R[x].
(a) f=0g if and only if deg f = —oco and if and only if lead(f) = Op.
(b) deg f =0 if and only if f € R and f # Og.

(¢) f is a constant polynomial if and only if f € R if and only if deg f < 0 and if and only if
f =lead(f).

(d) f= Z?f(%f fix'. Recall here that, for f =0g, the empty sum Y. fix' is defined to be Og.
Proof. This follows directly from the definitions of deg f, leadf and f;. O
Theorem 2.2.3. Let R be a ring with identity and f,g € R[x]. Then

(a) deg(f +g) < max(deg f,degg).

(b) deg(-f) =deg f.

(¢) Exactly one of the following holds:

(1) deg(fg) =deg f +degg and lead(fg) = lead(f)lead(g).
(2) deg(fg) <deg f +degg, lead(f)lead(g) =0g, f +0r and g # Og.

In particular, deg fg < deg f + degg.

Proof. Put n:=deg f and m := degg. By 1) we have

n m )
f=>fiz" and  g=) gz’
i=0 1=0
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@) By (2 @ f+g= Zmax(n m)(fi+gi):ni and so (f+g)x = Og for k> max(deg f,degg). Thus

holds

[) If f = 0g, then - f = —OR OR and so deg f = —oo = deg(—f). Suppose f # 0. Then f, # Or
and so also —f,, # Og. Also by (2 (]EI) —f==(Zh, fix?) = ¥ o(~fi)z". Since —f,, # Og this gives
deg(-f) =n=deg f.

Suppose first that f =0g. Then fg=0gg = 0r. Hence deg f = —oco, deg(fg) = —oo,leadf = 0
and lead(fg) = Or. Thus

deg(fg) = —oo = —o0 +degg =deg f +degg and lead(fg) = 0g = 0r -lead(g) = lead(f)lead(g).

So (lc:1]) holds in this case. Similarly, (c:1)) holds if g = Og.
So suppose f #0r # g. By (2.L5)(d),
n+m-—1

fg= fngmmn+m+(fn—lgm+fngm—1)$ +...+

Note that f,, =lead(f) and g, = lead(g). Suppose that f,gm # 0g. Then deg(f +g) =n+m and

lead(fg) = fngm = lead(f)lead(g). Thus holds.
Suppose that f,gm, = 0. Then deg(f + g) < n+m and lead(f)lead(g) = fngm = Or. Thus
holds. O

Theorem 2.2.4. Let R be a commutative ring with identity. Then R[x] is commutative ring with
identity 1.

Proof. By R[z] is a ring with identity 1z. So we just need to show that R[z] is commutative.
Let f,g € R[x] and put n :=deg f and m := degg. Then

s = () (zgﬂ:ﬂ) €28
1=0
= Yy fge™  -R1LI)E
i=0 j=0
= S gjfialt - R is commutative
i=0 j=0
= Y >gifi?" - GCL
§=0i=0
: (zw) (55+) €190
i=0
= 9f -222)(@
We proved that fg=gf for all f,ge R[z] and so R[x] is commutative. O

Theorem 2.2.5. Let R be field or an integral domain. Then

(a) deg(fg) =deg f +degg and lead(fg) =lead(f)lead(g) for all f,g € R[x].
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(b) deg(fr)=degf andlead(fr) =rlead(f) for all f € R[x] and r € R with r # OR.
(¢) R[z] is an integral domain.

Proof. By Theorem [1.8.10| any field is an integral domain. So in any case R is an integral domain.
Let f,g € R[x]. We will first show that

(*) If lead(f)lead(g) = Og then f =0g or g =0p.

Suppose that lead(f)lead(g) = 0r. Since R is an integral domain we get lead(f) = 0g or lead(g) =
0. Now shows f =0g or g =0g.

@ By we have
(1) deg(fg) =deg f +degg and lead(fg) = lead(f)lead(g), or
(2) deg(fg) <deg f +degg, lead(f)lead(g) =0g, f #0r and g # Og.
In the first case, @ holds. The second case contradicts (*) and so does not occur.
() Let r € R with r # 0g. By deg(r) =0 and lead(r) = r. Using (b)) we conclude that
deg(fr)=deg f+degr=degf+0=degf and lead(fr)=1ead(f)lead(r) =Ilead(f)r.

Since R is a integral domain, R is a commutative ring width identity 1z # Og. So by
R[] is a commutative ring with identity. Since R is an integral domain 1 # O and thus

= OR[:U]

Let fg € R[x] with fg=0g. Then by (a) lead(f)lead(g) = lead(fg) = lead(Or) = O and by (*),
f=0g or g=0g. Hence R[z] is an integral domain. O

1R[:(:] = 1RiOR

Exercises 2.2:

2.2#1. Let R be a ring with identity and suppose that 1 # Og. Which of the following subsets of
R[xz] are subrings of R[z]? (You don’t need to justify your answer).

b) {f e R[z]]|deg f =2}.

[]
(c¢) {feR[z]]|degf <k}, where k is a fixed positive integer.
(d) {f € R[z]]| fon+1 =O0g for all n e N}.

(e) {feR[z]] fan =0 for all n e N}.

2.2#2. Let R be a ring with identity. An element r € R is called a zero-divisor in R if r # Og and
there exists s € R with s # O and rs = 0Opg.

Let f € R[x]. Prove or give a counter example:
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(a) If f is a zero-divisor in R[x], then lead(f) is a zero-divisor in R.

(b) If lead(f) is a zero- divisor in R[x], then f is a zero-divisor in R[z].
2.2#£3. Which of the following rings are integral domains?
(a) Zo[x]
(b) Zy[x]
(c) Ma(R)[z].
(d) Z[x]

2.3 Divisibility in F[x]
In a general ring it may or may not be easy to decide whether a given element divides another. But

for polynomial over a field it is easy, thanks to the division algorithm:

Theorem 2.3.1 (Division Algorithm). Let R be a ring with identity 1 + O and f,g € R[x] such
that lead(g) is a unit of R. Then there exist uniquely determined q,r € R[x] with

f=gq+r and degr<degg.

Proof. Fix g € R[x] such that g # Or and lead(g) is unit in R and let f € R[x].
Existence of ¢ and r:
Put m := degg. We will fist show

(*)  g+O0g. In particular, m =degg >0, m €N and g,, = lead(g) # Og.

Note that Ogr = Og # 1g for all 7 € R and so Og is not a unit in R. As lead(g) is a unit this
implies that lead(g) # Og. Hence g # Or and is proved.

For n € N consider the statement
P(n): 1If f e R[z] with deg f < n, then there exist ¢,r € R[z] with
(%) f=gg+r and degr<degg

We will first treat a special case:
(x %) Ifdegf<degg, then holds with ¢ =0g and r = f

Indeed, this follows from f =¢q-0gr+ f.

In general we will use induction to show that P(n) holds for all n € N.
To show that P(0) holds, let f € R[z] with deg f < 0. By 0 <degg and so deg f < degg. Now

shows that P(0) holds.
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Suppose inductively that P(k) holds for some k € N. To show that P(k+ 1) holds, let f € R[x]
with deg f < k+ 1. Then deg f < k and we need to show that holds for some ¢,r € R[z]. If

deg g > k, then deg f < deg g and we are done by .
Hence we may suppose degg < k . By m € N and g,, = lead(g). hypothesis lead(g) is a unit

in R and so g,, has an inverse g_!. Define

(+) f=f-g g fram.

We compute

[ fexk + fooizF b o+ L+

g: gmx™  + Gmo1z™ 1+ L+

9+ g fea® Im T 2t + gmorgilfidtl w4

= frz® + Imagnlfex®t o+

F=Ff-g g fuakm: (frc1 = Gmorgit fo)z® b+ 0+

The above calculation shows that deg f < k. By the induction assumption, P(k)-holds. So there
exist ¢ and 7 € R[z] with

(++) f=9qg+7 and degrT <degg.

We compute

[ o= f+g-gptfrakm - (). 123
(93+7) +g- g5 frux™™™ -
(9G+9-gp fra®™™)+7 - GCL

= g-(G+gnfraFm) +7 -[BxS

(+++)

Put ¢ := cj+g;11fka:k_m and r := 7. Then by f =g9q+r and by , degr = deg7 < degg.
Thus holds and P(k) is proved.

By the Principal of Induction we conclude that P(n) holds for all n € N. This shows the
existence of ¢ and r.

To show uniqueness, let g;,r; € R[x] for i = 1,2 such that
(#) f=g9q;+r; and degr; <degg.

Then
gq1 +T1 =992+ 12
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and so

(##) g-(q1—q2) =r2 —71.

Suppose ¢ — g2 # Og Then deg(q1 — ¢2) > 0 and lead(q; — g2) # Or. Since lead(g) is a unit in R this
implies lead(g)lead(q1 — g2) # Og, see Exercise [1.8#9| (Exercise 5 on Homework 8) Thus

degg < degg+deg(q1 —q2) —deg(qi—¢q2)>0
=deg(g- (q1 - q2)) —lead(g)lead(q1 - ¢2) # O, (2.2.3)) (c: 1)

= deg(ra —r1) - (##)
<max(degry,degry) -2Z23
<degyg - (#)
This contradiction shows q; — g2 = 0. Hence, 79 — 71 ) g-(@1-q2)=g-0g =0g. Thus ¢1 = ¢2
and 71 = o, see (1.2.9) (). O

Definition 2.3.2. Let R be a ring with identity 1z # Or and f,g € R[z] such that lead(g) is a unit
in R. Let q,r € R[x] be the unique polynomials with

f=gg+r and degr<degg

Then r is called the remainder of f when divided by g in R[x].

3 2

Example 2.3.3. Consider the polynomials f = z* +z
the remainder of f when divided by g.

—z+1and g=-2"+x-1in Zs[z]. Compute

-r‘ + x - 1
—2?+x-1] 2t + 23 -z + 1
ot - 2+ 2? | g-(-22)
228 - 22 -z + 1
= - 2 - 22 -z o+ 1 | in Zs[x]
- 3+ 22 - |g-z
- 227 + 1
= z? + 1 | in Zg[x]
2 - oz o+ 1 lg-1

Thus
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dtvad—r+1=(-2t+a-1) (~22+z-1)+2.

3

Since degx = 1 < 2 = deg(-x2 + z — 1), the remainder of z* + 23 — 2 + 1 when divided by —z2 + z + 1

in Zs[x] is x.

Theorem 2.3.4. Let R be a ring with identity 1z + Or and f,g € R[x] such that lead(g) is a unit
in R. Then g divides f in R[x] if and only if the remainder of f when divided by g in R[z] is Og.
Proof. Note first that since lead(g) is a unit in R the remainder of f when divided by g is defined.

—=: Suppose that g|f. Then by Definition f = gq for some q € R[x]. Thus f = gq+Og.
Since degOgr = —oo < deg g, Definition shows that Og is the remainder of f when divided by g.

<=: Suppose that the remainder of f when divided by g is Og. Then by Definition [2.3.2
f=9q+0p for some g € R[z]. Thus f = gq and so Definition shows that g| f. O

Theorem 2.3.5. Let R be a field or an integral domain and f,g € R[z]. If g # O and f|g, then
deg f <degg.

Proof. Since f|g, there exists h € R[x] with g = fh. If h = 0g, then by l) g=fh=f0g=0g,
contrary to the assumption. Thus h # Og and so degh > 0. Since R is a field or an integral domain

we can apply (2.2.5))(a) and conclude

deg g =deg fh =deg f + degh > deg f.

Theorem 2.3.6. Let F be a field and f € F|x]. Then the following statements are equivalent:

(a) deg f=0. (¢) fllp in Fx]. (e) f is a unit in F[z].
(b) feF and f #0p. (d) f~1p.

Proof. (@) = (b):  See (2:2.2) (D).

) = (): Suppose that f € F and f # 0p. Since F is a field, [AxT2 holds and so f is a unit
in F. Hence f has an inverse f~!in F. So ff™! = 1p and since f~! € F ¢ F[z] we conclude that
fl1lp in Flz].

[ = (d): and (d) = (¢): See[l.12.7

@ - @: Since f is a unit, there exists g € F[z] with 1p = fg. Since F is a field we know
that 15 # 0p. As 1p € F this gives deg(1p) =0 (see (2.2.2)(b)). Since F is a field we conclude from

EZH @) that

deg f +degg = deg(fg) = deg(1Fr) =0,

and so also deg f = degg = 0. 0

Theorem 2.3.7. Let F be a field and f,g € F[x]. Then the following statements are equivalent:
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(@) f~g. (c) deg f=degg and flg.
(b) flg and g|f. (d) g~ f.

Proof. (@) = (b): See[l.12.8

(]E[) — : Suppose that f|g and g|f. We need to show that deg f = degg. Assume first that
g = 0p, then since g| f, we get from that f = 0p. Hence f = 0p = g and so also deg f = degg.
Thus holds. Similarly, holds if f =0p.

Assume that f # Op and g # Op. Since f|g and ¢|f we conclude from that deg f < degg
and degg < deg f. Thus degg = deg f and holds.

— @: Suppose that deg f = degg and f|g. If f =0p, then degg = deg f = —o0 and so
g=0p. Hence f =g and so f ~ g since ~ is an equivalence relation and so reflexive, see

Thus we may assume f # Op. Since f|g we have g = fh for some h € F[x]. Thus by @,
degg =deg f +degh. As deg f = degg this gives deg f = deg f + degh. Since f # Or we have deg f € N
and we conclude that degh = 0. Thus by h is a unit in F[z]. As g = associatedfh this shows
that g ~ f by definition of ~.

@ = @: This holds since ~ is symmetric by [1.12.4 O
Definition 2.3.8. Let F be a field and f € F[z].
(a) f is called monic if lead(f) = 1p.

(b) Suppose that f # 0p. Then f:= f-lead(f)™'. (Note here that lead(f) # O and so lead(f) is a
unit in F since F is a field). f is called the monic polynomial associated to f.

(¢) Suppose that f =0p. Then f:=0p.

Example 2.3.9. Let f = 3z% + 22 + 42% + £ + 2 € Zs[z]. Then lead(f)'=3"1=1-31=6-3"1=2
and
f=@a'+2e3 +42® +2+2)-2=62" + 423 + 822 + 2w + 4 = 2t + 42® + 322 + 22 + 4.

Theorem 2.3.10. Let F' be a field and f,g € F[z].
(a) f=f-lead(f) and f ~ f.
(b) If f and g are monic and f ~ g, then f =g.
(¢) If f #0p, then f is the unique monic polynomial associated to f.
(d) deg f =deg f.

(e) f~gif and only if f=g.
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Proof. Recall from that ~ is an equivalence relation and so reflexive, symmetric and transitive.

@) Suppose that f = 0z. Then f =0z and so f-lead(f) = 0p -lead(f) =0p = f. Also f=0p = f
and so f ~ f as ~ is reflexive.

Suppose that f # 0p. Then f-lead(f) = (f -lead(f)™') -lead(f) = f. As lead(f) is a unit in F
and so also in F[x], this shows that f ~ f.

(]E[) By definition of f ~ g we have fu = g for some unit w in F[z]. Thus implies O # u € F.

Hence

1z 7 monie lead(g) fucg lead( fu) ve P20 lead(f)u f monic 1pu Axlll,,
and so u = 1p. Therefore g = fu = flp = f.

Suppose f # 0p. Then

lead(f) = lead(f -lead(f)™") e23® lead(f)lead(f)™* = 1p.

So f is monic. By @ we have f ~ f and so f is a monic polynomial associated to f.
Suppose g is a monic polynomial with f ~ g. By @) f~f. As ~ is symmetric and transitive this
gives f ~ f and f ~ g. Since both f and g are monic we conclude from (]EI) that f =g.

@By foandsobydegf:degf.

Suppose first that f = 0p. Then also f = 0. Hence

frg == O0p~g <= g=0p < §=0F < Op~j < [~

So we may assume that f # 0 and similarly, g # 0. Then both f and § are monic. By f~f
and g ~ g. Thus by

(*) [fl-=[f].  and  [g].=1[g]-.

Using this we get

o~ g
= [fl. = [¢]. -[AGS
= [fl. = [g- -@
— f ~ g5 -BA&s3H
— [ =3 -@

Exercises 2.3:
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2.3#1. Let R be a ring with identity and f,g € R[z]. Find polynomials ¢ and r in R[x] such that
f=gq+r and degr < degg, if

(a) R=Q, f=3z*-223+622—z+2and g=a®+z +1;
(b) R=Q, f=a*-7zx+1and g = 22% + 1;
(c) R=Zs, f=22*+2? -2 +1and g=22-1;

)

(d) R=7Zr, f =42 +22% +62% +4x +5 and g = 322 + 2.

L 1f, (01 0 0], |10 11
() R=My(R), f= x* + 3+ x°+ x+ and
0 0 10 11 01 11
O 1f, |1 0 01
g= z°+ x+ .
10 0 1 1 0

2.3#2. Let R be an integral domain and suppose that for all f,g € R[x] with g # Or there exist
q,r € R[z] with f = g¢+r and degr < degg. Prove that R is a field. Hint: Let a € R with a # Og.
Consider f =1 and g = a.

2.3#3. Consider f:=1 and ¢:=2 in Z[z]. Do there exist ¢, r € Z[x] with

f=9q+r and deg(r) < deg(g)?
2.3#4. Let F be a field and f € F[z]. Compute f (see if
(a) f=323+42%+5x+1 and F = Q;
(b) f=42°+6x3 +52% + 22 + 3 and F = Zr;

(¢) f=6x3+92?+ 15z +3 and F = Zs.

2.4 The Euclidean Algorithm for Polynomials

Definition 2.4.1. Let F' be a field and f,g,d € F[x]. We say that d is a greatest common divisor
of f and g and write

d=ged(f,9)
provided that

(i) d is a common divisor of f and g;
(ii) if ¢ is a common divisor of f and g, then degc < degd; and

(iii) d is monic.
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Example 2.4.2. Let F be a field and f € F[z]. Find a greatest common divisor of f and 0.

If f =0, then 2" divides f and O for all n € N. So there does not exist a greatest common
divisor of O and Op.

Suppose f # 0p. We claim that f = ged(f,0F). Observe that f is a common divisor of f and Op.
Also if ¢ is any common divisor of f and Op, then ¢|f and so by degc < deg f =deg f. Thus f
fulfills all three conditions of the ‘ged’.

Theorem 2.4.3. Let F be a field and f,g,d € F|x] in F[z] with d =ged(f,g).
(a) Suppose that q,r € Fxz] with f ~gq+r, Then d = ged(g,r).
(b) Suppose that f,je Flz] with f ~ f and §~g. Then d = ged(f,q).

Proof. @: Put f := gg+r. Then f ~ f by the hypothesis of @ We will now verify that d fulfills
the three conditions on d = ged(g,r).
(i): Since d = ged(f,g), the definition of the greatest common divisor shows that d|f and d%

As f ~ f we conclude from 8| that d | f. Since f = gg+r we have r = f — gq and so -

shows that that d|r. Hence d is a common divisor of g and r.

(ii): Let ¢ be any common divisor of g and r in F[z]. As f = gq +r, 1) shows that ¢|f
and so by [1.12.8 also ¢| f. Thus ¢ is a common divisor of f and g. As d = ged(f,g) this gives
degc < degd.

(iii): Since d = ged(f,g) the definition of ‘ged’ shows that d is monic.

Thus d is a greatest common divisor of g and r.

(]EI): Note that f~ fand f=g¢-0p+f. So f~g-0p+ f and @) shows that d = ged(g, f). We
proved that

d=ged(f,9) = d=ged(g,f).
This result with (g, f) in place of (f,g) gives
d=ged(g,f) == d=ged(f,9).
So @ holds. 0

Theorem 2.4.4 (Euclidean Algorithm). Let F' be a field and f,g € F[x] not both 0p. Define m e N
and equations

E. : rp, = awu, + b-axp, 0<k<m
Fr, @ s = awv + byp 0<k<m.
G, + tp = aw, + bz, 1<k<m

as follows:
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lead(rg)™  if rp # 0p

) and let Fy be the
1p if r, = 0p

() If Ex has been defined for some k € N, put € = {
equation obtained by multiplying Ey with eg:

Fy = By -

Eoia
Elib

a-lF + b'OF

a-0p + b-lp

Suppose now that i € N with ¢ > 1 and Ey has been defined for all 0 < k < 1.

() If s; =0p, put m =1 and the Algorithm stops.

(o) Suppose s; + 0p. Let q; € F[x] such that deg(s;-1 —s;q;) < deg(s;). (Note that such q; exists by
the division algorithm .

Let G; be the equation obtained by multiplying F; with —q; and let E;.1 be the equation obtained
by adding F;_1 and G;:

Gi=Fi -q
Ein=Fi1+G;

Then the algorithm stops after finitely many steps. Put d = Sp-1, © = V-1 and Y = Ym-1. Then
d,z,y € F[x] and
d =ged(a,b) and d=az+by.

Proof. We call ry,ug,yr the coeflicients of Ej, s, vk, yr the coefficients of Fj and tj,wy,z; the
coefficients of Gj. We will first show that each of these coefficients are in F[z]. By definition of
Ey and E; the coefficients of Ey and Fj are a,1,0 and b,0,1 respectively, and so all are in F[z].
Let i e N with ¢ > 1 and suppose inductively that the coefficients of Ej, are in F[z] for all 0 < k <.
Let 0 < k <. Since Fy = Ey - ¢ and ¢, € F[z], also the coefficients of F} are in F[z]. integers. As
Gy = Fi - (—qx) and qi € F[x], also the coefficients of G}, are in F[z]. Hence since E;;1 = F;_1 + Gy,
the coefficients of E;,1 are in F[x]. The principal of induction now shows that

(%) The coefficients of E;, F; and G; are in F[z], whenever E;, F; or G; is defined.
Let i € N such that FE; is defined. We will show
(x%) s =75~ 1y

By definition of F; we have F; = E; - ¢; and so s; = rj¢;. If r; # Op, then ¢; = lead(r;)™ and so ¢; is
a unit and s; = r;lead(r;) ™1 = 7. If 7; = Op, then ¢; = 1 and so ¢; is a unit and s; = r;1p = r; = 0p = 7.
So the first sentence in holds.
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(* % ) Si+1 ~ Si-1 — 8iq;
By definition of F;y1 and G; we have F;11 = F; + G; = F; + Fj_1 - —q; = F;_1 — F;q; and considering
the first coefficient we see that 7,41 = s;—1 — s;¢;- By , Si+1 ~ Ti+1 and so holds.

Suppose for a contradiction that Euclidean Algorithm does not stop. Then s; #+ O and s; is
defined for all i € N. In particular, deg(s;) € N. By Sis1 ~ Si—1 — 8;q; and so gives
deg s;+1 = deg(si—1 — $iq;). By choice of ¢; we have deg(s;—1 — s;q;) < deg s;, so deg s;;1 < degs;. Thus

§1>82>83>83>...8;>8i41> ...

It follows that the set {degs; | i > 1} does not have a minimal element. As degs; € N, this contradicts
the Well Ordering Axiom. This contradiction proves that Euclidean Algorithm stops after finitely
many steps, that is, there exists a smallest m € N with m > 1 and s,, =0p.

Since d = 8,1 = Fy—1 is monic, we conclude from [2.4.2] that

d =ged(0p,d) = ged(Sm, Sm-1)-
By Si+1 ~ Si—1 — Siq;- Hence 1} implies:
if d=ged(sit1,5) then d=ged( s;)si-1.

As d = ged(Sm, Sm-1) the Principal of Induction shows that d = ged(sq,s0). By (**) s1 =0~ ry and
s1~711. As rg = a and r1 = b, this shows sg ~ a and s; ~ b. Together with d = ged(s1,50) we conclude

from (2.4.3)(b) that d = ged(b,a) and so also d = ged(a, b).
As F,,_1 is the equation $,,-1 = a - Um-1 + b Ym-1, We get

d=az+by.

By (|#)) the coefficients of F,_1 are in F[x] so x,y € F[z] and all parts of the Theorem have been
proved. O

Example 2.4.5. Let f = 32t +423 + 222 +2+1 and g = 22° + 22 + 22 +3 in Zs[z]. Find u,v €
Zs[z] such that fu+ gv =ged(f,g).

