
REPRESENTING HOMOLOGY AUTOMORPHISMS OF
NONORIENTABLE SURFACES

JOHN D. MCCARTHY AND ULRICH PINKALL

Abstract. In this paper, we prove that every automorphism of the
first homology group of a closed, connected, nonorientable surface which
preserves the associated Z2-valued intersection pairing is induced by a
diffeomorphism of this surface.

0. Introduction

It is well known that the diffeomorphisms on a closed, connected, ori-
entable surface of genus g, Mg, induce the full group of automorphisms of
H1(Mg,Z) which preserve the associated intersection pairing. With respect
to a standard basis of H1(Mg,Z), this group is identified with the group of
integer symplectic matrices, Sp(2g,Z). Clebsch and Gordon discovered gen-
erators for Sp(2g,Z) in 1866. Consequently, in 1890 Burkhardt [BU] gave
the first proof of this fact by showing that these generators are induced by
diffeomorphisms of Mg. A similar algebraic proof involves the set of four
generators discovered by Hua and Reiner [HR], [Bi]. Meeks and Patrusky
[MP] gave a topological proof in 1978.

In the case of a closed, connected, nonorientable surface of genus p, Fp,
there is only a Z2-valued intersection pairing. (Here, the genus of a nonori-
entable surface is defined to be the number of projective planes in a con-
nected sum decomposition.) Nevertheless, we shall show in this article that
the above result extends in a natural way to nonorientable surfaces. More
precisely, we shall prove the following theorem.

Theorem 1. If L is an automorphism of H1(Fp,Z) which preserves the
associated Z2-valued intersection pairing, then L is induced by a diffeomor-
phism of Fp.
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Our arguments are essential algebraic and elementary. After describing
the action of certain diffeomorphisms on H1(Fp,Z2), we prove the following
theorem.

Theorem 2. If L is an automorphism of H1(Fp,Z2) which preserves the
associated Z2-valued intersection pairing, then L is induced by a diffeomor-
phism which is a product of Dehn twists.

We then compute the action of certain crosscap slides (the Y -homeomorphisms
of Lickorish [L], [Ch]) on H1(Fp,Z). By a purely algebraic argument, sim-
ilar to the standard argument for establishing the generation of GL(n,Z)
by elementary matrices and permutation matrices, we deduce the following
theorem.

Theorem 3. If L is an automorphism of H1(Fp,Z) which induces the trivial
automorphism of H1(Fp,Z2), then L is induced by a diffeomorphism which
is a product of crosscap slides.

Actually, we shall prove more precise versions of all three of the above
theorems, versions which provide finite sets of generators (Theorem 3.1,
Theorem 2.2 and Theorem 1.1). In particular, in the case of Theorem 1, we
shall prove that L is induced by a diffeomorphism of Fp which is generated
by a specific set of four maps, a crosscap transposition, a crosscap p-cycle,
a Dehn twist and a crosscap slide (Theorem 3.1).

Here is an outline of the paper. In Section 1, we describe the collection
of diffeomorphisms used in the proof of Theorem 2, compute their action on
H1(Fp,Z2) and prove Theorem 2. In Section 2, we describe the correspond-
ing collection of crosscap slides used in the proof of Theorem 3, compute
their action on H1(Fp,Z) and deduce Theorem 3. Finally, in Section 3, we
deduce Theorem 1 from Theorems 2 and 3.

1. Section 1

Consider the following model for Fp. Let Sp be a sphere with p open discs
removed. We denote the boundary components of Sp by b1, ...., bp. To each
component, bi, we attach a Moebius band, Mi, with core circles, ci. The
resulting surface, Fp, is depicted in Figure 1 (for p = 3). The Moebius bands
are drawn as “crosscaps”).

If p ≥ 2, choose a diffeomorphism of Fp, τ , which exchanges the pairs
(M1, c1) and (M2, c2) and fixes each of the remaining crosscaps. We refer to
τ as a crosscap transposition. The action of τ is depicted in Figure 2.

