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0. Introduction

This paper is concerned with two themes of symplectic topology. The first
is the development of techniques to construct symplectic manifolds and, in
particular, compact symplectic 4-manifolds. The second is the resolution of
symplectic singularities and, in particular, the resolution of isolated singu-
larities in symplectic 4-manifolds.

On the first topic we prove a theorem which allows the gluing of two
symplectic manifolds along a special class of hypersurfaces that we call ω-
compatible hypersurfaces. Let (X,ω) be a symplectic 2n-manifold and M ⊂
X a hypersurface with a fixed point free S1-action. M is called ω-compatible
if the orbits of the action lie in the null directions of ω|M . An ω-compatible
hypersurface M has a canonical co-orientation. Hence, if M is a separating
hypersurface, then M divides X into distinguished components X− and X+.
In dimension 4, our main gluing theorem is as follows.

Theorem 4.2 . Let Y be a Seifert 3-manifold. Let (Xi, ωi), i = 1, 2, be
symplectic 4-manifolds and suppose that there are ωi-compatible embeddings
ji : Y → (Xi, ωi), i = 1, 2 such that ji(Y ) is a separating hypersurface in
Xi. Then there is a symplectic structure ω on X

X = X−
1

⋃
Y

X+
2

obtained by gluing X−
1 to X+

2 along Y . Moreover, there are neighborhoods
Ni(Y ) of Y in Xi such that ω = ω2 on X+

2 \ N2(Y ) and ω = cω1 on
X−

1 \N1(Y ) for some constant c > 0.

In higher dimensions there is a similar gluing theorem but an additional
assumption on the forms ωi|M is necessary (cf. Theorem 4.1). An ω-
compatible hypersurface is a special case of the ω-convex (or ω-concave)
hypersurfaces studied by Eliashberg and Gromov [E-G]. However, a gluing
theorem such as given here is not possible along arbitrary ω-convex hyper-
surfaces. Further conditions are necessary. The choice of the ω-compatible
condition is dictated by our applications and the simplicity of the condition.
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The symplectic normal connect sum described in [Go] and [M-W1] can
be viewed as a simple example of gluing along ω-compatible hypersurfaces.
However, the main application of the gluing theorem in this paper is to the
second topic, the resolution of singularities in symplectic 4-manifolds. Let
Y be a topological space and p a point of Y such that Y \ p is a symplectic
4-manifold with symplectic form τ . Let U be a neighborhood of p. We say
a symplectic 4-manifold (Ỹ , τ̃) is a symplectic resolution of p on U if there
is:

(i) a tubular neighborhood W of a symplectic divisor D in Ỹ ,
(ii) a map π : (Ỹ ,D) → (Y, p) such that π : Ỹ \ W → Y \ U is a

symplectic diffeomorphism.

A symplectic divisor in Ỹ is a set D of symplectically embedded surfaces
which intersect transversely. A symplectic star is a symplectic divisor which
has the structure of a star-like graph where each surface is a vertex and each
point of intersection is an edge. We prove the following result.

Theorem 6.1 . Let U be a neighborhood of an isolated orbifold point p
on a 4-dimensional symplectic orbifold (X,ω). There exists a symplectic
resolution (X̃, ω̃) of p on U . Morover, the symplectic divisor D in Ỹ is a
symplectic star.

To prove this we first observe that an isolated orbifold point p has a
neighborhood U such that ∂U = M is a τ−compatible hypersurface. Here τ
is the orbifold symplectic form. Then we construct a symplectic 4-manifold
(W,ω) which is the tubular neighborhood of a symplectic divisor, such that
∂W = M is ω-compatible. Applying the gluing theorem we delete U and
glue in W along M to construct the resolution. The graph of the symplectic
divisor of this resolution is determined by the topology of the singularity
alone. Thus, topologically, the resolution is canonical.

In algebraic geometry there are many different techniques used to resolve
isolated surface singularities ( see, for example, Laufer [L] or Barth-Peters-
Van de Ven [B-P-V]). Since we resolve the orbifold singularity by gluing to a
standard model, our technique is similar, in spirit, to that of Barth-Peters-
Van de Ven. This approach seems to us the most natural in symplectic
geometry. Moreover, it leads to the construction (and resolution) of a large
family of isolated symplectic singularities which we call symplectic star sin-
gularities. These singularities include orbifold singularities but many others
as well. Unfortunately, at this time, we do not have an intrinsic geometric
characterization of such singularities.

Symplectic manifolds with properties like W have been constructed by
other workers. Audin [A] describes a construction similar to ours but relying
on the Morse theoretic properties of the hamiltonian. Eliashberg [E] gives
a plumbing construction along lagrangian submanifolds to build contact
structures on spheres. Our construction relies on blowing up and the proper
transform as is appropriate for resolving singularities.
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Many of the ideas in this paper have their origin in a remarkable section of
Gromov’s book, Partial Differential Relations [G,§3.4.4]. The best known
of these is that of blowing up and blowing down in symplectic geometry. It
is not as well known that the idea of the symplectic normal connect sum,
exploited by Gompf [Go] and the authors [M-W1], was also first described
here. Finally, the problem of resolving symplectic singularities is posed
in this section for the first time. We remark that in this section Gromov
described a resolution scheme for the singularities of immersed symplectic
manifolds which is not correct without imposing further conditions on the
singularities. See [M-W2] for an example of an immersed symplectic surface
whose singularities cannot be resolved by blowing up.

The paper is organized as follows. The main technical part of the pa-
per, the construction of W with ω-compatible boundary is accomplished in
Sections 1 and 2. The gluing theorem is given in Sections 3 and 4. The
remainder of the paper combines these two constructions to give our appli-
cations. The reader interested only in the gluing theorem can skip Sections
1 and 2.

1. Preliminaries

In this section, we discuss background material on G-invariant symplectic
structures, blow-ups and proper transforms. The reader may wish to proceed
to the next section and refer back to this section as the need arises.

Let G be a compact group acting by symplectomorphisms on a symplectic
4-manifold (X,ω). Let P be a fixed point of G and (z, w) be Darboux
coordinates in a G-invariant neighborhood U of P such that P = (0, 0). We
say that (z, w) are normalized Darboux coordinates at P if the action of G
on U is given in these coordinates by a representation:

ρ : G→ U(2) g · (z, w) = ρ(g)(z, w). (1.1)

By the equivariant normal form theorem [W1], such coordinates always ex-
ist. Suppose that (z, w) are normalized Darboux coordinates at P . For
sufficiently small ε, the open ball Bε = {(z, w)|zz + ww < ε2} determines
a G-invariant neighborhood of P contained in U . If G is abelian, then we
may assume that ρ(G) lies in the diagonal subgroup U(1) ×U(1) of U(2).
If G is a nontrivial group, then each connected component of the set of fixed
points of G is either an embedded symplectic surface of fixed points of G or
an isolated fixed point of G. This follows from the simple observation that
the set of fixed points of a nontrivial subgroup of U(2) is either (0, 0) or a
complex line.

There is an operation of blowing up for G-invariant symplectic structures
provided we blow-up at fixed points of G. The operation of blowing up was
first described by Gromov [G]. This operation has a very clean description
in terms of the approach of Guillemin and Sternberg, which we will follow.
Let P be a fixed point of G. Suppose that (z, w) are normalized Darboux
coordinates at P on a neighborhood U of P . Let ε be a positive number
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such that Bε ⊂ U and δ be a positive number less than ε. Following the
discussion in [G-S], we may describe the blow-up (X̃, ω̃) of (X,ω) at P as
follows. Let L ⊂ CP1 × C2 be the canonical bundle of CP1 given by the
incidence relation:

L = {([z, w], (u, v))|zv = wu}.

Let Ω be the standard symplectic form on CP1 and τ be the standard form
on C2. Let ωδ be the form i∗[δ2pr∗1(Ω) + pr∗2τ ] where i is the inclusion of
L into CP1 × C2 and prj is the projection of CP1 × C2 onto its jth factor.
The standard actions of U(2) on CP1 and C2 induce the product action on
CP1 × C2. This action preserves the incidence relation L. Since Ω and τ
are U(2)-invariant, ωδ is U(2)-invariant. On the other hand, the symplectic
form ω on Bε is invariant under the standard U(2) action on Bε. Guillemin
and Sternberg provide a U(2)-equivariant symplectomorphism:

φ : (Bε \Bδ, ω) → (N (Σ′) \ Σ′, ωδ)

where N (Σ′) is a tubular neighborhood of the zero section Σ0 of L. Then
(X̃, ω̃) is obtained by gluing X∗ = X \ Bδ and N (Σ′) along Bε \ Bδ and
N (Σ′) \Σ′ via the symplectomorphism φ. The resulting form ω̃ is uniquely
determined by the property that its restriction to X∗ is ω and its restriction
to N (Σ′) is ωδ. Note that the G action on X preserves X∗. Moreover, G acts
on Bε \ Bδ via the representation ρ : G → U(2). This same representation
affords an action on N (Σ′) and N (Σ′) \ Σ′. Since φ is U(2) equivariant,
it is a fortiori G-equivariant. Hence, there is a well defined G action on
X̃. Moreover, ω̃ is invariant under this action. Note that this operation of
blow-up in the context of G-invariant symplectic structures generalizes the
usual operation of blow-up for which G is the trivial group and every point
is a fixed point of G.