In the following if a is an integer, we just write a for [a]s.

x

Eg : 3zt +42® + 222 +x+1 = f-1 + g-0 g+ 323 + 422 + 2z + 2
Fo: a*+32% +42%2+22+2 = f.2 + g-0 |Eg-371 =2 t + 32° + 2%+ 4
E - 223 42242243 = f.0 + g1 32% + 3z + 2
Fy : _: f-0 + g-3 |By-271 =3
Eg : 32% +3zx+2 = f-2 + g2z |Fo + Gy B+ 22 -
o [Boati]- ro1 - g By (3)1 -2 I By
Ga x= f@+2) + g-@Pr20) P2 (EEED 222 + 20 - 2
F3 = E3 1 = f-(z+2) + g-(@2+22+3) |Fy +Gqy 1
E4 o

The remainder of - when divided by 1 is .
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Hence

1=ged(f,g) and 1=f-(z+2)+g-(2®+22+3).
Theorem 2.4.6. Let F be a field and f,g € F[xz] not both Op.
(a) There exists a unique a unique greatest common divisor d of f and g in F[z].
(b) There exist u,v € F[x] with d = fu+ gv.
(¢) If ¢ is a common divisor of f and g, then c|d.

Proof. By the Euclidean algorithm there exists w,v,d € F[z] such that d = ged(f,g) and
d = fu+ gv. This proves the existence of d in @ and also proves (]ED

To prove (i) let ¢ be any common divisor of a and b. Since d = fu+gv we conclude from (|1.4.4)
that c|d.

It remains to prove the uniqueness d. So let also e be a greatest common divisor of f and g.
Then e is a common divisors of f and g, and since d is greatest common divisors of f and g we get
dege < degg. Similarly, as d is a common divisor of e and f, and e is greatest common divisor of f
and g we have dege < degd. degd = dege.

Since e is a common divisor of g and f, (c) shows that e|d. As degd = dege, gives d ~ e.
As d and e are monic this implies that d = e, see (]E[) Thus d is unique. ]

Theorem 2.4.7. Let F be a field and f,g € F[x]. Then 1p = ged(f,g) if and only if there exist
u,v € Flz] with 1p = fu+ gv.

Proof. =: Suppose that 1p = ged(f,g). By Example f and g are not both O and so
(2.4.6)(d) shows there exist u,v € F[z] with fu+gv=1p.

<—: Suppose that there exist u,v € F[x] with 1g = fu+ gv. Note that 1z is a monic common
divisor of f and g. Let ¢ be any common divisor of f and g. Since 1p = fu + gv we conclude that

c|1p (see (1.4.4)(d). Hence degc < deglp by Thus 1 = ged(f, g) by definition of ‘ged’. [

Theorem 2.4.8. Let F be a field and f,g,h € F[x]. Suppose that 1p = ged(f,g) and f|gh. Then
flh.

Proof. Since 1p = ged(f,g) we conclude from that there exist u,v € F[z] with

fu+gv=1p
= (fu+gv)h=1ph | Principal of Substitution
= (fu)h+(gv)h=h |[Ax8and [AxT0l
= f(uh)+(gh)v=h | GCL, twice

Since f divides f and f divides gh, (1.4.4)(c) now implies that f|h. O
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Exercises 2.4:

2.4#1. Let F be a field.
(a) Let a € F and let d be a monic polynomial in F[z] with d|(z+a). Show that d = 1p or d = x +a.
(b) Let a,be F with a # b. Compute ged(x + a,z +b).

2.4#2. Let F be a field and f,g € F[x]. Find d, f,g € F[x] with d = ged((, f),g) and d = fu + gv if
(a) F=Q, f=a2*-23-22+1and g=23-1;
(b) F=Zs5, f=2*+322+22+4 and g =22 - 1;
(c) F=C, f=a2®-ix’ +4x-4iand g =22 + 1
(d) F=Z, f=a*+2+1and g=2?+2+1.

2.4#3. Let F be a field and f € F[z] such that f|g for every non-constant polynomial g € F[x].
Show that f is a constant polynomial.

2.4#4. Let F be a field and f,g,h € F[z] with 1p = ged(f,g). If f|h and g|h, prove that fg|h.

2.4#5. Let F be a field and f,g,h € F[xz]. Suppose that g #+ Op and 1p = ged(f,g). Show that
ged(fh, g) = ged(h, g).

2.4#6. Let F be a field and f,g,d € F[x] such that h # 0p and d = ged(f, g).

(a) Show that there exist f,§ e F[z] with f = fd and g = gd.

(b) Show that ged(f,§) = 1p.
2.4#£7. Let I' be a field and f, g,h € F[z] with f|gh. Show that there exist g, h e F[z] with §|g, h|h
and f = Gh.

2.5 Irreducible Polynomials

Recall that an integer p is a prime if p # 0, p # +1 and whenever «a is an integer with ¢|p, then a = £1
ot a = xp.

Definition 2.5.1. Let F be a field and f € F[x].
(a) f is called irreducible provided that
(i) f#0p and f + 1p, and

(ii) whenever g € Fx] with g|f, then

g~lp or g~ f.
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(b) f is called reducible provided that

(i) f#0p, and
(i) there exists g € F[x] with
glf, g#1p, and g+ f.

Remark 2.5.2. Let F be a field and f € F[x]. Then the following statements are equivalent:
f is not constant.

[¢F.

(a)

(b)

c) deg f>0.
)
)

b
(
(d) degf>1.

(e f#0p and f+ 1p.

Proof. We will show that the negation of the three statements are equivalent, that is we will show
that

fisconstant <= felF <<= degf<0 <<= degf<l <= f=0porf~1p.

By (2.2.2)(c) f is constant if and if f € F' and if and only if deg f <0.
Since deg f € N* = Nu {-00}, we have deg f < 0 if and only if deg f < 1 and if and only of

deg f = —o0 or deg f = 0.

From (2.2.2))(a) we know that deg f = —oo if and only if f = O, and from that deg f = 0 if
and only if f~1p. O

Theorem 2.5.3. Let F be a field and f € F[x]. Then the following statements are equivalent:
(a) f is reducible.

(b) f is divisible by a non-constant polynomial of lower degree.

(
d

f is the product of two non-constant polynomials of lower degree.

e) f is the product of two non-constant polynomials.

)
)
c) f is the product of two polynomials of lower degree.
)
)
f)

(
(f) f is not constant and f is not irreducible.

Proof. @ — (]E[): Suppose f is reducible. By definition of ‘reducible’ we conclude that f + Op
and there exists g € F[z] with g|f, g+ 1p and g + f. As g| f and f # Op we have g # O (see
1.4.3)). Since g # Op and g + 1p, Remark shows that ¢ is not constant. As g|f and f # O we
have degg < deg f, see Suppose that degg = deg f. Since g|f we get from that g ~ f, a
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contradiction. Thus degg + deg f and and so degg < deg f. Hence g is a non-constant polynomials
of lower degree than f which divides f. So (]E[) holds.

(]E[) = : Let g be a non-constant polynomial of lower degree than f with g|f. Since g is
not constant we have degg > 0 (by . Moreover, degg < deg f and f = gh for some h € F|[z].
From degg < deg f we get deg f # —oo0, so f #+ 0p. As f = gh we conclude that h # 0p. By @
deg f = deg g+ deg h and since deg g > 0 this gives deg h < deg f. We proved that f = gh, degg < deg f
and degh < deg f. Thus holds.

= (d): Suppose f = gh with degg < deg f and degh < deg f. By[2.2.5|deg f = deg g+degh.
Since degg < deg f we conclude that degh > 0. So h is not constant (by [2.5.2). Similarly ¢ is not
constant. Thus @ holds.

(d) = (g): Obvious.

() = ([@): Suppose f = gh where g and h are non-constant polynomials in F[z]. Then g|f.
As g and h are non-constant we have g + 1g, degg > 1 and degh > 1, see By @ we
know that deg f = deg g +degh and so deg f > degg > 1. Thus f is not constant and deg f + degg. If
g~ f, then 2.377 implies deg g = deg f, a contradiction. Hence g # f.

We proved that g| f, g » 1p and g + f. Hence the second condition in the definition of ‘irreducible’
does not hold. So f is not irreducible. We already proved that f is not constant, so @) holds.

@ — @: Suppose f is not constant and f is not irreducible. By definition f is irreducible,
if f+0p, f+*1p and

“ whenever g € F[x] with g|f, then g~1p or g~ f”

As f is non constant we know that f # Op and f + 1p, see So the latter statement must be
false. Hence there exists g € F[z] with g|f, g » 1p and g + f. Also f # Op and the definition of
‘reducible’ now shows that f is reducible. Thus @ holds. O

Remark 2.5.4. Let F' be a field.
(a) A non-constant polynomial in F[x] is reducible if and only if its is not irreducible.
(b) A non-constant polynomial in F[x] is irreducible if and only if it is not reducible.
(¢) A polynomial is irreducible if and only if it is not constant and not reducible.

)

(d) A constant polynomial in F[x] is neither reducible nor irreducible.

Proof. Let f € F[z]. Then (2.5.3)(d),(f) shows that

(%) f is reducible if and only if f is non-constant and f is not irreducible.

(): Let f be non-constant polynomial in F[z]. Then shows that f is reducible if and only
if f is not irreducible.

(]E[): This is equivalent to @ and so true.
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Suppose [ is irreducible. Then f # Op and f + 1z. So f is not-constant, see Now
implies f is not reducible.
Suppose f is not constant and not reducible. Then (]ED shows that f is irreducible

@: By irreducible polynomials are not constant and by reducible polynomials are not
constant. Thus constant polynomials are neither irreducible nor constant. O

Theorem 2.5.5. Let F be a field and p a non-constant polynomial in F[x]. Then the following
statement are equivalent:

(a) p is irreducible.
(b) Whenever g,h € F[x] with p|gh, then p|g or p|h.
(¢) Whenever g,h € F[z] with p = gh, then g or h is constant.

Proof. () = (B):  Suppose p is irreducible and let g,h € F[z] with p | gh. Since p is non-
constant we have p # 0p and so the Euclidean Algorithm [2.4.4] shows that there exists d € F[z] with
d = ged(p, g). By definition of ‘ged’, d|p and since p is irreducible we get that

d~1p or d~p.

We treat these two cases separately:

Suppose that d ~ 1r. Since both d and 1z are monic we conclude from that d = 1p. As
p|gh this implies p|h, see

Suppose that d ~ p. As d|g this gives p|g, see

— : Suppose holds and let g, h € F[x] with p = gh. Note that plp = p = gh and so
p|gh. From (]ED we conclude p|g or p|h. Since the situation is symmetric in g and h we may assume
p|lg. As p is not constant we have p # Op. Since p = gh this gives g # O and h # Op. In particular,

degh > 0. As p|g we have degp < degg by Hence

degg > degp = deggh @ degg+degh >degg+0=degg.
Thus degg = deg g + degh and so degh = 0. Thus h is constant.

- @: We will show that not—@ — not—. So suppose @ does not holds. Then p
is not constant (by hypothesis) and not irreducible. Hence @,@ shows that p is the product
of two non-constant polynomials. Thus does not hold. O

Theorem 2.5.6. Let F' be a field and let p be an irreducible polynomial in F|x]. If ay,...,a, € F|z]
and plaias . ..an, then pla; for some 1 <i<n.

Proof. By induction on n. For n =1 the statement is obviously true. So suppose the statment is
true for n = k and that pla; ...agags1- By play ...ax or plags1. In the first case the induction
assumption implies that p|a; for some 1 < i < k. Hence, in either case, p|a; for some 1 <i <k + 1.
Thus the theorem holds for k£ + 1 and so by the Principal of Mathematical Induction the
theorem holds for all positive integers n. O
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Theorem 2.5.7. Let F be a field and p,q irreducible polynomials in F[x]. Then p|q if and only if
p~q.

Proof. If p ~ g, then p|q by [1.12.6] So suppose that p|q. Since ¢ is irreducible we have p ~ 1p or
p ~ ¢, and since p is irreducible we have p + 1p. Thus p ~ q. O

Theorem 2.5.8. Let F be a field and f,g € Flx] with f ~g. Then f is irreducible if and only if g
1s irreducible.

Proof. Since f ~ g we know that deg f = deg g and that f and g have the same divisors, see[2.3.7 and
LI12.8

By f is irreducible if and only if f is non-constant and not reducible. This holds if and
only if deg f > 1 and f is not divisible by a non-constant polynomial of lower degree, see @
and [2.5.3] The latter statement holds if and only if degg > 1 and ¢ is not divisible by a polynomial
of lower degree, and so if and only if ¢ is irreducible. O

Theorem 2.5.9 (Factorization Theorem). Let F be a field and f a non-constant polynomial in F[x].
Then f is the product of irreducible polynomials in F[z].

The proof is by complete induction on deg f. So suppose that every non-constant polynomial of
lower degree than f is a product of irreducible polynomials.

Suppose that f is irreducible. Then f is the product of one irreducible polynomial (namely itself).

Suppose f is not irreducible. Since f is also non-constant we conclude from that f = gh
where ¢ and h are non-constant polynomials of lower degree than f. By the induction assumption
both ¢ and h are products of irreducible polynomials. Since f = gh this shows that f is the product
of irreducible polynomials.

Example 2.5.10. Consider the polynomial f = 2z* -2 in Q[z]. Then

f=20'-1)=20*-1)(2*+1) =2z - 1) (z + 1)(z> + 1),

and so each of the following are factorization of f as products of irreducible polynomials in Q[x]:

f=2x-2) (z+1) (2*+1)
= (z-1) (2z+2) (22+1)
=(z-1) (z+1) (22*+2)
=(2z+2) (22+1) (z-1)
= (6x +6) (5%z +5) (%:p - 1—15)
Theorem 2.5.11 (Unique Factorization Theorem). Let F' be a field and f a non-constant polynomial
in Flx]. Suppose that n,m are positive integers and pi,p2,...,pn and qi,...Gm are irreducible

polynomials in F[x] with
f=pip2...on and f=qiq2...qm.
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Then n =m and, possibly after reordering the q;’s,

p1~q, PpP2~q2, ..., Pn~{Qn-

In more precise terms: there exists a bijection w:{1,...n} » {1,...m} such that

P1~4x(1), P2~4r(2), -5 Pn~qx(n)-

Proof. The proof is by complete induction on n. So let k be a positive integer and suppose that the
theorem holds whenever n < k. We will show that the theorem holds for n = k. So suppose that

(*) f=pip2...Dk and f=q1q2---am

where m is a positive integer and p1,...,Dk,q1, - - gm are irreducible polynomials in F[z].

Suppose first that f is irreducible. Then by f is not the product of two non-constant
polynomials in F[z]. Hence (*) implies k = m = 1. Thus p; = f = ¢1. Since ~ is reflexive this gives
p1 ~ g1 and so the theorem holds in this case.

Suppose next that f is not irreducible. Since p; and ¢ are irreducible we get f # p; and f # q;.
Thus k£ > 2 and m > 2.

GCL ..
By f=W1- - -pe-1)Pk = Pe(p1...Pk-1), s0 pg divides f. By 1’ f=q1...q9m and we conclude
that pg divides ¢1 ...¢;,. Hence by Pk |g; for some 1< j <m. As p; and g; are irreducible we

get pi ~ qj, see Reordering the ¢;’s we may assume that

() Pk~ m-

The definition of ~ now shows that

(x* %) Pk = gm
for some unit u € F[x]. Since F is a field, F' and so also F[z] is commutative, see m Hence

o) ® , ¢
= Ph-1D ® f ® (¢

((PlU)Pz--‘pkq)qm = (p1-- - pr-1)(gmu) P1-. -DPk-1Pk e Qm-1)Gm-

By ([2:2.5)(c) F[z] is an integral domain. Since gy, is irreducible we have gy, # 0p. Hence the
Multiplicative Cancellation Law gives

(P1uw)p2- - Ph-1=q1 - Gm-1.

Since u is a unit, pju ~ p1. As p; is irreducible we conclude that also pju is irreducible, see by
2.5.8] The induction assumption now implies that £ — 1 =m — 1 and that, after reordering the ¢;’s,

pu~qr, p2~q2, ... Pk-1~4k-1-
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From k—1=m-1 we get k =m. As p; ~ p1u and piu ~ g1 we have p; ~ ¢q1, by transitivity of ~,

see [.12.4] Thus

pbr~q, p2~4q2, ..., Pk-1"~qk-1,

Moreover, as pi ~ ¢, and m = k we have pi ~ qi. Thus the theorem holds for n = k. By the
principal of complete induction, the theorem holds for all positive integers n. ]

Exercises 2.5:
2.5#1. Find all irreducible polynomials of

(a) degree two in Zsg[z].

(b) degree three in Zso[x].

(c) degree two in Zg[x].
2.5#2. (a) Show that x? + 2 is irreducible in Zs[z].

(b) Factor 21 — 4 as a product of irreducibles in Zs[x].
2.5#3. Let F be a field. Prove that every non-zero polynomial f in F[z] can be written in the
form f = cpipe...p, with ¢ € F, n € N and each p; monic irreducible in F[z]. Show further that if
f=dq...qn with d € F, m € N and each ¢; monic and irreducible in F[z], then m =n, ¢ = d and

after reordering, if necessary, p; = ¢; for each 1.

2.5#4. Let F be a field and p € F[z] with p ¢ F. Show that the following two statements are
equivalent:

(a) p is irreducible
(b) If g € F[x], then p|g or 1p = ged(p, g).

2.5#5. Let F be a field and let pq,po,...p, be irreducible monic polynomials in F[xz] such that

pi #pj for all 1 <i<j<n. Let f,g e F[z] and suppose that f = aplflpé€2 ...pknand g = bplllplz2 . .pl

for ki,ko, ..., kn,l1,l2...,1, € N and non-zero a,b € F.
(a) Show that f|g in F[z] if and only if k; <; for all 1 <i < n.

(b) For 1 <i<n define m; = min(k;,1;). Show that ged(f,g) =pi"py?...ppm.
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2.6 Polynomials and Homomorphism

Theorem 2.6.1. Let R and S be commutative rings with identities, let o: R — S a homomorphism
of rings with a(1r) =1g and let s€ S.

(a) There exists a unique ring homomorphism oy : R[x] - S such that as(x) = s and as(r) = a(r)

for all r e R.
deg f ] deg f )
(b) as(f) = Z(:) a(fi)s' for all f = Z(:) fiz* in R[z],

Proof. Suppose first that §: R[z] - S is a ring homomorphism with

(*) B(z)=s and B(r)=a(r)
for all r € R. Let f e R[x].
Then
deg f )
B = 5( > fix’) -@:2:2)(d
i=0
deg f )
= > B(fiz')  —f respects addition
i=0
deg f
= Zg: B(f)B(x)" —pB respects multiplication
Z:l(e)gf )
= Z(:] a(fi)s'. = (%)

This proves (]E[) and the uniqueness of a;.

It remains to prove the existence. We use (]ED to define az. That is we define

deg f ]
gt R[QZ] g S? f = Z a(fi)sz‘

i=0
By hypothesis a(1g) = 1g. It follows that

as(x) =as(1gr) -2I14

=a(lr)s  —definition of aj
=1gs -a(lr) =1g
=s ~-[AXT0Q for S

and similarly, and if r € R, then

as(r) = ag(re®) = a(r)s = a(r)ls = a(r).
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Let f,g € R[x]. Put n = max(deg f,degg) and m = deg f + degg.

as(f+g) = Qs (Z(fz + gz)mz) - (21.5) () with R[z] in place of P
i=0
= Z o fi +gi)s' — definition of ay
=0
= Z (oz(fl-) + a(gi))si — Since « respects addition
degf i , degg ,
= | X a(fi)s' | +| D alg)s'| - @.1L5)([) with (5,5, s) in place of (R, P,z)
i=0 =0
= as(f) +as(g) — definition of a, twice
m k
as(fg) = Qs (Z (Z figk_l) x ) - [2.1.5)(a) with R[z] in place of P
k=0 \i=0
m k
= Yo (Z figk_z) 5 — definition of oy
k=0 \i=D
= > Z (fi)a(gr- ,)) s — « respects addition and multiplication
k=0 \i=0
deg f degyg A
= Z a(fi)s' > agj)s’ | - @.1L5) () with (S,S,s) in place of (R, P, z)
=0 7=0
= as(f)-as(g) — definition of as, twice
So a; is a homomorphism and the theorem is proved. ]

Example 2.6.2. Let R and S be commutative rings with identities, a : R - S a ring homomorphism
with a(1g) = 15 and s € S. Compute ay in each the following cases:

(1) S=Rand a(r) =r.

deg f ~ degf )
as(f) = Z(:) a(fi)s' = ZE) fis'
(2) S=R[z],a(r)=rand s=z
deg f . degf )
as(f)= > a(fi)s'= Y, fia'=f
i=0 i=0

So ay is identity function on R[z].
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(3) ne R, S=Ry[z], a(r) =[r], and s = z.

Note first that by Example (1.11.2)(4]) the function R —» R,,,r = [r], is a homomorphism. So
a:R— Ry[z],r — [r], is a homomorphism. We compute

deg f . degf ]
as(f) = Z(:) a(fi)s' = ZE) [filna'!

So as(f) is obtain from f by viewing each coefficient as congruence class modulo n.

For example if R =7 and n =3, then

oz (623 + 52% + 102 + 9) = [6]32% + [5]3 2% + [10]3 2 + [9]3 = [0]32> + [2]322 + [1]32 + [0]2
(in Zs[2]) 222 + 2.

Definition 2.6.3. Let I be a set and R a ring.
(a) Fun(I, R) is the set of all functions from I to R.
(b) For a, 8 € Fun(I, R) define a+ 8 in Fun(l, R) by
(a+5)(2) = (i) + B()

for alliel.

(¢) For a,B e Fun(l,R) define af in Fun(l, R) by

(af) (i) = (i) 5(7)

foralliel.

(d) Forre R define r® e Fun(I, R) by
r°(i)=r
for alliel. r° is called the constant function on I associated to r.

(e) Fun(R) = Fun(R, R).
Theorem 2.6.4. Let I be a set and R a ring.

(a) Fun(I, R) together with the above addition and multiplication is a ring.

(b) 0% is the additive identity in Fun(I, R).
(c) If R has a multiplicative identity 1, then 1% is a multiplicative identity in Fun(l, R).
)

(d) (~a)(i) =-a(i) for all « e Fun(I,R), i € I.
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(e) The function T: R - Fun(I,R),r ~ r° is a homomorphism. If I + &, then T is injective.
Proof. (ia)-(d): See Exercise 7 on Homework 3 or in the Appendix.
@ Let a,be R and i€ I. Then

(a+b)°(1) a+b — definition of (a +b)°
= a®(i) +b°(i) - definition of a® and b°
= (a®+b°)(1) - definition of addition of functions

Thus (a+b)°® =a® +b° by |A.4.14and so 7(a +b) = 7(a) + 7(b) by definition of 7.
Similarly,

(ab)®(7) ab — definition of (ab)®

a®(i)b®(i) - definition of a® and b°

(a®b®)(i) - definition of multiplication of function

Hence (ab)® = a°b° by [A.4.14] and so 7(ab) = 7(a)7(b) by definition of 7.

Thus 7 is a homomorphism .

Suppose in addition that I # @. To show that 7 is injective let a,b € R with 7(a) = 7(b). Then
a® =b°. Since I # & we can pick i € I. Then

a=a’(i)=b°(i)=0b

and so T is injective. O

Exercises 2.6:

2.6#1. Let R and S be commutative rings with identity, « : R — S a homomorphism of rings with
a(lg) =1g, s€ S and f € R[xz]. Compute a(f) if

(a) R=7,8 =175, a(n) =[n]s for all n € Z, s = [2]5 and f = 23 + 22 + 1.
(b) R=R,S=C, a(r)=rforallreR, s=iand f =23 +22% +2+2.
(¢) R=C, S =C[z], a(a+bi) = a-biforall a,be R, s =z and f =iz’ —x*+(2-i)z3+ 2 —iz+(3+2i).

2.7 Polynomial function

Notation 2.7.1. Let R be a commutative ring with identity. For f = Z?fgf fiz' € R[x] let f}, be the
function

deg f )
fr: R—-R, 1 v~ Z firt.
i=0

fr is called the polynomial function on R induced by f. We will usually just write f* for fp.
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Remark 2.7.2. Let R be a commutative ring with identity.