In a similar manner, if p ≥ 3, choose a diffeomorphism of Fp, ψ, which
permutes the crosscaps cyclically in the given order. We refer to ψ as a
crosscap p-cycle. (We could, of course, define ψ as an appropriate product
of crosscap transpositions.) The action of ψ is depicted in Figure 3 (for
p = 3).
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Finally, if p ≥ 4, we construct a simple closed curve, d, which “runs once
around each Moebius band, M1, M2, M3, and M4, in the given order”, as
in Figure 4.

The arcs “running around the Moebius bands” are constructed as in Fig-
ure 5.

Since d is orientation preserving and, hence, two-sided, we may construct
the Dehn twist about d ([L]), δ.

Remark For nonorientable surfaces, it is not possible to distinguish between
right and left twists. Nevertheless, we could choose an orientation of a reg-
ular neighborhood of d and let δ denote the right twist about d with respect
to this orientation.

The Z2-homology classes represented by the cores, which we also denote
as c1, ...., cp, form a Z2 basis for H1(Fp,Z2).

(1.1) H1(Fp,Z2) =< c1, ...., cp > .

The Z2-valued intersection pairing, <,>, is given by the following condi-
tions.

(1.2) < ci, cj >= 0 1 ≤ i ≤ p 1 ≤ j ≤ p i 6= j

< ci, ci >= 1
(In other words, with respect to the given basis, the pairing is identified

with the standard inner product on Zp
2.)

The characteristic class, c, is given as the sum of the basis.

(1.3) c = c1 + ....+ cp.

It is easy to check that it is the unique Z2-class which satisfies the following
identity.

(1.4) < c, x >=< x, x > x ∈ H1(Fp,Z2).

The Z2-homology class of d, which we also denote as d, is given by the
following sum.

(1.5) d = c1 + c2 + c3 + c4.

The actions of τ , ψ, and δ on H1(Fp,Z2) are given by the following con-
ditions.

(1.6) τ∗(c1) = c2 3 ≤ i ≤ p

τ∗(c2) = c1

τ∗(ci) = ci
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(1.7) ψ∗(ci) = ci+1 1 ≤ i ≤ p (modulo p )

(1.8) δ∗(x) = x+ < d, x > d x ∈ H1(Fp,Z2).

Remark The Z-homology classes corresponding to the cores, which we also
denote asc1, ...., cp, generate H1(Fp,Z). Formulas (1.6) and (1.7) also hold
for the actions of τ and ψ respectively on H1(Fp,Z). A formula similar to
(1.8) holds for the corresponding action of δ. We must replace < d, x > with
a “local intersection number”, nd(x), which is defined with respect to a given
local orientation in a neighborhood of d.

Suppose that L is an endomorphism of H1(Fp,Z2) which preserves the
pairing. Since the pairing is nondegenerate, L must be an automorphism of
H1(Fp,Z2).

Let k be the least positive integer which satisfies the following condition.

(1.9) L(cj) = cj k < j ≤ p.

Observe that k = p if L fixes no basis vector and k < p otherwise.

(1.10) 1 ≤ k ≤ p.

It follows from the assumption that L preserves the pairing, (1.2), (1.3),
and (1.9) that L(ck) has the following form.

(1.11) L(ck) = c1 + ...+ cil 1 ≤ i1, ..., il ≤ k.

Again, since < L(ck), L(ck) >=< ck, ck >= 1, we conclude that l is odd/

(1.12) lis an odd integer.

Since the coefficients are in Z2, we obtain a unique expression (1.11) by
imposing the following condition.

(1.13) ij < ij+1 1 ≤ j < k.

In particular, l is bounded by k.

(1.14) 1 ≤ l ≤ k.

From (1.6) and (1.7), we observe that τ∗ and ψ∗ generate a group of
automorphisms of H1(Fp,Z2) which acts by permutations of the given basis
{c1, ...., cp}. In fact, they generate the full group of such automorphisms,
which is isomorphic to the symmetric group on p-symbols, Σp. (Note that
under the above conventions this assertion holds for all values of p.) Hence,
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we identify this group with Σp. Likewise, for each integer k with 1 ≤ k < p,
we identify the subgroup of Σp which fixes ck+1, ...., cp with Σk.

