NORMALIZERS AND CENTRALIZERS OF
PSEUDO-ANOSOV MAPPING CLASSES

JOHN D. MCCARTHY

Let M be an orientable, connected, compact Riemann surface of negative
euler characteristic. Let $\mathcal{M}(M)$ be the mapping class group of M, the group
of isotopy classes of orientation preserving self homeomorphisms of M. Let τ
be a pseudo-Anosov mapping class belonging to $\mathcal{M}(M)$. We recall that τ
is pseudo-Anosov if it contains a pseudo-Anosov diffeomorphism t.

A diffeomorphism, t, of M is pseudo-Anosov if there exists a pair of
transverse measured foliations, (F^s, μ^s), (F^u, μ^u), and a real number $\lambda > 1$
such that $t(F^s, \mu^s) = (F^s, \lambda \mu^s)$ and $t(F^u, \mu^u) = (F^u, \lambda \mu^u)$. The measured
foliation (F^s, μ^s) is called the stable foliation for t; the measured foliation
(F^u, μ^u) is called the unstable foliation for t; λ is the dilatation of t.

In this article we prove the following theorem and two corollaries:

Theorem 1. The centralizer, $C(\tau)$, of the cyclic subgroup of $\mathcal{M}(M)$
generated by τ is a finite extension of an infinite cyclic group. The normalizer,
$N(\tau)$, of the cyclic subgroup of $\mathcal{M}(M)$ generated by τ is either equal to $C(\tau)$
or contains $C(\tau)$ as a normal subgroup of index 2.

Corollary 2. $C(\tau)$ and $N(\tau)$ are virtually infinite cyclic (i.e. contain
infinite cyclic subgroups of finite index).

Corollary 3. Every torsion free subgroup of $C(\tau)$ or $N(\tau)$ is infinite cyclic.

The main tool for proving these results is given by the following lemma. I thank Albert Fathi of the Universite de Paris-Sud, Orsay, France for showing me how to prove a special case of this lemma.

Lemma 1. Suppose s is a diffeomorphism of M and k is a nonzero integer
such that sts^{-1} is isotopic to t^k. Then there exists a homeomorphism, r, of M, isotopic to s, and a positive real number, ρ, such that the following conditions hold:

1. $rtr^{-1} = t^k$,
2. if $k < 0$, then $r(F^s, \mu^s) = (F^u, \rho^{-1} \mu^u)$ and $r(F^u, \mu^u) = (F^s, \rho \mu^s)$,
3. if $k > 0$, then $r(F^s, \mu^s) = (F^s, \rho^{-1} \mu^s)$ and $r(F^u, \mu^u) = (F^u, \rho \mu^u)$.

Furthermore, $k = -1$, or $+1$.
Proof. Let $t_1 = t^k$ and $t_2 = st^{-1}$. Let $(\mathcal{F}_2^s, \mu_2^s) = s(\mathcal{F}_2^s, \mu^s)$ and $(\mathcal{F}_2^u, \mu_2^u) = s(\mathcal{F}_2^u, \mu^u)$. Then the following equalities hold:

- $t_1(\mathcal{F}_2^s, \mu_2^s) = (\mathcal{F}_2^s, \lambda^{-k}\mu^s)$ and $t_1(\mathcal{F}_2^u, \mu_2^u) = (\mathcal{F}_2^u, \lambda^k\mu^u)$,
- $t_2(\mathcal{F}_2^s, \mu_2^s) = (\mathcal{F}_2^s, \lambda^{-1}\mu_2^s)$ and $t_1(\mathcal{F}_2^u, \mu_2^u) = (\mathcal{F}_2^u, \lambda\mu_2^u)$.

Therefore, t_1 and t_2 are isotopic pseudo-Anosov diffeomorphisms. By the uniqueness of pseudo-Anosovs, ([FLP], Theorem III, Expose 12), there exists a diffeomorphism, h, isotopic to the identity, such that $ht_2h^{-1} = t_1$. Therefore, if we let $r = hs$, then r is isotopic to s and $rtr^{-1} = t^k$. This proves (1).

