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Abstract. In [M-W], Masur and Wolf proved that the Teichmüller
space of genus g > 1 surfaces with the Teichmüller metric is not a
Gromov hyperbolic space. In this paper, we provide an alternative proof
based upon a study of the visual sphere of Teichmüller space.

1. Introduction

As observed in [M-W], the Teichmüller space of surfaces of genus g > 1
with the Teichmüller metric shares many properties with spaces of negative
curvature. In his study of the geometry of Teichmüller space [Kr], Kravetz
claimed that Teichmüller space was negatively curved in the sense of Buse-
mann [Bu]. It was not until about ten years later, that Linch [L] discovered
a mistake in Kravetz’s arguments. This left open the question of whether
or not Teichmüller space was negatively curved in the sense of Busemann.
This question was resolved in the negative by Masur in [Ma].

A metric space X is negatively curved, in the sense of Busemann, if the
distance between the endpoints of two geodesic segments from a point in
X is at least twice the distance between the midpoints of these two seg-
ments. An immediate consequence of this definition is that distinct geodesic
rays from a point in a Busemann negatively curved metric space must di-
verge. Masur proved that Teichmüller space is not negatively curved, in the
sense of Busemann, by constructing distinct geodesic rays from a point in
Teichmüller space which remain a bounded distance away from each other.

In [G], Gromov introduced a notion of negative curvature for metric spaces
which, while less restrictive than that of Busemann, implies many of the
properties which Teichmüller space shares with spaces of Riemannian neg-
ative sectional curvature. This raised the question of whether Teichmüller
space was negatively curved in the sense of Gromov, (i.e. Gromov hyper-
bolic). According to one of the definitions of Gromov hyperbolicity, an
affirmative answer to this question would rule out so-called “fat” geodesic
triangles in Teichmüller space. In [M-W], Masur and Wolf resolved the
Gromov hyperbolicity question in the negative by constructing such “fat”
geodesic triangles.
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As observed in [M-W], the existence of distinct nondivergent rays from a
point in Teichmüller space does not preclude Teichmüller space from being
Gromov hyperbolic. Apparently for this reason, rather than taking Masur’s
construction of such rays as the starting point for their proof, Masur and
Wolf found their motivation from another source. They, observed that the
isometry group of the Teichmüller metric is the mapping class group [R],
which is not a Gromov hyperbolic group, since it contains a free abelian
group of rank 2. This fact, like Masur’s result on the existence of distinct
nondivergent rays from a point, is insufficient to imply that Teichmüller
space is not Gromov hyperbolic. Nevertheless, it served as motivation for
Masur and Wolf’s construction of “fat” geodesic triangles.

In this paper, we provide an alternative proof of the result of Masur
and Wolf. Our proof, unlike that of Masur and Wolf, builds upon Masur’s
construction of nondivergent rays from a point in Teichmüller space. On
the other hand, unlike the proof of Masur and Wolf, our proof depends
upon one of the deeper consequences of Gromov hyperbolicity. Namely,
in order for Teichmüller space to be Gromov hyperbolic, the visual sphere
of Teichmüller space would have to be Hausdorff. We show that, on the
contrary, the visual sphere of Teichmüller space is not Hausdorff. The proof
of this fact relies heavily upon the specific nature of Masur’s construction
of nondivergent rays. In this way, we show that the result of Masur and
Wolf that Teichmüller space is not negatively curved in the sense of Gromov
is latent in Masur’s original proof that Teichmüller space is not negatively
curved in the sense of Busemann.

The outline of the paper is as follows. In section 2, we review the prereq-
uisites for our proof. In section 3, we prove our main result that the visual
sphere of Teichmüller space is not Hausdorff and conclude that Teichmüller
space is not Gromov hyperbolic.

2. Preliminaries

2.1. Teichmüller space. LetM denote a closed, connected, orientable sur-
face of genus g ≥ 2. The Teichmüller space Tg of M is the space of equiva-
lence classes of complex structures on M , where two complex structures S1

and S2 on M are equivalent if there is a conformal isomorphism h : S1 → S2

which is isotopic to the identity map of the underlying topological surface
M .

