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Let M be an orientable, connected, compact Riemann surface of negative
euler characteristic. Let M (M) be the mapping class group of M, the group
of isotopy classes of orientation preserving self homeomorphisms of M. Let
T be a pseudo-Anosov mapping class belonging to M(M). We recall that 7
is pseudo-Anosov if it contains a pseudo-Anosov diffeomorphism ¢.

A diffeomorphism, ¢, of M is pseudo-Anosov if there exists a pair of
transverse measured foliations, (F*, u*), (F*, u*), and a real number A > 1
such that t(F*, u®) = (F5, A" 1p®) and t(F%, u*) = (F*, Au®). The measured
foliation (F*, u®) is called the stable foliation for t; the measured foliation
(F*, u*) is called the unstable foliation for t; A is the dilatation of t.

In this article we prove the following theorem and two corollaries:

Theorem 1 . The centralizer, C(7), of the cyclic subgroup of M(M) gen-
erated by T is a finite extension of an infinite cyclic group. The normalizer,
N(T), of the cyclic subgroup of M(M) generated by T is either equal to C(T)
or contains C(1) as a normal subgroup of index 2.

Corollary 2 . C(7) and N(7) are virtually infinite cyclic (i.e. contain
infinite cyclic subgroups of finite index).

Corollary 3 . Every torsion free subgroup of C(1) or N (1) is infinite cyclic.

The main tool for proving these results is given by the following lemma. 1
thank Albert Fathi of the Universite de Paris-Sud, Orsay, France for showing
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Lemma 1 . Suppose s is a diffeomorphism of M and k is a nonzero integer
such that sts~! is isotopic to t*. Then there exists a homeomorphism, r,
of M, isotopic to s, and a positive real number, p, such that the following
conditions hold:

(1) rtr—t =t*,
(2) if k <0, then r(F*, u®) = (F* p~tu*) and r(F*, u*) = (F5, pp®),
(3) if k >0, then r(F*, u®) = (F*, p~tu®) and r(FY, u*) = (F4, pu).

Furthermore, k = —1, or +1.
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Proof. Let t; = t* and ty = sts~'. Let (F5,u3) = s(F*, u®) and (Fy, u4) =
s(F*, p*). Then the following equalities hold:

b tl(fsnus) = (Fsa )\—kﬂs) and tl(fuaﬂu) = (fuv)‘kuu)’

o to(F3,p3) = (F35, A" p3) and t1(Fy, p) = (F3, M)
Therefore, t; and ty are isotopic pseudo-Anosov diffeomorphisms. By the
uniqueness of pseudo-Anosovs, ([FLP], Theorem III, Expose 12), there ex-
ists a diffeomorphism, h, isotopic to the identity, such that htoh™' = 1.
Therefore, if we let » = hs, then r is isotopic to s and rtr—! = tk. This
proves (1).

Following the argument in the proof of Lemma 16, Expose 12, [FLP], we
conclude that r sends the stable foliation of t to the stable foliation of t*,
and the unstable foliation of ¢ to the unstable foliation of t.

If £ <0, then r(F*®) = F* and r(F*) = F*. By the unique ergodicity
of the foliations F* and F*, ([FLP], Theorem I, Expose 12), it follows that
there exists positive real numbers « and 3 such that r(F*, u*) = (F“, au®)
and r(F* u*) = (F5, Bu®). Furthermore, we conclude that a8 = 1, since
u® @ ut gives an area element whose total area must be preserved by any
diffeomorphism of M. (M has finite area under this form.) This proves (2).
(3) follows in a similar manner.

If k£ < 0, then rtr=Y(F¥, p) = (F% A" 1u®). Since, on the other hand,
th(Fe, u) = (F*, N ), we conclude that k = —1. Similarly, if & > 0, then
k=1. O

From this lemma, we conclude that if o € N(7), then o may be repre-
sented by a diffeomorphism preserving the pair of measured foliations for ¢
up to scalar multiplications. Therefore, we now turn our attention to study
the group of such diffeomorphisms.