(a) Letid : R - R,r = r be the identity function on R and for r € R let id, : R[z] - R be the
homomorphism from[2.6.1. Then

fr(r) =id.(f)
for all f € R[z] and r € R.

(b) Let a € R[z] be constant polynomial (that is a € R). Then a* is the constant function a® on R
associated to f

Proof. @: By Example 1) id,(f) = Z?fogffiri and so id,(f) = f*(r).
(]EI) Since a € R we have a = az’ and so a*(r) = ar® = alg = a = a®(r) for all r € R. Thus

a*=a’ O

The following example shows that it is very important to distinguish between a polynomial f
and its induced polynomial function f*.

Example 2.7.3. Determine the functions on Zs induced by the polynomials of degree at most two
in Zo[x].

f 01|z |a+l|a?|2?+1|2?+x|2?+z+1
f7o)y|oj1rjo| 1 0 1 0 1
Alol1j1l o | 1| o 0 1

We conclude that 2* = (22)*. So two distinct polynomials can lead to the same polynomial
function. Also (22 +z)* is the zero function but 22 + z is not the zero polynomial.

Theorem 2.7.4. Let R be commutative ring with identity.
(a) f*eFun(R) for all f € R[z].
(b) (F+9)*(r) = f(r) +g7(r) and (fg)*(r) = f*(r)g*(r) for all f,g € R[z] and r € R.
(c) (f+9)" =[f"+g" and f*g" = f*g" for all f,g € R[x].
(d) The function R[z] - Fun(R), f~ f* is a ring homomorphism.
Proof. @ By definition f* is a function from R to R. Hence f* € Fun(R).

()

id (f+g) -(2.7.2 (EI)

id,(f) +id,(g) - id, is a homomorphism

ffry+g°(r) -(2.7.2 (EI),twice

(f+9)"(r)
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and similarly

id.(fg) —(2.7.2 (EI)

id,(f)id;(g) - id, is a homomorphism
f*(r)g*(r) -(2.7.2 (El),twice

(fg)*(r)

Let r € R. Then

(f+9)*(r) = f(r)+g"(r) - @)
= (f*+¢*)(r) - Definition of addition in Fun(R)

So (f+¢g)*=[f"+g*. Similarly

(fg)"(r)

g (r) - @

(f*g*)(r) - Definition of multiplication in Fun(R)

and so (fg)* = f*g".
@ Follows from . O

Theorem 2.7.5. Let R be a commutative ring with identity 1gr + Or, f € R[z] and a € R. Then
f*(a) is the remainder of f when divided by x —a in R[z].

Proof. Let r be the remainder of f when divided by z —a. So r € R[x], degr < deg(x — a) and there
exists g € R[z] with

(*) f=q-(x—a)+r.

Since deg(z —a) = 1 we have degr <0 and so r € R. Thus

(+5) r(t) B0 o) =
for all t € R. We compute
IO (¢-@-a)+r) @) BP0 (e )
(@) @-a)@+r@ " @) a-a)+r(a)
. () (a-a)+r 220 ¢*(a) O +7
2.9 (d Op +7 Ax4 ,
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Definition 2.7.6. Let R be a commutative ring with identity, f € R[z] and a € R. Then a is called
a root of f if f*(a) =0g.

Theorem 2.7.7 (Factor Theorem). Let R be a commutative ring with identity 1g #+ Og. Let f € R[z]
and a € R. Then a is a root of f if and only if x —a|f in R[x].

Proof. Let r be the remainder of f when divided by z —a. Then

(z-a)lf
<~ TZOR —m
=  f(@)=0r ~f*(a)=rby

<= ais aroot of f — Definition of root

Theorem 2.7.8. Let R be commutative ring with identity and f € R[x].
(a) Let g€ R[x] with g|f. Then any root of g in R is also a root of f in R.

(b) Let a € R and g,h € R[z] with f = gh. Suppose that R is field or an integral domain. Then a
is a root of f if and only if a is a root of g or a is a root of h.

Proof. (a): Let a be a root of g. Then g*(a) = Og. Since g| f, there exists h € R[z] with f = gh.
Then

% % (2.7.4) (c) % % *
(@) = (gh)* () B2 g (@)h*(a) = 0 - 1" (a) = Op.
Thus a is a root of f. So @ holds.

@: Suppose that R is field or an integral domain. By |[1.8.10|all fields are integral domains. Thus
R is an integral domain and so [Ax11holds. Hence

a is a root of f
f*(a)=0g — definition of root
(gh)*(a) = Or ~f =gh
g (a)h*(a) = Op @@
g*(a)=0r or h*(a)=0g A TT]

aisaroot of g or aisarootof h —definition of root, twice

r1en
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Example 2.7.9. (1) Let R be a commutative ring with identity and a € R. Find the roots of x —a
in R.
Let be R. Then (x—a)*(b) =b-a. So b is a root of z —a if and only if b—a =0 and if and
only if b = a. Hence a is the unique root of z — a.

(2) Find the roots of 22 — 1 in Z. Note that
2-1=(z-1)(z+1)=(z-1)(z-(-1)).

Since Z is an integral domain, show that the roots of 22 — 1 are the roots of x — 1 together
with the roots of z — (-1). So by the roots of #2 — 1 are 1 and 1.

(3) Find the roots of 2% -~ 1 in Zg.
Since Zg is not an integral domain, the argument in does not work. We compute in Zg:
02-1=-1,(1)2-1=1-1=[0],(22)? -1=4-1=3,(23)?=9-1=8=[0/4-1=15=-1.

So the roots of 22 — 1 in Zg are +1 and +3. The four different roots correspond to the two
different factorizations

2 -1=(z-1)(z+1) and 2> —1=(z-3)(z+3)
of 22 -1 in Zg.

Theorem 2.7.10 (Root Theorem). Let R be field or an integral domain and f € R[x] a non-zero
polynomial. Then there exist m € N, elements aq,...,am € R and q € R[x] such that

(a) ¢+ 0gr and deg f =degqg+m,
(b) f=q-(z-a1) (z-az)-...- (z-am),
(¢) q has no roots in R, and
(d) {a1,az,...,an} is the set of roots of f in R.
In particular, m < deg f and the number of roots of f is at most deg f.

Proof. The proof is by complete induction on deg f. So let k € N and suppose that theorem holds
for all polynomials of degree less than k. Let f be a polynomial of degree k.

Suppose that f has no roots in R. Then the theorem holds with ¢ = f and m = 0.
Suppose next that f has a root a in R. Then by the Factor Theorem x—al|f and so

(+) f=(x-a)-g “EVg-(z-a)

for some g € R[x]. Since f # 0p also g # 0. We compute

(%) k=degf = deg(g- (a:—a)) E2IE degg+deg(r—a)=degg+1

and so deg g = k—1 < k. Hence by the induction assumption there exist n € N, elements a1,...,a, € R

and g € R[z] such that
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q +#+O0r and degg = degq + n,

)
B) g=q¢-(x-a1) - (x-az) ...-(x—apn),
) ¢ has no roots in R, and

)

D) {a1,az,...,a,} is the set of roots of g.
Put
(% % %) m:=n+1 and  ap=a.
Then
deg f degg+1 degg+n+1 " degq +m,
SO @ holds.
We have

fg'(x_am)

g (x-a1) - (x—az) ...-(x—ap) - (x —am).
and since n =m — 1 we see that (]ED holds.
By q has no roots and so holds.

Let be R. Since f=g-(x—am), shows that b is a root of f if and only if b is a root of g or

b is a root of x — a,,. By @ the roots of g are ai,as,...a, and by lb the root of z — a,, is
apm,. Thus the set of roots of f is {a1,as...,an,am} ={a1,...,a,}. Hence also @ is proved. O

Remark 2.7.11. 22 -1 has four roots in Zg, namely +1 and +3, see Example @ So in rings
without [AXT1] a polynomial can have more roots than its degree.

Theorem 2.7.12. Let F be a field and f € F|x],
(a) Ifdeg f =1, then f is irreducible and f has a root in F.
(b) Ifdeg f >2 and f is irreducible, then f has no root in F.

(c¢) Ifdeg f =2 or3, then f is irreducible if and only if f has no roots in F.

Proof. See Exercise

Exercises 2.7:
2.7#1. Let F be a field and f € F[x]. Show that
(a) If deg f =1, then f has a root in F.

(b) If deg f > 2 and f is irreducible, then f has no root in F.
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(c) If deg f =2 or 3, then f is irreducible if and only if f has no roots in F'.

(d) Find an example for a field F and f € F[x] such that f is reducible and f has no root in F.
2.7#2. Let F be an infinite field.

(a) Let f,g € F[z] with f* =g*. Show that f = g. Hint: What are the roots of f - g?

(b) Show that the function F[x] — Fun(F), f — f* is an injective homomorphism.

2.7#3. Let F be a field and ag, ay,...,a, € F. Show that - 1p divides a,z™ +...+a1z+ag in F[x]
if and only if ag+ a1 +...+a, =0p.

2.7#4. (a) Show that 27 — 2 induces the zero function on Z;.

(b) Use @) and Theorem [2.7.10| to write 7 — x as a product of irreducible monic polynomials in
Zs.

2.7#5. Let R be an integral domain and n € N Let f,g € R[z]. Put n :=degf. If f = Or define
f*=0g and my = 0. If f # Og define
fr= Zn(:)fn—iﬂ?i
and let my € N be minimal with fmf + 0p. Prove that
(a
(b
(c
(d

deg f =my +deg f°.
f=amr(f%)°
(f9)*=rg"

Let k,1 € N and suppose that fo # Og. Then f is the product of polynomials of degree k£ and [
in R[x] if and only if f® is the product of polynomials of degree k and [ in R[z].

)
)
)
)

(e) Suppose in addition that R is a field and let a € R. Show that a is a root of f* if and only if
a+0g and a”! is a root of f.

2.7#6. Let p be a prime. Let f,g € Z,[x] and let f*,g* : Z, - Z;, be the corresponding polynomial
functions. Show that:

(a) If deg f <p and f* is the zero function, then f = 0p.
If deg f < p,degg <p and f # g, then f* # g*.
There are exactly pP polynomials of degree less than p in Zp[z].

)
)
d) There exist at least pP polynomial functions from Z, to Z,.
) There are exactly p” functions from Z, to Z,.

)

All functions from Z, to Z, are polynomial functions.
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2.8 Irreducibility in Q[x]

Theorem 2.8.1 (Rational Root Test). Let f = Y% fiz' € Z[x] with f, #0. Let a € Q be a root of
[ and suppose o= = where 1,5 € Z with s # 0 and ged(r,s) =1. Then r|fo and s|f, in Z.

Proof. Since « is a root of f, f*(%) = f*(a) =0. So

i=0 \$
Multiplication with s™ gives
n . .
(%) Y firts" Tt =0.
i=0

If i > 1, then r|rri™! = 7% and so r* =0 (modr). Thus implies

fos" =0 (modr).
and so r| fos". Since ged(r, s) = 1, Exercise [L.9#4| gives ged(r, s™) = 1. [L.9.11| now implies that r| fo.
' )

Similarly, if i <n, then s|ss" ! = 5" and so s" =0 (mods). Thus (%)) implies
far™ =0 (mods).
and so s|a,r™. Since ged(r,s) =1, gives ged(s,r7™) =1 and then s| f,. O
Example 2.8.2. Consider f =23 + 322 + 22 + 3 € Q[z]. Find all roots of f in Q.
Let a € Q be aroot of f and write a = 7, where 7,5 € Z with s > 0 and ged(r,s) = 1. The Rational
Root Test show that r|3 and s|2. Thus r is one of +1 and +3 and, since s > 0, s is one of 1 and 2

Thus « is one of
+1, ,+3, =, £—.
2 2
Computing f*(«) for each the eight possibilities shows that a = % is the only root of f in Q.

We remark that the same result could have been obtained by factorizing f:

f=22%+322 +22+3= (20 +3) (2% +1)
The only root of 22 + 3 is —2. Also 22 + 1 has no roots in Q since a® +1 > 1 for all @ € Q. So

1} shows that —% is the only root of f.

Definition 2.8.3. Let p be a fized prime and f € Z[xz]. Put

_ degf

f= Z [fi]pxi € Zplz].

1=0

Then f is called the reduction of f modulo p.
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Theorem 2.8.4. Let p be a fized prime and f,g € Z[z].

(a) The function B
pp: Llx] = Zy[x], fo f

is a homomorphism of rings.
(b) f+g=Ff+gand fg=fg.
(c) deg f <degf.
(d) If f #0, then deg f = deg f if and only if p+lead(f).
Proof. (ia)) Consider the homomorphism «a : Z — Zy[z],n = [n],. By Example 2.6.2]
deg f

az(f) = Z [fi]pxi :T: Pp(f)~

=0
Thus p, = ;. By o is a homomorphism, so @ holds.
(]ED This follows from .
Follows immediately from the definition of f.

Let n = deg f. Then f = Y% [f:],z*. Thus deg f = n if and only of [f,], # [0], and if and
only if p+ f,. Since leadf = f,, this gives . O

Example 2.8.5. Consider f =522 + 4 and g = 62° + 8 in Z[z]. Let p=3. Then

f=22+1 and g=2 in Zs[z].

Hence _
=222 +1)2=42*+2=2"+2 in Zs[z].
Also
fg=(5z%+4)(6x> +8) = 302° + 242> + 4022 + 32,
and so

fg=a?+2 in Zs[x].
Thus indeed fg = f3.

Theorem 2.8.6. Let f,g € Z[x] and let p a prime. If p divides all coefficients of fg, then p divides
all coefficients of f or p divides all coefficients of g.

Proof. Let h = ¥ hia' € Z[z]. Then p divides all the coefficients of h if and only if [h;], = [0], for

all 0 <i <n and so if and only if h = [0]p- B
Since p divides all coefficients of fg, fg = [0], and so by fg=1[0],. By|1.10.5(Z,, is field and
o Zp[x] is integral domain by Thus f = [0], or g = [0],. Hence either p divides all coeflicients

of f or p divides all coefficients of g. O
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Definition 2.8.7. Let f € Z[x] and put n =deg f.

(a) If f #0, define ct(f) = ged(fo, f1,---, fn). If f =0 define ct(f) =0. ct(f) is called the content
of f.

(b) f is called primitive if ct(f) = 1.
Example 2.8.8. Let f = 12+ 8z + 2022. Compute ct(f) and ct(f)~'f.

ct(f) = ged(12,8,20) =4

and

ct(f) 1 f = 3(12 + 82 +202°) = 3+ 2z + 5z?
Note that the latter polynomial is primitive.
Theorem 2.8.9. Let f € Z[x].
(a) Let aeZ. Then ct(af) = |alct(f).

(b) Let m € Z* with m|ct(f) in Z. Put g := %f € Q[z]. Then g€ Z[x], f =mg, deg f =degg and
ct(g) = 2.

(¢) Suppose f + 0 and put g := ﬁf € Q[z]. Then g € Z[z], f =ct(f)g, deg f = degg and g is
primitive.

Proof. (&) If a =0 or f =0, then ct(af) = ct(0) = 0 = |alct(f). So suppose that a # 0 and f # 0. Put
n =deg f. By Exercise 1.2.4 ged(afo,af1) = |a|lged(fo, f1). An easy induction argument shows

ged(afo,afi,...afy) =lalged(fo, f1,- - fn)-
Thus ct(af) = |alct(f).
@ We have mg = m(%f) = f and so deg g = deg f by . Let i € N. Then ct(f)|f;. Since

m|ct(f) and ‘divide’ is transitive we get m/| f;. Hence %fi € Z and so g € Z[x]. We have

ct(f) = ct(mg) € pmict(g) = met(g).

thus ct(g) = )

m
By @ applied with m = ct(f) the first three assertion in (IEI) holds. Moreover, ct(g) = EEEQ =1
and so g is primitive. O

Theorem 2.8.10. Let f,g€Z[x].
(a) If f and g are primitive, then also fg is primitive.

(b) ct(fg) = ct(f)ct(g).
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Proof. (i) Since f and g are primitive we have ct(f) =1=ct(g), so f #0 and g # 0. By[2.2.5Z[z] is
an integral domain and so fg # 0. Suppose for a contradiction that ct(fg) # 1. By[L.10.4] there exists
a prime p with p|ct(fg). Since ct(fg) divides all coefficients of p and since ‘divide’ is transitive, we
conclude that p divides all coefficient of fg. As p is a prime, [2.8.6|shows that p divides all coefficients
of f or p divides all coefficients of g. Hence ct(f) > p or ct(g) > p, a contradiction. Thus ct(fg) =1
and fg is primitive.

() Suppose first that f = 0 or g = 0. Then fg = 0. Also ct(f) = 0 or ct(g) = 0 and so
ct(fg) =0 =ct(f)ct(g). .
Suppose that f#0 and g #0. Put d:=ct(f), e:=ct(g), [ = éf and g = %g. Then by ||

(%) f=df, g=¢j

and f and § are primitive polynomials in Z[x]. By fg is primitive. It follows that ct(fg) = 1
and so

ct(f9) @ ct(afeg) “ ct(defq) TP |de|. co(f7) = de1 = de = ct(f)et(g).
O

Theorem 2.8.11. Let f € Z[x] and n,m € N. Then f is the product of polynomials of degree n and
m in Q[z] if and only if f is the product of polynomials of degree n and m in Z[x].

Proof. The backwards direction is obvious. So suppose that
(%) f=gh where g,h € Q[z] with degg=n and degh =m.

Note that there exists a € Z* such that ag € Z[z] (for example choose a to be absolute value of the
product the denominators of the non-zero coefficients of f). Similarly choose b € Z* with bh € Z[z].
Put

(%) g:=ag and h := bh.
Then
(* % %) deg(g) -@ deg g n, deg(fz) =degh=m and abf =abgh GCL (ag)(bh) f]ﬁ,

and so

ab-ct(f) BEED® o app) ct(ih) BEOO 4 ayer().
It follows that ab|ct(§)ct(h) in Z and hence, see Exercise
(+) ab = ab,
where @ and b are integers with a|ct(g) and b|ct(h) in Z. Put

1

~ 1
g=—-g and h:=
a

h.
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By (2.8.9)(p) we have
(++) geZ[z], g=ag, degg = degg ez n, heZ[z], h="bh, degh=degh=m.

We compute
abf E22 51 B ()i S @by (gi) @ (ab)(h).

By Z[z] is an integral domain. Since a,b # 0 also ab # 0 and the Cancellation Law [1.8.7]
implies f = gh and so f is the product of polynomials of degree n and m in Z[x]. O

Theorem 2.8.12. Let f be a non-constant polynomial in Z[x] and suppose that f is not irreducible

(a) There exist non-constant polynomials g and h in Z[x] of smaller degree than f with f = gh.

(b) Suppose in addition that p is a prime with p+lead(f). Then deg f = deg f and G and h are
non-constant polynomial of smaller degree than f with f=9gh.

Proof. (i) Since f is not constant and not irreducible in Q[z] we conclude from that f = gh
where g and h are non- constant polynomials in Q[x] of smaller degree than f. By [2.8.11] we can
choose such g, h in Z[x

Smce p + lead f and leadf = lead(gh) e23@ lead(g)lead(h) we get p 4 lead(g) and p +
lead(h). Thus by (2.8.4 . deg f = deg f, degg = degg and degh degh. So g and h are non-
constant polynomials of smaller degree than f. By |2 = gh=gh. So @) holds. O

Theorem 2.8.13 (Eisenstein Criterion). Let f = Y7, f;x® € Z[z] be a non-constant polynomial.
Suppose there exists a prime p such that

(i) plfi for each 0 <i<n,
(i) p+fn, and
(ii)) p*+ fo
in Z. Then f is irreducible in Q[x].

Proof. Suppose for a contradiction that f is not irreducible in Q[x]. Note that f,, = lead(f) and

so p +lead(f) by . Hence shows that f = gh and f = gh where g,h € Z[z] and none
of f, g, h are constant. Since p| f; for all 0 < i < n, we have [fi], = [0], for 0 <4 < n and so
f=000fi1pxt = [falpz™. Since f = gh we have g| f in Z,[z]. Note that z is a monic irreducible
polynomial in Zy[z], so Exercise @) now shows that g = az’ for some i € N and a € Zy. Since

g is not constant, ¢ > 1 and so [go] = (9)o = [0]p. Thus p | go and similarly p|hg. By -.
fo = hogo, and we conclude that p | fo, a contradiction to

Example 2.8.14. Show that f = z* + 12123 + 5522 + 662 + 11 is irreducible in Q[z].
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We choose p = 11. Note that 11 divides 121, 55,66 and 11, but 11 does not divide 1 and 112 does
not divide 11. So f is irreducible by Eisenstein’s Criterion.

Theorem 2.8.15. Let f € Z[x] and p a prime integer with p +lead(f). If the reduction f of f
modulo p is irreducible in Zy[x], then f is irreducible in Q[x].

Proof. Suppose f is not irreducible in Q[z]. Since p+lead(f) we can apply (2.8.12) (]ED and conclude
I

that f is the product of two non-constant polynomials in Zp[z]. So by is not irreducible in
Zp[z], a contradiction. O

Example 2.8.16. Show that 72 + 1122 + 42 + 19 is irreducible in Q[z].

We choose p = 2. Then f = 22 + 22 + 1 in Zy[x]. By Exercise [2.541| f is irreducible in Zs[2], so
f is irreducible in Q[z] by [2.8.15

Exercises 2.8:

2.8#1. Use Eisenstein’s Criterion to show that each polynomial is irreducible in Q[x].
(a) 2° -4z +22
(b) 10 - 15z + 2522 — 7z,
(c) 5zl -6zt + 1223 + 362 - 6.

2.8#2. Show that each polynomial f is irreducible in Q[z] by finding a prime p such that the
reduction of f modulo p is irreducible in Z,[x].

(a) T2 + 622 + 4z +6.
(b) 9% + 423 -3z + 7.

2.8#3. If a monic polynomial with integer coefficients factors in Z[x] as a product of a polynomials
of degree m and n, prove that it can be factored as a product of monic polynomials of degree m and
n in Z[x].

2.8#4. Let f be a non-constant polynomial of degree n in Z[x] and let p be a prime. Suppose that
(i) p|fi for all 1 <i<n.
(ii) p+ fo.
(it)) p*+ fo.

Show that f is irreducible in Q[z].
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2.9 The Congruence Relation

Notation 2.9.1. Let F be a field and f,g,p € F[x]. Recall from Definition that the relation
= (modp) is defined by
f=g (modp) if  plf-g
By this relation is an equivalence relation. By [flp is denotes the equivalence class of
= (modp)’ containing f, and [f], is called the congruence class of f modulo p. So
[flp={geFlz]|f=g (modp)}

F[z], denotes the set of congruence classes modulo p in F|x]. We will also use the notation

Flz]/(p) for Flz]p. So
Fla)/(p) = Flalp={ [/ | f e Fla] }
Example 2.9.2. Let f=2®+22+1,g=2+xand p=2?+2+1in Zs[z]. Is f=g (modp)?

f and g are congruent modulo p if and only if p divides f — g and so by if and only if the
remainder of f — g when divided by p is Op. So we can use the division algorithm to check whether
f and ¢ are congruent modulo p.

We have f-g=a3-z+1=23+2+1 and

r + 1
2rr+1| 28 + x + 1
3 2

¢ + x + 1

x
So the remainder of f — g when divided by p is not zero and therefore
B rrt+142?+x (modm2+$+1)

in Zo[x].

Theorem 2.9.3. Let F be a field and f,g,p € F[x] with p + 0p. Then the following statements are
equivalent:

(a) f=g+pk for some k€ F[x]. (¢) plf-g.

(b) f—g=pk for some k € F[x]. (d) f=g (modp).
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(e) gel[flp- () plg-f.

() [flpnlylp 2. (k) g- f =pl for some l € F[z].

(&) [flp=1[glp- (1) g=f+pl for some L € F[z].

(h) felgly (m) f and g have the same remainder when di-
(i) g=f (modp). vided by p.

Proof. By the statements (@a))-(l) are equivalent.

Let r1 and 79 be the remainders of f and g, respectively, when divided by p. Then there exist
q1,92 € F[l‘] with

f=pg+r1 and degry <degp

(*)

g=pg2+r2 and degrs <degp
— : Suppose holds. Then r; = r9 and

()

g-f (pg2 +72) = (pq1 +711) =p- (g2 —q1) + (r2=71) =p- (@2~ q1)-
So holds with [ = g2 — ¢1.