The Teichmüller distance d([S1], [S2]) between the equivalence classes
[S1] and [S2] of two complex structures S1 and S2 on M is defined as
1
2 log infhK(h), where the infimum is taken over all quasiconformal home-
omorphisms h : S1 → S2 which are isotopic to the identity map of M and
K(h) is the maximal dilitation of h.

As shown by Kravetz [Kr], (Tg, d) is a straight G-space in the sense of
Busemann ([Bu],[A]). Hence, any two distinct points, x and y, in Tg are
joined by a unique geodesic segment (i.e. an isometric image of a Euclidean
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interval), [x,y], and lie on a unique geodesic line (i.e. an isometric image of
R), γ(x, y).

Now, fix a conformal structure S on M and let QD(S) be the space of
holomorphic quadratic differentials on S. The geodesic rays (i.e. isometric
images of [0,∞)) which emanate from the point [S] in Tg are described in
terms of QD(S). If q is a holomorphic quadratic differential on S, p is a
point on S and z is a local parameter on S defined on a neighborhood U of
p, then q may be written in the form φ(z)dz2 for some holomorphic function
φ on U . If φ(p) 6= 0 and z0 = z(p), then on a sufficiently small neighborhood
V of p contained in U , we may define a branch φ(z)1/2 of the square root of
φ. The integral w = Φ(z) =

∫ z
z0
φ(z)1/2dz is a conformal function of z and

determines a local parameter for S on a sufficiently small neighborhood W
of p in V . This parameter w is called a natural rectangular parameter for
q at the regular point p. In terms of this parameter w, q may be written
in the form dw2. For each nonzero quadratic differential q on S, there is
a one-parameter family {SK} of conformal structures on M and quadratic
differentials {qK} on SK obtained by replacing the natural parameters w for
q on S by natural parameters wK for qK on SK . The relationship between
wK and w is given by the rule:

RewK = K1/2Rew ImwK = K−1/2Imw.

The Teichmüller distance from [SK ] to [S] is equal to log(K)/2. The map
t 7→ [Se2t ] is a Teichmüller geodesic ray emanating from [S] and every geo-
desic ray emanating from [S] is of this form. Two nonzero quadratic differ-
entials on S determine the same Teichmüller geodesic ray in Tg emanating
from [S] if and only if they are positive multiples of one another.

It is well-known that (Tg, d) is homeomorphic to R6g−6 and closed balls
in (Tg, d) are homeomorphic to closed balls in R6g−6. In fact, using the
previous description of geodesic rays, a homeomorphism can be constructed
from the open unit ball of QD(S) onto Tg. Suppose q is a point in the open
unit ball of QD(S). Then q = kq1 where 0 ≤ k < 1 and q1 is a quadratic
differential in the unit sphere of QD(S). Map q to the point [SK ] on the
geodesic ray through [S] in the direction of q1 where K = (1+k)/(1−k). By
the work of Teichmüller, this map is a homeomorphism from the open unit
ball of QD(S) onto Tg. Since QD(S) is a complex vector space of dimension
3g − 3, this proves that Tg is homeomorphic to R6g−6. Note also that this
homeomorphism maps the closed ball of radius k centered at the origin of
QD(S) onto the closed ball of radius log(K)/2 centered at the point [S] in
(Tg, d). This proves that closed balls in (Tg, d) are homeomorphic to closed
balls in R6g−6.

We shall be particularly interested in the Jenkins-Strebel differentials.
These are the quadratic differentials all of whose noncritical horizontal tra-
jectories are closed. Let θ be a Jenkins-Strebel differential and F be the
horizontal foliation of θ. The complement in M of the critical trajectories
of F consists of p disjoint open annuli A1, . . . , Ap, where 1 ≤ p ≤ 3g − 3.
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Let σi be a core curve of the annulus Ai. The core curves σ1, . . . , σp are
distinct, nontrivial, pairwise nonisotopic circles on M . Each annulus Ai is
foliated by closed leaves of F isotopic to σi. Let Mi be the modulus of the
annulus Ai. The basic existence and uniqueness theorem of Jenkins-Strebel
([J], [S]) states that there exists a unique quadratic differential θ in Q(S)
with prescribed isotopy classes γi = [σi] of core curves and moduli Mi of
the corresponding annuli Ai. Note that two Jenkins-Strebel differentials
on S determine the same Teichmüller geodesic in Tg emanating from [S] if
and only if the horizontal foliations of these Jenkins-Strebel differentials are
projectively equivalent.