Note that the closure of X∗ in X is equal to X \ Bδ, whereas X∗ is
dense in X̃. It is easy to see, from the description of the gluing map φ
provided by Guillemin and Sternberg, that the natural inclusion of X∗ into
X̃ given by the above construction, actually extends continuously to a map
η : X \ Bδ → X̃ which maps the boundary S3

δ of the ball Bδ onto Σ0 by
collapsing the Hopf fibers on S3

δ . Hence, η exhibits X̃ as the quotient of
X \Bδ obtained by collapsing the Hopf fibers on S3

δ .
Since X̃ = X∗ ∪Σ0, the fixed point set of the action on X̃ is the union of

the fixed point set on X∗ and the fixed point set on Σ0. We may determine
the fixed points on Σ0 by considering the action on N (Σ′):

g · ([z, w], (u, v)) = ([ρ(g)(z, w)], ρ(g)(u, v)).

Σ0 is the locus of the equation (u, v) = (0, 0). On this locus, the action is
given by the rule:

g · ([z, w], (0, 0)) = ([ρ(g)(z, w)], (0, 0)).
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Hence, the fixed points on Σ0 correspond to the complex eigenlines of the
action of the subgroup ρ(G) of U(2) on C2.

We recall that symplectic blow-up is analogous to the operation of blowing
up in the complex category. Symplectic blow-up, however, fails to have some
of the important features of complex blow-up. For instance, in the complex
setting, there is a holomorphic map σ : X̃ → X such that σ| : X̃ \ Σ0 →
X \{P} is a biholomorphism. If C is a complex curve, then the closure C in
X̃ of σ−1(C \{P}) is also a complex curve. C is called the proper transform
of C in X̃. If C has an ordinary double point at P , this double point is
removed by passing to C. As we show in [M-W2], it is not possible to define
an operation of proper transform in the symplectic category for arbitrary
immersed symplectic surfaces so that double point singularities are removed
by passing to the proper transform. On the other hand, we can define an
operation of proper transform for embedded surfaces, provided we choose
suitably adapted Darboux coordinates.

Lemma 1.1. Let C be an embedded symplectic surface in a symplectic 4-
manifold (X,ω), P ∈ C, and (z, w) Darboux coordinates in a neighborhood
U of P . Let (X̃, ω̃) be the corresponding blow-up of (X,ω) at P . Suppose
that C meets U in a complex line, l. Let F be the fiber corresponding to l of
the disc bundle N (Σ′). Then the closure C in X̃ of C ∩X∗ is an embedded
symplectic surface, called the proper transform of C, meeting N (Σ′) in the
fiber F .

Proof. From the description in Guillemin-Sternberg, we see that the the
gluing map φ identifies l ∩Bε with the deleted fiber F \ {Q} where Q is the
point of intersection of F and Σ0. The result is immediate. �

It is easy to see that we can always choose Darboux coordinates satis-
fying the hypotheses of the previous lemma, provided C is an embedded
symplectic surface. Hence, we can always form a proper transform of C in
an appropriate blow-up of (X,ω) at P . We shall now introduce a class of
immersed surfaces called graphs for which we can extend this operation of
proper transform. This class will be sufficient for our purposes.

Graphs, stars, and strings. We recall from [O], that a graph G is a finite
1-dimensional, simplicial complex. Let A0, . . . , An denote the vertices of a
graph G. The valence of Ai is the number of edges of G which contain Ai.
Ai is extreme if it has valence 1. A star is a contractible graph where at
most one vertex has valence greater than 2. If there is such a vertex, say A0,
we call it the center . If there is no such vertex, then G is a linear graph. For
convenience, we allow the term center to apply to any component of a linear
graph. G[b∞, . . . , b∫ ] denotes a linear graph with s vertices A1, . . . , As, s−1
edges [A1, A2], . . . , [As−1, As], gi = 0 and mi = −bi.

Let ω be an S1-invariant symplectic structure on a 4-manifoldX. Suppose
that to each vertex Ai of a graph G we associate a smoothly embedded
symplectic surface in (X,ω), Ci. Let Γ denote the union Γ =

⋃n
i=0Ci.
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We say that the immersed symplectic surface Γ is a graph of type G if the
following conditions are satisfied:

• Ci meets Cj if and only if Ai and Aj are connected by an edge of G,
• Ci and Cj are transverse,
• no point in X lies in more than two of the surfaces Ci,
• Ci and Cj are disjoint or meet at one point,
• Ci is S1-invariant,
• for each fixed point P of S1 in Γ, there exist normalized Darboux

coordinates at P on a neighborhood U of P such that Γ meets U
in a complex line through P . (We say that these coordinates are
Γ-normalized.)

Suppose that an immersed symplectic surface Γ is a graph. It is evident from
the definition that Γ determines the simplicial complex G. Let gi denote the
genus of Ci and mi denote the self-intersection Ci · Ci. In this manner, we
associate a weighted graph G(Γ), in the sense of [O], to Γ. If U is a regular
neighborhood of Γ in X, then U is diffeomorphic to the interior of K(G(Γ)),
the 4-manifold obtained by equivariant plumbing along the weighted graph
G(Γ) ([O]).

Remark 1.1. Γ-normalized Darboux coordinates exist if P is a smooth
point on a component Σ of Γ which is fixed pointwise by S1. Indeed, in this
case, if (z, w) are normalized Darboux coordinates at P on a neighborhood
U of P such that U meets only those components of Γ which contain P , then
(z, w) are Γ-normalized Darboux coordinates at P . This follows from the
simple observation that the set of fixed points of a nontrivial subgroup of
U(2) is either (0, 0) or a complex line. Let P be a double point of Γ. If there
exist Γ-normalized Darboux coordinates (z, w) at P , then the two compo-
nents of Γ containing P have positive intersection at P . This property of Γ
is a necessary, but not sufficient, condition for the existence of Γ-normalized
Darboux coordinates at P . It is easy to construct counterexamples based
upon the discussion in section 3 of [McD2] concerning transverse symplectic
planes.

Let Γ be a graph. We refer to Ci as a component of Γ. Note that Γ is an
immersed surface with only double point singularities. A point P ∈ Γ is a
double point of Γ if P lies on more than one component of Γ. Otherwise, P
is a smooth point of Γ. Ci is extreme if Ai is extreme. Γ is a string if G(Γ)
is a linear graph. Γ is a star if G(Γ) is a star. If Γ is a star, then C0 is a
center for Γ if A0 is a center for G(Γ) and C0 is fixed pointwise by S1. If
Γ is not a string, then Γ has a unique center. Otherwise, there is at most
one center for Γ. Henceforth, we assume that all stars have a center. If C0

is the center for a star Γ, we may write Γ as a union:

Γ = C0 ∪ (
⋃

1≤j≤r

Cj)
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where
⋃

1≤j≤r C
j is a disjoint union of strings Cj and Cj meets C0 at a

single point Pj on an extreme component Cj,1 of Cj . We say that Cj is a
branch of Γ emanating from C0. Note that there is a well-defined ordering
to the components of each branch of Γ emanating from C0.

Symplectic S1 actions and fixed points. Suppose that ω is an S1-
invariant symplectic structure on a 4-manifold X, P is a fixed point of
S1 and the action of S1 is diagonalized at P by the Darboux coordinates
(z, w). Then the associated representation ρ is the diagonal representation
of type (p, q) for some relatively prime integers p and q:

t · (z, w) = (tpz, tqw).

We say that P is a fixed point of type (p, q) and refer to (z, w) as (p, q)
Darboux coordinates at P . If P is a fixed point of S1, then we can linearize
the action of S1 at P , (i.e. we can consider the induced action on the tangent
space to X at P ). Note that in (p, q) Darboux coordinates the action at P is
naturally identified with its linearization. The coordinate lines of the (p, q)
Darboux coordinate system correspond to a symplectic splitting of TP (X).
Hence, in order to compute the type of a fixed point P , it suffices to consider
the linearization of the action of S1 at P and find an equivariant symplectic
splitting of TP (X). This observation will be useful for computing the type
of a fixed point.

If p and q are both nonzero, then P is an isolated fixed point of the
action. On the other hand, if p = 0 or q = 0, then P lies on a surface of
fixed points which meets Bε in one of the complex coordinate lines. In any
case, the action on Bε is Hamiltonian with Hamiltonian −pzz − qww, (up
to a constant). Hence, the index of P is 0, if p, q < 0; 4, if p, q > 0; and 2 if
p and q have opposite signs. Otherwise, P is a degenerate fixed point with
Hessian of rank 2. In these cases, P lies on a surface of minima or maxima
of H.

Suppose that (z, w) are (p, q) Darboux coordinates at P . Let (X̃, ω̃) be
the corresponding blow-up of (X,ω) at P . As explained above, the fixed
points on Σ0 correspond to the complex eigenlines of the diagonal action of
type (p, q) on C2. To compute the types of fixed points on Σ0 we consider the
standard charts covering N (Σ′), N1 = {([1, w], (u,wu)) ∈ N (Σ′)|u,w ∈ C}
and N2 = {([z, 1], (zv, v)) ∈ N (Σ′)|‡,v ∈ C}. N1 is S1-invariant and the
action on N1 is given by:

t ·([1, w], (u,wu)) = ([tp, tqw], (tpu, tqwu)) = ([1, tq−pw], (tpu, (tq−pw)(tpu))).