We are now able to state and prove a more precise version of Theorem 2.
(For the sake of uniformity, we adopt the conventions that τ is the identity
map when p ≤ 1, ψ is the identity map when p ≤ 2, and δ is the identity
map when p ≤ 3.)

Theorem 1.1. If L is an automorphism of H1(Fp,Z2), which preserves the
associated Z2-valued intersection pairing, then L is generated by τ∗, ψ∗, and
δ∗.

Proof. Let L be an automorphism of H1(Fp,Z2) as above. The proof is by
induction on the lexicographical ordering on the pair (k, l) or (k(L), l(L)):

(1) (k, l) < (k′, l′) if and only if either (i) k < k′ or (ii) k = k′ and l < l′.

(Due to the inequality (1.14), this is ordinary induction on the integer

((k − 1)k + 2l)/2.)
The initial step of the induction is given by k = l = 1, in which case L

is the identity and the conclusion of the theorem is immediate. Henceforth,
we assume that k ≥ 2.

Suppose that l = k. By (1.11) and (1.13), it follows that L(ck) = c1 +
....+ ck. Applying (1.9), we conclude that L(ck + Σk<j≤pcj) = c. From the
characteristic property of c (1.4) and the assumption that L preserves the
pairing, it follows that L preserves c. Since L is invertible, we conclude that
ck + Σk<j≤pcj = c or k = 1. This contradicts our assumption on k. Hence,
1 ≤ l < k.

Suppose that l = 1. Choose a permutation in Σk, P , such that PL(ck) =
ck. Since P is in Σk, PL(cj) = cj for each j > k − 1. By the induction
hypothesis, PL is generated by τ∗, ψ∗, and δ∗. By the previous remarks
about Σk, L is generated by τ∗, ψ∗, and δ∗.

Suppose that l = 3. Choose a permutation in Σk, Q, such that QL(ck) =
c2 + c3 + c4. By (1.2) and (1.8), it follows that δ∗QL(ck) = c1. Since
1 ≤ l < k, we observe that k ≥ 4. Therefore, by the same formulas and the
fact that Q is in Σk, we compute that δ∗QL(cj) = cj for each j > k. By the
induction hypothesis, δ∗QL (and hence L) is generated by τ∗, ψ∗, and δ∗.

Finally, suppose that l ≥ 5. Choose a permutation in Σk, R, such that
RL(ck) = c2 + c3 + c4 + c5 + .....+ cl+1. As before, we conclude that δ∗RL
(and hence L) is generated by τ∗, ψ∗, and δ∗.

This completes the proof of Theorem 1.1.
�

With respect to the basis given above, we can identify H1(Fp,Z2) with
the standard vector space over Z2 of dimension p, (Z2)p. In addition, as
previously observed, under this identification, the intersection pairing on
H1(Fp,Z2) is the standard inner product on (Z2)p. Hence, Theorem 1.1
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is a statement about the generation of O(p,Z2), the group of orthogonal
transformations of (Z2)p.

The “transposition”, τ∗, is also a transvection.

(1.15) τ∗(x) = x+ < c1 + c2, x > (c1 + c2) x ∈ H1(Fp,Z2).

By our remarks concerning Σp, ψ∗ is a product of transpositions. In fact,
it is generated by the following transvections:

(1.16)
Ti(x) = x+ < ci + ci+1, x > (ci + ci+1) x ∈ H1(Fp,Z2) 1 ≤ i ≤ p− 1.

Finally, we have already observed that δ∗ is a transvection (1.8), which
we shall denote as D.

(1.17) D(x) = x+ < d, x > d x ∈ H1(Fp,Z2).

Hence, we have the following immediate corollary.

Corollary 1.2. O(p,Z2) is generated by the p transvections, T1, ...., Tp−1,
and D.

Remark All of the above transvections are induced by Dehn twists. For
example, τ∗ is induced by a Dehn twist about any simple closed curve which
represents c1 + c2. Such a curve can be constructed in the same manner
as d. In fact, this construction can be used to show that every invertible
transvection of H1(Fp,Z2) is induced by a Dehn twist. (The reader can
easily check that a transvection in the direction of a given Z2-homology
class is invertible if and only if the given class is orientation preserving.)