Following the argument in the proof of Lemma 16, Expose 12, [FLP], we conclude that r sends the stable foliation of t to the stable foliation of t^k, and the unstable foliation of t to the unstable foliation of t^k.

If $k < 0$, then $r(\mathcal{F}_2^s) = \mathcal{F}_2^u$ and $r(\mathcal{F}_2^u) = \mathcal{F}_2^s$. By the unique ergodicity of the foliations \mathcal{F}_2^s and \mathcal{F}_2^u, ([FLP], Theorem I, Expose 12), it follows that there exists positive real numbers α and β such that $r(\mathcal{F}_2^s, \mu^s) = (\mathcal{F}_2^u, \alpha\mu^u)$ and $r(\mathcal{F}_2^u, \mu^u) = (\mathcal{F}_2^s, \beta\mu^s)$. Furthermore, we conclude that $\alpha \beta = 1$, since $\mu^s \otimes \mu^u$ gives an area element whose total area must be preserved by any diffeomorphism of M. (M has finite area under this form.) This proves (2). (3) follows in a similar manner.

If $k < 0$, then $rtr^{-1}(\mathcal{F}_2^u, \mu^u) = (\mathcal{F}_2^u, \lambda^{-1}\mu^u)$. Since, on the other hand, $t^k(\mathcal{F}_2^u, \mu^u) = (\mathcal{F}_2^u, \lambda^k\mu^u)$, we conclude that $k = -1$. Similarly, if $k > 0$, then $k = 1$. }

From this lemma, we conclude that if $\sigma \in N(\tau)$, then σ may be represented by a diffeomorphism preserving the pair of measured foliations for t up to scalar multiplications. Therefore, we now turn our attention to study the group of such diffeomorphisms.

Let $\mathcal{F} = \{\mathcal{F}_1, \mathcal{F}_2\}$ be the pair of foliations for t. Let \mathcal{G} be the group of diffeomorphisms, r, such that $r(\mathcal{F}) = \mathcal{F}$. Let \mathcal{G}^* be the subgroup of diffeomorphisms, r, such that $r(\mathcal{F}_1) = \mathcal{F}_1$ and $r(\mathcal{F}_2) = \mathcal{F}_2$. Clearly, \mathcal{G}^* is a normal subgroup of index 1 or 2 in \mathcal{G}. (There may not be any diffeomorphisms of M exchanging the pair of foliations.)

Let μ_i be a transverse measure on \mathcal{F}_i, $i = 1, 2$. Again, by the unique ergodicity of the foliations \mathcal{F}_1 and \mathcal{F}_2, it follows that for each $r \in \mathcal{G}$, there exists a positive real number, λ_r, such that either:

- $r(\mathcal{F}_1, \mu_1) = (\mathcal{F}_2, \lambda_1^{-1}\mu_2)$ and $r(\mathcal{F}_2, \mu_2) = (\mathcal{F}_1, \lambda_r\mu_1)$

or

- $r(\mathcal{F}_1, \mu_1) = (\mathcal{F}_1, \lambda_1^{-1}\mu_1)$ and $r(\mathcal{F}_2, \mu_2) = (\mathcal{F}_2, \lambda_r\mu_2)$.

In particular, this provides a dilatation homomorphism, $\lambda : \mathcal{G}^* \to \mathbb{R}_+$. Let $\Lambda = \lambda(\mathcal{G}^*)$ and $\mathcal{Sym} = \text{kernel}(\lambda)$. (Note: if $r \in \mathcal{G}$ and $r(\mathcal{F}_1) = \mathcal{F}_2$, then $r^2 \in \mathcal{Sym}$.) If $r \in \mathcal{G}^*$, then r is pseudo-Anosov if and only if $\lambda_r \neq 1$.)