Suppose that Q = ([1, w0], (0, 0)) is a fixed point on Σ0 lying in N1. Σ0

corresponds to the equation u = 0 and F[1,w0] corresponds to the equation
w = w0. While (u,w) is not a Darboux coordinate system in a neighborhood
of Q, Σ0 and F[1,w0] are symplectically orthogonal at Q. Hence, the surfaces
u = 0 and w = 0 give rise to an equivariant symplectic splitting of TQ(L).
Thus, by the above description of the action in N1, the linearization of the
action of S1 at Q is a diagonal action of type (p, q − p). Hence, if Q is any
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fixed point on Σ0 lying in N1, then Q is a fixed point of type (p, q − p).
Likewise, if Q is any fixed point on Σ0 lying in N2, then Q is a fixed point
of type (p − q, q). If p = q, then every complex line is a complex eigenline
and, hence, Σ0 is a surface of fixed points of type (p, 0). Otherwise, there
are precisely two complex eigenlines of the action, namely w = 0 and z = 0.
Hence, if p 6= q, then there are exactly two fixed points on Σ0, one of type
(p− q, q) and the other of type (p, q − p).

If p and q are both nonzero, then P is the only fixed point in Bδ of the
action on X. Hence, in this case, the fixed point set on X∗ corresponds to
the complement of P in the fixed point set of X. In passing to the blow-up,
therefore, we have effectively replaced P by the fixed points on Σ0. If p = q,
then we have replaced P by the surface Σ0 of fixed points of type (p, 0).
Otherwise, we have replaced P by two fixed points, one of type (p − q, q)
and the other of type (p, q − p). Note that P has index 2 if and only if p
and q have opposite signs. Hence, if P has index 2, the two new fixed points
also have index 2.

If p = 0 or q = 0, then the component Σ of the fixed point set on X
which passes through P is a surface meeting Bε in one of the coordinate
lines Dε. We may assume that p = ±1 and q = 0, so that Dε is given by the
equation z = 0. Let Q be the point ([0, 1], (0, 0)) on Σ0 corresponding to the
coordinate line, z = 0, and F be the fiber of N (Σ′) passing through Q. The
fixed point set on X∗ corresponds to the complement of the closed disc Dδ

in the fixed point set of X. The gluing map φ identifies Dε \ Dδ with the
deleted fiber F \ {Q}. In this manner, we see that the proper transform Σ
of Σ is a surface of fixed points. Hence, the fixed point set in X̃ is obtained
from the fixed point set on X by replacing the surface of fixed points Σ
of type (p, 0) by its proper transform Σ, a surface of fixed points of type
(p, 0), together with the new isolated fixed point ([1, 0], (0, 0)) on Σ0 of type
(p,−p). Note that this new isolated fixed point is of index 2.

We have established the following lemma.

Lemma 1.2. Let X be a 4-manifold equipped with an S1-invariant symplec-
tic form ω. Let P ∈ X be a fixed point of S1 and (X̃, ω̃) be the blow-up of
(X,ω) at P . (a) If P lies on a surface Σ of fixed points of S1, then the fixed
point set in X̃ consists of the fixed points in X∗, the proper transform Σ and
an isolated fixed point of index 2 on Σ0. (b) If P is an isolated fixed point
of index 2, then the fixed point set in X̃ consists of the fixed points in X∗

and two isolated fixed points of index 2 on Σ0.

Suppose, furthermore, that ω is Hamiltonian with Hamiltonian H. Let
H∗ be the restriction of H to X∗. Since X∗ is S1-invariant, H∗ is an
S1-Hamiltonian on X∗. Since N (Σ′) is simply connected, the action on
N (Σ′) is Hamiltonian with Hamiltonian Hδ. Since X∗∩N (Σ′) is connected,
H∗ and Hδ must differ by a constant on the overlap. By adjusting Hδ

by this constant, therefore, we may assume that H∗ and Hδ agree on the
overlap. Hence, there is a well-defined Hamiltonian H̃ for the action on
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X̃. Since X∗ is dense in X̃, H̃ is the unique continuous extension of H∗.
The critical points of H̃ are the fixed points of the action on X̃. Suppose
that Q is a critical point of H̃. If Q lies in X∗, then H̃(Q) = H(Q).
Otherwise, Q ∈ Σ0. In this case Q corresponds to an invariant circle α
on the boundary S3

δ of Bδ. Since H̃ is the unique continuous extension
of H∗, H̃(Q) = H(α). On U , the Hamiltonian H satisfies the equation
H(z, w) = H(P )− pzz − qww. If p = q, then H̃(Q) = H(α) = H(P )− pδ2.
If p 6= q, then either α = S3

δ ∩ {(z, w) ∈ U |w = 0} or α = S3
δ ∩ {(z, w) ∈

U |z = 0}. In the first case, H̃(Q) = H(α) = H(P ) − pδ2. In the second
case, H̃(Q) = H(α) = H(P ) − qδ2. Note that the critical value of Q can
be made arbitrarily close to the critical value of P by choosing a sufficiently
small δ.

2. Graphs, Stars and Seifert 3-Manifolds

Let S be a weighted star with every vertex Aj,i, except the center, of genus
gj,i = 0 and self-intersection mj,i ≤ −2. Then every Seifert 3-manifold Y
of type {b; (o, g, 0, 0); (α1, β1), . . . , (αr, βr)} is isomorphic to the boundary
of an equivariant plumbing according to such a weighted star S [O]. The
weighted star S is determined from the Seifert invariants of Y as follows.
For each integer j with 1 ≤ j ≤ r, consider the continued fraction expansion:

αj

αj − βj
= [bj,1, . . . , bj,sj ]. (2.1)

Then let S be the weighted star with center A0 of genus g and weight −b−r
and r linear branches, G[b|,∞, . . . , b|,∫| ];∞ ≤ | ≤ ∇. The equivariant plumb-
ing is determined by the condition that the action on the base corresponding
to A0 is trivial. Note that, conversely, S determines the Seifert invariants
of Y . We shall say that Y is a Seifert 3-manifold of type S.

Let Y be a Seifert 3-manifold of type S. In equivariant plumbing, Y is
produced as the boundary of a tubular neighborhood of the zero sections of
appropriate bundles. We show that an analogous construction is possible in
the symplectic category using blow-up instead of plumbing. We would like to
produce the desired star by blowing-up from a basic object. However, blow-
up necessarily produces stars Γ with overgrown branches. (In particular,
branches produced by blow-up always have at least one −1-curve, whereas
the branches we wish to realize have no such curves.) Hence, we shall have
to prune the resulting branches by restricting the neighborhood of Γ. This
construction needs to be carried out in such a way that we have a complete
understanding of the symplectic structure in a neighborhood of Y . Based
on the results of our previous paper, [M-W1], the natural strategy is to
construct (X,ω) so that ω is an S1-Hamiltonian symplectic structure and Y
is a regular level set of the Hamiltonian H. To carry out this strategy, we
must overcome some complications which arise at the pruning stage of the
construction.
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Blowing-up graphs. To construct both stars and graphs we iterate the
procedure of blowing up and taking proper transforms as described in Sec-
tion 1. In fact everything works easily because our definition of a graph Γ
(of type G) includes normalized Darboux coordinates at the points where
we blow up. However this means that we must show the existence of such
coordinates on the proper transform of Γ if we wish to iterate the proce-
dure. This technical result is done in the lemmas of this subsection. First
we define the total transform of a graph.

Let Γ be a graph and let P ∈ Γ be a fixed point of S1. Suppose that (z, w)
are Γ-normalized Darboux coordinates at P . Let (X̃, ω̃) be the blow-up of
(X,ω) at P and Σ0 be the corresponding −1-curve. Let Ci be the proper
transform of the component Ci of Γ. We define the total transform of Γ to
be the union Γ̃ of the surfaces C0, . . . , Cn and Σ0.

Lemma 2.1. Let (x, y) be normalized Darboux coordinates at Q for the
action of the stabilizer SQ of Q in U(2) on an SQ-invariant neighborhood of
Q in N (Σ′). Let F be the fiber of L through Q. Then, Σ0 and F meet Bε

in complex lines.

Proof. The standard action of U(2) on L is given by :

A · ([z, w], (u, v)) = ([A(z, w)], A(u, v)). (2.2)

Since Σ0 is the locus of the equation (u, v) = (0, 0), it is U(2)-invariant. The
action on this locus is given by :

A · ([z, w], (0, 0)) = ([A(z, w)], (0, 0)). (2.3)

From this, it is clear that the stabilizer SQ of Q (with respect to the action
of U(2) on L) is the subgroup of U(2) which preserves the complex line
[z0, w0] ⊂ C2. Hence, SQ is conjugate in U(2) to the diagonal subgroup
U(1)×U(1). In particular, SQ is isomorphic to S1 × S1.