@ — : Suppose f = g+ pk for some k € F[z]. Then

)
[ = (pga+712) +pk=p-(q2+k)+ra.

Note that go + k € F[x], ro € F[x] and degry < degp. So 79 is the remainder of f when divided by p.
Hence r{ = r9 and holds. O

Theorem 2.9.4. Let F be a field and p € F[z] with p + Op.

(a) Let f e Flx]. Then there exists a unique r € F[x] with degr <degp and [ f], = [r]p, namely r
is the remainder of f when divided by p.

(b) The function
Jd: {r € Flx] ‘ degr < degp} - Flz]/(p), re[rly

is a bijection.
(c) Flz]/(p) = {[rlp|r € Flz],degr <degp}

Proof. @: Let s be the remainder of f when divided by p and let r € F[z] with degr < degp. Since
r=p0p +7 and degr < degp, r is the remainder of r when divided by p. By [f]p =[r]p if and
only f and s have the same remainder when divided by n, and so if and only if s = 7.
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(0): The uniqueness assertion in (b)) shows that & is injective. Let A € F[z]/(p). By definition
of Flxz]/(p) there exists f e F[xz] with A = [f],. By (@) there exists r € F[z] with [f], = [r], and
degr < degp. Then §(r) = [r], = [f]p = A and so 0 is surjective.

: This holds since ¢ is surjective. O
Example 2.9.5. (1) List all elements of Zz[z]/(2? + 1).

Put p:= 22+ 1 € Z3[x]. Then degp = 2. Since Z3 = {0, 1,2}, the polynomials of degree less than
2 in Zg[x] are

0,1, 2, x, x+1, x+2, 22, 2x+1, 22+ 2.

Thus (2.9.4)(d) shows that

Zola) /(e +1) = { [1y | £ € Zalo],deg £ <2 )
= {[0]197 (Lp, [2]ps [2]ps [2+1]p, [x+2]p, [22]p, [22+1],, [20+ 2]19}-

(2) Determine Q[z]/(2® -z +1).

Put p:= 23 - + 1. Note that degp = 3. Hence for each A € Q[x]/(p) there exists a
unique polynomial f of degree less than 3 with A = [f],. By Definition of a polynomial ring
there exists unique a,b,c in Q with f = a + bz + cx?. Hence every element of Q[x]/(p) can be
uniquely written as

[a+bx+ca®], witha,b,ceQ.

Exercises 2.9:

2.9#1. Let f,g,p € Q[z]. Determine whether f =g (modp).
(a) f=2°-2z"+42%-3x+1, g =3z%+22° - 522 + 2, p=a2+1;
(b) f=at+223-322+2-5, g=a*+23 - 522 + 127 - 25, p=a?+l;

() f=325+4dat+52%-622+52-7, g=22"+62t+23+222+22-5, p=a3-22+x-1.

2.9#2. Show that, under congruence modulo a2 + 2z + 1 in Z3[x] there are exactly 27 congruence

classes.

2.9#3. Prove or give a counterexample: Let F'be afield and f,g,k,pe F[z]. Iif p+ 0p, 1p = gcd(f,9)
and fk =gk (modp), then f=g (modp).

2.9#4. Prove or give a counterexample. Let F be a field and f,g,p € F[x]. If p is irreducible and
fg=0p (modp), then f=0p (modp) or g=0r (modp).
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2.10 Congruence Class Arithmetic

Remark 2.10.1. Let F be a field and p € F[z]. Recall from[1.6.9 that we defined an addition and
multiplication on F[x]/(p) by

(flp@lglp=[f+glp, and [flp@[glp=[f 9lp

for all f,g e Flz].
Example 2.10.2. Compute the addition and multiplication table for Zs[z]/(2? + z).

We write [f] for [f],2,,. Since Zs = {0,1}, the polynomial of degree less than 2 in Zs[x] are

0,1,z,z + 1. Thus gives
Zolx]/(2® + x) = {[0], [1]. [z], [z + 1]}.

We compute

o | [0] (1] [«]  [z+1] © [[0o] [1]|[«] [=+1]
[0] | [0] (| [z]  [z+1] (0] o]  f[o1][o] [0]
(1] | [] [0] | [z+1]  [«] (1] |[[o]  [1][e] [z+1]
[z | [z] [=z+1] [0]  [1] [«] [ [0] [«] [z] (O]
[z+1] [ [z+1] [«  [1]  [0] [x+1] |[0] [z+1] [0] [z+1]

Note here that

[z]o[z+1]=[z(z+1)] = [2*+z] = [0]
and

[a:+1]®[$+1]=[(1:+1)(x+1)]=[x2+1]=[(x+1)+(a:2+x)]=[x+l]

Observe from the above tables that Zs[x]/(2? + 2) contains the subring {[0],[1]} isomorphic to
Zs. The next theorem shows that a similar statement holds in general.

Theorem 2.10.3. Let F' be a field and p € F[z].
(a) Flx]/(p) is a commutative ring with identity [1r]p.

(b) The function
o: Flz] > Flz]/(p), [~ [flp

is an surjective homomorphism of rings.

(c) Put F:={[a],|a € F}. Then F is a subring of F[x]/(p).
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(d) Suppose p is not constant. Then the function
7 F-F, a~[a],.
is an isomorphism of rings. In particular, F' is a subring of F[x]/(p) isomorphic to F.

Proof. (@) This is a special case of

(]E[) This is a special case of Example 1.11.2.

F={[a],|acF}={o(a)|acF}. Since F is a subring of F[z] and ¢ is a homomorphism
we conclude from Exercise 8 on the Review for Exam 2 that F' is a subring of F[x]/(p).

@ We need to show that 7 is a injective and surjective homomorphism. By @, o is a homo-
morphism. Observe that 7(a) = o(a) for all a € F. Hence also 7 is a homomorphism.

Let d € F. Then d = [a], for some a € F and so d = 7(a). Thus 7 is surjective.

To show that 7 is injective, let a,b € F' with 7(a) = 7(b). Then [a], = [b],. Since p is not constant
degp > 0 and since a,b € F, dega < 0 and degb < 0, see Thus dega < degp and degb < deg p.
Since [a], = [b], we conclude from ([2.9.4) (a)) that a = b. Thus 7 is injective and (d)) is proved. O

Notation 2.10.4. Let R and S be commutative rings with identities. Suppose that S is a subring
of R and 1g = 1g. Let f € S[xz] and r € R. We identify the polynomial

f=3 fix' in S[x]
i=0
with the polynomial
g= Zf,a:l in R[z]
i=0
Note that with this identification, f = g and S[x] becomes a subring of R[x]. Observe that [ gives

now rise to two different functions:

fi: S=8 s> fis' and fi: R—R, re Y fir'
i=0 =0

Nevertheless, we will usually just write f* for both of this functions.
Notation 2.10.5. Let F' be a field and p a non-constant polynomial in F[z].
(a) We ‘“identify’ a in F' with [a], in Flz],.
(b) We write a for [z],.

(c) We write Fyla] for Flx]/(p) to indicate that we identified a and [a],. More formally, Fy[a]
is the ring R constructed in[E 5.3

(d) If F = Zq for some prime integer q, we will use the notation Zqplc] for Fpla].
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Theorem 2.10.6. Let F' be a field and p a non-constant polynomial in F[z].
(a) Let feF[z]. Then f*(a)=[f]p.
(b) For each B € Fp[a] there exists a unique f € F|x] with deg f <degp and f* () = f.
(c) Let n=degp. Then for each 8 € Fp[a] there exist unique bg,br, ..., by—1 € F' with

B=by+bra+...+byp_1a™ L.

(d) Let feFlx]. Then f*(«) =0p if and only if p|f in F[z].

(e) a is a root of p in Fpla].
Proof. @ Let m :=deg f. Then f =Y, fiz'. We compute

f(a) = Zfiozi — Definition of f*(«)
=> fl[:z:]; — Definition of «
i=0
= Z ilp [x];, — We identified a € F with [a], € F},[a]

0
[Z f@x’] - f+~[f]p is a homomorphism by [2.10.3
1=0
=

Z
S

() Let g € Fy[a] = F[z]/(p). By [2.9.4] there exists a unique f ¢ F[x] with deg f < degp and
[f]p = B. According to (&) we have f*(a) = [f],. It follows that f is also the unique f € F[z] with
deg f <degp and f*(«) = . Thus (]E[) holds.

. Let by, ...by_1 € F and put f = bg+b1+...+b,_12" 1. Then f is a polynomial with deg f < degp
and bg,...,b,_1 are uniquely determined by f. Also

f(a)=by+bia+...+by_1a™?
and so follows from (]E[)
@
f(a) =0p

— [ (@) =05 (a) — definition of 0}(«)
— [1p = [05] ()
= pl(f-0F) -R293
= olf - [L2.9)([®)

() Note that p|p and so p*(a) = 0p by (d). Thus « is a root of p in Fy[a]. O
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Example 2.10.7. Let p = 2% + 2 + 1 € Zy[x]. Determine the addition and multiplication table of
Zva[a]'

By 2.10.6 any element of F'[a] can be uniquely written as by + by with by, by € Z2. By
Zs ={0,1} and so

Zopla]={0+0a, 0+1a, 1+0a, 1+1a}={0, 1, a,1+a}.

Note that o + @ = 2a = 0ae = 0 and so we get

+ 0 1 o 1+«

0 0 1 o 1+«

1 1 0 1+« «
o « 1+« 0 1
l+a|l+« « 1 0

Since o+ a = 0 we have —a = a. By 2.10.6 p*(a) = 0. Hence 1+« +a? =0 and thus

2

a’=-l-a=1+a.

0 1 a l+a
0o (0 O 0 0
1 0 1 « l+a
a |0 « l+a 1
a+l1|0 1+ 1 o

Note here that by the Distributive Law, Column ‘1 + o’ is the sum of Column ‘1’ and Column
‘a’. Also Row ‘1 + «’ is the sum of Row ‘1’ and Row ‘«’

Exercises 2.10:

2.10#1. Let p =12+ 2% + 1 € Zy[z]. Determine the addition and multiplication table of Zs ,[a]. Is
Lo plar] a field?

2.10#2. Let p = 22 - 3 € Q[x]. Each element of Q,[a] can be uniquely written in the form b+ ca,
with b,c € Q (Why?). Determine the rules of addition and multiplication in Qp[«]. In other words,
for b,c,d,e € Q find 7, s,u,v € Q with

(b+ca)+ (d+ea)=r+sa and (b+ca)(d+ea) =u+va.
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2.11 F,[a] when p is irreducible

In this section we determine when Fj,[a] is a field.

Theorem 2.11.1. Let F be a field, let p be a non-constant polynomial in F[x] and let f be any
polynomial in F[x].

(a) f*() is a unit in F,la] if and only if 15 = ged(f, p).
(b) If 1g = fg + ph for some g,h € F[z], then g*(a) is the inverse of f*(a) in Fylal].

Proof. @ We have

[*(@) is a unit in Fpa]

— [ (a)p = 1p for some f3 € F,[a] - F,[a] is commutative, [T.12.7]

— f*(a)g*(a) = 1p for some g € F[z] - By (2.10.6) (b) 8 = g* () for some g € F[z]
— (9@ =1pforsomegeFla]  -BTd

— (f9)*(a) =13 (a) for some g € F[x] — Definition of 1}.(«)

= Udp-DirhforsomegeFle] - EOHE

— 1p = fg + ph for some g, h € F[z] -2.9.3(a)(i)

= 1r = ged(f,p) -247

(o) From the above list of equivalent statement, 1y = fg + ph implies f*(a)g*(a) = 1p. Since
F,[a] is commutative we also have g*(a)f*(a) = 1 and so ¢*(«) is the inverse of f*(«). O

Theorem 2.11.2. Let F be a field and p a non-constant polynomial in F[x]. Then the following
statements are equivalent:

(a) p is irreducible in F[z].
(b) Fpla] is a field.
(c) Fpla] is an integral domain.

Proof. @ = : Suppose p is irreducible. By F,la] is a commutative ring with
additive identity Op and multiplicative identity 1z. Since F' is a field, 1p # Op. Thus it remains to
show that every non-zero element in Fy[a] is a unit. So let 5 € Fj[a] with 8 # 0p. By (2.10.6) (b)),
B = f*(a) for some f e F[z]. Then f*(a) # Op and (2.10.6)(d) gives p+ f. Since p is irreducible,
Exercise shows that 1p = ged(f,p). Hence by Theorem [ (@) is a unit in Fpla]. As
B = f*(c) this shows that 3 is unit in Fp[a], so (b)) holds.

(M) = (J: 1If Fyle] is a field, then by Theorem [1.8.10] Fj[] is an integral domain.
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— @: Suppose Fj,[a] is an integral domain and let g, h € F'[z] with p|gh. We will show
that p|g or p|h. By 2.10.6@ a is a root of p and so p*(a) = 0p. Since p|gh we conclude from
(2.7.8)(a) that « is a root of gh. Hence

0r = (gh)* (@) BZ2 g* (a)h* (o).

Since [AxTTholds in integral domains this gives ¢*(«) = Op or h*(a) = Op. By (2.10.6)(d) this
implies that p|g or p|h.
We proved that p|gh implies p|g or p|h. Thus shows that p is irreducible. O

Theorem 2.11.3. Let F be a field and p an irreducible polynomial in F[x]. Then F is a subring of
F,la], Fyla] is a field and o is a root of p in Fpla].

Proof. By F' is a subring of F,[«]. Since p is irreducible, 2.11.2{ implies that F)[«] is field. By
2.10.6@ a is a root of p in F[a]. O

Example 2.11.4. Put K := R,2,;[a]. Determine the addition and multiplication in K and show
that K is a field.

By 2.10.6@ we know that « is a root of 22 + 1 in K. Hence o + 1 =0 and so

a?=-1.

By [2.10.6] every element of K can be uniquely written as a + ba with a,b e R. We have
(a+ba)+(c+da)=(a+c)+(b+d)x
and
(a+ba)(c+da) = ac+ (be + ad)a + bda? = ac + (be + ad)o + bd(-1) = (ac - bd) + (ad + be)ov.

Note that 22 + 1 has no roots in R and so by [2.7.12| #? + 1 is irreducible. Hence [2.11.2|shows that
K is a field.

We remark that is now straight forward to verify that
¢:Rpzq[a] > C, a+bara+bi
is an isomorphism from R, 2,;[«] to the complex numbers C.
Theorem 2.11.5. Let F be a field and f € F[x].

(a) Suppose f is not constant. Then there exists a field K such that F is a subring of K and f
has a root in K.

(b) There exist a field L, n € N, and elements c,ayi,as...,a, in L such that F is a subring of L
and
f=c(x-a1) (x—a2) ... (x—-ap)
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Proof. @ By f is a product of irreducible polynomials. In particular, there exists an irreducible
polynomial p in F[z] dividing f. By [2.11.3| K := F},[a] is a field containing F' and « is a root of p in
K. Since p|f, shows that « is a root of f in K.

(]E[) If f =0p, then (]ED holds with n =0, ¢ = f and L = F. So suppose f # 0p. Let L be field
containing K as a subring and let my be the number of roots of f in L. By the Root Theorem
my, < deg f and so we can choose L with m as large as possible. By the Root Theorem there exists
g€ L[z],neN and ay,...ay, € L such that

(*) f=q-(x-a1)-...-(z-an),

q has no roots in L and {aq,...,a,} is the set of roots of f in L.

Suppose for a contradiction that ¢ is not a constant. Then by @ applied with L and ¢ in place
of F' and f, there exists a field K containing L and a root a of ¢ in L. Since ¢| f, a is also a root
of fin L, see @ and since ¢ has no root in L, a ¢ L. In particular, a ¢ {a1,...,a,} and so
mpy > myp,. But this contradicts the choice of L.

Hence ¢ is a constant, that is ¢ € L. So shows that holds with ¢ = gq.

Exercises 2.11:
2.11#1. In each part explain why ¢ € Fp[«] is a unit and find its inverse.
(a) t = -3+2q, F=Q, p=2%-2
(b) t = l+a+a?, F=7Z3 p=x>+1
(¢c) t = 1+a+a?, F=7Zy p=x3+z+1
2.11#2. Determine whether F,[a] is a field.
(a) F=Z3, p=a3+222+x+1.
(b) F =175, p=22%—422 + 2z + 1.
(c) F=Zo, p=at+2?+1.
2.11#3. (a) Verify that Q[/3] := {r + sv/3|r, s € Q} is a subfield of R.
(b) Show that Q[v/3] is isomorphic to Q,2_3[a].
2.11#4. Let p=23+ 22 + 1 € Zy[z].
(a) Determine the addition and multiplication table of Zs p[«].
(b) Is Zo,[a] a field?

(c) Find all roots of p in Zg p[c].
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Chapter 3

Ideals and Quotients

3.1 Ideals
Definition 3.1.1. Let I be a subset of the ring R.
(a) We say that I absorbs R if

racl and arel forallael,reR

(b) We say that I is an ideal of R if I is a subring of R and I absorbs R.

Theorem 3.1.2 (Ideal Theorem). Let I be a subset of the ring R. Then I is an ideal of R if and
only if the following four conditions holds:

(i) Opel.

(ii) a+bel for alla,bel.

(iii) rael and ar el for allael andre R.
)

(iv) —ael forallacl.

Proof. =>: Suppose first that I is an ideal of R. By Definition S absorbs R and S is a
subring. Thus holds and by the Subring Theorem also (), and hold.

<=: Suppose that — hold. From we get that abe I for all a,b e I. Together with ,
and this shows that the four conditions of the Subring Theorem hold for I. Thus I is
a subring of R. By , I absorbs R and so [ is an ideal of R. O

Example 3.1.3. (1) Let R be a ring, then both {Og} and R are ideals in R.

(2) {3n|neZ} is an ideal of Z.
(3) Z is not an ideal of Q.

121
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(4) Let F be a field and a € F. Then {f € F[z]| f*(a) =0p} is an ideal of F[x].

(5) Let R be a ring with identity, I an ideal in R. Then {f € R[z]| f; € I for all i € N} is an ideal
of R.

(6) Let R and S be rings. Let I be an ideal of R and J an ideal of S. Then I x J is an ideal of
R x S. In particular, both R x {0g} and {Og} x S are ideals in R x S.

Proof. See Exercise 3.1#2] O
Definition 3.1.4. Let R be a ring.
(a) Let ae R. Then aR:={ar|ac R}.

(b) Suppose R is commutative and I € R. Then I is called a principal ideal of R if I = aR for some
a€R.

Theorem 3.1.5. Let R be a commutative ring and a € R. Then aR is an ideal of R. Moreover, if
R has an identity, then aR is the smallest ideal of R containing a, that is

(a) acaR,
(b) aR is an ideal of R, and
(¢) aRc I, whenever I is an ideal of R with a € 1.

Proof. To show that aR is an ideal of R let b,c € aR and r € R. Then

b=as and c=at.

for some s,t € R. Thus

Or =a0gr € aR,
b+c=as+at=a(s+t)€aR,
rb="0br = (as)r =a(sr) €eaR
-b=—(as) =a(-s) €eaR.
So by aR is an ideal of R.
Suppose now that R has an identity. Then a =a-1g and so a € aR.

Let I be any ideal of R containing a. Since a € I and I absorbs R, ar € I for all r € R and so
aRcl. O

Definition 3.1.6. Let I be an ideal of the ring R. The relation = (modI)’ on R is defined by

a=b (modI) if a-bel
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Remark 3.1.7. Let R be a commutative ring and let a,b,n € R. Then

a=b (modn) <= a=b (modnR)

Proof.
a=b (modn)

<= a-b=nk for some ke R - [[4.9

— a-benR — Definition of nR, @

— a=b (modnR) — Definition of ‘= (mod[1)’,

O

Theorem 3.1.8. Let I be an ideal of the ring R. Then = (modI)’is an equivalence relation on
R.
Proof. We need to show that ‘= (mod )’ is reflexive, symmetric and transitive. Let a,b,c € R.

Reflexive: By [[.2.9) a — a = O and by the Ideal Theorem Or € I. Thus a —a € I and so
a=a (modI) by definition of '= (modI)’.

Symmetric: Suppose a=b (modI). Then a—be I and so by the Ideal Theorem —(a —b) € I.
By b—a=-(a-b). Hence b—a eI and so b=a (modI) by definition of = (modI)’.

Transitive: Suppose a =b (modl) and b=c¢ (mod[l), then a—be I and b—c € I. Hence
by the Ideal Theorem (a—b)+(b—-c)eI. Asa-c=(a-0b)+ (b-c) this gives a—c € I. Thus
a=c (modl). O

Definition 3.1.9. Let R be a ring and I an ideal of R.

(a) Let ae R. Then a+ I denotes the equivalence class of = (modI )’ containing a, that is
a+I={beR|a=b (modl)}={beR|a-bel}
a+ 1 is called the coset of I in R containing a.
(b) R/I is the set of cosets of I in R, that is
R/I={a+1]acR},
and R/I is the set of equivalence classes of = (modI)".

Theorem 3.1.10. Let R be ring and I an ideal of R. Let a,be R. Then the following statements
are equivalent
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(a) a=b+1 for someiel. (g) a+I=0b+1.

(b) a-b=1 for someiel (h) aeb+1.

(c) a—-bel. (i) b=a (modT).

(d) a=b (modI). (j) b-—acel.

(e) bea+1. (k) b—a=j for some jel.

(f) (a+I)n(b+1)+@. () b=a+j for some jel.

Proof. (@) <= (b): By[l.2.8a=b+iif and only if a—b=1.

(]E[) — : If a-b=1and i€, then a—be I by the Principal of Substitution. If a —b € I,
then (]E[) holds with ¢ =a —b.

<= (d): This holds by definition of ‘= (modI)’.

By we know that ‘= (mod )’ is an equivalence relation. Also a+ I is the equivalence class
of a and so Theorem implies that (d)-(fi)) are equivalent.

The result that @—@ are equivalent applied with a and b interchanged shows that — are
equivalent. O

Theorem 3.1.11. Let I be an ideal of the ring R.
(a) LetaeR. Thena+I={a+i|iel}.
(b) Or + I =1. In particular, I is a coset of I in R.
(c) Let A, B be cosets of I in R. Then either A=B or AnB =@.

Proof. @ Let a,be R. By 3.1.10@, we have b e a+ I if and only if b =a + 4 for some i € I and
so if and only if be {a+1i|ieI}.

@) By (o) Or+ I ={0p+i|iel}={i|iel}=1.
Suppose An B # @. By definition of ‘coset’, A=a+ 1 and B =b+ I for some a,b e I. Then
(a+I)n(b+1)+# 2 and (3.1.10)(f),(g) shows that a+I=b+I. Thus A= B. O

Exercises 3.1:

3.1#1. Find all ideals in Zs.

3.1#2. Show that:
(a) Let R be a ring, then both {Or} and R are ideals in R.
(b) {3n|neZ*} is an ideal of Z.
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(¢) Z is not an ideal of Q.
(d) Let F be a field and a € F. Then {f € F[z]| f*(a) =0p} is an ideal of F[z].

(e) Let R be a ring with identity, I an ideal in R. Then {f € R[x]| f; € I for all i € N} is an ideal
of R.

(f) Let R and S be rings. Let I be an ideal of R and J an ideal of S. Then I x J is an ideal of R.
In particular, both R x {0g} and {Og} x S are ideals in R x S.

3.1#3. Let Iy, 1,...1I, be ideals in the ring R. Show that Iy + Is + ... + I, is the smallest ideal of
R containing I, I»,...,I, and I,.

0
3.1#4. Is the set J =
0 b

a,be R} an ideal of the ring Ma(R) of 2 x 2 matrices over R?

3.1#5. Let F be a field and I an ideal of F[z]. Show that I is a principal ideal. Hint: If I + {Of}
choose d € I with d # 0 and deg(d) minimal. Show that I = F[z]d.

3.1#6. Let & : R — S be a homomorphism of rings and let J be an ideal of S. Put I = {a € R |
®(a) € J}. Show that I is an ideal of R.

3147, Let I ={f e Z[x]| fo€2Z}.
(a) Show that I is an ideal in Z[x].
(b) Show that I is not a principal ideal, that is I # fZ[x] for all f € Z[z].

