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ON THE ASPHERICITY OF A SYMPLECTIC M3 × S1
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Abstract. C. H. Taubes asked whether a closed (i.e. compact and without

boundary) connected oriented three-dimensional manifold whose product with

a circle admits a symplectic structure must fiber over a circle. An affirmative
answer to Taubes’ question would imply that any such manifold either is dif-

feomorphic to the product of a two-sphere with a circle or is irreducible and
aspherical. In this paper, we prove that this implication holds up to connect

sum with a manifold which admits no proper covering spaces with finite index.

It is pointed out that Thurston’s geometrization conjecture and known results
in the theory of three-dimensional manifolds imply that such a manifold is a

three-dimensional sphere. Hence, modulo the present conjectural picture of

three-dimensional manifolds, we have shown that the stated consequence of an
affirmative answer to Taubes’ question holds.

1. Introduction

An interesting question in symplectic topology, which was posed by C. H. Taubes,
concerns the topology of closed (i.e. compact and without boundary) connected ori-
ented three-dimensional manifolds whose product with a circle admits a symplectic
structure. The only known examples of such manifolds are those which fiber over
a circle. Taubes asked whether these examples are the only examples of such man-
ifolds.

Let M be a closed oriented 3-manifold which fibers over the circle S1. By
definition, M is the total space of a locally trivial fiber bundle whose base space is
the circle S1 and whose fiber F is a closed oriented 2-manifold. Let π : M → S1

be the projection of this bundle. By replacing π by a lift π̃ : M → S1 of π to an
appropriate covering space S1 → S1 of S1 with finite index, we may assume that
F is connected.

We may pull back the universal covering space R → S1 of S1 through π to obtain
an infinite cyclic covering space Z of M which fibers over the line R with fiber F .
It follows that Z is diffeomorphic to F × R. Thus, the universal covering space M̃
of M is diffeomorphic to F̃ × R, where F̃ is the universal covering space of F . As
is well known, F̃ is diffeomorphic to S2, if g = 0, and to R2, if g ≥ 1.

Thus, if g = 0, M is diffeomorphic to the product S2 × S1 of S2 with S1. (Note
that every orientation preserving diffeomorphism of S2 is isotopic to the identity.
Hence, there are exactly two S2-bundles over S1, the product S2×S1 of S2 with S1
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(i.e the mapping torus of the identity map of S2) and the twisted product of S2 with
S1 (i.e the mapping torus of the antipodal map of S2). Since M is orientable and
the twisted product of S2 with S1 is nonorientable, M can not be diffeomorphic
to a twisted product of S2 with S1.) On the other hand, if g ≥ 1, then M̃ is
diffeomorphic to R3 and, hence, M is irreducible (i.e. every (tame) 2-sphere in M
bounds a 3-ball) and aspherical (i.e. the higher homotopy groups πi(M), i > 1, of
M are zero).

Suppose now that M is a closed connected oriented 3-manifold whose product
M ×S1 with the circle S1 admits a symplectic structure. From the previous obser-
vations, it follows that an affirmative answer to Taubes’ question would imply that
either M is diffeomorphic to S2×S1 or M is irreducible and aspherical. Note that
the universal cover of M × S1 is diffeomorphic to M̃ × R. It follows that M × S1

is aspherical if and only if M is aspherical.
In this paper, we shall prove the following result.

Theorem 1.1. Let M be a closed connected oriented 3-manifold whose product
M × S1 with the circle S1 admits a symplectic structure. Then M has a unique
connect sum decomposition A#B satisfying the following conditions: (i) the first
Betti number b1(A) of A is at least 1, (ii) either A is diffeomorphic to S2 × S1 or
A is irreducible and aspherical, and (iii) every connected covering space of B with
finite index is trivial.

Remark 1.2. Given that b1(A) ≥ 1 and A is irreducible, the statement that A is
aspherical is redundant. Indeed, any compact oriented irreducible 3-manifold with
an infinite fundamental group is aspherical, (see Chapter IV, Section 2 of [Mc]).
Since our main interest in this paper concerns asphericity, we include the adjective
“aspherical” in Theorem 1.1 for emphasis. On the other hand, we include the
adjective “irreducible” in Theorem 1.1 in order to achieve the uniqueness clause of
this theorem.

Remark 1.3. Note that Theorem 1.1 addresses the question of the extent to which
a symplectic M × S1 must be aspherical. Furthermore, the previous observations
imply that an affirmative answer to Taubes’ question would imply that B is a
3-sphere.

Remark 1.4. Note that the factor B in Theorem 1.1 is a homology sphere. Indeed,
a manifold is an homology sphere if and only if every connected cyclic covering
space of the manifold with finite index is trivial. In addition, if the fundamental
group π1(B) of this factor B is finite, then B must be a homotopy sphere.