Let ρ : SQ → U(∈) be the representation associated to the normalized
Darboux coordinates (x, y) as in equation 1.1. If A ∈ U(2) \ {I}, then the
fixed point set of A in L lies in Σ0. Hence, no nontrivial element of U(2)
fixes every point of an open set. So the action of SQ on U is effective and,
hence, the representation ρ is faithful. It follows that ρ(SQ) is an abelian
subgroup of U(2) isomorphic to S1×S1. Hence, ρ(SQ) is conjugate in U(2)
to U(1)×U(1). It follows that we may assume that ρ(SQ) = U(∞)×U(∞)
and ρ : SQ → U(∞)×U(∞) is an isomorphism.

The action of U(2) on N (Σ′) is given by automorphisms of the com-
plex line bundle L. Hence SQ preserves Σ0 and F . Let V = TQ(Σ0) and
W = TQ(F ). Then V and W are a pair of distinct 2-dimensional planes in
TQ(N (Σ′)) invariant under the induced action of SQ on TQ(N (Σ′)). Since
the action of SQ is linear in the coordinates (x, y), V and W determine a pair
of 2-dimensional planes in U invariant under the diagonal group U(1)×U(1).
In particular, since (i, i) · (x, y) = i(x, y), V and W are complex lines in U .
Since the only complex lines invariant under the diagonal group are those
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given by y = 0 and x = 0, we may assume without loss of generality that
V = {(x, y) ∈ U |y = 0} and W = {(x, y) ∈ U |x = 0}.

Let Dε = {x ∈ C|xx < ε2}. Since Σ0 is tangent to V at Q, for sufficiently
small δ there exists a smooth function f : Dδ → C such that Σ0∩Bδ ⊂ Γf ⊂
Σ0, where Γf is the graph of f : Dδ → C. Since (0, 0) ∈ Σ0 ∩ Bδ, f(0) = 0.
Hence, since f is continuous, we can choose ε < δ/2 such that f(Dε) ⊂ Dδ/2.
Let (x, y) be a point in Σ0 ∩ Bε. Since ε < δ/2, (x, y) ∈ Σ0 ∩ Bδ. Hence,
y = f(x). Since Σ0 and Bδ are both invariant under SQ, (αx, βy) ∈ Σ0 ∩Bδ

for all α and β in S1. Hence, βf(x) = βy = f(αx) for all α and β in S1. Let
β = −1 and α = 1. Then −f(x) = f(x) and we conclude that y = f(x) = 0.
This proves that Σ0 ∩Bε ⊂ {(x, y) ∈ Bε|y = 0}.

Suppose, on the other hand, that (x, 0) ∈ Bε. Then x ∈ Dε. Since ε < δ,
x ∈ Dδ and, hence, (x, f(x)) ∈ Γf ⊂ Σ0. Since x ∈ Dε, x, f(x) ∈ Dδ/2.
Hence, (x, f(x)) ∈ Bδ. Since (x, f(x)) is also in Σ0, the previous argument,
shows that f(x) = 0. Hence, (x, 0) = (x, f(x)) ∈ Σ0. This proves that
{(x, y) ∈ Bε|y = 0} = Σ0 ∩Bε. Likewise, {(x, y) ∈ Bε|x = 0} = F ∩Bε.

This completes the proof. �

Lemma 2.2. Let Γ be a graph. Let P ∈ Γ be a fixed point of S1 and Γ̃ be
the total transform of Γ in the blow-up (X̃, ω̃) of (X,ω) at P . Then Γ̃ is a
graph.

Proof. Let C̃i = Ci if 0 ≤ i ≤ n and C̃n+1 = Σ0. Consider the graph
G̃ whose vertices are A0, . . . , An, An+1 such that Ai is connected to Aj by
an edge of G̃ if and only if C̃i meets C̃j . It is easy to see that Γ̃ satisfies
the intersection properties of a graph. Hence, the only significant issue
is the existence of Γ̃-normalized Darboux coordinates at each fixed point
Q of S1 in Γ̃. If Q is in X∗, then we may obtain Γ̃-normalized Darboux
coordinates at Q by restricting Γ-normalized Darboux coordinates at Q to
X∗. Hence, we may assume that Q lies on Σ0. Let (x, y) be normalized
Darboux coordinates at Q as in Lemma 2.1. If Q is a smooth point of Γ̃,
then Γ̃ ∩Bε = Σ ∩Bε. On the other hand, if Q is a double point of Γ̃, then
Γ̃∩Bε = (Σ∩Bε)∪ (F ∩Bε. Therefore, by Lemma 2.1, the chosen Darboux
coordinates (x, y) are Γ̃-normalized Darboux coordinates at Q. �

Attaching overgrown branches to a star. The stars Γ which we wish
to construct have centers C0 of arbitrary genus and weight. The branches,
however, are very special. They are linear graphs of type G[b∞, . . . , b∫ ]
where bi ≥ 2 for all i. In other words, the components of each branch have
genus 0 and self-intersection less than −1. In this section, we shall show how
to use blowing up to attach a linear branch of the above type to a graph Γ
by blowing up at a smooth fixed point P of Γ lying on C0. In the process
of creating the desired branch, we introduce extra components. The main
result of this subsection is the following lemma.

Lemma 2.3. Let Γ be a star with center C0 and P ∈ C0. Suppose that P is
a smooth point of Γ and b = (b1, . . . , bs) with bi ≥ 2. By blowing up at P we
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may attach a branch B of type G[b∞, . . . , b∫ ,∞, . . . ] to Γ at P , forming a
star Γ̃ with center C0, m̃0 = m0 − 1 and m̃i = mi if i 6= 0. Moreover, there
are exactly 2 fixed points on each component of B. If Q is a fixed point on
a component of B, then Q ∈ C0 or Q has index 2.

Proof. Our construction involves two stages. The first stage is to blow up
once at P . Let Γ̃ be the corresponding total transform of Γ. Note that the
genera and weights of the components of Γ remain unchanged, in passing to
their proper transforms in Γ̃, with one exception: C0 ·C0 = C0 ·C0 − 1. By
blowing up we have constructed a new branch B of type G[∞] emanating
from C0. We denote the single component of this new branch by Σ0.

By Lemma 1.2 (a), since P lies on the surface C0 of fixed points of S1,
the fixed point set in the blow-up of X at P consists of the fixed points in
X∗, the proper transform C0 and an isolated fixed point Q2 of index 2 on
Σ0. Let Q1 be the double point of Γ̃ lying on the components C0 and Σ0 of
Γ̃. Then there are exactly two fixed points on the single component Σ0 of
B, the fixed point Q1 ∈ C0 and the fixed point Q2 of index 2. The second
stage of our construction is to enlarge this new branch B of Γ̃ by blowing-up
at appropriate index 2 fixed points on B. This restriction ensures that the
changes in Γ̃ are confined to B. Moreover, by Lemma 1.2 (b), all the fixed
points introduced have index 2. Hence, every fixed point on B lies on C0 or
has index 2.

Since B is a total transform, B has at least one −1-curve. If at each stage
of our construction, we only blow up at points lying on a −1 component of
B, we will ensure that B has exactly one −1 component, E. Henceforth,
we assume this limitation. Let B∗ denote the subbranch of B consisting of
all the components of B preceding E. E has exactly two critical points, Q1

and Q2, where Q1 lies on B∗, so that Q1 precedes Q2 on B. Blowing up at
Q1 has the effect of decreasing the weight m of the last component of B∗.
Blowing up at Q2, on the other hand, has the effect of introducing a new
−2-curve as the last component of B∗. In either case, by Lemma 1.2 (b),
blowing up at Qi preserves the hypothesis that there are exactly two fixed
points on each component of B.

These two operations allow us to create a branch B with an initial sub-
branch of type b. We start with the branch Σ0 for which B∗ is the empty
branch. We then blow-up at Q2 so that B∗ is of type G[∈]. Then we blow-up
at Q1 a finite number of times until B∗ is of type G[b∞]. Then we blow-up
at Q2 so that B∗ is of type G[b∞,∈]. Then we blow-up at Q1 a finite number
of times until B∗ is of type G[b∞, b∈]. Continuing in this fashion, blowing
up at Q2 once and then at Q1 an appropriate number of times, we reach the
desired goal. �

Pruning overgrown branches. Since the blow-up of an S1-Hamiltonian
symplectic structure is an S1-Hamiltonian symplectic structure, the above
constructions can be done in the category of S1-Hamiltonian symplectic
structures. As we have mentioned above, our construction requires us to
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prune the overgrown branches produced by blowing-up. Since C0 is fixed
pointwise by S1, every point P ∈ C0 is a fixed point of type (±1, 0). For
simplicity, we assume that P is a fixed point of type (−1, 0). (This ensures
that C0 is a surface of minima of the Hamiltonian H rather than a surface
of maxima of H.) This will suffice for our purposes. The pruning procedure
will involve the following lemma.

Lemma 2.4. Let B be a branch as in Lemma 2.3. Suppose that P is a
fixed point of type (−1, 0) and H is a Hamiltonian for the S1 action with
H(P ) = 0. Let Q1 and Q2 be the fixed points on the −1-curve E of B and
c be a regular value of H with H(Q1) < c < H(Q2). Then B∗ is the union
of all components of B which are contained in H−1([0, c)). Moreover, the
critical points of H on B lying in H−1([0, c)) are the critical points of H on
B∗. (We say that B∗ is obtained by restriction of B to H−1([0, c)).)