Lemma 2. There exists $\lambda_0 > 1$ such that $\Lambda = \{\lambda_0^n | n \in \mathbb{Z}\}$.
Proof. The set of dilatation factors for pseudo-Anosov maps on a surface of fixed genus is a subset of the algebraic integers. Indeed, it is a discrete subset. This fact was pointed out in [T]. A proof may be found in the paper of Arnoux and Yoccoz [AY]. Their arguments also show that this set is closed. Therefore, Λ is a discrete subgroup of algebraic integers. The result follows from standard theorems. □

Lemma 3. Sym is a finite group.

Proof. Let \mathcal{L} be the collection of separatrices for \mathcal{F}_1, (i.e. leaves of \mathcal{F}_1 emanating from a singularity of \mathcal{F}_1). Since each element in \mathcal{G}^* must permute the leaves of \mathcal{L}, we have a natural action of \mathcal{G}^* on \mathcal{L}, which restricts to an action of Sym on \mathcal{L}.

Suppose $L \in \mathcal{L}$, $r \in \text{Sym}$ and $r(L) = L$. Since $\lambda_r = 1$, it follows that r fixes L pointwise. Since L is dense in M, ([FLP], Expose 9, Lemma 6), r fixes M pointwise. That is, r is the identity. Therefore, the action of Sym on \mathcal{L} is free and Sym is a finite group. □

Lemma 4. Let $\pi : \text{Homeo}^+(M) \to \mathcal{M}(M)$ be the natural quotient. The restriction $\pi : \mathcal{G} \to \mathcal{M}(M)$ is injective.

Proof. If $\pi(r) = 1$, then, by definition of π, r is isotopic to the identity. Therefore, r^2 is isotopic to the identity. But r^2 is in \mathcal{G}^*. Since pseudo-Anosov diffeomorphisms are not isotopic to the identity, we conclude that $r^2 \in \text{Sym}$. By Lemma 3, r^2 is finite order, and therefore r is finite order. But a periodic map which is isotopic to the identity is the identity, ([FLP], Expose 12, Lemma 12). □

Proof of Theorem 1. Let $\mathcal{H} = \pi(\mathcal{G})$ and $\mathcal{H}^* = \pi(\mathcal{G}^*)$. By Lemmas 2 and 3, \mathcal{G}^* is a finite extension of an infinite cyclic group. As noted before, either $\mathcal{G} = \mathcal{G}^*$ or \mathcal{G}^* is a normal subgroup of index 2 in \mathcal{G}. By Lemma 1, $C(\tau) \subset \mathcal{H}^*$, $N(\tau) \subset \mathcal{H}$ and $N(\tau) \cap \mathcal{H}^* = C(\tau)$. The result follows immediately from Lemma 4. □

Proof of Corollary 2. It suffices to show that \mathcal{G}^* is virtually infinite cyclic. But there is a short exact sequence:

$$1 \to \text{Sym} \to \mathcal{G}^* \xrightarrow{\lambda} \Lambda \to 1$$

with Λ infinite cyclic and Sym finite. Such a sequence always splits, and any splitting determines an infinite cyclic subgroup of finite index in \mathcal{G}^*. □

Proof of Corollary 3. Let G be a torsion free subgroup of $N(\tau)$ and $\sigma \in G$. By Lemma 1, if σ switches the pair of foliations for τ, then $\sigma^2 \in \text{Sym}$. By Lemma 3, this is impossible. Hence, by Lemma 1, $G \subset C(\tau)$. But then we have a short exact sequence:

$$1 \to G \cap \text{Sym} \to G \xrightarrow{\lambda} \lambda(G) \to 1; \quad \lambda(G) \subset \Lambda.$$
Since G is torsion free, $G \cap \text{Sym} = \{1\}$. (Again, this follows from Lemma 3.) Hence, G is isomorphic to a subgroup of Λ. The result follows from Lemma 2.

\[\square \]

\section*{References}

\textsc{Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027}

\textit{E-mail address: mccarthy@@math.msu.edu}