Following Masur [Ma], we define a Strebel ray in Tg emanating from [S] to
be a Teichmüller geodesic ray determined by a Jenkins-Strebel differential on
S. Suppose that θ1 and θ2 are Jenkins-Strebel differentials corresponding to
the same isotopy classes of core curves, but not necessarily the same moduli,
of corresponding annuli. Then, following Masur, we say that the Strebel rays
determined by θ1 and θ2 are similar. Masur proved that similar Strebel rays
emanating from the same point in Tg are nondivergent.

Theorem (Masur [Ma]) . Let r and s be similar Strebel rays in Tg ema-
nating from a point x in Tg. There exists N < ∞ such that if y and z are
any two points on r and s which are equidistant from x, then d(y, z) ≤ N .

Since g ≥ 2, there exist distinct similar Strebel rays r and s in Tg emanat-
ing from the same point x = [S] in Tg. We may construct all such pairs of
rays as follows. Choose a collection of disjoint, nontrivial, pairwise noniso-
topic circles σ1, . . . σp on M , where 2 ≤ p ≤ 3g − 3. Let a = (a1, a2, . . . , ap)
and b = (b1, . . . , bp) be p-tuples of positive real numbers ai and bi such
that a and b lie on distinct rays emanating from the origin in Rp. Let θ
be the Jenkins-Strebel differential on S corresponding to the isotopy classes
γi = [σi] of core curves and moduli ai of corresponding annuli. Likewise,
let ψ be the Jenkins-Strebel differential on S corresponding to the isotopy
classes γi = [σi] of core curves and moduli bi of corresponding annuli. Fi-
nally, let r and s be the Strebel rays determined by θ and ψ.

Combining the observation of the previous paragraph with his theorem
on nondivergence of similar Strebel rays, Masur constructed distinct, non-
divergent Teichmüller geodesic rays emanating from the same point in Tg.
Indeed, any pair of distinct similar Strebel rays emanating from the same
point in Tg is such a pair of nondivergent rays. In this way, Masur proved
that Tg is not negatively curved in the sense of Busemann [Ma]. The par-
ticular nature of Masur’s construction of nondivergent rays will be crucial
to our proof that Tg is not negatively curved in the sense of Gromov.

The modulus of a flat cylinder C of circumference l and height h is
Mod(C) = h/l. Let S be a conformal structure on M . Every cylinder
C embedded in M has a conformal structure induced from S. C is con-
formally equivalent to a unique flat cylinder up to change of scale. The
modulus of C is the modulus of any such flat cylinder. Let γ be an isotopy
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class of nontrivial simple closed curves on M . The modulus modS(γ) of γ is
defined to be the supremum of the moduli of all cylinders embedded in M
with core curve σ ∈ γ.

For each conformal metric ρ on S, let `ρ(γ) denote the infimum of the
lengths, with respect to ρ, of simple closed curves σ ∈ γ. Let Aρ denote
the area, with respect to ρ, of M . The extremal length extS(γ) of γ (with
respect to the conformal structure S on M) is equal to supρ(`ρ(γ))2/Aρ.
The extremal length is related to the modulus by the equation extS(γ) =
1/modS(γ).

According to Kerckhoff [K], the Teichmüller metric d may be expressed
in terms of extremal length.

Theorem (Kerckhoff [K]) . The Teichmüller distance between two points
[S1] and [S2] in Tg is given by the rule:

d([S1], [S2]) =
1
2

log sup
γ

extS1(γ)
extS2(γ)

where the supremum ranges over all isotopy classes γ of nontrivial simple
closed curves on M .