Proof. Let B1, . . . , Bn be the components of B. Denote by P0 the point
lying on the center C0 and B1 and by Pi the point of B lying on Bi and
Bi+1. Since C0, B1, . . . , Bn are S1-invariant, P0, . . . , Pn−1 are fixed points
of S1 on B. There are exactly two fixed points on each component of B, so
this accounts for all but one remaining fixed point Pn on Bn.

Since each Bi is S1-invariant, the S1-Hamiltonian H restricts to a Hamil-
tonian Hi for the induced action of S1 on Bi. Hence, the critical points of Hi

on Bi are the fixed points Pi−1 and Pi. One of these points must be a min-
imum and the other a maximum of Hi. Since P0 ∈ C0, P0 is the minimum
of H1 and P1 is the maximum of H1. Since P1 6∈ C0, P1 is a critical point of
H of index 2. Hence, P1 is the minimum of H2 and P2 is the maximum of
H2. Continuing in this fashion, we see that Pi−1 is the minimum of Hi and
Pi is the maximum of Hi. It follows, that H is monotone increasing along
the branch B. The result follows immediately. �

Controlling the Hamiltonian on an overgrown branch. The previous
lemma allows us to prune an overgrown branch. However, if we have more
than one overgrown branch, it may be impossible to prune all of them at
once. There may be no regular value c of H satisfying the restrictions
H(Q1) < c < H(Q2) for all branches. In order to ensure that such a value
exists, we need to control the behavior of H on the branches. The following
lemma provides the desired control.

Lemma 2.5. Let Γ, C0 and P be as in lemma 2.3. Suppose that P is a
fixed point of type (−1, 0) and H is a Hamiltonian for the S1 action with
H(P ) = 0. Let ε be a positive number such that there exist Γ-normalized
Darboux coordinates on a Darboux ball Bε(P ) and let α and β be numbers
such that 0 < α < β < ε2. Then we may attach a branch B as in Lemma
2.3 so that the fixed points on B of index 2 lie in H−1(α, β).

Proof. We follow the two stage construction in the proof of lemma 2.3. Let
δ be a positive number with δ2 ∈ (α, β), so that δ < ε. Let (z, w) be Γ-
normalized Darboux coordinates on a Darboux ball Bε(P ) and (X̃, ω̃) be the
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blow-up of (X,ω) of weight δ corresponding to the inclusion Bδ ⊂ Bε. Since
P is a fixed point of type (−1, 0), H(S3

δ ) = [0, δ2]. Let Q1 and Q2 be the two
critical points on Σ0. Then H(Q1) = 0 and H(Q2) = δ2. We may continue
with the second stage of the construction, blowing up at appropriate index
2 fixed points on B. By choosing sufficiently small Darboux balls at these
points, we may keep the values of all the fixed points of index 2 on B
arbitrarily close to δ2. This proves the result.

�

Regular level sets and Seifert 3-manifolds. Let M be a Seifert 3-
manifold. M is isomorphic as a Seifert 3-manifold to the boundary of the
4-manifold obtained by equivariant plumbing along a weighted star S as in
Corollary 5 of Chapter 2 of [O]. We will realize M as a regular level set
H−1(c) of an S1-Hamiltonian where H−1([0, c)) is a tubular neighborhood
of a star Γ of type S. This tubular neighborhood will be our model for
resolving certain singularities.

Theorem 2.1. Let S be a weighted star such that all vertices other than the
center have genus 0 and weight less than −1. There exists a blow-up (X,ω)
of a ruled surface with an S1-Hamiltonian symplectic structure and a star Γ
of type S in (X,ω) such that H−1([0, c]) is a compact tubular neighborhood
of Γ with boundary H−1(c) for some regular value c of the Hamiltonian H.
Moreover,

(1) the critical points of H in H−1([0, c)) lie on Γ,
(2) C0 is the critical level set corresponding to the minimum value 0 of

H,
(3) there are exactly two critical points on each component of the branches

of Γ,
(4) if Q is a critical point of H in H−1([0, c)), then Q ∈ C0 or Q has

index 2.

Proof. Let g and m be the genus and weight of the center A0 of S. Let
b = −m − r, where r is the number of branches of S emanating from A0.
Let S−b be a ruled surface over a Riemann surface of genus g with a zero
section Z0 with Z0 · Z0 = −b and an infinity section Z∞ with Z∞ · Z∞ = b.
Consider the standard action of S1 on S−b so that the fixed point set of S1

consists of Z0 and Z∞. Let τ be an S1-Hamiltonian symplectic structure on
S−b with Hamiltonian H such that H(Z0) = 0 and H(Z∞) = 1 ([M-W1]).
Since Z0 is a surface of fixed points, Z0 is a star with center Z0. On the
other hand, since Z0 is the level set corresponding to the minimum value of
H, every point P ∈ Z0 is a fixed point of type (−1, 0).

Let P1, . . . , Pr be r distinct points in S−b lying on Z0. Let (zj , wj) be
Z0-normal Darboux coordinates at Pj . Choose ε sufficiently small such
that Bε(P1), . . . , Bε(Pr) are pairwise disjoint. Set bj = (−mj,1, . . . ,−mj,sj )
and let 0 < α < β < ε2. Using Lemma 2.5, attach a branch B1 of type
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b1 to Z0 at P1 by blowing-up Bε(P1) so that all the critical points of in-
dex 2 on B1 lie in H−1(α1, β1). Note that the points P2, . . . , Pr lie on Z0

and the balls Bε(P2), . . . , Bε(Pr) are contained in ˜S−b. Let Q1
1 and Q1

2 be
the critical points of H on the −1-curve E1 of B1 with H(Q1

1) < H(Q1
2).

Since (H(Q1
1),H(Q1

2)) ⊂ (α, β), 0 < H(Q1
1) < H(Q1

2) < ε2. Again, us-
ing Lemma 2.5, attach a branch B2 of type b2 to Z0 at P2 by blowing-
up Bε(P2) so that the values of critical points of index 2 on B2 lie in
(H(Q1

1),H(Q1
2)). Continuing in this manner, we attach branches B1, . . . , Br

to Z0 at the points P1, . . . , Pr so that all the values of critical points of
index 2 on Bi+1 lie in (H(Qi

1),H(Qi
2)). Hence, the sequence of intervals,

(H(Q1
1),H(Q1

2)), . . . , (H(Qr
1),H(Qr

2)), is a nested decreasing sequence of in-
tervals. The total transform Z̃0 is a star with center Z0 of genus g. Since
Z0 · Z0 = −b, m = −b − r and Z̃0 is obtained by attaching r branches to
Z0, it follows from Lemma 2.3 that Z0 · Z0 = m. Let Γ = Z0 ∪

⋃r
j=1(B

j)∗.
Since (Bj)∗ is a branch of type bj , Γ is a star of type S. Note that the set of
critical points of H consists of the surface Z0 of fixed points of type (−1, 0)
and critical value 0; the surface Z∞ of fixed points of type (0, 1) and critical
value 1; and two critical points on each component of the branches of Z̃0.
Moreover, each critical point in the complement of Z0 ∪ Z∞ has index 2.

Let c be a regular value of H in (H(Qr
1),H(Qr

2)). Then c is a regular
value of H in (H(Qj

1),H(Qj
2)) for all j. By Lemma 2.4, (Bj)∗ is obtained

by restriction of Bj to H−1([0, c)) for all j. Hence, Γ is the union of all
components of Z̃0 which are contained in H−1([0, c)). Moreover, the critical
points of H lying in H−1([0, c)) are the critical points of H on Γ.

It follows that H−1([0, c]) is a compact tubular neighborhood of Γ with
boundary H−1(c).

�

We have the following corollary.

Corollary 2.1. Let M be a Seifert 3-manifold of type S and H−1([0, c]) be
a compact tubular neighborhood of a graph Γ of type S as in Theorem 2.1.
Then M is isomorphic to the regular level set H−1(c) at the boundary of
H−1([0, c]).

Proof. Since H−1[0, c] is compact, the regular level set H−1(λ) for any reg-
ular value λ of H with 0 < λ < c is a Seifert 3-manifold. For sufficiently
small λ, H−1(λ) is a principal bundle of euler class m over a Riemann sur-
face of genus g. As we pass through the critical points of H, H−1(λ) changes
by various surgeries. By the conditions of Theorem 2.1, these surgeries are
uniquely determined by the weighted graph S. Hence, the type of H−1(c)
is determined by the weighted graph S. Indeed, it is determined in exactly
the same way as the type of the boundary K(S) of the equivariant plumb-
ing according to the weighted graph S. Hence, H−1(c) is isomorphic to
K(S). �
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3. Duistermaat-Heckmann and the uniqueness of S1-invariant
symplectic forms

Let (X,ω) be a symplectic 2n-manifold which admits a hamiltonian S1

action with hamiltonian h. Assume that h is proper and let I be an
interval of regular values of h. In this section we will use the work of
Duistermaat-Heckman [D-H] to analyze the symplectic structure ω on the
manifold h−1(I).

