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DISCRETENESS AND HOMOGENEITY OF THE
TOPOLOGICAL FUNDAMENTAL GROUP

JACK S. CALCUT AND JOHN D. McCARTHY

ABSTRACT. For a locally path connected topological space,
the topological fundamental group is discrete if and only if the
space is semilocally simply-connected. While functoriality of
the topological fundamental group, with target the category
of topological groups, remains an open question in general,
the topological fundamental group is always a homogeneous
space.

1. INTRODUCTION

The concept of a natural topology for the fundamental group
appears to have originated with Witold Hurewicz [8] in 1935. It
received further attention in 1950 by James Dugundji [2] and more
recently by Daniel K. Biss [1], Paul Fabel [3], [4], [5], [6], and others.
The purpose of this note is to prove the following folklore theorem.

Theorem 1.1. Let X be a locally path connected topological space.
The topological fundamental group WEOP (X) s discrete if and only
if X is semilocally simply-connected.

Theorem 5.1 of [1] is Theorem 1.1 without the hypothesis of local
path connectedness. However, a counterexample of Fabel [6] shows
that this stronger result is false. Fabel [6] also proves a weaker
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version of Theorem 1.1, assuming that X is locally path connected
and a metric space. In this note we remove the metric hypothesis.

Our proof proceeds from first topological principles, making no
use of rigid covering fibrations [1] nor even of classical covering
spaces. We make no use of the functoriality of the topological
fundamental group, a property which was also a main result in [1,
Corollary 3.4] but, in fact, is unproven [5, pp. 188-189]. Beware
that the misstep in the proof of Proposition 3.1 in [1], namely the
assumption that the product of quotient maps is a quotient map,
is repeated in Theorem 2.1 of [7].

In general, the homeomorphism type of the topological funda-
mental group depends on a choice of basepoint. We say that

W'{Op (X) is discrete, without reference to a basepoint, provided

7T§Op (X, z) is discrete for each z € X. If z and y are connected by
a path in X, then 7% (X, z) and 7" (X,y) are homeomorphic.
This fact was proved in Proposition. 3.2 of [1], and a detailed proof
is provided for completeness in section 4 of this paper. Theorem 1.1

now immediately implies the following.

Corollary. Let X be a path connected and locally path connected
topological space. The topological fundamental group 7r113°p (X, x) is
discrete for some x € X if and only if X is semilocally simply-

connected.

As mentioned above, it is open whether ﬁOp is a functor from the
category of pointed topological spaces to the category of topological
groups. The unsettled question is whether multiplication

TP (X, ) x 7P (X, z) —— 7 (X, z)

(A1 ) ———=111"1d]

is continuous. By Theorem 1.1, if X is locally path connected
and semilocally simply-connected, then 7} (X, z), and, hence, the
product 7% (X, z) x " (X, z) are discrete and so u is trivially
continuous. Continuity of p, in general, remains an interesting

question.
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Lemma 5.1 below shows that if (X, z) is an arbitrary pointed
topological space, then left and right multiplication by any fixed el-
ement in 7} (X, z) are continuous self maps of 7;°" (X, x). There-
fore, %" (X, z) acts on itself by left and right translation as a
group of self homeomorphisms. Clearly, these actions are transi-
tive. Thus, we obtain the following result.

Theorem 1.2. Let (X,z) be a pointed topological space. Then
top

m © (X, x) is a homogeneous space.

This note is organized as follows. Section 2 contains definitions
and conventions, section 3 proves two lemmas and Theorem 1.1,
section 4 addresses change of basepoint, and section 5 shows left
and right translation are homeomorphisms.

2. DEFINITIONS AND CONVENTIONS

By convention, neighborhoods are open. Unless stated otherwise,
homomorphisms are inclusion induced.

Let X be a topological space and x € X. A neighborhood U
of x is relatively inessential (in X) provided m; (U,x) — m (X, z)
is trivial. X is semilocally simply-connected at x provided there
exists a relatively inessential neighborhood U of x. X is semilocally
simply-connected provided it is so at each z € X. A neighborhood
U of x is strongly relatively inessential (in X) provided m (U,y) —
71 (X, y) is trivial for every y € U.

The fundamental group is a functor from the category of pointed
topological spaces to the category of groups. Consequently, if A and
B are any subsets of X such that z € A C B C X and m; (B,z) —
m1 (X, x) is trivial, then 7 (A4, z) — m1 (X, ) is trivial as well. This
observation justifies the convention that neighborhoods are open.