We recall that there is a unique hyperbolic conformal metric ρ on S. There
exists a unique hyperbolic geodesic in the isotopy class γ. The hyperbolic
length `ρ(γ) is the length of this hyperbolic geodesic. Maskit established the
following comparisons between the hyperbolic length `ρ(γ) and the extremal
length extS(γ) [M].

Theorem (Maskit [M]) . Let γ be an isotopy class of nontrivial simple
closed curves on M , S be a conformal structure on M and ρ be the unique
hyperbolic conformal metric on S. Let ` be the hyperbolic length `ρ(γ) and
m be the extremal length extS(γ). Then ` ≤ mπ and m ≤ (1/2)`e`/2.

2.2. Visual spheres and Gromov hyperbolicity. Let X be a space
equipped with a metric d. X is said to be proper if closed balls in X are
compact. Since closed balls in (Tg, d) are homeomorphic to closed balls in
R6g−6, (Tg, d) is proper. X is said to be geodesic if every pair of points
x, y ∈ X can be connected by a geodesic segment (i.e. an isometric embed-
ding of an interval). By Kravetz’ result that (Tg, d) is a straight G-space in
the sense of Busemann discussed in (2.1), (Tg, d) is geodesic.

Let x be a point in X. A geodesic ray emanating from x is an isometric
embedding r : [0,∞) → X mapping 0 to x. If r1 and r2 are two geodesic
rays in X emanating from x and the function t 7→ d(r1(t), r2(t)) is bounded,
then we say that r1 and r2 are asymptotic and write r1 ∼ r2. In this way,
we define an equivalence relation ∼ on the set Rx of geodesic rays in X
emanating from x. Equip Rx with the topology of uniform convergence on
compact sets. The visual sphere of X at x is the quotient space ∂vis,xX of
Rx with respect to the equivalence relation ∼.
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Gromov ([G], see also [C-D-P], [G-H]) introduced a notion of hyperbolicity
for metric spaces which is now called Gromov hyperbolicity. Gromov hyper-
bolic metric spaces share many of the qualitative properties of hyperbolic
space. We shall not need the precise definition of Gromov hyperbolicity. We
shall, however, require the following result.

Theorem (Gromov [C-D-P]) . Let X be a proper, geodesic, Gromov hy-
perbolic space and x be a point in X. Then the visual sphere ∂vis,xX of X
at x is Hausdorff.

Remark 2.3. In fact, the visual sphere of a proper, geodesic, Gromov
hyperbolic space is metrizable. The visual sphere of such a space does not
depend upon the base point x in X and is naturally isomorphic to the
Gromov boundary ∂X of X [C-D-P]. Note that the visual sphere is defined
for any metric space. The Gromov boundary, however, is only defined for a
restricted class of metric spaces including Gromov hyperbolic spaces.

3. The visual sphere of Teichmüller space

In this section, we prove that the visual sphere of Teichmüller space is not
Hausdorff and conclude that Teichmüller space is not Gromov hyperbolic.

Theorem 3.1. Let S be a conformal structure on M representing a point
x in Tg. Then the visual sphere ∂vis,xTg of Tg at x, with respect to the
Teichmüller metric d, is not Hausdorff.

Proof. Let σ0 and σ1 be a pair of disjoint simultaneously nonseparating
circles on M . For each real number t with 0 < t < 1, let θt denote the
unique Jenkins-Strebel differential on S with core curves σ0 and σ1 and
moduli M0 = 1 − t and M1 = t. Let θ0 denote the unique Jenkins-Strebel
differential on S with core curve σ0 and modulus M0 = 1. Let θ1 denote
the unique Jenkins-Strebel differential on S with core curve σ1 and modulus
M1 = 1. Let rt be the geodesic ray in Tg emanating from x corresponding
to the nonzero quadratic differential θt. The family {rt|0 ≤ t ≤ 1} is a
continuous one-parameter family of geodesic rays in Tg emanating from x.
Let [rt] denote the point in ∂vis,xTg represented by rt.