Let λ be a regular value of h and denote h−1(λ) = Yλ. Yλ is a smooth
compact submanifold of X. Since Yλ is a level set of h the S1 action on X
preserves Yλ and induces an S1 action on Yλ. The orbits of this action are the
integrals of the null-spaces of the degenerate form i∗λω, where iλ : Yλ → X
denotes the inclusion. It follows that the orbit space Σλ = Yλ/S

1, called the
reduced space, is equipped with a unique symplectic form τλ which satisfies
i∗λω = p∗λτλ where pλ : Yλ → Σλ is the projection. If the orbits on Yλ form
a principal S1 bundle then Σλ is a smooth compact manifold. This is the
case discussed in [M-W1]. However, in general, the orbits of the S1 action
do not form a fibration because there are points y ∈ Yλ with finite nontrivial
stabilizer groups Gy = {g ∈ S1 : gy = y}. Consequently, Σλ is, in general,
not a smooth compact manifold but rather a compact orbifold.

Following [D-H] we can describe the topology of the situation as follows.
Let Γλ be the finite subgroup of S1 generated by all Gy, y ∈ Yλ. Then we
have:

Yλ
rλ
−→ Zλ = Yλ/Γλ

pλ ↘ ↓ πλ

Σλ = Yλ/S
1

(3.1)

where rλ : Yλ → Zλ is a finite branched covering and πλ : Zλ → Σλ is
a principal S1/Γλ− bundle. Here both Zλ and Σλ are orbifolds, and Yλ

is a (2n − 1)-manifold with a fixed point free action of S1. The orbifolds
and maps of 3.1 are determined uniquely by this S1 action on Y . Another
important fact we will use is that orbifolds carry differential objects like
differential forms, Riemannian metrics, etc. For example, the 2-form τλ is a
well-defined symplectic form on Σλ. Further, the de Rham theorem and the
Hodge theorem hold on orbifolds. The de Rham theorem for V -manifolds
(the original term for orbifolds) was proved by Satake [S] and the Hodge
theorem was proved by Baily [B].

Let λ0 be a fixed regular value of h and suppose λ ∈ I are regular values
in a neighborhood of λ0. Using an S1−invariant connection on the fibration
h−1(I) → I it is easy to show that there is a diffeomorphism ψ : h−1(I) →
Yλ0 × I satisfying:

(i) pr1 ·ψ = h where pr1 : Yλ0 × I → I is the projection onto the second
factor

(ii) ψ |Yλ
: Yλ → Yλ0 is an S1 equivariant diffeomorphism for all λ ∈ I.
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Set Y = Yλ0 . It follows that for all λ ∈ I we can identify Σλ = Yλ/S
1

with Σ = Y/S1, and Γλ with Γ = Γλ0 . Thus, for all λ, Zλ = Yλ/Γλ are
identified with Z = Y/Γ, a principal S1 bundle over Σ. The symplectic
forms τλ, however, still depend on λ and satisfy p∗τλ = i∗λω where p is the
projection Y → Σ and iλ : Y → Y × I is given by iλ(y) = (λ, y). Denote by
[τλ] ∈ H2(Σ,R) the cohomology class represented by τλ. The main result of
the above discussion is a beautiful theorem of Duistermaat-Heckman [D-H].

Theorem 3.1. Let λ, η ∈ I lie in an interval of regular values of the hamil-
tonian h. Then:

[τλ] = [τη] + (λ− η)c (3.2)

where c ∈ H2(Σ,R) denotes the Chern class of the principal S1 bundle
π : Z → Σ.

The theorem in [D-H] is more general then the one stated here, but this
result is sufficient for our purposes.

McDuff [McD1] has given a converse to this result in the case when Y is
a principal S1 bundle. We adapt her proof to the general case.

Given a symplectic 2n-manifold (X,ω) and a proper hamiltonian h on
X, we have seen that if λ0 is a regular value of h, the compact manifold
Y = h−1(λ0) is a (2n− 1)-manifold with a fixed point free action of S1. Y
determines orbifolds Z and Σ so that π : Z → Σ is a principal S1 bundle
with Chern class c, and r : Y → Z is a finite branched covering.

Theorem 3.2. Let I be an interval of regular values of h around λ0. Then
the symplectic form ω on h−1(I) is uniquely determined up to an S1−equivariant
diffeomorphism preserving the level sets of h by the (2n−1)-manifold Y , the
fixed point free action of S1 on Y , and a family {τλ}, λ ∈ I, of (orbifold)
symplectic forms on Σ which satisfy 3.2.

Proof. As noted above we can suppose that ω is a symplectic form on Y × I
and that the hamiltonian function h is given by projection onto the second
factor. Recall the inclusion:

iλ : Yλ → Yλ × I

y 7→ (y, λ).

Consider the S1-invariant 1-form on Yλ:

αλ = i∗λ(
∂

∂λ
y ω). (3.3)

Let X be the hamiltonian vector field, so:

X y ω = dh. (3.4)
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X is tangent to the level sets of h and generates the S1-action on Yλ. Thus
we have:

X y αλ = X y i∗λ(
∂

∂λ
y ω) (3.5)

= i∗λ(X y
∂

∂λ
y ω)

= ω(
∂

∂λ
,X)

= −dh( ∂
∂λ

) = −1.

The last equality follows since h is projection onto the second factor. Thus:

αλ(X) = −1. (3.6)

Since αλ is S1−invariant, and therefore Γ−invariant, there is a 1-form βλ

on Zλ which is S1/Γ−invariant and satisfies:

r∗βλ = −αλ. (3.7)

From 3.7 we have βλ(X̂) = 1, where X̂ generates the S1/Γ action on Zλ,
and therefore βλ is a connection 1-form for the principal (S1/Γ ')S1 bundle
Z → Σ. Thus on Y × I, ω can be written:

ω = p∗(τλ) + r∗(βλ) ∧ dλ. (3.8)

We have shown that any S1−invariant symplectic form ω on Y × I with
hamiltonian h given by projection onto the second factor has the form 3.8.
The only ambiguity in ω is in the choice of a family of connection 1-forms
βλ, λ ∈ I. Since βλ is a connection 1-form, −dβλ is a 2-form on Σλ rep-
resenting the Chern class c of the fibration Zλ → Σλ. Accordingly βλ can
be changed only by the addition of 1-forms π∗(σλ), where σλ are closed
(orbifold) 1-forms on Σλ. Following McDuff we set:

ωt = p∗(τλ) + r∗(βλ) ∧ dλ+ tp∗(σλ) ∧ dλ. (3.9)

The forms ωt are S1−invariant symplectic forms for 0 ≤ t ≤ 1. We have:

d

dt
(ωt) = p∗(σλ) ∧ dλ = d[p∗(µλ)] (3.10)

where µλ =
∫ λ σsds. Let ξλ be the vector field on Σ such that:

ξλ y τλ = µλ.

Let ξλ,t be the unique lift of ξλ to Zλ determined by the connection βλ +
tπ∗(σλ). Since the vector field ξλ respects the orbifold structure of Σ, for
each t, ξλ,t is an orbifold vector field on Zλ and hence has a unique lift ξ̃λ,t
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to Yλ. The vector field ξ̃λ,t thus determines, for each t, a vector field ξ̃t on
Y × I such that:

d

dt
(ωt) = d(ξ̃t y ωt). (3.11)

Let gt be the flow of ξ̃t. Then gt is a family of S1 equivariant diffeomorphisms
of Y × I preserving the level sets Yλ of h and such that:

g∗t (ωt) = ω0.

�

When X is a symplectic 4-manifold, Theorem 2 can be strengthened. We
need the following orbifold version of Moser’s theorem [M].

Theorem 3.3. Let X be a compact orbifold. Suppose that {ρt}, 0 ≤ t ≤ 1,
is a family of (orbifold) symplectic forms on X such that [ρt] ∈ H2(X; R)
is independent of t. Then there is a family of (orbifold) diffeomorphisms
gt : X → X, 0 ≤ t ≤ 1 such that g∗t (ρt) = ρ0.

Proof. Since Hodge theory holds on orbifolds Moser’s proof applies. �

Corollary 3.1. Let Σ be a compact surface orbifold. Suppose that ρ0 and
ρ1 are (orbifold) symplectic forms on Σ such that∫

Σ
ρ0 =

∫
Σ
ρ1.

Then there is an (orbifold) diffeomorphism g such that g∗ρ1 = ρ0. g is
pathwise connected to the identity by (orbifold) diffeomorphisms.