If X is locally path connected and semilocally simply-connected,
then each x € X has a path connected relatively inessential neigh-
borhood U. Such a U is necessarily a strongly relatively inessential
neighborhood of z, as the reader may verify (see for instance, [9,
Exercise 5, p. 330]).

Let (X, x) be a pointed topological space and let I = [0,1] C R.
The space

Co(X)=A{f:(,0I) — (X,x) | f is continuous}
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is endowed with the compact-open topology. The function

Co(X) L5 7y (X, 2)

fr———1f]

is surjective, so 7 (X, z) inherits the quotient topology, and one
writes WEOP (X, x) for the resulting topological fundamental group.
Let e, € C(X) denote the constant map. If f € C,(X), then f~1
denotes the path defined by f=1(t) = f(1 —t).

3. PROOF OF THEOREM 1.1
We prove two lemmas and then Theorem 1.1.

Lemma 3.1. Let (X,x) be a pointed topological space. If {[e;]} is

open in W;Op (X, x), then x has a relatively inessential neighborhood
mn X.

Proof: The quotient map ¢ is continuous and {[e,]} C 7}°? (X, z)
is open, so ¢~ ! ([e;]) = [e,] is open in C, (X). Therefore, e, has a
basic open neighborhood
N
(3.1) ex €V =V (KnUp) C les] C Co(X),
n=1
where each K,, C I is compact, each U, C X is open, and each

V (K, U,) is a subbasic open set for the compact-open topology
on Cy (X). We will show that

N
U= ﬂ U,
n=1

is a relatively inessential neighborhood of = in X. Clearly, U is
open in X and, by (3.1), x € U. Finally, let f : (I,0I) — (U, x).
For each 1 <n < N, we have

f(Ky,) CcUcCU,.
Thus, f € [eg] by (3.1), so [f] = [es] is trivial in m (X, x). O

Lemma 3.2. Let (X, z) be a pointed topological space and let f €
Cyp(X). If X is locally path connected and semilocally simply-connected,
then {[f]} is open in m;°P (X, ).
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Proof: As q is a quotient map, we must show that ¢~ ([f]) = [f]
is open in Cy(X). So let g € [f]. For each ¢t € I, let U; be a path
connected relatively inessential neighborhood of ¢(t) in X. The
sets g1 (U;), where t € I, form an open cover of I. Let A > 0 be a
Lebesgue number for this cover. Choose N € N so that 1/N < A.
For each 1 <n < N, let

n—1 n
I,=|——,— I.
R ©

Reindex the U;’s so that
g(I) C Uy foreach 1 <n < N.

The U,,’s are not necessarily distinct, nor does the proof require this
condition. For each 1 < n < N, let W,, denote the path component
of U, N Uy41 containing g (n/N), so

n

(3.2) g(N) € Wy € (Uy N Unit) C X.

Consider the basic open set

N N-1 n
(3.3) V = (ﬂ V(In,Un)> N (ﬂ v <{N} Wn)> C Cu(X).
n=1 n=1

By construction, g € V. It remains to show that V' C [f]. So, let
h e V. As [g] = [f], it suffices to show that [h] = [g].

By (3.3) we have
h(I,) C U, foreach1l<n <N and

n
. — <n< — 1.
(3.4) h(N>€Wn for each 1 <n < N —1

For each 1 < n < N —1, let v, : I — W, be a continuous path
such that
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which exists by (3.2) and (3.4). Let vo = e, and vy = e,. For each
1 <n < N, define

and let

So, g and h,, are affine reparameterizations of ¢ 7, and h| 1, s e
spectively. For each 1 <n < N,

5n:gn>x<’y;1*h;1*fyn_1

is a loop in U, based at g, (0) (see Figure 1). As U, is a strongly rel-

-
e N,—"~
)

>

FIGURE 1. Loop 6, = gn * v, " * bt % yu_1 in U,
based at ¢,,(0).

atively inessential neighborhood, [0,] = 1 € m (X, ¢,(0)). There-
fore, g, and 'y;_ll * hy, * 7y, are path homotopic. In m (X, z), we
have

[h] = [h1 % hy % -+ % hy]
= [t xhi sy ke  xhg ok xyyt kb ]
= [g1* g2 % *gn]
= [gl,
proving the lemma. O

In the previous proof, the second collection of subbasic open
sets in (3.3) is essential. Figure 2 shows two loops g and h based
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at  in the annulus X = S' x I. All conditions in the proof are
satisfied, except g(1/N) and h(1/N) fail to lie in the same connected
component of U; N Us. Clearly, g and h are not homotopic loops.