Remark 1.5. We recall that a group G is residually finite if every nontrivial element
of G is mapped nontrivially to some finite quotient group of G. In particular, if
N is a connected 3-manifold with a nontrivial residually finite fundamental group,
then N has a nontrivial connected covering space with finite index. Hence, if the
factor B in Theorem 1.1 has a residually finite fundamental group, it must be a
homotopy sphere.

Remark 1.6. A theorem of Thurston’s [Th] states that the fundamental group of
a Haken manifold is residually finite. As pointed out by Hempel [H], it follows
that this theorem extends to the class of all 3-manifolds whose prime factors either
are virtually Haken or have finite or cyclic fundamental groups. As also pointed
out by Hempel [H], it is unsolved whether this class includes all closed 3-manifolds



ON THE ASPHERICITY OF A SYMPLECTIC M3 × S1 3

(cf. [Th], section 6). On the other hand, Thurston’s “geometrization conjecture”
implies that every closed 3-manifold lies in this class. Hence, Theorem 1.1 and
Thurston’s “geometrization conjecture” imply that B must be a homotopy sphere.
On the other hand, as is well-known, Thurston’s “geometrization conjecture” also
implies the Poincare conjecture. Hence, Theorem 1.1 and Thurston’s “geometriza-
tion conjecture” imply that B must be diffeomorphic to a sphere. It follows that
Theorem 1.1 and Thurston’s “geometrization conjecture” imply that either M is
diffeomorphic to S2 × S1 or M is aspherical and, hence, that either M × S1 is
diffeomorphic to S2 × S1 × S1 or M × S1 is aspherical.

Remark 1.7. In [K2], Dieter Kotschick conjectured that a general 4-manifold which
is symplectic for both choices of orientation must be either ruled or aspherical. Note
that if M × S1 is symplectic, then it is symplectic for both choices of orientation.
Furthermore, note that S2 × S1 × S1 is ruled (being an S2 bundle over S1 ×
S1). We conclude, from the previous remark, that Theorem 1.1 and Thurston’s
“geometrization conjecture” imply that Kotschick’s conjecture holds for a general
4-manifold of the form M × S1.

Here is an outline of the paper. In Section 1, we shall prove some technical
lemmas about connect sum decompositions of closed connected oriented 3-manifolds
whose product with a circle admits a symplectic structure. In section 2, we shall
prove the main result of the paper, Theorem 1.1.

Acknowledgment. The author would like to thank Wei-Min Chen, Ron Fintushel,
Wladek Lorek and Tom Parker for helpful conversations. In particular, the author
would like to thank Wei-Min Chen for stimulating his interest in this subject. He
would also like to thank Ron Fintushel, Wladek Lorek and Tom Parker for their
comments regarding the proofs of vanishing theorems for Seiberg-Witten invariants,
which comments led the author to revise the original presentation of this paper.

2. Restrictions on Connect Sum Decompositions of M

In this section, we shall prove some technical lemmas about connect sum de-
compositions of closed connected oriented 3-manifolds whose product with a circle
admits a symplectic structure. Throughout this section, M denotes a closed con-
nected oriented 3-manifold and X denotes the product M × S1 of M with the
circle S1. We assume that S1 is equipped with the standard orientation, and X is
equipped with the corresponding product orientation.

If Y is a topological space and j is a nonnegative integer, then Hj(Y ) will denote
the jth homology group of Y with integer coefficients, Hj(Y ) will denote the jth
cohomology group of Y with integer coefficients, and bj(Y ) will denote the jth Betti
number of Y , (i.e. the rank of a maximal torsion free subgroup of Hj(Y )).

The intersection pairing Q is an integer valued, symmetric bilinear form on
H2(X) which descends to a unimodular form on the quotient of H2(X) by its
torsion subgroup. b−2 (X) denotes the rank of a maximal subgroup of H2(X) on
which Q is negative definite, and b+

2 (X) denotes the rank of a maximal subgroup of
H2(X) on which Q is positive definite. By definition, the signature σ of Q is equal
to b+

2 (X)− b−2 (X). Note that b2(X) = b−2 (X) + b+
2 (X).

Lemma 2.1. Let M be a closed connected oriented 3-manifold and X be the product
M × S1 of M with the circle S1. Then b−2 (X) = b+

2 (X) = b1(M).
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Proof. By Poincare duality, b1(M) = b2(M). On the other hand, by the Kunneth
formula, H2(X) is isomorphic to the direct sum of H2(M)⊗H0(S1) and H1(M)⊗
H1(S1). Hence, b2(X) = b2(M) × b0(S1) + b1(M) × b1(S1) = b2(M) + b1(M) =
2b1(M).