Hence, the corollary above is very similar to, although considerably sim-
pler than, the corresponding statement for Sp(2g,Z). Furthermore, the
original statement of Theorem 2 which was formulated in the introduction
follows immediately.

2. Section 2

In this section, we consider the same model for Fp which was used in Sec-
tion 1 (Figure 1). However, we need to introduce some additional notation.

If p ≥ 2, choose a curve, b, which separates M1 and M2 from the other
crosscaps. Let B be the component of Fp \ b which contains M1 and M2, as
in Figure 7.

There is a standard diffeomorphism of Fp, σ, which is supported on B and
known as a Y -homeomorphism ([L]). This diffeomorphism is constructed by
“sliding the crosscap, M1, over the crosscap, M2, and back to itself. Hence,
we shall refer to σ as a crosscap slide.

We may describe σ more explicitly as follows. Consider B \M1, which is
a Moebius band with one open disc removed as in Figure 8.
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Construct a diffeomorphism of B\M1, which fixes b, by “dragging b1 once
around c2. Of course, b1 comes back to itself with a change of orientation
as in Figure 9.

Hence, we may extend this map to a diffeomorphism of Fp which is sup-
ported on B, preserves M1 and reverses the orientation of the core circle,
c1. This is the crosscap slide, σ.

From this description and Figure 9, we easily calculate the action of σ on
H1(Fp,Z).

(2.1) σ∗(c1) = −c1 2 < j ≤ p

σ∗(c2) = c2 + b1 = 2c1 + c2

σ∗(cj) = cj .

We previously observed that the actions of τ and ψ on H1(Fp,Z) are given
by (1.6) and (1.7) of Section 1. Hence, as for H1(Fp,Z2), τ∗ and ψ∗ generate
a group which we identify with Σp. By conjugating σ∗ by elements of Σp,
we obtain the following collection of automorphisms of H1(Fp,Z) which are
induced by appropriate crosscap slides.

(2.2) Yij(ci) = −ci 1 ≤ i ≤ p− 1 1 ≤ j ≤ p 1 ≤ k ≤ p

Yij(cj) = 2ci + cj i 6= j j 6= k k 6= i

Yij(ck) = ck.

Note: Each of these isomorphisms acts trivially on H1(Fp,Z2).

The characteristic class of H1(Fp,Z), c, is given as the sum of the gener-
ators.

(2.3) c = c1 + ...+ cp.

It is the unique class of order 2. In particular, it is preserved by every
automorphism of H1(Fp,Z).

Let Rp denote the quotient, H1(Fp,Z)/Z2, where Z2 is the span of c. As
a Z-module, H1(Fp,Z) has the following presentation.

(2.4) H1(Fp,Z) =< c1, ..., cp|2(c1 + ...+ cp) = 0 > .

It is immediate that Rp is the free Z-module with basis given by the
images of c1, ...., cp−1 in Rp. (We shall denote the images of c1, ..., cp in Rp

by the same symbols.)
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(2.5) Rp =< c1, ..., cp|c1 + ...+ cp = 0 >

Rp =< c1, ..., cp−1 >

Since every automorphism of H1(Fp,Z) preserves c, Rp is a characteristic
quotient of H1(Fp,Z). That is, every automorphism of H1(Fp,Z), L, covers
an automorphism of Rp, L.

(2.6)

H1(Fp,Z) L−−−−→ H1(Fp,Z)y y
Rp

L−−−−→ Rp.

In particular, the automorphisms defined above in (2.2) induce the fol-
lowing automorphisms of Rp.

(2.7) Yij(ci) = −ci 1 ≤ i ≤ p− 1 1 ≤ j ≤ p− 1 1 ≤ k ≤ p− 1

Yij(cj) = 2ci + cj i 6= j j 6= k k 6= i

Yij(ck) = ck.

(2.8) Yip(ci) = −ci 1 ≤ i ≤ p− 1 1 ≤ k ≤ p− 1 i 6= k

Yip(ck) = ck.

We refer to the automorphisms in (2.8) as sign change transformations of Rp.

(2.9) Fi = Yip 1 ≤ i ≤ p− 1.

From these automorphisms of Rp, we generate the following elementary
transformations of Rp.