FIGURE 2. Loops g and h based at x in the annulus X.

Proof of Theorem 1.1: First, assume 7r113°p (X) is discrete and let
z € X. By definition, 7T§0p (X, x) is discrete, so {[ez]} is open in
7% (X, z). By Lemma 3.1, z has a relatively inessential neighbor-
hood in X. The choice of x € X was arbitrary, so X is semilocally
simply-connected.

Next, assume X is semilocally simply-connected and let z €
X. Points in 7" (X, z) are open by Lemma 3.2, so 7;°" (X, )
is discrete. The choice of x € X was arbitrary, so 7T§0p (X) is
discrete. O

4. BASEPOINT CHANGE

Lemma 4.1. Let X be a topological space and xz,y € X. Ifx
and y lie in the same path component of X, then 7r§°p (X,z) and
top .
m © (X,y) are homeomorphic.
Proof: Let v : I — X be a continuous path with v(0) = y and

v(1) = z. Define the function

Cy(X) —— Cu(X)

f|—>(’y_1>l<f)>k’y.
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First, we show that I' is continuous. Let I; = [0,1/4], I, =
[1/4,1/2], and I3 = [1/2,1]. Define the affine homeomorphisms

L == I

t——A4t t——4t -1 t——2t -1

EP) S3
I I3 ————

and note that

7 '(f) ¥

t—>~"1os(t) o<t<i
t——— fosy(t) %Stﬁ%
t—— 0 s3(t) 1<t<1

Consider an arbitrary subbasic open set
V=V (K,U)C CyX).
Observe that I'(f) € V if and only if

(4.1) v losi (KNI CU,
(4.2) fosa(KNIy) CU, and
(4.3) vos3(KNIz)CU.

Define the subbasic open set
V=V (s2(KNL),U) CCy(X).

Observe that f € V' if and only if (4.2) holds. As conditions (4.1)
and (4.3) are independent of f, either T=1(V) =0 or T-}(V) = V".
Thus, I' is continuous. Next, consider the diagram

r

Ca(X)

o] |o

R (X, ) T (X, )
The composition g, o I' is constant on each fiber of g, so there
is a unique set function making the diagram commute, namely
m(T) : [f] — [I'(f)]. As gy is a quotient map, the universal prop-
erty of quotient maps [9, Theorem 11.1, p. 139] implies that = (")
is continuous. It is well known that « (') is a bijection [9, Theo-
rem 2.1, p. 327]. Repeating the above argument with the roles of
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x and y interchanged and the roles of v and v~! interchanged, we

see that 7 (I') ™! is continuous. Thus, 7 (I) is a homeomorphism as

desired. 0
5. TRANSLATION

Lemma 5.1. Let (X,x) be a pointed topological space. If [f] €
7T§Op (X, z), then left and right translation by [f] are self homeo-
morphisms of TP (X, z).

Proof: Fix [f] € 7" (X, x) and consider left translation by [f]
on 7P (X, z)
L
7r§0p (X, z) SN 7r§0p (X, z)
9] ——— /] ld].

Plainly, Ly is a bijection of sets. Consider the commutative dia-
gram

(5.1) Ce(X)

TP (X, 2) — > 1 (X, 7)),
where L; is defined by

Ly

g—— fxg.
First, we show Ly is continuous. Let I; = [0,1/2] and I, = [1/2,1].
Define the affine homeomorphisms

S1

L——1 Ih —— 7]

t—— 2t t— 2t — 1
and note that

-y

t—> fosi(t) 0<t<3i

t——= g o sa(t) F<t<1.
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Consider an arbitrary subbasic open set
V=V (K,U)C CyX).
Observe that f g € V if and only if
(5.2) fosi(KNI)CU and
(5.3) gosy(KNIy) CU.
Define the subbasic open set
V' =V (sy(KNI),U) C Cu(X).

Observe that g € V' if and only if (5.3) holds. As condition (5.2)
is independent of g, either L;l(V) = or L;l(V) = V', Thus,
Ly is continuous. The composition q o Ly is constant on each fiber
of the quotient map ¢ and (5.1) commutes, so the universal prop-
erty of quotient maps [9, Theorem 11.1, p. 139] implies that Ly is
continuous.

Applying the previous argument to f~', we get L[_ﬂ1 = Ly
is continuous and Ly is a homeomorphism. The proof for right
translation is almost identical. O
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