Note that rt is similar to r1/2 for all t such that 0 < t < 1. By Masur’s
result on nondivergence of similar rays discussed in (2.1), it follows that rt
is asymptotic to r1/2 for all t such that 0 < t < 1. Let x = [r1/2]. Then
x = [rt] for all t such that 0 < t < 1. By continuity of the quotient map
from Rx to the visual sphere (recalling that the visual sphere is equipped
with the quotient topology), and the convergence of the rays in Rx, [r0] and
[r1] are contained in the closure of x in ∂vis,xTg.

We shall now show, using Maskit’s comparison of extremal and hyperbolic
lengths discussed in (2.1), that [r0] is not equal to [r1]. Since σ0 and σ1 are
simultaneously nonseparating circles on M , we may choose a nonseparating
circle σ on M such that σ is disjoint from σ1, transverse to σ0, and meets
σ0 in exactly one point. Let γi denote the isotopy class of σi and γ denote
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the isotopy class of σ. Let {Si
K} denote the family of conformal structures

on M determined by θi.
We recall Masur’s description of the surfaces {Si

K} ([Ma]). The comple-
ment of the critical points of θi and the horizontal leaves of θi joining critical
points of θi is a single annulus Ri foliated by closed horizontal leaves of θi

homotopic to σi. We may assume that σi is the central curve of Ri. The
surface Si

K is formed from S by “fattening” Ri, by cutting M along σi and
inserting a standard annulus of appropriate modulus. As K tends to infinity,
the modulus of the inserted annulus tends to infinity. Hence, the modulus
of γi on Si

K tends to infinity. In other words, extSi
K

(γi) tends to zero.
In particular, extS0

K
(γ0) tends to zero as K tends to infinity. Let ρ0

K

denote the unique hyperbolic conformal metric on S0
K . By Maskit’s com-

parison theorem discussed in (2.1), `ρ0
K

(γ0) tends to zero as K tends to
infinity. Since σ0 meets σ transversely and in a single point, the unique
hyperbolic geodesics for the hyperbolic metric ρ0

K in the isotopy classes of
σ0 and σ also meet transversely and in a single point. `ρ0

K
(γ0) and `ρ0

K
(γ)

are the respective lengths of these hyperbolic geodesics. Hence, by Lemma
1 of Chapter 11, Section 3.3 of [A], `ρ0

K
(γ) tends to infinity as K tends to

infinity. Again, by Maskit’s comparison theorem, extS0
K

(γ) tends to infinity
as K tends to infinity.

On the other hand, note that σ is disjoint from σ1. Let R be any annulus
on S disjoint from σ1 with core curve isotopic to σ. By the description of
S1

k in terms of fattening R1 along σ1, the annulus R embeds conformally
in S1

k . Hence, the modulus of γ on S1
k is bounded below by the constant

C = modS(R). In other words, the extremal length of γ on S1
k is bounded

above by the constant 1/C.
We have shown that extS0

K
(γ) tends to infinity and extS1

K
(γ) remains

bounded above as K tends to infinity. Hence, extS0
K

(γ)/extS1
K

(γ) tends to
infinity as K tends to infinity. By Kerckhoff’s description of the Teichmüller
metric in terms of extremal length discussed in (2.1), d(S0

K , S
1
K) tends to

infinity as K tends to infinity. We conclude that r0 is not asymptotic to r1.
In other words, [r0] 6= [r1]. Hence, we have a pair of distinct points [r0] and
[r1] in the closure of a single point [r1/2] in the visual sphere ∂vis,xTg of Tg at
x. It follows that the visual sphere ∂vis,xTg of Tg at x is not Hausdorff. �

We are now ready to deduce the result of Masur and Wolf.

Corollary 3.2. (Masur-Wolf [M-W]) Teichmüller space with the Teichmüller
metric is not Gromov hyperbolic.

Proof. Suppose that (Tg, d) is Gromov hyperbolic. Closed balls in (Tg, d) are
compact and (Tg, d) is geodesic. By Gromov’s theorem on the visual sphere
of a proper, geodesic, Gromov hyperbolic space discussed in (2.2), it follows
that the visual sphere of Teichmüller space is Hausdorff. This contradicts
Theorem 3.1. Hence, (Tg, d) is not Gromov hyperbolic. �
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