Proof. Apply the theorem to the family of symplectic forms ρt = tρ1 + (1−
t)ρ0, 0 ≤ t ≤ 1. �

When the reduced space Σ is a surface orbifold the corollary implies that
the symplectic forms {τλ}, λ ∈ I, are determined, up to symplectomor-
phism, by their area. Hence the symplectic form ω on h−1(I) is determined
up to S1 equivariant diffeomorphism by the Seifert 3-manifold Y and a fam-
ily of scalars, [τλ] = tλ, satisfying:

tλ = tη + c(λ− η), λ, η ∈ I. (3.12)

(c is determined by Y .) Thus we have:

Theorem 3.4. Let (X,ω) be a symplectic 4-manifold which admits a hamil-
tonian S1 action with a proper hamiltonian h. Let λ0 be a regular value of
h. The compact manifold Y = h−1(λ0) is a Seifert 3-manifold. Let I be
an interval of regular values of h around λ0. Then the symplectic form ω
on h−1(I) is uniquely determined up to an S1−equivariant diffeomorphism
preserving the level sets of h by the Seifert 3-manifold Y and a family of
scalars tλ which satisfy 3.12.
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4. The Gluing Theorem

Let (X,ω) be a symplectic 2n-manifold (not necessarily compact). Let Y
be a (2n− 1)-manifold with a fixed point free action of S1, and j : Y → X
be an embedding. We say j is an ω-compatible embedding if the null-spaces
of the degenerate 2-form j∗ω coincide with the orbits of the S1-action on Y .
Our first result is:

Proposition 4.1. Suppose Y is a (2n− 1)-manifold with a fixed point free
action of S1 and j : Y → (X,ω) is an ω-compatible embedding. Then,
for ε sufficiently small, there exists an S1-invariant symplectic form ω0 on
Y × (−ε, ε) with hamiltonian h given by projection onto the second factor; a
tubular neighborhood N(Y ) of Y in X and a symplectomorphism φ

φ : (N(Y ), ω) → (Y × (−ε, ε), ω0)

such that φ |Y : Y → Y × {0} is an S1 equivariant diffeomorphism.

The proposition allows us to symplectically model a neighborhood N(Y )
of Y by the symplectic manifold (Y × (−ε, ε), ω0). To prove the proposition
we need:

Lemma 4.1. Let Y be a (2n − 1)-manifold with a fixed point free action
of S1 and j : Y → X an ω-compatible embedding. Then the 2-form j∗ω is
invariant under the S1 action on Y .

Proof. Let N denote the vector field which generates the S1-action on Y .
Then the Lie derivative of j∗ω in the direction N is:

LN j∗ω = d(N y j∗ω) +N y dj∗ω = 0.

Since N y j∗ω = 0 by assumption and j∗ω is closed. The lemma follows. �

Proof of the Proposition. As a consequence of the lemma the form j∗ω in-
duces a non-degenerate 2-form τ on the quotient space Y/S1 = Σ. Σ is, as
observed above, an orbifold and τ is an orbifold symplectic form. Choose a
family τλ, λ ∈ (−1, 1), of symplectic forms on Σ satisfying 3.2 (where c is
determined uniquely by Y ) and such that τ0 = τ . Denote the S1-invariant
form on Y × (−1, 1) with reduced spaces (Σ, τλ), λ ∈ (−1, 1), by ω0. ω0 is
uniquely determined, up to S1-equivariant diffeomorphism. Changing ω0 by
such a diffeomorphism, if necessary, we can suppose that:

ω |Y = ω0|{0}×Y .

It is now easy to find a diffeomorphism ψ from a neighborhood U of Y in
X to a neighborhood W of Y × {0} in Y × (−1, 1) so that:

(i) ψ |Y : Y → Y × {0} is the identity
(ii) ψ∗(ω0)

∣∣∣Tp(x) = ω
∣∣∣
Tp(x)

for all p ∈ Y .

We can now apply the Moser-Weinstein technique (see [W1] or [McD-S]) to
ψ∗(ω0) and ω along Y ⊂ X to conclude that there is a tubular neighbor-
hood N(Y ) of Y and a diffeomorphism ϕ : N(Y ) → N(Y ), with ϕ |Y = id ,
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such that ϕ∗(ψ∗(ω0)) = ω on N(Y ). The proposition follows by taking ε
sufficiently small. �

Remark 4.1. Note that the proposition holds regardless of the choice of
family of symplectic forms {τλ}, λ ∈ (−1, 1), satisfying 3.2 and τ0 = τ .
This is because, by Moser’s theorem, two symplectic forms σ and σ′ which
have the same periods and are sufficiently close are isotopic. Thus if {τλ}
and {τ ′λ}, λ ∈ (−1, 1), are two families of symplectic forms both satisfying
3.2 and τ0 = τ = τ ′0 then for ε sufficiently small the families {τλ} and
{τ ′λ}, λ ∈ (−ε, ε), are isotopic.

Suppose that j : Y → X is ω-compatible. Suppose that Y divides X
into two components. These components can be canonically distinguished
as follows. The vector field N which generates the S1-action on Y is null
for j∗ω, that is, for any vector T ∈ TpY, p ∈ Y, ω(N,T ) = 0. Consequently,
for any vector V ∈ TpX, p ∈ Y, transverse to TpY, ω(N,V ) 6= 0. For
otherwise, ω would be degenerate on TpX. Clearly if ω(N,V ) > 0 then
ω(N,−V ) < 0. Thus TpY divides TpX into two components: T+

p X = {V ∈
TpX : ω(N,V ) > 0} and T−p X = {V ∈ TpX : ω(N,V ) < 0}. We use this
to distinguish the components of X \Y by setting X+ to be the component
with inward pointing normal vector V ∈ T+

p X, for all p ∈ Y , and X− to be
the component with inward pointing normal vector V ∈ T−p X, for all p ∈ Y .
Thus we can write:

X = X− ⋃
Y

X+.

Theorem 4.1. Let Y be a (2n − 1)-manifold with a fixed point free action
of S1. Let (Xi, ωi) i = 1, 2 be symplectic 2n-manifolds and suppose there
are ωi-compatible embeddings ji : Y → (Xi, ωi) i = 1, 2 such that ji(Y ) is a
separating hypersurface in Xi. Suppose that on the orbifold Y/S1 the quo-
tient symplectic forms τi are symplectomorphic. Then there is a symplectic
structure ω on the 2n-manifold

X = X−
1

⋃
Y

X+
2

obtained by gluing X−
1 to X+

2 along Y . Moreover, there are neighborhoods
Ni(Y ) of Y in Xi such that ω = ω2 on X+

2 \ N2(Y ) and ω = ω1 on X−
1 \

N1(Y ).

Proof. By Proposition 5.1 there are tubular neighborhoods Ni(Y ) of Y in
Xi and symplectomorphisms:

φi : (Ni(Y ), ωi) → (Y × (−ε, ε), ω0), i = 1, 2

where ω0 is the S1-invariant symplectic form constructed in the proof of the
proposition. The symplectic gluing map is then given by φ−1

2 ◦ φ1. �

Theorem 4.2. Let Y be a Seifert 3-manifold. Let (Xi, ωi), i = 1, 2, be
symplectic 4-manifolds and suppose that there are ωi-compatible embeddings
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ji : Y → (Xi, ωi), i = 1, 2 such that ji(Y ) is a separating hypersurface in
Xi. Then there is a symplectic structure ω on X

X = X−
1

⋃
Y

X+
2

obtained by gluing X−
1 to X+

2 along Y . Moreover, there are neighborhoods
Ni(Y ) of Y in Xi such that ω = ω2 on X+

2 \ N2(Y ) and ω = cω1 on
X−

1 \N1(Y ) for some constant c > 0.

Proof. By rescaling the symplectic form ω1 on X1 we can suppose that the
quotient symplectic forms τi, i = 1, 2, on Y/S1 have equal area and hence,
by Moser’s theorem, are symplectomorphic. The theorem now follows from
the previous result. �

These theorems can also be formulated as gluing symplectic manifolds
along their boundaries.

Theorem 4.3. Let Y be a (2n − 1)-manifold with a fixed point free action
of S1 and let (Xi, ωi), i = 1, 2, be symplectic manifolds with boundary Y .
Suppose that the inclusion Y ↪→ Xi is ωi-compatible and that the quotient
symplectic forms τi on Y/S1 are symplectomorphic. Suppose also that the
inward pointing normal of Y in X1 lies in T−(X1) and the inward pointing
normal of Y in X2 lies in T+(X2). Then there is a symplectic form ω on
X = X1

⋃
Y X2 obtained by gluing X1 to X2 along Y . Moreover, there are

neighborhoods Ni(Y ) of Y in Xi such that ω = ω2 on X+
2 \ N2(Y ) and

ω = ω1 on X−
1 \N1(Y ).

5. Isolated Orbifold Singularities

This section is devoted to describing the symplectic structure in a deleted
neighborhood of an isolated symplectic orbifold singularity. Let (X,ω) be a
four dimensional symplectic orbifold (i.e. a symplectic V -manifold ([W2])).
Let P ∈ X be an isolated orbifold singularity of X. Let p : (Ũ , ω̃) → (U, ω)
be a local symplectic orbifold uniformization for (X,ω) in a neighborhood
U of P . By definition, (Ũ , ω̃) is a symplectic manifold and there is a finite
group G acting on (Ũ , ω̃) so that p is G equivariant and induces an orbifold
diffeomorphism Ũ/G ∼= U . In addition, of course, p is a local symplectic
diffeomorphism in the complement of the branch locus of p, the set of points
in Ũ with nontrivial stabilizer in G. Since P is an isolated orbifold singu-
larity, we may assume that the branch locus of P consists of a single point
P̃ with stabilizer G. Let Ũ∗ = Ũ \ {P̃} and U∗ = U \ {P}. G acts freely
and properly discontinuously on Ũ∗ so that q = p| : Ũ∗ → U∗ is a regular
covering map. Hence, (U∗, ω) is a symplectic manifold and q∗(ω) = ω̃.