(2.10) Eij = Yip ◦ Yip 1 ≤ i ≤ p− 1 1 ≤ j ≤ p− 1 1 ≤ k ≤ p− 1

Eij(ci) = ci i 6= j j 6= k k 6= i

Eij(cj) = 2ci + cj

Eij(ck) = ck.

The reader will recognize these transformations as the squares of the stan-
dard elementary transformations of Zp−1 (under the obvious identification of
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Rp with Zp−1, the so-called row and column operations. In the terminology
of matrices, these standard elementary transformations together with the
permutation matrices generate GL(n,Z). A standard proof of this fact uses
a type of Euclidean algorithm on the rows and columns of the corresponding
matrices. Our proof of Theorem 2 uses the same idea. In order to employ
the appropriate Euclidean algorithm, we shall need the following elementary
lemma.

Lemma 2.1. Let a and b be nonzero integers. Suppose that a is odd and b
is even. Then one of the following inequalities must be satisfied:

(i) ; |a− 2b| < |a|

(i) ; |a+ 2b| < |a|

(i) ; |b− 2a| < |b|

(i) ; |b+ 2a| < |b|.

Proof. Suppose a and b are as above and none of the inequalities is satisfied.
In other words:

(1) |a| ≤ |a+ 2εb|, |b| ≤ |b+ 2εa| ε = ±1.

From this it follows that:

(2) |a|2 ≤ |a|2 − 4|a||b|+ 4|b|2,

|b|2 ≤ |b|2 − 4|b||a|+ 4|a|2.
This latter pair of inequalities implies:

(3) |a||b| ≤ |b|2, |b||a| ≤ |a|2.
Since a and b are nonzero:

(4) |a| = |b|.
This is clearly contradictory to the hypotheses. Hence, the lemma is estab-
lished.

�

We are now prepared to state and prove a more precise form of Theorem
3.

Theorem 2.2. Let L be an automorphism of H1(Fp,Z) which acts trivially
on H1(Fp,Z2). Then L is generated by {Yij |1 ≤ i ≤ p− 1, 1 ≤ j ≤ p, i 6= j}.
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Proof. Suppose that L is as above and the induced automorphism of Rp, L,
is the identity.

(1) L(ci) ∼= ci(modulo 2 ) 1 ≤ i ≤ p.

For any index, i, either L(ci) = ci, or L(ci) = ci + c. Since L acts triv-
ially on H1(Fp,Z2) and c represents a nonzero Z2-homology class, the latter
inequality cannot hold. Hence, L must be the identity.

Therefore, it suffices to prove that L is generated by {Yij |1 ≤ i ≤ p−1, 1 ≤
j ≤ p, i 6= j}. In fact, by our definitions, it suffices to show that L is
generated by the elementary transformation, {Eij |1 ≤ i ≤ p − 1, 1 ≤ j ≤
p− 1, i 6= j}, and the sign change transformations, {Fi|1 ≤ i ≤ p− 1}. This
is what we now proceed to demonstrate.

As suggested by our previous comments, our proof requires that we con-
sider matrices with respect to the Z-basis for Rp, {c1, ...., cp−1}. We shall
denote automorphisms of Rp and their corresponding matrices with respect
to this basis by the same symbol. In particular, by our assumptions, L is
congruent modulo 2 to the identity matrix.

(2) L ∼= Ip−1 (modulo 2 ).
Moreover, since L is invertible over Z, its determinant must be a unit of Z.

(3) det(L) = ±1.
Given a matrix, M , let k(M) denote the sum of the absolute values of

the entries of the first column of M .

(4) k(M) = Σp−1
i=1 |M(i, 1)|.

Let k = k(L). By (2), k is odd. If k ≥ 3, we apply (3) to conclude that
L(j, 1) is nonzero for some j ≥ 2. Choosing such a j, we apply (2.10) to
compute:

(5) k(E1jL) = |L(1, 1) + 2L(j, 1)|+ Σp−1
i=2 |L(i, 1)|.

In an equivalent form, we conclude:

(6) k(E1jL) + |L(1, 1)| = k(L) + |L(1, 1) + 2L(j, 1)|.
In a similar fashion, we have the following identities:

(7) k(E−1
1j L) + |L(1, 1)| = k(L) + |L(1, 1)− 2L(j, 1)|.