Let F = {F1, Fa} be the pair of foliations for ¢. Let G be the group of
diffeomorphisms, r, such that r(F) = F. Let G* be the subgroup of diffeo-
morphisms, r, such that r(F;) = F; and r(F2) = Fa. Clearly, G* is a normal
subgroup of index 1 or 2 in G. (There may not be any diffeomorphisms of
M exchanging the pair of foliations.)

Let p; be a transverse measure on F;, i = 1,2. Again, by the unique
ergodicity of the foliations F; and Fo, it follows that for each r € G, there
exists a positive real number, A, such that either:

o 7(Fi, ) = (Fo, A o) and r(Fo, p2) = (Fi, Arpn)
or
o r(F1,p1) = (F1, N pa) and r(Fa, po) = (Fa, Appia).

In particular, this provides a dilatation homomorphism, A : G* — R,. Let
A = X\(G*) and Sym = kernel(\). (Note: if r € G and r(F;) = Fa, then
r?2 € Sym. If r € G*, then r is pseudo-Anosov if and only if A, # 1.)

Lemma 2 . There exists Ao > 1 such that A = {\}|n € Z}.
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Proof. The set of dilatation factors for pseudo-Anosov maps on a surface
of fixed genus is a subset of the algebraic integers. Indeed, it is a discrete
subset. This fact was pointed out in [T]. A proof may be found in the paper
of Arnoux and Yoccoz [AY]. Their arguments also show that this set is
closed. Therefore, A is a discrete subgroup of algebraic integers. The result
follows from standard theorems. O

Lemma 3 . Sym is a finite group.

Proof. Let L be the collection of separatrices for Fj, (i.e. leaves of Fj
emanating from a singularity of F7). Since each element in G* must permute
the leaves of £, we have a natural action of G* on L, which restricts to an
action of Sym on L.

Suppose L € L, r € Sym and r(L) = L. Since A\, = 1, it follows that r
fixes L pointwise. Since L is dense in M, ([FLP], Expose 9, Lemma 6), r
fixes M pointwise. That is, r is the identity. Therefore, the action of Sym
on L is free and Sym is a finite group. ([

Lemma 4 . Let m : Homeot (M) — M(M) be the natural quotient. The
restriction w: G — M(M) is injective.

Proof. If w(r) = 1, then, by definition of 7, r is isotopic to the identity.
Therefore, r? is isotopic to the identity. But r? is in G*. Since pseudo-
Anosov diffeomorphisms are not isotopic to the identity, we conclude that
r2 € Sym. By Lemma 3, r? is finite order, and therefore r is finite order.
But a periodic map which is isotopic to the identity is the identity, ([FLP],
Expose 12, Lemma 12). O

Proof of Theorem 1. Let H = n(G) and H* = 7n(G*). By Lemmas 2 and 3,
G* is a finite extension of an infinite cyclic group. As noted before, either
G = G* or G* is a normal subgroup of index 2 in G. By Lemma 1, C(7) C H*,
N(r) € H and N(7) "'H* = C(7). The result follows immediately from
Lemma 4. (]

Proof of Corollary 2. 1t suffices to show that G* is virtually infinite cyclic.
But there is a short exact sequence:

1—>Sym—>g*i>A—>1

with A infinite cyclic and Sym finite. Such a sequence always splits, and
any splitting determines an infinite cyclic subgroup of finite index in G*. [J

Proof of Corollary 3. Let G be a torsion free subgroup of N(7) and o € G.
By Lemma 1, if o switches the pair of foliations for 7, then 0% € Sym. By
Lemma 3, this is impossible. Hence, by Lemma 1, G C C(7). But then we
have a short exact sequence:

1 - GNSym — G3NG) —> 1 AG) CA.
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Since G is torsion free, GNSym = {1}. (Again, this follows from Lemma 3.)
Hence, G is isomorphic to a subgroup of A. The result follows from Lemma
2. O
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