3.2 Quotient Rings

Theorem 3.2.1. Let I be an ideal of R and a,b,a,be R with
a+I=a+1 and  b+I=b+1.
Then
(a+b)+IT=(a+b)+I  and ab+I=ab+1.

Proof. Since a+1 =a+1, we have @ = a+1 for some i € I, see|3.1.10| Similarly b= b+ 7 for some j € I.

Thus 3

a+b=(a+i)+(b+j)=(a+b)+(i+]).

Since i,7 € I and I is closed under addition, i + j € I and so by [3.1.10[ (a + b) + I = (a +b) + 1.

Also R

ab=(a+1i)(b+j)=ab+ (aj +ib+1ij)

Since i,7 € I and I absorbs R we conclude that aj,ib and ij all are in I. Since I is closed under
addition this implies that aj +ib+ij €I and so ab+ I =ab+ I by|3.1.10 O



126 CHAPTER 3. IDEALS AND QUOTIENTS

Definition 3.2.2. Let I be an ideal of the ring R. We define an addition & and multiplication ®
on R/T by
(a+Do(b+I)=(a+b)+I and (a+I)o(b+I)=ab+1

for all a,be R.
Note that this is well-defined by |[5.2.1].

Remark 3.2.3. (a) Let R be a commutative ring and n € R. Then R,, = R/nR.
(b) Let F be a field and p € F[x]. Then F[z]/(p) = F[x]/pF|[z].

Proof. (@) By Remark the relations ‘= (modn)’ and ‘= (modnR)’ are the same. So also
their sets of equivalence classes R,, and R/nR are the same.

([b) Since F[x]/(p) = F[x], this is a special case of (a)). O
Theorem 3.2.4. Let R be a ring and I an ideal of R

The function w: R - R/I, a— a+ 1 is a surjective homomorphism.

(R/I,®,0) is a ring.

Proof. @ Let a,be R. Then

m(a+b) PE™ (a+b)+ I PL® (a+ D@ (b+1) "L7 7(a) ® 7(b)
and

Def 7

w(ab) L™ ab+ 1 PL° (a+ D)o (b+1) m(a) @ w(b)

So 7 is a homomorphism. Let u € R/I. By definition, R/I = {a+1 | a € R} and so there exists
a€ R with u=a+1. Thus (a) =a+ I =u and so 7 is surjective.

(]E[), and @: By @ 7 is a surjective homomorphism. Thus we can apply and conclude

that @, and @ hold.
@: By @ 7 is a surjective homomorphism. Thus (ED follows from @ O

Definition 3.2.5. Let f: R — S be a homomorphism of rings. Then
Kerf:={aeR| f(a) =0g}.
Kerf is called the kernel of f.

Theorem 3.2.6. Let f: R — S be a homomorphism of rings. Then Kerf is an ideal of R.
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Proof. By definition, Kerf is a subset of R. We will now verify the four conditions of the Ideal
Theorem Let r € R. By definition of Kerf we have

(+) reKef = f(r)=0s
Let a,b e Kerf. By

() fa)=0s and  f(b)=0s.
@ £0r) EEE o0 and so 0g € Kerf by (3).

(ii)) f(a+b) Fhom fla)+ f(b) 0g +0g @05 and so a + b e Kerf by .

(iii)  f(ra) fhom f(r)f(a) f(r)0s 0s and so ra € Kerf by .
Similarly, ar € Ker f.

(iv) f(-a) -f(a) -0g €296 Og and so —a € Kerf by . O
Example 3.2.7. Define
o: R[z]->C, 1@
Show that @ is a surjective homomorphism and compute Ker®.

Let f,g € R[z], then

O(f+g)=(f+9)*(i)  —Definition of ®
P +et) - ETDE)
=®(f)+P(g) - Definition of @, twice

and

O(fg)=(f9)"(0) — Definition of ®

=g () -R7TH@
=®(f)®P(g) - Definition of ®,twice

So ® is a homomorphism. (Alternatively, consider the homomorphism p =idgc: R - C,r = r
from Example . Then & is the function p; from Theorem So ® is a homomorphism.)

To show that f is surjective, let ¢ € C. Then ¢ = a+bi for some a,b € R. Thus ®(a+bx) =a+bi=c
and so @ is surjective.

To compute Kerf let f € R[z]. We need to determine when f*(i) = 0. According to the Division
algorithm, f = (2% +1) - q +r, where ¢,r € R[x] with deg(r) < deg(2? + 1) = 2. Then 7 = a + bz for
some a,b € R and so

() @ =(E1)g+r) @) (2+1)-q* (i) + (i) = 0- g*(i) + (a + bi) = a + bi
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It follows that
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f € Ker®

O(f)=0 — definition of Ker®

f7(@)=0 — definition of ®

a+bi=0 (%)

a=0and b=0 — Property of C

a+bxr=0 — definition of polynomial ring
r=0 -r=a+bzx

22+1|f 234

f=(x?+1)-q for some ¢ e R[x] - Definition of ‘divide’
fe(z®+DR[z] — Definition of (22 + 1)R[z]

Thus Ker® = (2% + 1)R[z].

Theorem 3.2.8. Let f: R— S be a homomorphism of rings.
(a) Let a,be R. Then

f(a) = f(b)
— a—-beKerf
— a+Kerf=b+Kerf

(b) f is injective if and only if Kerf = {Og}.

Proof. @

fla) = f(b)
— f@-10) = 0s - EZE
— fla-b) = 0 - [CTDE
— a-beKerf — Definition of Kerf
— a+Kerf = b+Kerf -BII0

@ =—=: Suppose f is injective and let a € R. Then

a € Kerf
f(a) =0g — Definition of Ker f
f(a)=f(0r) - (CIL7)(E)

a=0g — f is injective

11
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Thus Kerf = {Ogr}.

<=: Suppose Kerf = {Og} and let a,b € R with f(a) = f(b). Then by (&) a —b e Kerf. As
Kerf = {0g} this gives a—b=0g, so a=b by @) Hence f is injective. O

Theorem 3.2.9 (First Isomorphism Theorem). Let f: R — S be a homomorphism of rings. Recall
that Im f = {f(a) |a € R}. Then Im f is a subring of S and the function

f: R/KerfwImf, a+Kerf — f(a)
is a well-defined isomorphism of rings. In particular R/Kerf and Im f are isomorphic rings.

Proof. By [L.11.11]Im f is a subring of S. Let a,b€ R. By f(a) = f(b) if and only if a + Kerf =

b+Kerf. The forward direction shows that f is injective and backwards direction shows that f is
well-defined.

If seIm f, then s = f(a) for some a € R and so f(a+Kerf) = f(a) = s. Hence f is surjective.

It remains to verify that f is a homomorphism. We compute

F((a+Kerf)e (b+Kerf)) "L F((a+b)+Kerf) P27 Fla+b)
fhom — ey4 f@) P2 Fla+Kerf) + F(b+ Kerf)
and
F((a+Kerfyo (b+Kerf)) "L F(ab+Kerf) "2 F(ab)
Tem o pa)-f0) P27 F(a+Kerf) F(b+ Kerf)
and so f is a homomorphism. O

Example 3.2.10. Let n and m be positive integers with ged(n,m) = 1. Apply the isomorphism
theorem to the homomorphism

[l — Ty X Loy, a»([a]n,[b]m)

We first compute Ker f
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a € Kerf
— fla) =0z,xz,, — definition of Ker f
— f(a) = ([0]n,[0]m - @17, [@.6.4) (o)
— ([a]n, [b]m) = ([0]n, [0]m) — definition of f
— [a], =[0], and [b]m =[0], -[A42
— nla-0 and ml|a-0 -[C49
— nla and mla - ([2.9) (@)
— nm|a - ged(n, m) =1, Exercise [1.9#]]
— a=nmk for some keZ — definition of ‘divide’
— a € nmi — definition of nmZ

Thus Kerf = nmZ and so

Z[Kerf = Z/nmZ 6236 /.
By the First Isomorphism Theorem Z/Kerf is isomorphic to Im f and so
(%) Zpm 1is isomorphic to Im f.
Thus
(L-5-7) (<)
1 f] = Zome] 2@ .
Also
FL3) (IR [z
2 x 2] B0 12,12, BDO i,

Hence |Im f| = |Zy, x Zy,|. Since Im f € Z,, x Z, this gives Im f = Z,, x Z,,. Hence implies

Zinmn 18 isomorphic to  Z, x Z,,.

Exercises 3.2:
3.2#1. Consider the function
®: Qz]-R, fr f(V5)
Put p:=2%-5€eQ[z] and Q[/5] = {a+bV/5|a,be Q} cR.
(a) Show that ® is a homomorphism of rings.

(b) Let f e Q[z] and let r be the remainder of f when divided by p. Show that there exists a,b € Q
with p = a + bz and that ®(f) = a + b\/5.
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(c) Show that Ker® = pQ[z].

(d) Show that Im ® = Q[\/5].

(e) Show that Q[\/5] is a subring of R.

(f) Show that Q[z]/pQ[x] is isomorphic to Q[v/5].

3.2#2. Let R be aring and I an ideal in R. Show that R/I is commutative if and only if ab—ba € I
for all a,beI.
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Appendix A

Set, Relations and Functions

A.1 Logic

In this section we will provide an informal discussion of logic. A statement is a sentence which is
either true or false, for example

(1) 1+1=2
(2) /2 is a rational number.
(3) 7 is a real number.

(4) Exactly 1323 bald eagles were born in 2000 BC,

all are statements. Statement and are true. Statement is false. Statement is probably
false, but verification might be impossible. It nevertheless is a statement.

Let P and ) be statements.

“Pand Q)7 is the statement that P is true and @ is true. We illustrate the statement P and @)
in the following truth table

P|Q|PandQ
T|T T
T|F F
F|T F
F|F F

“Por Q" is the statement that at least one of P and @ is true:

133
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P|Q|PorQ@
T|T T
T|F T
F|T T
F|F F

So “P or )7 is false exactly when both P and Q are false.

“not-P” (pronounced ‘not P’ or ‘negation of P’) is the statement that P is false:

P | not-P
T F
F T

So not-P is true if P is false. And not-P is false if P is true.

“P = @” (pronounced “P implies )”) is the statement “ If P is true, then @ is true”:

P=Q

5 m N N
e
H*ﬂﬁjﬂﬂ

F

Note here that if P is true, then “P = @ ” is true if and only if @Q is true. But if P is false, then
“P == (@7 is true, regardless whether @) is true or false. Consider the statement “ ) or not-P” :

P | Q@ |not-P | Q ornot-P
T|T F T
T|F F F
F|T T T
F|F T T

(%) 7@ or not-P” is true if and only "P = Q" is true.
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[43 2

=" in terms of the operators ”

This shows that one can express the logical operator not-"
and “or”.
“P <= @Q” (pronounced “P is equivalent to Q") is the statement that P is true if and only if @

is true.:

PlQ|P=Q
T|T T
T|F F
F|T F
F|F T

So P < (@ is true if either both P and @) are true, or both P and () are false. Hence

(%%) "P <= Q" is true if and only (P and Q) or (not-P and not-Q)” is true.

To show that P and @ are equivalent one often proves that P implies @) and that @ implies P.
Indeed the truth table

PlQIP=Q|Q=P|(P=Q)and(Q=P)
T\|T T T T
T|F F T F
F|T T F F
F | F F T T
shows that
( % *) "P <= ()7 is true if and only "(P= Q) and (Q = P)” is true.

Often, rather than showing that a statement is true, one shows that the negation of the statement
is false (This is called a proof by contradiction). To do this it is important to be able to determine
the negation of statement. The negation of not-P is P:

P | not-P | not-(not-P)

T F T
F T F

The negation of ” P and Q” is ” not-P or not-Q”:
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P | Q| Pand Q@ | not-(Pand Q) | not-P | not-Q | not-P or not-Q
T\|T T F F F F
T|F F T F T T
F|T F T T F T
F|F F T T F T

The negation of 7P or Q” is ” not-P and not-Q”:

P|Q|PorQ |not-(Por@Q) | not-P | not-Q | not-P and not-Q
T|T T F F F F
T|F T F F T F
F|T T F T F F
F|F F T T F T

The statement “not-QQ = not-P” is called the contrapositive of the statement “P =— Q7. It
is equivalent to the statement “P — Q”:

Pl Q|P=—Q | not-Q | not-P | not-Q = not-P
T|T T F F T
T|F F T F F
F|T T F T T
F|F T T T T

The statement “ not-P <= not-@Q” is called the contrapositive of the statement “P < Q7. It
is equivalent to the statement “P «<— Q”:

Pl Q| P Q| not-P | not-Q | not-P <= not-Q
T|T T F F T
T|F F F T F
F|T F T F F
F|F T T T T
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The statement “QQ == P” is called the converse of the statement “ P = @Q”. In general the
converse is not equivalent to the original statement. For example the statement if x = 0 then x is an
even integer is true. But the converse (if = is an even integer, then x = 0) is not true.

Theorem A.1.1 (Principal of Substitution). Let ®(z) be formula involving a variable x. For an
object d let ®(d) be the formula obtained from ®(x) by replacing all occurrences of x by d. If a and
b are objects with a = b, then ®(a) = ®(b).

Proof. This should be self evident. For an actual proof and the definition of a formula consult your
favorite logic book. I

Example A.1.2. Let ®(z) =22 +3 -z +4.
If a =2, then

a?+3-a+4=2+3-2+4
Notation A.1.3. Let P(x) be a statement involving the variable x.
(a) “for all x: P(x)” is the statement that for all objects a the statements P(a) is true. Instead
of “for all z : P(z)” we will also use “Nx : P(x)”, "P(x) is true for all x”, “P(x) holds for

all x” or stmilar phrases.

(b) ‘there exists z: P(x)” is the statement there exists an object a such that the statements P(a)

is true. Instead of “there exists x : P(x)” we will also use “Ix: P(x)”, "P(x) is true for some

x”, “There exists x with P(x)” or similar phrases.

Example A.1.4. “for all z: z + x = 22”7 is a true statement.
“for all x : 22 =27 is a false statement.
“there exists z : 22 = 27 is a true statement.
“IJg: 2% =2 and z is an integer” is false statement

Notation A.1.5. Let P(x) be a statement involving the variable x.

(a) “There exists at most one x : P(x)” is the statement

for all x : for all y: P(z)and P(y) — =xz=y

(b) “There exists a unique x : P(x)” is the statement

there exists x : for all y: P(y) <— wy==x
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Example A.1.6. “There exists at most one 2 : (#? = 1 and « is a real number)” is false since 1% = 1
and (-1)2=1, but 1+ -1.

“There exists a unique z : (2% = =1 and « is a real number)” is true since 2 = -1 is the only
element in R with 23 = 1.
“There exists at most one z : (22 = —1 and z is a real number)” is true, since there does not

exist any element x in R with 22 = —1.
“There exists a unique z : (22 = —1 and z is a real number)” is false, since there does not exist
any element z in R with 22 = —1.

Theorem A.1.7. Let P(x) be a statement involving the variable x. Then

( there exists x : P(x)) and (there exists at most onex : P(a:))

if and only if
there exists a uniquex : P(z)

Proof. See in the appendix.. O

A.2 Rules of Logic

In the following we collect a few statements which are always true.

Theorem A.2.1. Let P, Q and R be statements, let T be a true statement and F' a false statement.
Then each of the following statements holds.

) F = P.
) P=T.

LR 3) not -(not -P) < P.
LR 4) (not-P = F) = P.
) PorT.

LR 6) not -(P and F).

LR 7) (P and T) < P.
)

)

)

)

)

LR 8

(

(

(

(

(LR 5
(

(

( (Por F) < P.
(

LR 9) (P and P) < P.

(LR 10) (P or P) < P.
(LR 11) P or not-P.

(LR 12) not-(P and not -P).
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(LR 13) (P and Q) < (Q and P).
(LR 14) (P or Q) < (Q or P).
(LR 15) (P <= Q) — ((P and Q) or (not -P and not —Q))

(LR 16) (P = Q) <= (not-P or Q).

(LR 17) not -(P = Q) < (P and not -Q).

(LR 18) (P and (P = Q)) = Q.

(LR 19) ((P = Q) and (Q = P)) <= (P <= Q).
LR 20) (P = Q) = (P = Q).

LR 21) (P = Q) <= (not -Q = not -P)

( )

( )

(LR 22) (P <= Q) <= (not -P <= not -Q).
(LR 23) not -(P and Q) <= (not -P or not -Q)
( )

LR 24) not -(P or Q) <= (not -P and not -Q)

(LR 25) ((P and Q) and R) — (P and (Q and R)).

(LR 26) ((P or Q) or R) <= (P or (Q or R)).

(LR 27) ((P and Q) or R) <= ((P or R) and (Q or R)).
(LR 28) ((P or Q) and R) — ((P and R) or (Q and R)).
(LR 29) ((P = Q) and (Q = R)) = (P — R)

(LR 30) ((P <= Q) and (Q += R)) = (P <= R)

Proof. If any of these statements are not evident to you, you should use a truth table to verify it. [

Theorem A.2.2. Let P(x) be a statement involving the variable x. Then

(there exists z : P(z)) and ( there exists at most onez : P(x))

if and only if
there exists a uniquex : P(z)
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Proof. =>: Suppose first that

( there exists z: P(z)) and ( there exists at most onex : P(x))

holds. By definition of “There exists:” we conclude that there exists an object a such that

(*) P(a) is true

Also by definition of “There exists at most one”:

(%) for all z: for all y : P(z) and P(y) = x=y.

From and the definition of “for all z :” we get

(% *) for all y : P(a) and P(y) — a=y

By (A.2.1)(LR 7)) P < (T and P) whenever P is a statement and T is a true statement. Since
P(a) is a true statement we conclude that

for all y P(y) <~ P(a) and P(y).
By (A.2.1))(LR 20) P = @ implies P = () and so we conclude that

(+) for all y: P(y) - P(a) and P(y)
By (A21) [CR 29

((P:>Q) and (Q :>T)) = (P:>Q)
Together with and this gives

(++) for all y: P(y) - a=y.

If a = y, then since P(a) is true, the Principal of Substitution shows that P(y) is true. Thus

(+++) for all y : a=vy — P(y)
By (A.2.1))(LR 20) P = @ if and only if P = @ and Q = P. Together with (4++| and (4+++])
we get

for all y : P(y) — a=y.
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Thus by definition of ‘there exists x :’ this gives

there exists x : for all y : P(y) — x=1y.

Hence the definition of “There exists a unique” gives

There exists a unique x : P(z).

<=: Suppose next that

There exists a unique x : P(z)

holds. Then by definition of “There exists a unique”:

there exists x: for all y: P(y) <= x=y.

and so there exists an object a such that

(#) for all y: P(y) — a

I
<=

In particular, by definition of “for all y”:

P(a) — a=a

Since a = a is true, we conclude that P(a) is true. Thus

(##) there exists z : P(z).

holds.

Suppose “P(x) and P(y) “is true. Then P(x) is true and shows that = = a. Also P(y) is
true and gives y = a. From = = a and y = a we get = = y by the Principal of Substitution. We
proved that

forall z: forall y: P(z)and P(y) =— x=y.

and so the definition of “There exists at most one” gives

(F##H#) There exists at most onex:  P(x).

From (##) and (###) we have

there exists z: P(x) and there exists at most onex : P(x).
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Theorem A.2.3. Let S be a set, let P(x) be a statement involving the variable x and ®(x) a formula
such that ®(s) is defined for all s in S for which P(s) is true. Then there exists a set, denoted by

{®(s) | s€ 5 and P(s)} such that
te{®(s) | seSand P(s)} <=  there exists s€ S: (P(s) and t = &(s))
Proof. Define
(+) {®(s) | s Sand P(s)} = {@(s) | s e {re S| P(r)}}
Then

te {(I)(S) | s €S and P(s)}

— te{®(s)|se{res|e(n}f By (*)
— there exists s € {r e S| P(r)} with t = ®(s) [A.3.9

<> there exists s with [se{re S| P(r)} and t = ®(s)| definition of ‘there exists s € see [A.3.7]

<= there exists s with (s €S and P(s)) and t = ®(s)| [A3I]

<= there exists s with [ s € S and (P(s) and ¢ = <I>(s)) Rule of Logic: (A.2.1))(LR 25)) :
(P and(Q and R)) <= ((P and Q) and R)

— there exists s € S with (P(s) and t = <I>(s)) definition of ‘there exists s € see [A.3.7]

O]

Exercises A.2:
A.2#1. Convince yourself that each of the statement in are true.

A.2#2. Use a truth table to verify the statements LR 17, LR 26, LR 27 and LR 28 in

A.3 Sets

First of all any set is a collection of objects.

For example
Z:={...,-4,-3,-2,-1,-0,1,2,3,4,...}

is the set of integers. If S is a set and x an object we write x € .S if x is a member of S and = ¢ S if
x is not a member of S. In particular,
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(%) For all z exactly one of z¢S and x¢S holds.

Not all collections of objects are sets. Suppose for example that the collection B of all sets is a
set. Then B € B. This is rather strange, but by itself not a contradiction. So lets make this example
a little bit more complicated. We call a set S nice if S ¢ S. Let D be the collection of all nice sets
and suppose D is a set. Then

Definition of D Definition of nice

DeD — D is nice — De¢D.
which contradicts the basis property of a set.
Theorem A.3.1. Let A and B be sets. Then

(A:B) — (forall:c: (meA)@(xeB))

Proof. Naively this just says that two sets are equal if and only if they have the same members. In
actuality this turns out to be one of the axioms of set theory. O

Definition A.3.2. Let A and B be sets. We say that A is subset of B and write A< B if
for all x : (reA) = (z€B)

In other words, A is a subset of B if all the members of A are also members of B.

Theorem A.3.3. Let A and B sets. Then A= B if and only if Ac B and B c A.

Proof.
AcBand B A
«— forallz: (reA=zeB)and(zeB=—=1z¢€A) —definition of subset
<~ forallz: reA<—=2xeB
-(A.2.1)(LR19 :((P:>Q) and(Q:>P)) — (P<:>Q)
— A=B B3

Theorem A.3.4. Let t be an object. Then there exists a set, denoted by {t} such that

for all z : re{t} <— uz=t

Proof. This is an axiom of Set Theory. O
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Theorem A.3.5. Let S be a set and let P(x) be a statement involving the variable . Then there
exists a set, denoted by {s € S| P(s)} such that

for all x : re{seS|P(s)} < z€S and P(x)
Proof. This follows from the so called replacement axiom in set theory. O

Note that an object ¢ is a member of {s € S| P(s)} if and only if ¢ is a member of S and the
statement P(t) is true.

Example A.3.6.
{reZ|z?=1}={1,-1}.
{reZ|xz>0} is the set of positive integers.
Notation A.3.7. Let S be a set and P(x) a statement involving the variable x.
(a) “for all z € S: P(x)” is the statement

forallz: zeS = P(x)

(b) “there exists x € S: P(z)” is the statement

there exists z: =z €S and P(x)

Example A.3.8. (1) “for all z e R: 22 >0” is a true statement.
(2) “there exists z € Q: 2% = 27 is a false statement.

Theorem A.3.9. Let S be a set and let ®(x) be a formula involving the variable x such that ®(s)
is defined for all s in S. Then there exists a set, denoted by {®(s) | s e S} such that

for all x : xe{P(s)|seS} <~ there exists s € S': x = ®(s)
Proof. This also follows from the replacement axiom in set theory. O

Note that the members of {®(s) | s € S} are all the objects of the form ®(s), where s is a member
of S.

Example A.3.10.
{2z |z eZ} is the set of even integers

{2* |z e{-1,2,5}} = {-1,8,125}

We now combine the two previous theorems into one:
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Theorem A.3.11. Let S be a set, let P(x) be a statement involving the variable = and let ®(x)
a formula such that ®(s) is defined for all s in S for which P(s) is true. Then there erists a set,

denoted by {CD(S) | se€ S and P(s)} such that

for all = : x € {q)(s) | se S and P(s)} <= there exists s€S: (P(s) and = (I)(S))
Proof. Define
() {®(s) | s Sand P(s)} = {@(s) | s e {re S| P(r)}}

See for a formal proof that this set has the required properties.
O

Note that the members of {®(s)|se S and P(s)} are all the objects of the form ®(s), where s
is a member of S for which P(s) is true.