(8) k(Ej1L) + |L(j, 1)| = k(L) + |L(j, 1) + 2L(1, 1)|.

(9) k(E−1
j1 L) + |L(j, 1)| = k(L) + |L(j, 1)− 2L(1, 1)|.

If we apply Lemma 2.1 with a = L(1, 1) and b = L(j, 1), we conclude that
one of the following conditions must hold.
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(10) k(E1jL) < k(L)

k(E−1
1j L) < k(L)

k(Ej1L) < k(L)

k(E−1
j1 L) < k(L).

Therefore, by repeated multiplications on the left by elementary transfor-
mations, we may reduce to the case where k = 1. If k = 1, however, L must
have the following form.

(11) k = 1 L =


ε 2m2 · ·&2mp−1

0
·
· M
0


where ε = ±1, m2, ...,mp−1 are integers, and M is a (p− 2)× (p− 2) integer
matrix.

In this case, therefore, one easily computes the following product.

(12) k = 1 FiLE
m2
12 ...E

mp−1

1,p−1 =


1 0 · ·&0
0
·
· L1

0


where L1 is a (p− 2)× (p− 2) matrix.

The theorem follows by an obvious induction.
�

Remark By our remarks concerning the automorphisms in (2.2), we see that
each of these automorphisms is induced by a conjugate of σ by a diffeomor-
phism which is generated by τ and ψ. Hence, each of these automorphisms
is induced by a crosscap slide. The original statement of Theorem 3 which
was formulated in the introduction follows immediately.

As a consequence of our observations at the beginning of the proof, we
have identified the group of automorphisms of H1(Fp,Z) which act trivially
on H1(Fp,Z2) with a subgroup of the group of automorphisms of Rp which
act trivially on Rp⊗Z2. Since there is a natural way of lifting automorphisms
of Rp to automorphisms of H1(Fp,Z), it is easy to see that this subgroup is
actually the full group of such automorphisms. On the other hand, this full
group is isomorphic, under the obvious identifications, with the congruence
subgroup modulo 2 ofGL(p−1,Z), Γ2(p−1,Z). Hence, we have the following
immediate corollary.
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Corollary 2.3. Γ2(p−1,Z) is generated by the squares of standard elemen-
tary matrices.

;Eij 1 ≤ i ≤ p− 1 1 ≤ j ≤ p− 1 i 6= j

and the sign change transformations,

;F1, ...., Fp−1.

3. Section 3

Finally, we state and prove a more precise formulation of Theorem 1. The
notation refers to the discussion in Sections 1 and 2.

Theorem 3.1. If L is an automorphism of H1(Fp,Z) which preserves the
associated Z2-valued intersection pairing, then L is induced by a diffeomor-
phism of Fp which is generated by the crosscap transposition τ , the crosscap
p-cycle, ψ, the Dehn twist, δ, and the crosscap slide σ.

Proof. Let L be an automorphism of H1(Fp,Z) as above. Let L2 be the
induced automorphism of H1(Fp,Z2). By Theorem 1.1, L2 is induced by a
diffeomorphism, ν, which is generated by τ , ψ, and δ. Let L′ = (ν−1)∗ ◦ L,
where (ν−1)∗ is the action of ν−1 on H1(Fp,Z). Clearly, L′ acts trivially on
H1(Fp,Z2).

By Theorem 2.2, L′ is generated by {Yij |1 ≤ i ≤ p− 1, 1 ≤ j ≤ p, i 6= j}.
We have previously observed that each transformation, Yij , is induced by
an appropriate conjugate of σ by a diffeomorphism in the group generated
by τ and ψ. Hence, L′ is induced by a diffeomorphism of the desired type.

Since L = ν∗ ◦ L′, L is also induced by a diffeomorphism of the desired
type. �

Remark This formulation of the result corresponds to the result for ori-
entable surfaces which was obtained from Hua and Reiner’s system of gen-
erators for Sp(2g,Z) [HR], [Bi]. Here, the symplectic group is replaced by a
“Z2-orthogonal group”.
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