Since P̃ is a fixed point of the finite group G of symplectomorphisms of
(Ũ , ω̃), we may choose normalized Darboux coordinates (z, w) at P̃ for the
action of G. For sufficiently small ε, the open ball Bε = {(z, w)|zz + ww <

ε2} determines a G-invariant neighborhood of P̃ contained in Ũ . By the
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definition of normalized coordinates, the action of G on Bε is given by a
representation ρ : G → U(2). Consider the scalar action of S1 on Bε with
Hamiltonian H̃ given by the rule H̃(z, w) = zz+ww. H̃ has a single critical
point P̃ of index 0. S1 acts freely on the regular level sets of H̃, so that
the regular level sets of H̃ are Seifert 3-manifolds with no singular fibers.
Indeed, the regular levels sets of H̃ are 3-spheres and the orbits of the S1

action are the fibers of the Hopf fibration. Since G acts as a subgroup of
U(2), G preserves the Hamiltonian H̃. Moreover, the action of G commutes
with the scalar action of S1. Hence, H̃ descends to a Hamiltonian H for an
induced action of S1 on (U∗, ω) and the level sets of H are the quotients of
the level sets of H̃ by the action of G. Since H̃ has no critical points in Ũ∗,
H has no critical points in U∗. On the other hand, since H is a Hamiltonian
for the induced action of S1 on U∗, the fixed points of S1 on U∗ correspond
to the critical points of H on U∗. Therefore, the action of S1 on U∗ is
fixed point free, (though not necessarily free). Hence, the level sets of H
are Seifert 3-manifolds. The singular fibers correspond to the eigenspaces of
nonscalar elements of G ⊂ U(2). Hence we have:

Proposition 5.1. Let P be an isolated orbifold singularity on a four di-
mensional symplectic orbifold. Let U be a neighborhood of P . Then there is
a neighborhood V of P with V ⊂ U and ∂V is an ω-compatible hypersurface
in U .

Orbifold singularities arise naturally in symplectic geometry. Two classi-
cal ways they occur are from finite group actions on symplectic manifolds
and from symplectic reduction. In the spirit of this paper we describe a third
way. Consider a symplectically embedded compact surface Σ in a symplectic
4-manifold (X,ω) with self-intersection Σ ·Σ = −k, k ∈ Z+. Let (R−k, σ−k)
denote the ruled surface with zero section Z0 such that Z0 ·Z0 = −k and such
that the symplectic form σ−k is S1-invariant under the standard action of
S1 (i.e., the action that rotates the fiber two-spheres leaving the zero and in-
finity sections fixed). Suppose moreover that there is a symplectomorphism
ϕ : (Σ, ω) → (Z0, σ−k). By the symplectic neighborhood theorem there is
a neighborhood N(Σ) of Σ in X, a neighborhood N(Z0) of Z0 in R−k and
a symplectomorphism φ : (N(Σ), ω) → (N(Z0), σ−k) such that φ |Σ = ϕ.
Using the symplectomorphism φ we can suppose that there is a hamiltonian
function h on N(Σ) with minimum value λ0 along Σ. If λ is a regular value
of h denote h−1(λ) by Yλ. Yλ/S

1 is the reduced space (Σ, ωλ) as described in
§3. Moreover by 3.2 the areas [ωλ] are decreasing as λ→ λ0. We can clearly
extend the interval of regular values of h by extending N(Σ)\Σ by a product
manifold (λ1, λ0]×Yλ with S1 invariant symplectic form. (Otherwise said: ”
by stretching the neighborhood of Σ”.) The areas [ωλ] continue to decrease
until they reach zero. At that point X has an isolated orbifold singularity.
In fact any isolated orbifold singularity in 4-dimensions can be introduced
by applying this construction to the neighborhood of some symplectic star.
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Notice that by repeating this construction on any symplectic star with
negative chern class, we may introduce symplectic singularities which in gen-
eral need not be orbifold singularities. However, clearly, these singularities
can be resolved by the methods of this paper. We call any symplectically
equivalent singularity a symplectic star singularity.

6. Applications

This section is devoted to applications of the gluing theorem to symplectic
4-manifolds.

Let (X,ω) be a 4-dimensional symplectic orbifold and let p ∈ X be an
isolated orbifold singularity. Let U be a neighborhood of p. Recall the
definition of a symplectic resolution of X at p on U given in the introduction.

Theorem 6.1. Let U be a neighborhood of an isolated orbifold point p on
a 4-dimensional symplectic orbifold (X,ω). There exists a symplectic res-
olution (X̃, ω̃) of p on U . Morover, the symplectic divisor D in Ỹ is a
symplectic star.

Proof. In §5 it is shown that a neighborhood V of p admits an ω-compatible
embedding of a Seifert 3-manifold Y uniquely determined by the orbifold
singularity. Using the results of §2 we can construct a symplectic star Γ and
a neighborhood (N(Γ), ωΓ) such that ∂N(Γ) is isomorphic to Y as a Seifert 3-
manifold and such that ∂N(Γ) is ωΓ-compatible. Rescaling ωΓ, if necessary,
we can use Theorem 4.2 to symplectically glue N(Γ) to X \ U(p) along Y ,
where U(p) is a neighborhood of p in X. Then X̃ = N(Γ) ∪Y (X \ U(p)) is
the required resolution. �

While it is not clear how abundant ω-compatible embeddings of Seifert
3-manifolds are, using the construction of §2 we can find many examples of
such embeddings in smooth symplectic 4-manifolds. Let (Σ, η) be a com-
pact surface with area form η symplectically embedded in the symplectic
4-manifold (X,ω). Suppose that the self-intersection Σ · Σ of Σ is k ∈ Z.
Let (Rk, σk) denote the ruled surface with zero section Z0 satisfying:

(i) The symplectic form σk is S1-invariant under the standard action
of S1 (i.e., the action that rotates the fiber two-spheres leaving the
zero and infinity sections fixed).

(ii) There is a symplectomorphism ϕ : (Σ, η) → (Z0, σk).
(iii) Z0 · Z0 = k.

Then, by the symplectic neighborhood theorem there is a neighborhood
N(Σ) of Σ in X, a neighborhood N(Z0) of Z0 in Rk and a symplectomor-
phism φ : (N(Σ), ω) → (N(Z0), σk) such that φ |Σ = ϕ. Via the symplec-
tomorphism φ we can use the method of §2 to successively blow-up X in
the neighborhood N(Σ) to construct any symplectic star and corresponding
symplectic star neighborhood with center Σ. This construction obviously
yields many examples of ω-compatible Seifert 3-manifolds in blow-ups of
symplectic 4-manifolds.
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The above construction can be utilized to construct symplectic 4-manifolds
as follows. Suppose that (X0, ω0) is a 4-dimensional symplectic manifold
with an isolated singularity p ∈ X0. Suppose that there is a neighborhood
U(p) ⊂ X0 of p such that ∂U(p) is an ω0-compatible Seifert 3-manifold Y
with negative chern class. For instance, suppose that p is an isolated orb-
ifold singularity or a symplectic star singularity. Let Ŷ denote the dual
Seifert 3-manifold. Ŷ is isomorphic to Y with the S1-action reversed. Then
Ŷ can be realized as the boundary of a symplectic star neighborhood N(Γ̂)
with symplectic star Γ̂. (Likewise, Y can be realized as the boundary of a
symplectic star neighborhood N(Γ) with symplectic star Γ.) We call Γ̂ the
dual star to the star Γ of the singularity p. Denote the center of Γ̂ by Ĉ.
Suppose Γ̂ has r strings and Ĉ · Ĉ = m ∈ Z. Suppose now that (X1, ω1) is
a symplectic 4-manifold and Σ is a symplectically imbedded surface in X1

such that:
(i) Σ is diffeomorphic to Ĉ
(ii) Σ · Σ = m+ r.

By blowing up X1 we can construct a symplectic 4-manifold (X̃1, ω̃1) con-
taining the symplectic star Γ̂ and symplectic star neighborhood N(Γ̂). Thus
X̃1 contains an ω̃1-compatible Seifert 3-manifold ∂N(Γ̂) = Ŷ . Applying
Theorem 4.2 we can symplectically glue X̃1 \N(Γ̂) to X0 \U(p) along Y . If
the genus of the center C0 of Γ is positive, this construction shows that it is
possible to fill the deleted singularity p by essentially different smooth sym-
plectic manifolds with boundary Y . (These fillings may not be symplectic
resolutions of p as defined in the introduction.) On the other hand, suppose
that C0 is rational. Since Y has negative chern class, Ŷ has positive chern
class. This implies that m+ r > 0. Hence, the results of [McD3] show that
this construction does not yield essentially different fillings of the deleted
singularity p. In any case, we have the following questions:

Question . Is the symplectic resolution of symplectic orbifold singularities
or, more generally, symplectic star singularities unique up to blowing up and
blowing down?

This question can be rephrased as a question about whether certain ω-
compatible hypersurfaces have a unique s-filling, in the sense of Eliashberg
[E].

Question . Is there an intrinsic geometric characterization of the class of
symplectic star singularities?
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