Example A.3.12.

{Qn‘nEZandn2=1}:{2n‘ne{seZ|s2=1}}={2n‘ne{l,—l}}={2,—2}

{-z|zeRand x>0} is the set of negative real numbers
Theorem A.3.13. Let A and B be sets.

(a) There exists a set, denoted by Au B and called ‘A union B’, such that

for all z: reAuB <<= <zcecAorxeB

(b) There ezists a set, denoted by An B and called ‘A intersect B’, such that

for all z: reAnB << zxeAandzxeB

(¢c) There exists a set, denoted by AN B and called ‘A removed B’, such that

for all x: reANB < gxzecAandzx¢B
(d) There exists a set, denoted by @ and called ‘empty set’, such that

for all = : T ¢

(e) Let a and b be objects, then there exists a set, denoted by {a,b}, that

for all x : ze{a,b} <= =x=aorxz=»>
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Proof. @ This is another axiom of set theory.
() Applying with P(x) being the statement “x € B” we can define

AnB:={acA|acB}
Then for all z:

reAnB
xe{aeAlaeB} - definition of AnB
rxeA and ze€B  —Theorem [A.3.7]

<~
—

Applying with P(x) being the statement “z ¢ B” we can define

ANB:={acAlat¢ B}
Then for all z:

reANB
— re{acAla¢ B} - definition of AN B
— xeA and ¢ B - Theorem [A.3.5

@ One of the axioms of set theory implies the existence of a set D. Then we can define

@:=D~D
Then for all x:

red
— rzeDND — definition of @
— xeD and x¢D —(d

The latter statement is false and so z ¢ @ for all z.
() Define {a,b} := {a}u {b}. Then

x € {a,b}
— ze{a}u{db} — definition of {a,b}
< ze{aforze{b} —(a)
<~ x=aorx=b HA34
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Exercises A.3:
A.3#1. Let A be a set. Prove that @ c A.
A.3#2. Let A and B be sets. Prove that An B =Bn A.

A.3#3. Let a,b and ¢ be objects. Show that there exists a set A such that

for all = : reA <= (r=aorx=b)orxz=c

A.3#4. Let A and B be sets. Prove that

(a) AcAuB.

(by AnBcA.

(¢) ANBcA.
A.3#5. Let A, B and C be sets. Show that there exists a set D such that

for all = : xeD <= (reAorxeB)andux¢C.

A.3#6. List all elements of the following sets:

(a) {xeQ|x?-32+2=0}.

(b) {zreZ]|2?®<5}).

(c) {23 |z €Z and 22 < 5}.

A.4 Relations and Functions
Definition A.4.1. Let a, b and c be objects.

(a) (a,b):={{a},{a,b}}. (a,b) is called the (ordered) pair formed by a and b.

(b) (a,b, c) = ((a, b),c). (a,b,c) is called the (ordered) triple formed by a,b and c.
Theorem A.4.2. Let a,b,c,d,e and f be objects.

(a) ((a,b):(c,d)) — (a:candb:d).

(b) ((a,b,c):(d,e,f)) — ((azdandb:e) andc=f)
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Proof. @: See Exercise
®

(a,b,¢) = (d,e, f)
— ((a,b),¢) = ((d,e), f) — definition of triple
< (a,b)=(d,e)and(c,f) - Part (@) of this theorem
< (a=dandb=¢)andc=f - Part (a) of this theorem

O
Theorem A.4.3. Let A and B be sets. Then there exists a set, denoted by A x B, such that
reAxB — there exists a € A: there exists be B: z = (a,b)
Proof. This can be deduced from the axioms of set theory. O

Example A.4.4. Let A={1,2} and B ={2,3,5}. Then
AxB={(1,2),(1,3),(1,5),(2,2),(2,3),(2,5)}
Definition A.4.5. Let A and B be sets.

(a) A relation R from A to B is a triple (A, B,T), such that T is a subset of Ax B. Let a and b
be objects. We say that a is R-related to b and write aRb if (a,b) € T. So aRb is a statement
and

aRb — (a,b) eT.
(b) A relation on A is a relation from A to A.

Example A.4.6. (1) Using our formal definition of a relation, the familiar relation < on the real
numbers, would be the triple

(R,R,{(a,0) eRxR | a <b})

(2) Let A={1,2,3}, B={a,b,c}, T={(1,a),(1,¢),(2,b),(3,b)}. Then the relation ~:= (A, B,T)
can be visualized by the following diagram:
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Also 1 ~ 1 is a true statement, 1 ~ b is a false statement, 2 ~ a is false statement, and 2 ~ b is a
true statement.

Definition A.4.7. (a) A function from A to B is a relation F' from A to B such that for alla € A
there exists a unique b in B with aF'b. We denote this unique b by F(a). So

forallae A: for allbe B: b=F(a) < aFb
F(a) is called the image of a under F. If b= F(a) we will say that F maps a to b.
(b) We write “F': A - B is function” for “A and B are sets and F' is a function from A to B”".
Example A.4.8. (a) F=(R,R,{(z,2%) |z €R}) is a function with F(z) = 2? for all z € R.

(b) F = (R,R,{(z? 2%) | = € R}) is the relation with 2?Fz? for all z ¢ R. For = 1 we see that
1F1 and for z = -1 we see that 1F' - 1. So F' is not a function.

(c) Let A=1{1,2,3), B=1{4,5,6,}, T = {(1,4),(2,5),(2,6)} and R = (A, B, T):

Then R is not a function from A to B. Indeed, there does not exist an element b in R with
1Rb. Also there exist two elements b in B with 2Rb namely b =15 and b = 6.

(d) Let A={1,2,3}, B={4,5,6,}, S = {(1,4),(2,5),(3,5)} and F = (A, B,T):

Then F is the function from A to B with F(1) =4, F(2) =5 and F(3) = 5.

Notation A.4.9. Let A and B be sets and suppose that ®(x) is a formula involving a variable x
such that for all a in A
®(a) is defined and P(a) € B.

Put
T := {(a,@(a)) ‘ ae A} and F:=(A,B,T).
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Then F' is a function from A to B. We denote this function by
F: A-B, a ~ ®(a).
So F' is a function from A to B and F(a) = ®(a) for all a € A.

Example A.4.10. (1) F: R - R, 7+ r? denotes the function from R to R with F(r) = r? for all
reR.

(2) F: R->R, 2+~ % is not a function, since % is not defined.
(3) F: Rx{0} > R, 33»—>% is a function.
(4) F: Z* - Z*,x — \/x is not a function, since /2 ¢ Z.
(5) F: Z* - R*,z ~ \/z is a function.
Definition A.4.11. Let R be a relation from A to B.
(a) A is called the domain of R. B is called the codomain of R.

)
(b) R is called injective (or 1-1) if for all b e B there exists at most one a in A with aRb
(¢) R is called surjective (or onto) if for all b e B there exists (at least one) a € A with aRb,
)

(d) R is called bijective (or a 1-1 correspondence) if for all b e B there exists a unique a € A with
aRb

Example A.4.12. (1) The function
A " ’

is bijective.

(2) The relation

| =
A q B
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is bijective, but it is not a function.

(3) The function

-

is injective but is neither surjective nor bijective.
Theorem A.4.13. Let f: A — B be a function.
(a) Then f is bijective if and only if [ is a injective and surjective.

(b) f is injective if and only

For allae A: Forallce A: fla)=f(c) = a=c
Proof. @

f is bijective

<= for all b e B there exists a unique a € A with b= f(a) - Definition of bijective
for all b € B there exists at most one a € A with b= f(a)

“— and for all b€ B there exists a € A with b= f(a) -ALLT

<= f is injective and surjective - Definition of injective

and surjective
()

f is injective
<= for all be B: there exists at most one a € A with b= f(a) - Definition of injective

- Definition of
‘exists at most one’

!

forall be B,a,ce A: (b= f(a) and b= f(c)) = a=c

!

for all a,ce A: f(a)=f(c)=—a=c
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Theorem A.4.14. Let f : A - B and g : C — D be functions. Then f = g if and only if A = C,
B =D and f(a)=g(a) for all ac A.

Proof. By definition of a function, f = (A4, B,R) and g = (C,D,S) where Rc Ax B and ScC x D.
By (A.4.2)(®):

(#) f=gifand only of A=C, B=D and R=S.

== If f =g, then the Principal of Substitution implies, f(a) = g(a) for all a € A. Also by (),
A=Cand B=D.

<—: Suppose now that A =C, B =D and f(a) = g(a) for all a € A. By it suffices to show
that R=S.
Let ae Aand be B.

(a,b) e R

afb —definition of afb
b= f(a) -the definition of f(a)
b=g(a) -since f(a) = g(a)

agb —definition of g(a)
(a,b) € S —definition of agh

(A

Since A =C and B = D, both R and S are subsets of A x B. Hence each element of R and S is
of the form (a,b),a € A,be B. It follows that x € R if and only if x € S and so R=S by O

Definition A.4.15. (a) Let A be a set. The identity function id4 on A is the function

idg: A->A, ar~a

So idy(a) =a for all a e A.

(b) Let f: A— B and g: B — C be functions. Then go f is the function

gof: A-C, aw~g(f(a))
So (go f)(a) =g(f(a)) for all ac A.
Definition A.4.16. Let f: A— B and g: B > A be functions.
(a) g is called a left inverse of f if go f =1id4.
(b) g is called a right inverse of g if fog=idp.

(c) g is a called an inverse of f if go f=id4 and fog=1idp.
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Theorem A.4.17. Let f: A— B and h: B — A be functions. Then the following statements are
equivalent.

(a) g is a left inverse of f.
(b) f is a right inverse of g.

)
(c) g(f(a))=a forallac A.
(d) Forallae A andbe B:

fla)=b = a=g(b)

Proof. @ — (]ED: Suppose that g is a left inverse of f. Then go f =id4s and so f is a right
inverse of g.
@ — : Suppose that f is a right inverse of g. Then by definition of ‘right inverse’

(1) go f=idy
Let a € A. Then

g(f(a)) = (gof)(a) - definition of composition
= ida(a)  -(1)
= a — definition of id 4

= (d): Suppose that g(f(a)) =a for all a€ A. Let a € A and b€ B with f(a) =b. Then
by the principal of substitution g(f(a)) = g(b), and since g(f(a)) = a, we get a = g(b).
(M) = (a): Suppose that for all a € A,be B:

(2)) fla)=b=a=g(b)
Let a € A and put
(3) b=f(a)
Then by (2)
(4) a=g(b)
and so
(9o f)(a) = g(f(a)) - definition of composition
IO
SN

ida(a) - definition of id4
Thus by go f=id4. Hence g is a left inverse of f. O
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Theorem A.4.18. Let f: A— B and h: B — A be functions. Then the following statements are
equivalent.

(a) g is an inverse of f.
(b) f is a inverse of g.
(¢) g(fa)=a for allae A and f(gb) =b for allbe A.

(d) For allae A and be B:
fa=b < a=gb

Proof. Note that g is an inverse of f if and only if g is a left and a right inverse of f. Thus the
theorem follows from [A.4.17] ]

Theorem A.4.19. Let f: A — B be a function and suppose A + &.
(a) f is injective if and only if f has a right inverse.
(b) f is surjective if and only if f has left inverse.
(¢) f is a injective correspondence if and only f has inverse.

Proof. =: Since A is not empty we can fix an element ag € A. Let be B. If b € Im f choose a; € A
with fap =b. If b¢ Im f, put a, = ag. Define

g:B—>A, b-a

@ Suppose f is injective. Let a € A and be B with b= fa. Then b€ Im f and fa, =b= fa. Since
f is injective, we conclude that a, = b and so ga = aj = b. Thus by g is right inverse of f.

(]E[) Suppose f is surjective. Let a € A and b € B with gb = a. Then a = a;. Since f is surjective,
B=Imf and so a € Im f and f(ap) =b. Hence fa =b and so by (with the roles of f and f
interchanged), ¢ is left inverse of f.

Suppose f is a injective correspondence. Then f is injective and surjective and so by the
proof of @ and (]ED, g is left and right inverse of f. So g is an inverse of f.

<

@ Suppose ¢ is a left inverse of f and let a,c € A with fa = fc. Then by the principal of

substitution, g(fa) = g(fc). By g(fa) =a and g(fb) =b. So a=0b and f -s injective.
(]E[) Suppose ¢ is a right inverse of f and let b € B. Then by f(gb) =band so f is surjective.
Suppose f has an inverse. Then f has a left and a right inverse and so by @ and (]ED, fis
injective and surjective. So f is a injective correspondence. O

Exercises A .4:
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A.4#1. Let a,b,c,d be objects. Prove that

((a,b) = (c, d)) — ((a =c¢) and (b= d))

A.4#2. Let A and B be sets. Let A; and As be subsets of A and By and By subsets of B such
that A = Ay UAQ,Al N As =@, B=BiuUBsy and Bin By =&. Let m : A1 - By and w9 : Ay — Bs be
bijections. Define

mi(a) ifaeA;

mo(a) ifaeAy

m:A—-> B,a~ {
Show that 7 is a bijection.
A.4#£3. Prove that the given function is injective
(a) f:Z - Z,x— 2.
() f:R— Rxw a3
(c) f:Z->QuwZ.
(d) f:R->R,x+~-3z+5.
A.4#4. Prove that the given function is surjective.
(a) f:R->R,z w23
(b) f:Z—>Z,x~x-4.
(c) f:R->R,x~ -3z+5.

when b 0

ZxZ oy
(@) [:ZxZ~>Q, (a,b) {0 e b0,

A.4#5. (a) Let f: B— C and g: C — D be functions such that go f is injective. Prove that f is
injective.

(b) Give an example of the situation in part (a) in which g is not injective.

A.5 The Natural Numbers and Induction
A natural number is a non-negative integer. N denotes the collection of all natural numbers. So
N={0,1,2,3...}

It can be deduced from the Axioms of Set Theory that N is a set. We do assume familiarity with
the basic properties of the natural numbers, like addition, multiplication and the order relation ‘<’.
A quick remark how to construct the natural numbers:
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0=0

1:={0} =0u {0}
2:={0,1} =1u{l}
3:={0,1,2} =2u{2}

4:={0,1,2,3} =3u{3}

n+1:=4{0,1,2,3,...,n} =nu{n}

The relation < on N can be defined by ¢ < j if 7 € 3.

Definition A.5.1. Let S be a subset of N. Then s is called a minimal element of S if s € S and
s<t foralltesS.

The following property of the natural numbers is part of our assumed properties of the integers
and natural numbers (see Appendix .

Well-Ordering Axiom: Let S be a non-empty subset of N. Then S has a minimal element

Using the Well-Ordering Axiom we now provide an important tool to prove statements which
hold for all natural numbers:

Theorem A.5.2 (Principal Of Mathematical Induction). Suppose that for each n € N a statement
P(n) is given and that

(i) P(0) is true, and
(ii) if P(k) is true for some k € N, then also P(k+1) is true.
Then P(n) is true for all n € N.

Proof. Suppose for a contradiction that P(ng) is false for some ng € N. Put

(%) S:={seN]| P(s) is false}

Then ng € S and so S is not empty. The Well-Ordering Axiom now implies that S has a
minimal element m. Hence, by definition of a minimal element

(%) meS and m<sforallseS

By (i) P(0) is true and so 0 ¢ S. As m € S this gives m # 0. Thus k := m -1 is a natural number.
Note that £ <m. If k€ S, then gives m < k, a contradiction. Thus k ¢ S. By definition of S
this means that P(k) is true. So by (i), P(k+1) is true. But k+1=(m—-1)+1=m and so P(m) is
true. But m € .S and so P(m) is false. This contradiction show that P(n) is true for allneN. [
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Theorem A.5.3 (Principal Of Complete Induction). Suppose that for each n € N a statement P(n)
s given and that

(i) if k€N and P(i) is true for all i € N with i < k, then P(k) is true.
Then P(n) is true for all n € N.
Proof. Let Q(n) be the statement:

forallieN: i<n =— P(1).

We will show that the two conditions in the Principal of Mathematical Induction hold for Q(n)
in place of P(n). Q(0) is statement

forallieN: i<0 = P(i).
i <0 is false for all i € N. Hence the implication i < 0 == P(7) is true for all ¢ € N. Thus
() Q(0) is true.

Suppose now that Q(k) is true for some k € N. Then P(i) is a true for all ¢ € N with ¢ < k. Then
by (i), also P(k) is true.

Let i € N with i < k+ 1. Then either i < k or i = k. In either case P(7) is true. Thus Q(k+1) is
true. We proved

(*%)  If Q(k) is true for some k € N, then also Q(k +1) is true.

By and the hypothesis of the Principal of Mathematical Induction is fulfilled. Hence
Q(n) is true for all n € N. Let n e N. Then Q(n+1) is true and since n <n+ 1, P(n) is true. O

Two more versions of the induction principal:

Theorem A.5.4. Suppose that r € Z and that for all n € Z with n > r a statement P(n) is given.
Also suppose that

(i) P(r) is true, and
(ii) if k € Z such that k >r and P(k) is true, then P(k+1) is true.
Then P(n) holds for all n € Z with n > r.

Proof. See Exercise O

Theorem A.5.5. Suppose that r € Z and that, for all n € Z with n > r, a statement P(n) is given.
Also suppose that:

(i) If k € Z with k >r and P(i) holds for all i € Z with r <i <k, then P(k) holds.

Then P(n) holds for all n € Z with n > r.
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Proof. See Exercise O

Exercises A.5:

n(n+1)

A.57#1. Prove that the sum of the first n positive integers is —=5—.
Hint: Let P(k) be the statement:

_k(k+1)

= SR

1+2+...+k

A.5#2. Let r be a real number, r # 1. Prove that for every integer n > 1,

n
_ r -1
Tar+re. . 71z .
r—1

A.5#3. Prove that for every positive integer n there exists an integer k with 227! + 1 = 2k
A.5#4. Let B be a set of n elements.

(a) If n > 2, prove that the number of two-elements subsets of B is n(n—1)/2.

(b) If n >3, prove that the number of three-element subsets of B is n(n—1)(n -2)/3!.

A.5#5. Suppose that r € Z and that, for all n € Z with n > r, a statement P(n) is given. Also
suppose that

(i) P(r) is true, and
(i) if k € Z such that k >r and P(k) is true, then P(k + 1) is true.
Show that P(n) holds for all n € Z with n > r.

A.5#86. Suppose that r € Z and that, for all n € Z with n > r, a statement P(n) is given. Also
suppose that:

(i) If k € Z with k > r and P(i) holds for all i € Z with r <i < k, then P(k) holds.
Show that P(n) holds for all n € Z with n > r.

A.547. What is wrong with the following proof that all roses have the same color:

Proof. For a positive integer n let P(n) be the statement:
Whenever A is set containing exactly n roses, then all roses in A have the same color.

If A is a set containing exactly one rose, then certainly all roses in A have the same color. Thus
P(1) is true.

Suppose now k is a positive integer such that P(k) is true. So whenever D is a set containing
exactly k roses then all roses in D have the same color. We need to show that P(k + 1) is true. So
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let A be any set containing exactly k + 1-roses. Since k£ > 1 we have k+1 > 2. Hence A contains at
least two roses and we can choose roses x and y in A with x # . Consider the sets

B:=A~{z} and C:=A\{y}

Then B consist of all the elements of A other than x. Since A contains exactly k + 1 roses, B
contains exactly k roses. By the induction assumption P(k) is true and so all roses in B have the
same color. Similarly all roses in C' have the same color.

Now let z be any rose in A distinct from = and y. Then z # x and so z € B. Also z # y and so
zeC.

We will show that all roses in A have the same color as z. For this let a be any rose in A. We
will distinguish the cases a # z and a = z.

Suppose first that a # x. Then a € B. Recall that z € B and all roses in B have the same color.
Thus a has the same color as z.

Suppose next that a = x. Since x # y this gives a # y and so a € C'. Recall that z € C' and all roses
in C' have the same color. Thus a has the same color as z.

Hence in either case a has the same color as z and so all roses in A have the same color as z.
Thus P(k+1) is true.

We proved that P(1) is true and that P(k) implies P(k +1). Hence by the Principal of Mathe-
matical Induction, P(n) is true for all positive integers n. Thus in any set of roses all the roses have
the same color. So all roses have the same color. O

A.5#8. Let x be a real number greater than —1. Prove that for every positive integer n, (1 +x)" >
1+na.
A.6 Equivalence Relations
Definition A.6.1. Let < be a relation on the set A
(a)
(b)

2

is called reflexive if a ~ a for all a € A.

2

is called symmetric if b~ a for all a,be A with a ~ b, that is if

a~b — b~a.

—
o
~
2

is called transitive if a ~ ¢ for all a,b,c € A with a ~b and b ~ ¢, that is if

(a~b and b~c) - a~c

2

(d)

!~ is pronounced ‘twiddle’

is called an equivalence relation if ~ is reflexive,symmetric and transitive.




160

APPENDIX A. SET, RELATIONS AND FUNCTIONS

Example A.6.2. (1) Consider the relation ‘ <’ on the real numbers:

a < a for all real numbers a and so ¢ <’ is reflexive.
1<2but 2£1 and so ‘ <’ is not symmetric.
If a<band b<c, then a <c and so ‘ <’ is transitive.

Since ‘ <’ is not symmetric, ¢ <’ is not an equivalence relation.

Consider the relation ¢ =’ on any set A.

a=a and so ‘ =’ is reflexive.

If a=b, then b=a and so ‘ =’ is symmetric.
Ifa=band b=c, then a =c and so ¢ =’ is transitive.

‘=" is reflexive, symmetric and transitive and so an equivalence relation.

Consider the relation ¢ #’ on any set A.
If a # b, then b# a so ‘+’ is symmetric.
Suppose A has at least one element A. Then a = a and so ‘ £’ is not reflexive.

Suppose A has at least two distinct elements a,b. Then

atb and b#a but not a%a

So ¢ #’ is not transitive.

Consider the relation S on R defined by

aSb — a-beZ.

Let a,b,ce R.
a—a=0¢Z and so aSa. Thus S is reflexive
If aSb, then a —b € Z. Hence also —(a-b) € Z. So b—a € Z. Thus bSa and so S is symmetric.

If aSb and bSec, then a—beZ and b—c e Z. Hence also (a—b) + (b—c) € Z. Thus a—ceZ and
S is transitive.

Since S is reflexive, symmetric and transitive, S is an equivalence relation.

Definition A.6.3. Let ~ be an equivalence relation on the set A.

(a)

(b)

For a € A we define [a]. :={be A|a~b}. We often just write [a] for [a].. [a]. is called the

equivalence class of a with respect to ~.

Al~={[a].|aecA}. So Al~ is the set of equivalence classes with respect to ~.

Example A.6.4. (1) Consider the relation
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on the set A ={1,2,3}. Then ~ is an equivalence relation. Also

[1].={acA|l~a)={1,2}
[2].={acA|2~a)}={1,2}
[3].={aeA|3~a}={3}

and so

Af~={{1,2},{3}}
(2) Consider the relation S on R defined by

aSbh ~— a-bel.

By Example 1' S is an equivalence relation. We have

[0]s={beR|0Sb}={becR|b-0eZ}={becR|becZ} =7

and

[r]s={beR|7Sb}
={beR|b-mweZ}
={beR|b—m =k for some k € Z}
={beR|b=n+k for some k € Z}
={m+k|keZ}
={...,m-4n-3n-2,n-1l,m,mr+1,m+2,w+3,m+4,...}

Theorem A.6.5. Let ~ be an equivalence relation on the set A and let a,b e A. Then the following
statements are equivalent:
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(a) a~b. (d) [a]n[b] # 2. (g) ae[b]
(b) [b] € [a] (e) b~a. (h) [a] = [b].
(c) belal. () [a] < [b]-

Proof. Note first that, since ~ is an equivalence relation, ~ is reflexive, symmetric and transitive.
Recall that [b] = {ee€ A|b~e}. Hence for all ce A:

(*) ce[b] ~— b~ec

Since ~ is reflexive, we know that b ~ b. So shows:

(**) be [b]

(@) = (b):  Suppose that a ~ b. To show that [b] ¢ [a] we need to show that c € [a] for all
ce[b]. Solet ce[b]. Then gives b ~ c. Hence

a~b and b~c

As ~ is transitive we see that a ~ ¢ and ([#)) shows that c € [a]. Thus [b] ¢ [a].

= ():  Suppose [b] ¢ [ By ﬂ bel[b [b] [

() = (d): Suppose that be [a]. By (x*) be[b], so be[a]n[b] and thus [a] n [b] #
[

(M) = (¢): Suppose [a]n[b] # @. Then there exists ¢ € [a] N [b]. Thus c € [b] and c € [a], and
implies

a] this gives b€ [a].

b~c and a~c.
As ~ is symmetric, this gives
b~c and c~a.
Since ~ is transitive, we infer that
b~a

@ — @: Since ~ is symmetric, b ~ a implies a ~ b.
We proved that statements @ to (]ED are equivalent. In particular,
a~b — [b] < [a] — bela]
This result with a and b interchanged gives
b~a — [a] € [b] — a € [b],

that is statements @ to are equivalent. It follows that statements @ to are equivalent.
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= (): Suppose holds. Then [a] ¢ [b] and since and (b)) are equivalent we get
[b] < [a]. Thus [a] = [b]. Thus (h) implies (f).

() = ([):  Suppose holds. Then [a] = [b] and so [a] ¢ [b]. Thus (f) implies ().

Hence is equivalent to @ As statements (ja)) to are equivalent we conclude that statements
@ to are equivalent. ]

Theorem A.6.6. Let ~ be an equivalence relation on the set A and let a € A. Then there exists a
unique equivalence class X with respect to ~ with a € X, namely X = [a]..

Proof. Let X be an equivalence class of ~. We need to show that a € X if and only if X = [a].. By
definition of ‘equivalence class’ we know that X = [b]. for some b€ A. Then

aeX
— a € [b]. — X =[b].,Principal of Substitution
— [a]. = [b].~ - [ALG.5]
— [a].=X — X =[b]., Principal of Substitution

Exercises A.6:
A.6#1. Let f: A— B be a function and define a relation ~ on A by
wmv = f(u) = f(0).
Prove that ~ is an equivalence relation.
A.6#2. Let A={1,2,3}. Draw a diagram to exhibit a relation on A with the stated properties.
(a) Reflexive, not symmetric, not transitive.
(b) Symmetric, not reflexive, not transitive.
(
(d

Reflexive and symmetric, not transitive.

)
c) Transitive, not reflexive, not symmetric.
)
e)

(e) Reflexive and transitive, not symmetric.
(f) Symmetric and transitive, not reflexive.

A.6#3. Let ~ be the relation on the set R* of non-zero real numbers defined by

a~b <— %EQ.

Prove that ~ is an equivalence relation.
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A.6#4. Let ~ be a symmetric and transitive relation on a set A. What is wrong with the following
‘proof’ that ~ is reflexive.:

Let a e A. We need to show that a ~ a. For this let be A with a ~b. Since ‘~ ’is symmetric we
get b~a. Hence a~b and b~ a and since ‘~ ’is transitive we conclude that a ~ a.

We proved that a ~ a for all a e A and so ‘~ ’ is reflexive.

A.6#5. Let A be a set and B a set of subsets of A. (So each element of B is a subset of A.) Suppose
that for each a € A there exists a unique B € B with a € B. Define a relation ~ on A by

a~b — there exists Be B with a e B and b € B.

Show that ~ is an equivalence relation and that B = A/~.

A.7 Partitions

Definition A.7.1. Let A be a set and A set of non-empty subsets of A.

(a) A is called a partition of A if for each a € A there exists a unique D € A with a € D.
(b) ~a= (A,A, {(a,b) e Ax A|{a,b} €D for some D ¢ A})

Example A.7.2. The relation corresponding to a partition A = {{1, 3}, {2}} of A={1,2,3}

{1, 3} is the only member of A containing 1, {2} is the only member of A containing 2 and {1, 3}
is the only member of A containing 3. So A is a partition of A.

Note that {1,2} is not contained in an element of A and so 1 +a 2. {1,3} is contained in {1, 3}
and so 1 ~a 3. Altogether the relation ~ao can be described by the following table

~A 11l 2 3
1 |z - =
2 |-z -
3 |z - =z

where we placed an x in row a and column b of the table iff a ~a b.
We now computed the classes of ~o. We have

[1]={beA[1~ab}={1,3}

[2]={be A[2~a b} ={2}

and
[3]={be A3 ~ab}={1,3}

Thus A/ ~a= {{1,3},{2}} = A.
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So the set of classes of relation ~a is just the original partition A. The next theorem shows that
this is true for any partition.

Theorem A.7.3. Let A be set.
(a) If ~ is an equivalence relation, then A[ ~ is a partition of A and ~=~4...
(b) If A is partition of A, then ~a is an equivalence relation and A = Al ~.

Proof. (&) Let a € A. Since ~ is reflexive we have a ~ a and so a € [a] by definition of [a]. Let
De Al ~with ae D. Then D = [b] for some b e A and so a € [b]. [A.6.5 implies [a] = [b] = D. So [a]
is the unique member of A/ ~ containing a. Thus A/ ~ is a partition of A. Put ~=~4,.. Then a ~ b
if and only if {a,b} € D for some D € A/ ~. We need to show that a ~ b if and only if a ~ b.

So let a,b e A with a ~b. Then {a,b} € D for some D € A/ ~. By the previous paragraph, [a] is
the only member of A/ ~ containing a. Thus D = [a] and similarly D = [b]. Thus [a] = [b] and
implies a ~ b.

Now let a,b € A with a ~b. Then both a and b are contained in [b] and so a ~ b.

We proved that a ~ b if and only if a ~ b and so @ is proved.

() Let a € A. Since A is a partition, there exists D € A with a € A. Thus {a,a} ¢ D and hence
a~a a. So ~p is reflexive. If a ~A b then {a, 5} € D for some D € A. Then also {b,a} € D and hence
b ~a. There ~ is symmetric. Now suppose that a,b,c € A with a ~o b and b ~A ¢. Then there exists
D,FE ¢ A with a,b € D and b,c € E. Since b is contained in a unique member of A, D = E and so
a ~a c¢. Thus ~a is an equivalence relation.

It remains to show that A = A/ ~a. For a € A let [a] = [a].a. We will prove:

(#) Let De A andaeD. Then D =[a].

Let be D. Then {a,b} € D and so a ~a b by definition of ~ao. Thus b € [a] by definition of [a]. Tt
follows that D ¢ [a].

Let b € [a]. Then a ~A b by definition of [a] and thus {a,b} € E for some E € A. Since A is a
partition, a is contained in a unique member of A and so F = D. Thus b€ D and so [a] € D. We
proved D ¢ [a] and [a] € D and so holds.

Let D e A. Since A is a partition of A, D is non-empty subset of A. So we can pick a € D and
implies D = [a]. Thus D e A/ ~o and so A€ A/ ~A

Let E € A/ ~ao. Then E = [a] for some a € A. Since A is a partition, a € D for some D € A.
gives D =[a] = F and so E € A. This shows A/ ~oC A.

Together with A ¢ A/ ~a this gives A = A/ ~a and (b) is proved. O



166 APPENDIX A. SET, RELATIONS AND FUNCTIONS



Appendix B

Real numbers, integers and natural
numbers

In this part of the appendix we list properties of the real numbers, integers and natural numbers we
assume to be true.

B.1 Definition of the real numbers
Definition B.1.1. The real numbers are a quadtruple (R, +,-,<) such that

(R i) R is a set (whose elements are called real numbers)

(R ii) + is a function ( called addition) , R xR is a subset of the domain of + and

a+beR (Closure of addition )

for all a,b e R, where a®b denotes the image of (a,b) under +;

(R iii) - is a function (called multiplication), R x R is a subset of the domain of - and

a-beR (Closure of multiplication)

for all a,b € R where a-b denotes the image of (a,b) under -. We will also use the notion ab

for a-b.
(R iv) < is a relation from R and R;
and such that the following statements hold:
(RAx 1) a+b=b+a for all a,beR. (Commutativity of Addition)

(RAx2) a+(b+c)=(a+b)+c forall a,b,ceR; (Associativity of Addition)
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There exists an element in R, denoted by 0 (and called zero), such that a+0=a and 0+a=a

for all a e R; (Existence of Additive Identity)
For each a € R there exists an element in R, denoted by —a (and called negative a) such that
a+(-a)=0 and (-a) +a=0; (Existence of Additive Inverse)
a(b+c)=ab+ac for all a,b,ceR. (Right Distributivity)
(a+b)c=ac+bc for all a,b,ce R (Left Distributivity)
(ab)c = a(be) for all a,b,ce R (Associativity of Multiplication)

There exists an element in R, denoted by 1 (and called one), such that la = a for all a € R.
(Multiplicative Identity)

For each a € R with a # 0 there exists an element in R, denoted by % (and called ‘a inverse’)
such that aa™' =1 and a'a = 1;

(Existence of Multiplicative Inverse)

For all a,b e R,
(a<bandb<a) <= (a=b)

For all a,b,ceR,
(a<bandb<c)= (a<c)

For all a,b,ceR,
(a<band 0<c) = (ac<be)

For all a,b,ceR,
(a<b)= (a+c<b+c)

Each bounded, non-empty subset of R has a least upper bound. That is, if S is a non-empty
subset of R and there exists u € R with s <u for all s € S, then there exists m € R such that for
allreR,

(sSrforallseS):»(er)

For all a,b € R such that b+ 0 and 0 < b there exists a positive integer n such that a <nb. (Here
na is inductively defined by la =a and (n+1)a =na+a).

Definition B.1.2. The relations <, > and > on R are defined as follows: Let a,b e R, then

(a)
(b)
()

a<bifa<banda+b.
a2bifb<a.

a>bifb<a anda+bd
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B.2 Algebraic properties of the integers

Theorem B.2.1. Let a,b,ce Z. Then

(1) a+beZ.

2) a+(b+c)=(a+b)+c.
3) a+b=b+a.
4) a+0=a=0+a.
5
6

)
)
)
)
)
7) a(be) = (ab)e.
)
)
)
)

There exists x € Z with a +x = 0.

abeZ.

8) a(b+c)=ab+ac and (a+b)c=ac+ be.

(
(
(
(
(
(
(
(

9) ab = ba.
(10) al =a=1a.
(11) Ifab=0 thena=0 orb=0.

B.3 Properties of the order on the integers

Theorem B.3.1. Let a,b,c be integers.
(a) Ezactly one of a<b,a =0 and b< a holds.
(b) Ifa<b and b<c, then a< c.
(¢) If ¢ >0, then a < b if and only if ac < be.

[§]

)
)
(d) If ¢<0, then a <b if and only if be < ac.
) If a<b, thena+c<b+c.

)

(
(f

1 is the smallest positive integer.

B.4 Properties of the natural numbers

Theorem B.4.1. Let a,beN. Then
(a) a+beN.
(b) abeN.

Theorem B.4.2 (Well-Ordering Axiom). Let S be a non-empty subset of N. Then S has a minimal
element. (Recall here that m is a minimal element of S of me S and m < s for all s€ S) U
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Appendix C

The Associative, Commutative and
Distributive Laws

C.1 The General Associative Law

Definition C.1.1. Let G be a set.

(a) A binary operation on G is a function + such that G x G is a subset of the domain of + and
+(a,b) € G for all a,beG.

(b) If + is a binary operation on G and a,b e G, then we write a +b for +(a,b).
(c) A binary operation + on G is called associative if a+ (b+c¢) = (a+0b) +c for all a,b,ceG.

Definition C.1.2. Let G be a set and +: G x G — G, (a,b) > a+b a function. Let n be a positive
integer and ai,ao,...a, € G.
Inductively, we say that z is a sum of (ai,...,a,) provided that one of the following holds:
(1) n=1and z=ay.
(2) n > 1 and there exists an integer k with 1 < k < n and z,y € G such that x is a sum of

(a1,...,ax), y is a sum of (g1, Agy2y---,an) and z =T +y.

For example a is the only sum of (a), a + b is the only sum of (a,b), a+ (b+c¢) and (a+b) + ¢
are the sums of (a,b,¢), and a+ (b+ (c+d)),a+ ((b+c)+d),(a+b)+(c+d),(a+(b+c))+d and
((a+0b)+c)+d are the sums of (a,b,c,d).

Theorem C.1.3 (General Associative Law). Let + be an associative binary operation on the set G.
Letne€Z* and ay,as...,an, € G. Let z and 2z’ be sums of (a1, as,...,a,). Then z=2".
We denote the unique sum of (a1,...,an) by iy a;.

Proof. The proof is by complete induction on n. For a positive integer n let P(n) be the statement:

If ay,as,...a, are elements of G and z and 2’ sums (a1,as,...,a,), then z = 2’.
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Suppose now that n is a positive integer and P(k) is true all integers 1 < k <n. Let aj,aq9,...a,
be elements of G and let z and 2’ be sums of (a1,as,...,a,). We need to show z = 2’.

Assume that n = 1. By definition a; is the only sum of (a1). Thus z =ay = 2.

Assume next that n > 1. Then by definition of a sum there exists integers k, k" and z,y,2",y' € G
such that

(i) 1<k<nand 1<k <n

(ii) x is a sum of (aq,...,ax), and 2’ is a sum of (ay,...,ax),
(iii) y is a sum of (ags1,...,an), and y' is a sum of (ag/41,...,an)
(iv) z=z+yand 2’ =2'+y .

Suppose first that k& = &’. Then both x and z’ are sums of (ay,...,ax). Since k <n we know that
P(k) holds and so x = 2’. Similarly, both y and y" are sums of (aj;1,...,a,) and, since n—k < n,
P(n-k) holds. Thus y=1%'. Hence 2=z +y=2"+y' =2,

Suppose next that k # k’. Without loss k < k’. Let w be any sum of (agy1,...,ar ). Then both

x +w and z’ are sums of (ay,...,ap). Since k' < n, we know that P(k") holds. So z +w = z'.
Similarly w+y" and y are sums of (ag41,...,a,) and since n—k <n, P(n—k) holds. Thus w+y' = y.
Hence

z=z+y=z+(w+y)=(z+w)+y =2 +y' =2"+y =2’

We proved that in both cases z = z’. Thus P(n) holds. By the principal of complete induction,
P(n) holds for all positive integers n. O

C.2 The general commutative law

Definition C.2.1. A binary operation + on a set G is called commutative if a +b = b+ a for all
a,be@.

Theorem C.2.2 (General Commutative Law I). Let + be an associative and commutative binary
operation on a set G. Let aj,ag,...,an € G and f:[1...n] > [1...n] a bijection. Then

D i = ) Ay
=1 =1

Proof. Obsere that the theorem clearly holds for n = 1. Suppose inductively its true for n — 1.

Since f is surjective there exists a unique integer k with f(k) = n.

Define g: {1,...n-1} = {1,...,n=1} by g(i) = f(i) if i <k and g(i) = f(i+1) if i > k. We claim
that g is a bijection. For this let 1 </ <n -1 be an integer. Then [ = f(m) for some 1 < m < n. Since
[ #n and f is injective, m # k. If m < k, then g(m) = f(m) =1 and if m > k, then g(m—1) = f(m) = 1.



C.2. THE GENERAL COMMUTATIVE LAW 173

Thus g is surjective and by (F.1.7) (]E[) g is also injective. By assumption the theorem is true for n—1
and so

n-1 n-1
(+) 2, ai= ) ag(i
i=1 i=1
Using the general associative law (GAL, Theorem |C.1.3)) we have

it1 ag(i)

(GAL)
(n=f(k))

(‘ +' commutative )

(it apey) + (apay + Tiper araiy)
(5 apay) + (an + Titper ag(iy)
(i arey) + (Xitke1 Qfe) + an)
(xh! apiy) + (Xitpi1 af))) +an
(S agy) + (S5 apgen))) + an
(S ag@y) + (05 ag)) + an
(it g(i)) + an

(Zi5 ai) +ay,

Z?ﬂ a;

('+'associative )

(Substitution j =14+ 1)

(definition of g)
(GAL)
(*)
(definition of )

So the Theorem holds for n and thus by the Principal of Mathematical induction for all positive
integers. [

Theorem C.2.3. Let + be an associative and commutative binary operation on a set G. I a non-
empty finite set and for i€l let by e G. Let g,h:{1,...,n} - I be bijections, then

;bgu) = ;bhu‘)

Proof. For 1 <i<n, define a; = by(;). Let f = gl oh. Then f is a bijection. Moreover, go f = h and
af(i) = by(r()) = On(ay)- Thus

n n n n
2. bny = 2 a5y = Do ai= 2 be(
i=1 i=1 i=1 i=1
O
Definition C.2.4. Let + be an associative and commutative binary operation on a set G. I a finite

set and for i € I let by € G. Then Ycrb; = Xy bpiy, where n = |I| and f:= {1,...,n} is bijection.
(Observe here that by this does not depend on the choice of f.)
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Theorem C.2.5 (General Commutative Law II). Let + be an associative and commutative binary
operation on a set G. I a finite set, (I; | j € J) a partition of I and foriel let a; e G. Then

So-2( 2l

iel jed \iely

Proof. The proof is by induction on |J|. If |J| = 1, the result is clearly true. Suppose next that |J] = 2
and say J = {j1,72}. Let fi:{1,...,n;} = I, be a bijection and define f: {1...,n; +na} - I by
fG)=fi(i)if 1 <i<ng and f(i) = fo(i —n1) if ng +1 <i <ny+ny. Then clearly f is a surjective

and so by (F.1.7)(0), f is injective. We compute

Yier @i = i g
B (S apw) (B as)
(Z anm) + (Z2anm)
(Zie[h ai) + (ZiteQ @i)
= Yjet (Ziﬁlj a;)

Thus the theorem holds if |J| = 2. Suppose now that the theorem is true whenever |J| = k. We
need to show it is also true if |J| =k +1. Let je J and put Y =1~ J;. Then (I |j+keJ)is a
partition of Y and (I;,Y") is partition of I. By the induction assumption, Y ;cy a; = > jsked (Zidk ai)
and so by the |J| = 2-case

Vil @i = (Zz‘elj ;) + (Tiey ai)
(Sier; ai) + (Zjenes (Tier, ai))
= Yier (Tier, ai)
The theorem now follows from the Principal of Mathematical Induction. ]

C.3 The General Distributive Law

Definition C.3.1. Let (+,-) be a pair of binary operation on the set G. We say that
(a) (+,-) is left-distributive if a(b+ ¢) = (ab) + (ac) for all a,b,c € G.
(b) (+,-) is right-distributive if (b+ ¢)a = (ba) + (ca) for all a,b,c < G.
(¢) (+,-) is distributive if its is right- and left-distributive.

Theorem C.3.2 (General Distributive Law). Let (+,-) be a pair of binary operations on the set G.
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(a) Suppose (+,-) is left-distributive and let a,by,...by, € G. Then
a'(ij) = Zabj
j=1 j=1
(b) Suppose (+,-) is right-distributive and let ay,...an,b€ G. Then
(Zal) -b= Zaib
i=1 i=1
(c) Suppose (+,-) is distributive and let ay,...an,b1,...by € G. Then

(Y- (X)) - Z(ib)
j=1 =1 \j=1

=1 ) j:
Proof. @ Clearly @ is true for m = 1. Suppose now is true for k and let a, b1,...bg.1 € G. Then

a- (Ti bi)
a-((T5ybi) + brer)
a-(Shybi)+a b
(ZF, ab;) + abysa
(definition of ) = YMLab

(definition of )
(left-distributive)

(induction assumption)

Thus @ holds for k£ + 1 and so by induction for all positive integers n.
The proof of (]E[) is virtually the same as the proof of @ and we leave the details to the reader.

® (ila) | (Zk; bi) ® Z(a ibj) @ - (iaibﬂ')

=1\ j=1 i=1 \j=1
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Appendix D

Verifying Ring Axioms

Theorem D.0.1. Let (R,+,-) be ring and (S,®,®) a set with binary operations ® and ®. Suppose
there exists an surjective homomorphism ® : R — S ( that is an surjective function ® : R — S with
P(a+b)=P(a)® P(b) and (ab) = P(a) ® ®(b) for all a,be R. Then

(a) (S,,0) is a ring and ® is ring homomorphism.

(b) If R is commutative, so is S.
Proof. @ Clearly if S is a ring, then ® is a ring homomorphism. So we only need to verify the eight

ring axioms. For this let a,b,c € S. Since ® is surjective ther exist x,y, z € R with ®(z) = a,®(y) =b
and ®(z) =c.

[Ax1] By assumption @ is binary operation. So[Ax1]holds for S.
[Ax 2]

ad® (bec)
= 2((z+y)+2))

() P(y+2)
(@(z) ® (y)) ® O(2)

S(zx+(y+2))
(adb)®C

O(z) @ (2(y) ® 2(2))
D(x+y) @ P(2)

[Ax3 aab=0(z)aP(y)=P(z+y)=P(y+2)=P(y)dP(z)=bda
[Ax4] Put 0g=®(0g). Then

a®0g=P(x)dP(0r)=P(z+0r)=P(z)=a

Os+a=®(0r) @ P(x)=2(0g+x)=D(z) =a.
[AX5] Put d=®(-z). Then

add=o(x)® ®(-x)=P(z+(-x)) =P(0r) =0g
[AX6] By assumption @ is binary operation . So[Ax 6] holds for S.
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Ax Tl
a0 (boc) = 2(z)o(2(y)o2(z)) = ®(z) © 2(yz) = ®(z(y2))
= B(ay)2) = Bay)edz) = (B(x)ed(y))ed(x) = (aob)oc
[Ax 8]
a®(bec) = P(x)o(P(y)od(z)) = ()0 P(y+2) = P(x(y+2))
= P(zy+zz) = O(zy) + P(x2) = (P(x)o®(y))+(P(z)0o®(2)) = (a0b)d(adc)

Similarly (a®b)©c=(a@c)® (boc).
@ Suppose R is commutative then
16b=0(x) © (y) = B(ay) = D(yz) = D(y) © (a) = boa =



Appendix E

Constructing rings from given rings

E.1 Direct products of rings

Definition E.1.1. Let (R;)ic; be a family of rings (that is I is a set and for each i € I, R; is a
ring).

(a) X ey Ri is the set of all functions r: I - Ujer Ri,i— r; such that r; € R; for all i € I.

(b) X ey Ri is called the direct product of (R;)er-

(

c) We denote r € X, ; Ri by (7i)ier, (13)i or (ri).
(d) Forr=(r;) and s =(s;) in R definer +s=(r; +s;) and rs = (r;s;).

Theorem E.1.2. Let (R;)is be a family of rings.
(a) R:= X, Ri is a ring.
(b) Or = (OR, )ier-
(c) =(rs) = (=r3).
(d) If each R; is a ring with identity, then also X ;R is a ring with identity and 1g = (1g,).
(¢)

Proof. Left as an exercise. O

If each R; is commutative, then X, R; is commutative.

E.2 Matrix rings

Definition E.2.1. Let R be a ring and m,n positive integers.

(a) An m x n-matrix with coefficients in R is a function

A:A{1,...om}x{1,....,n} = R, (i,)) ~ aij.
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(b) We denote an m x n-matriz A by [aij]1<i<m, [aijlij, [aij] or

1<j<n
ail ai19 e A1n
a1 a22 ... a2n
aAml Am2 ... Qmn

(c) Let A = [ai;] and B = [bj;] be m x n matrices with coefficients in R. Then A+ B s the
m x n-matric A+ B = [a;; + b;j].

(d) Let A =[as]ij be an mxn-matriz and B = [bji] ;i an nxp matriz with coefficients in R. Then
AB is the m x p matriz AB = [¥]_y aijbji ]k

(€) Mumn(R) denotes the set of all m x n matrices with coefficients in R. My, (R) = My, (R).
It might be useful to write out the above definitions of A+ B and AB in longhand notation:

all a2 e QA1p b11 blg e bln
asy ano e aon b21 b22 e bgn
+
Gm1l Am2 ... Gmn bml bm2 e bmn
ail + b11 aig + b12 e ainp + bln
agy + le a9 + b22 e agn + bgn
Am1 +bma ama+bma ... Qmp + bn
and ) ) ) )
all a2 ... Qln bll b12 e blp
a1 ago ce. Qop 521 1)22 e bgp
Aml Am2 ... AOmn bn1 bng . bmp
a11b11 + a12b21 +...+ alnbn1 aublg + a12b22 + ...+ alnbnz - a11b1p + a12b2p + ...+ alnbnp
a21b11 + a22621 +...+ aznbnl a21612 + agzbgz +...+ agnbng . aglblp + aggbgp + ...+ agnbnp

amlbu + amzbzl +...+ amnbnl am1612 + amzbgz +...+ amnbnz . amlblp + amgbgp +...+ amnbnp
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Theorem E.2.2. Let n be an integer and R an ring. Then
(a) (M,(R),+,) is a ring.
(b) O, () = (0R)ij-
(c) —[aij] = [-ai;] for any [ai;] € Mn(R)
(d) If R has an identity, then My (R) has an identity and 1y, () = (dij), where

lp  ifi=]
dij = e
Or ifi+y
Proof. Put J ={1,...,n} x{1,...,m} and observe that (M, (R),+) = (X c; R,+). So implies
that [AXTHAX 5] (]ED and hold.
Clearly [Ax @] holds. To verify let A = [a;;],B = [bji] and C = [¢] be in M,(R). Put
D =AB and E = BC. Then

(AB)C = DC = Z dikckl = Z (Z aijbjk) Ckl = Z Z aijbjkckl
| k=1 Ly [k=1\y=1 a  Limlk=1 1
and } - } _ -
A(BC) = AE = | Y ajjeji| =) aij (Z bjkaz) =[>> aybjren
| J=1 da L=t k=1 i LI=tk=1 dit
Thus A(BC) = (AB)C.
(A+B)C = [aij + bijlij - [cjrlir = lZ(az‘j +bij)cj
j=1 ik
= AC + BC.

n n
=| X aicin | + |2 bijcik
7=1 L=t

So (A+ B)C = AC + BC' and similarly A(B+C) = AB + AC. Thus M,,(R) is a ring.
Suppose now that R has an identity 1. Put I = [d;;];;, where

%:{13 ifi=

ik

Op ifi=j

If i # j, then d;;a;, = Ogaj, = Og and if 4 = j then d;;a;, = 1pas, = az,. Thus
TA=|>] 5ijajk] = [aix]in = A

J=1 ik

and similarly Al = A. Thus A is an identity in R and so @ holds. O
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E.3 Polynomial Rings
In this section we show that if R is ring with identity then existence of a polynomial ring with
coefficients in R.

Theorem E.3.1. Let R be a ring. Let P be the set of all functions f : N — R such that there exists
m e N* with

(1) f(i)=0g for alli>m

We define an addition and multiplication on P by
(2) (f+9)(@) = f(i) +g(i) and (fg)(i) = Zl: f(@)g(k 1)
k=0

(a) P is a ring.
(b) Forre R define r° e P by

o _|r ifi=0
(3) T(Z)’_{OR ifi+0

Then the function R — P,r w~ r° is a injective homomorphism.

(c) Suppose R has an identity and define x € P by

o [l s
RV op ifiet

Then (after identifying r € R with r° in P), P is a polynomial ring in x with coefficients in R.

Proof. Let f,g e P. Let deg f be the minimal m € N* for which (1) holds. Observe that (2) defines
functions f + ¢ and fg from N to R. So to show that f + g and fg are in P we need to verify that
(1) holds for f + g and fg as well. Let m = max(deg f,degg) and n = deg f + degg. Then for i > m,
f(i)=0g and g(i) =0g and so also (f +¢)(i) =0g. Also if i >n and 0 < k <4, then either k < deg f
or i—k >degg. In either case f(k)g(i—k) =0g and so (fg)(i) =0g. So we indeed have f+g e P and
fg e P. Thus axiom [Ax 1] and [Ax 6l hold. We now verify the remaining axioms one by one. Observe
that f and g in P are equal if and only if f(i) = g(¢) for all i e N. Let f,g,h € P and i € N.

(Ax2]
((f+9)+h)(0)

f(@) + (g9(2) + h(i))
(f+(g+h))()

(f(@) +9(2)) + h(i)
f(@)+(g+h)(0)

(f +9)(@) + h(i)
f(@) + (g(@) + h(i))
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Ax3l  (f+9)(@) = f(i) +g(i) = g(i) + f(i) = (g + £)(0)
(Ax4l Define 0p € P by 0p(i) =0g for all i e N. Then
(f +0p) (i) = f(i) + Op(i) = f(i) + Or = f(i)
(0p + f)(i) = 0p (i) + f(i) = 0r + f(i) = f()
[AX5l Define —f € P by (—f)(i) =—f(i) for all i € N. Then

(f+ @) = (@) + (=)@ = f(@) + (=f (i) =0r = 0p(i)

Any triple of non-negative integers (k,[,p) with k + 1+ p =i be uniquely written as (k,j -
k,i—j) where 0 < j<iand 0<k < j-k) and uniquely as (k,l,i—k—1) where 0 <i<kand 0<l<i—k.
This is used in the fourth equality sign in the following computation:

(fm)@) = JZ::(fg)(J) ni-i) - ;((;ﬂk)go k))h(z’—j))
= go(if(k)g(j—k))h(i—j)) = Ié(zif(k)g(l)h(i—k—l)))
- Z)O(f(k (’:zg(z)h(z k- l))) - gf(k (gh) (i~ k)
- (F(gh)) (i)
AxH

(f-(g+h))(@)

z FG) - (g + B (i - ) z FG) - (gGi— ) + i - )

20 F@)ali-3) + FGRG-5) = zo FDali- ) + 20 FG)hGi- )
(F9)(i) + (FR)(3) (Fg+ F1)(0)

((f +9)-h)(0) Zl:(f(j)w(j))-h(i—j)

S +9)()hi- )
7=0

5 1A= ) + oG- ) if@ ViGi=5)+ $o(0)hCi-3)
() + (9)() (11 gt

Since [AXT] through [AX 8] hold we conclude that P is a ring and (@) is proved. Let r,s ¢ R and
k,l € N. We compute
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@) (r+5)°0) - {OR TS @) = ()

and

]

(r°s) (i) = 2 r*(k)s(i— k)

k=0
Note that r°(k) = 0r unless k = 0 and s°(i—k) = Og unless and i —k = 0. Hence 7°(k)s(i—k) =0g
unless k=0 and i—k =0 (and so also i =0). Thus (7°s)(i) =0if i # 0 and (7°s)(0) =r°(0)s°(0) = rs.
This

(5) r°s® = (rs)°
Define p: R - P,r — r°. If r;s € R with r° = s°, then r = r°(1) = s°(1) = s and so p is injective.
By (4) and (5), p is a homomorphism and so (b)) is proved.

Assume from now on that R has an identity.
For k € N let & € P be defined by

(1 ifi=k
6 1) =
(6) #(0) {OR itk

Let f e P. Then

7 k
(7) (r°f)(@) = ];)T"(k)f(i —k)=r-f(i)+ Z; Orf(i-k)=r-f(i)
and similarly

(8) (fro)(@) = F()-r

In particular, 1% is an identity in P. Since dp = 1 we conclude

(9) do=1xp=1p
For f =4, we conclude that

r ifi=k

(10) (r°01)(3) = (67°) (@) = {OR fivk
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Let m € N and ayg,...a,, € R. Then (10) implies

() (iawywzﬁii“ﬁm
k=0

Op ifi>m

We conclude that if f € P and ag,a1,as9,...a, € R then

(12) f=> a0, <= m>degfanda,=f(k)forall0<k<m
k=0

We compute

(13) wmxwzgawwm—ﬁ
2

Since 05 (j)0;(i—j) is O unless j = k and [ =i — j, that is unless j = k and ¢ = [ + k, in which case
it is 1, we conclude

1R ifi=k+1
14 6koy) (1) = Op41 (1
(14) (0x01) (7) {OR ikl ket (1)
and so
Note that x = ;. We conclude that
(16) z* =5y,
By (10)
(17) r°x=xr® forallreR

We will now verify the four conditions (i)-(iv) in the definition of a polynomial. By (b)) we we
can identify  with 7° in R. Then R becomes a subring of P. By (9), 1% = 1p. So (i) holds. By (17),
(ii) holds. (iii) and (iv) follow from (12) and (16). O
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Theorem E.3.2. Let R be a ring with identity and for ¢ = 1,2 let P; be a polynomial ring in x; with
coefficients in R. Then there exists an isomorphism ® : Py - Py with ®(x1) = x2 and ®(r) = r for
all r € R. Moreover

deg f )
O(f)= D, firy
i=0
for all f = Z?f§f fixl e Py.

Proof. Since P; is a polynomial ring in 1 with coefficients in R we can apply with R[z1] = P,
S =P, a=idg and s = x9. Hence there exists a unique homomorphism ® : P, — P; with ®(x1) =z
and ®(r) =r for all r € R and

deg f ;
o(f) = Z ity
i=0
for all f= Y%/ fiat e P).
Suppose ®(f) = ®(g) for some f,g € P;. Then

deg f degg

> fiwy =Y, girh
i=0 i=0

Since P; is a is a polynomial ring in xo with coefficients in R this gives f; = g; for all i ¢ N and so
f=g. Thus ® is injective.

Let h € P». Since P; is a is a polynomial ring in z9 with coefficients in R, we have h = Z?:‘gh hixh.
Put f = Z?fgh hizt € Pi. Then ®(f) = h and so ® is surjective.

We proved that ® is an injective and surjective homomorphism and so ® is an isomorphism. [

Let F be a field and p a non-constant polynomial in F[z]. Then [2.10.3| shows that F[z]/(p)
contains a subring isomorphic to F. This suggest that there exists a ring isomorphic to F[z]/(p)
containg F' has a subring. The next theorem shows that this is indeed true.

Theorem E.3.3. Let F be a field and p be a non-constant polynomial in F[xz]. Then there exist a
ring R and a € R such that

(a) F is a subring of R,
(b) there exists an isomorphism ®: R - F[x]/(p) with ®(«) =[], and ®(a) = [a], for alla e F,
(¢) R is a commutative ring with identity and 1g = 1p.

Proof. As in[2.10.3{put F := {[a], | a € F}. Define

S:=F[z]/(p)~F and R:=FUS.
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(So for a € F' we removed [a], from F[z]/(p) and replaced it by a.) Define

[r], ifreF

®: R F[z]/(p), TH{T ifreS

Note that R = Fu S, SnF =g, F[z]/(p) = FuS and FnS = @. By [2.10.3 the function
F — F,a - [a], is bijection. Also idg:S — S,s — s is a bijection. It follows that ® is a bijection see

Exercise

Next we define an addition @ and a multiplication ® on R by

(*) réBs:tlfl((b(r)+<I)(s)) and ros:= qf%@(r)@(s)).
Observe that ®(®~*(u)) = u for all u e F[2]/(p). So applying @ to both sides of () gives
O(ros)=2(r)+®(s) and P(ros)=o(r)d(s)

for all 7,s € R. Hence implies that R is ring and ® is an isomorphism. Put « = [z],. Then
a €S and so a € R. Moreover ®(a) = ®([z],) = [x]p. Let a € F. Then a € R and ®(a) = [a],. Thus

(]ED holds.

For a,b e F we have

a®b=3"(2(a)+®(b)) =2 ([al, +[b]p) =@ ([a+b],) =@ (D(a+b))=a+be F
and

a©b=3"(®(a)®(b)) =2 " ([a],[b]y) = 27" ([ab],) = @' (®(ab)) =abe F

It follows that Op is the additive identity of R and that the additive inverse —a of a in F is also
the additive inverse of a in R. Since Op € F' and —a € F', the Subring Theorem now shows that F is
a subring of R. Thus also @ is proved.

By Flz]/(p) is a commutative ring with identity [17],. Since ® is an isomorphism we
conclude that R is a commutative ring with identity 1p. O
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Appendix F

Cardinalities

F.1 Cardinalities of Finite Sets
Notation F.1.1. For a,beZ set [a...bl:={ceZ|a<c<b}.

Theorem F.1.2. Let A ¢ [1...n]. Then there exists a bijection ov: [1...n] - [1...n] with a(A) <
[1...n-1].

Proof. Since A # [1...n] there exists m € [1...n] with m ¢ A. Define a : [1...n] - [1...n]
by a(n) = m, a(m) = n and «(i) =i for all 4 € [1...n] with n # i #+ m. It is easy to verify
that « is bijection. Since a(m) = n and m ¢ A, a(a) # n for all a € A. So n ¢ a(A) and so
a(A)c[l...n]-1. O

Theorem F.1.3. LetneN and let :[1...n] - [1...n] be a function. If B is injective, then [3 is
surjective.

Proof. The proof is by induction on n. If n = 1, then 5(1) = 1 and so f is surjective. Let A =
B([1...n-1]). Since B(n) ¢ A, A+ [1...n]. Thus by [F.1.2] there exists a bijection a: [1...n] with
a(A)c[l...n-1]. Thus afB([1...n-1]) c[1...n—-1]. By induction af([1...n-1]=[1...n-1].
Since af is injective we conclude that a5(n) =n. Thus af is surjective and a3 is a bijection. Since
« is also a bijection this implies that 5 is a bijection. O

Definition F.1.4. A set A is finite if there exists n € N and a bijection ov: A - [1...n].

Theorem F.1.5. Let A be a finite set. Then there exists a unique n € N for which there exists a
bijection av: A —[1...n].

Proof. By definition of a finite set there exist n € N and a bijection a: A - [1...n]. Suppose
that also m € N and §: A — [1...m] is a bijection. We need to show that n = m and may
assume that n < m. Let v:[1...n] = [1...m],i+ i and 6 := yoa o f7t. Then v is a injective
function from [1...m] to [1...m] and so by d is surjective. Thus also 7 is surjective. Since
v([1...n])=[1...n] we conclude that [1...n]=[1...m] and so also n = m. O
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Definition F.1.6. Let A be a finite set. Then the unique n € N for which there exists a bijection
a:A—[1...n] is called the cardinality or size of A and is denoted by |Al.

Theorem F.1.7. Let A and B be finite sets.
(a) If a: A — B is injective then |A| < |B|, with equality if and only if « is surjective.
(b) If a: A - B is surjective then |A| > |B|, with equality if and only if « is injective.
(c) If Ac B then |A| <|B|, with equality if and only if |A| = |B|.

Proof. () If « is surjective then « is a bijection and so [A| = |B|. So it suffices to show that if
|A| > |B|, then « is surjective. Put n=|A| and m=|B|and let 5: A—[1...n] and v: B - [1...m]
be bijection. Assume n > m and let § : [1...m] - [1...n] be the inclusion map. Then dyaB~" is
a injective function form [1...n] to [1...n] and so by its surjective. Hence 4 is surjective,
n =m and § is bijection. Since also ~ is bijection, this forces a8~ to be surjective and so also « is
surjective.

(]E[) Since « is surjective there exists §: B - A with a8 =idg. Then f is injective and so by @),
|B| < |A| and B is a bijection if and only if [A| = |B|. Since « is a bijection if and only if 3 is, (b)) is
proved.

Follows from @ applied to the inclusion map A — B. ]

Theorem F.1.8. Let A and be B be finite sets. Then
(a) If AnB =g, then |Au B|=|A|+|B].
(b) [Ax B[ =[A[-|B].
Proof. (@) Put n = |A|, m =|B|and let 3: A— [1...n] and v : B - [1...m] be bijections. Define
v:AuB—[l...n+m] by
a(ce) ifce A
(e) = .
B(c)+n ifceB

Then it is readily verified that « is a bijection and so |Au B| =n+m = |A| +|B].

() The proof is by induction on |B|. If |B| = 0, then B = @ and so also Ax B = @. If | B| = 1, then
B = {b} for some b € B and so the map A - AxB,a + (a,b) is a bijection. Thus |AxB| =|A| = |A|-|B].
Suppose now that (]E[) holds for any set B of size k. Let C' be a set of size k+ 1. Pick ce C and put
B =C~{c}. Then C = Bu{c} and so () implies |B| = k. So by induction |[A x B| = |A|- k. Also
|A x {c} = |A] and so by (&)

[AxC|=|AxB|+|Ax{c} =|A|-k+|A|=|A]- (k+1) = |A||C]
([b) now follows from the principal of mathematical induction O
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List of Important Theorems and
Definitions

Definition A ring is a triple (R,+,-) such that
(i) R is a set;

(ii) + is a function (called ring addition) and Rx R is a subset of the domain of +. For (a,b) € RxR,
a+b denotes the image of (a,b) under +;

(iii) - is a function (called ring multiplication) and R x R is a subset of the domain of -. For
(a,b) e Rx R, a-b (and also ab) denotes the image of (a,b) under -;

and such that the following eight statement hold:

(Ax 1) a+beR foralla,beR; [closure of addition]
(Ax2) a+(b+c)=(a+b)+c foralla,b,ceR; [associative addition]
(Ax 3) a+b=b+a foralla,beR. [commutative addition]
(Ax 4) there exists an element in R, denoted by Or and called ‘zero R’, [additive identity]

such that a=a+0g and a=0gr+a forallacR;

(Ax 5) for each a € R there exists an element in R, denoted by —a [additive inverses]

and called ‘negative a’, such that a+ (—a) =0g and (—a) +a =0g;

(Ax6) abe R for all a,be R; [closure of multiplication]
(Ax 7) a(bc) = (ab)e  for all a,b,c € R; [associative multiplication/
(Ax 8) a(b+c¢)=ab+ac and (a+b)c=ac+bc  for all a,b,ce€ R. [distributive laws]

Definition Let R be a ring. Then R is called commutative if
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(Ax 9) ab=ba for all a,be R. [commutative multiplication]

Definition Let R be a ring. We say that R is a ring with identity if there exists an element,
denoted by 1r and called ‘one R’, such that

(Ax 10) a=1g-a anda=a-1r for all a € R. [multiplicative identity]
Definition A ring R is called an integral domain provided that
(i) R is commutative,
(ii) R has an identity,
(iii) 1 #Og, and
(Ax 11) whenever a,b e R with ab=0g, then a =0g or b=0g.
Definition A ring R is called a field provided that
(i) R is commutative,
(ii) R has an identity,
(iii) 1r #Og, and
(Ax 12) each a € R with a # 0g is a unit in R.
Definition Let (R, +,-) and (S,®,®) be rings and let f: R— S be a function.

(a) f is called @ homomorphism from (R,+,-) to (S,®,0) if

fla+b)=f(a)® f(b) [f respects addition]
and
fla-b)=f(a)o f(b) [ f respects multiplication|
for all a,be R.

(b) f is called an isomorphism from (R, +,-) to (S,®,®), if f is a homomorphism from (R, +,-) to
(S,®,0) and f is bijective.

(¢) (R,+,-) is called isomorphic to (S,®,®), if there exists an isomorphism from (R,+,-) to
(S,@,0).

Theorem Let R be a ring and a,b,ce€ R. Then
(a) —ORZOR (C) a-OR:OR:OR-a.

(b) a-0g =a. (d) a-(-b) =—-(ab) =(-a)-b.
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(e) —(-a) =a. (i) (-a)-(=b) = ab.

(f) b—a=0g if and only if a =b. () a-(b-¢)=ab-ac and (a-b)-c=ac-be.
() -(a+b)=(-a)+(-b) =(-a)-b. If R has an identity 1,

(h) —(a-b)=(-a)+b=b-a. (k) (-1g)-a=-a=a-(-1g).

Theorem Let R be a ring and a,b,n € R. Then the following statements are equivalent

(a) a=b+nk for some ke R (g) [aln = [b]n-

(b) a-b=nk for some k€ R. (h) a € [b],.

(c) nla-b. (i) b=a (modn)

(d) a=b (modn). G) nlb-a

(e) be[a]n. (k) b—a=nl for some l € R.
(f) [alnn [b]n # 2. (1) b=a+nl for some l € R.

Theorem 1| (The Division Algorithm). Let a and b be integers with b > 0. Then there exist
unique mtegers q and r such that

a=bg+r and 0<r<b.
Theorem Let a,b,n be integers with n # 0. Then
a=b (modn)
if and only if
a and b have the same remainder when divided by n.
Theorem Let n be positive integer.

(a) Let a € Z. Then there erxists a unique r € Z with 0 <r <n and [a], = [r]n, namely r is the
remainder of a when divided by n.

(b) There are exactly n distinct congruence classes modulo n, namely

[0]7 [1]7 [2]7 AR [n - 1]
(¢) |Zn| = n, that is Z,, has exactly n elements.

Theorem 2| (Subring Theorem). Suppose that R is a ring and S a subset of R. Then S is a
subring of R zf and only if the following four conditions hold:
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(I) OgesS.
(IT) S is closed under addition (that is : if a,be S, then a+be S);
(II1) S is closed under multiplication (that is: if a,b€ S, then abe S);
)

(IV) S is closed under negatives (that is: if a € S, then —a € S)

Theorem Let a and b be integers, not both zero, and let d € Z with d = ged(a,b). Then d is
the smallest positive integer of the form au + bv with u,v € Z.

Theorem [1.10.3L Let p be an integer with p ¢ {0,+1}. Then the following two statements are
equivalent:

(a) p is a prime.
(b) If a and b are integers with p|ab, then pla or p|b.

Theorem (Division Algorithm). Let R be ring with identity and f,g € R[xz] such that g + Og
and lead(g) is unit in R. Then there exist uniquely determined q,r € R[xz] with

f=gq+r and degr<degyg.

Theorem Let F be a field and f,g € F[x] not both Op.
(a) There exists a unique d € F[x] with d = ged(f,g).
(b) There exists u,v € F[x] with d = fu+ gv.
(¢) If ¢ is a common divisor of f and g, then c|d.

Theoremm (Factorization Theorem). Let F' be a field and f a non-constant polynomial in F[x].
Then f is the product of irreducible polynomials in F[z].

Theorem (Unique Factorization Theorem). Let F' be a field and f a non-constant polynomial
in Flx]. Suppose that n,m are positive integers and pi,pa,...,pn and qi,...qm are irreducible
polynomials in F[x] with

f=pip2...pn and f=qq2... qm.

Then n =m and, possibly after reordering the q;’s,

p1~q, pP2~q2, ..., DPn~(Qn-

Theorem (Factor Theorem). Let F' a field, f € F[x] and a€ F. Then a is a root of f if and
only if ©—a|f in Flx].

Theorem Let R be commutative ring with identity and f € R[z].

(a) Let g€ R[x] with g|f. Then any root of g in R is also a root of f in R.
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(b) Let a € R and g,h € R[z] with f = gh. Suppose that R is field or an integral domain. Then a
is a root of f if and only if a is a root of g or a is a root of h.

Theorem [2.10.6, Let F' be a field and p a non-constant polynomial in F(z]. Let o Fp[a] be as in
2. 10.9.

(a) Let feF[z]. Then f(a)=[f]p-
(b) For each (B € Fp[a] there exists a unique f € F|x] with deg f <degp and f(a) = 5.

(c) Let n=degp. Then for each 8 € Fp[a] there exist unique bg,br, ..., by—1 € F' with

B=by+bra+...+by 0™t

(d) Let f e F[z], then f(a) =0p if and only if p| f in F[zx].
(e) « is a root of p in Fpla].

Theorem [2.11.2, Let F be a field and p a non-constant polynomial in F[xz]. Then the following
statements are equivalent:

(a) p is irreducible in F[x].
(b) Fpla] is a field.
(c) Fpla] is an integral domain.

Theorem (Ideal Theorem). Let I be a subset of the ring R. Then I is an ideal of R if and
only if the following four conditions holds:

(i) Opel.
(i)
(ili) rael and ar eI for allael andr e R.
(iv) —ael forallacel.

a+bel foralla,bel.

Theorem [3.1.10\ Let R be ring and I an ideal of R. Let a,b e R. Then the following statements
are equivalent

(a) a=b+1i for someiel. (e) bea+1.
(b) a-b=1i for someiel (f) (a+I)n(b+1)+ 2.
(c) a-bel. (g) a+I=0b+1.

(d) a=b (modI). (h) aeb+1.
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(i) b=a (modI). (k) b—a=j for some jel.
(j) b—acel. (1) b=a+j for some jel.

Theorem (First Isomorphism Theorem). Let f: R — S be a ring homomorphism. Recall that
Imf={f(a)|acR}. The function

f: R/KerfwImf, a+Kerf — f(a)

is a well-defined isomorphism. In particular R/Kerf and Im f are isomorphic rings
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