Let a and b be elements of H2(X) corresponding to the “summand” H2(M) ⊗
H0(S1) of H2(X). We may represent a and b by immersed oriented surfaces A
and B in X whose images lie in M × {−1} and M × {1} respectively. Since these
representatives, A and B, are disjoint, Q(a, b) = 0.

Let c and d be elements of H2(X) corresponding to the “summand” H1(M) ⊗
H1(S1) of H2(X). We may represent c and d by immersed surfaces C × S1 and
D× S1, where C and D are immersed oriented circles in M . We may assume that
C and D are disjoint, so that these representatives, C × S1 and D× S1, of c and d
are disjoint. Again, we conclude that Q(c, d) = 0.

Hence, the intersection pairing Q is zero on each of the two “summands” H2(M)⊗
H0(S1) and H1(M)⊗H1(S1) of H2(X). It follows that the signature σ of Q is equal
to 0. On the other hand, σ = b+

2 (X) − b−2 (X). Hence, b−2 (X) = b+
2 (X). It follows

that 2b1(M) = b2(X) = b−2 (X) + b+
2 (X) = 2b+

2 (X) and, hence, b+
2 (X) = b1(M).

This completes the proof of Lemma 2.1. �

Lemma 2.2. Let M be a compact connected 3-manifold. Suppose that A#B is
a connect sum decomposition of M such that b1(A) ≥ 1 and B has a nontrivial
connected covering space with finite index. Then there exists a connected covering
space M̃ of M with finite index and an embedded 2-sphere Σ in M̃ such that b1(M̃) ≥
2 and Σ is nonseparating, (i.e. M̃ \ Σ is connected).

Proof. Since M is compact and connected, A and B are each compact and con-
nected. By assumption, there exists a connected covering space B̃ of B of finite
index p ≥ 2. Since b1(A) ≥ 1 and A is a compact 3-manifold, H1(A) is a finitely
generated abelian group with a torsion free subgroup of rank at least 1. By the
classification of finitely generated abelian groups, there exists an infinite cyclic
quotient Z of H1(A). Since Zp is a quotient of Z and H1(A) is isomorphic to the
abelianization of the fundamental group π1(A) of A, we obtain an epimorphism
λA : π1(A) → Zp. By covering space theory, λA corresponds to a connected cover-
ing space Ã of A with index p.

By assumption, M is obtained from the disjoint union of A and B by removing a
ball VA from A and a ball VB from B and gluing the resulting complements A \VA

and B \ VB together along their boundaries ∂VA and ∂VB by a diffeomorphism
φ : ∂VA → ∂VB .

Since VA is simply connected, the preimage ṼA of VA in Ã is a disjoint union of p
balls, VA,j , 1 ≤ j ≤ p, in Ã. Likewise, the preimage ṼB of VB in B̃ is a disjoint union
of p balls, VB,j , 1 ≤ j ≤ p, in B̃. Note that the diffeomorphism φ : ∂VA → ∂VB lifts
to a diffeomorphism φj : ∂VA,j → ∂VB,j , for each j with 1 ≤ j ≤ p. Hence, we may
form a compact connected 3-manifold M̃ by removing ṼA from Ã and ṼB from B̃,
and gluing ∂VA,j to ∂VB,j by the diffeomorphism φj : ∂VA,j → ∂VB,j , for each j

with 1 ≤ j ≤ p. Note that M̃ is a connected covering space of M with index p.
Since Ã is a connected 3-manifold and ṼA is a disjoint union of p balls in Ã,

Ã\ ṼA is a connected 3-manifold. Likewise, B̃ \ ṼB is a connected 3-manifold. Note
that ∂VA,1 determines a smoothly embedded 2-sphere Σ in M̃ . The manifold N

obtained by cutting M̃ along Σ may be constructed by removing ṼA from Ã and ṼB
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from B̃, and gluing ∂VA,j to ∂VB,j by the diffeomorphism φj : ∂VA,j → ∂VB,j , for
each j with 2 ≤ j ≤ p. Since p ≥ 2, we conclude that N is a connected 3-manifold.
Since M̃ \ Σ is equal to the interior of N , it follows that M̃ \ Σ is connected.

Note that ṼA determines an embedding of a disjoint union of p 2-spheres in M̃ .
We may apply the Mayer-Vietoris sequence to the corresponding decomposition of
M̃ into two submanifolds Ã \ ṼA and B̃ \ ṼB . In particular, we conclude that the
first Betti number b1(M̃) of M̃ satisfies the equation b1(M̃) = b1(Ã)+b1(B̃)+p−1.
(Here, we observe that, by the Mayer-Vietoris sequence, the removal of p disjoint
balls from Ã (B̃) does not affect H1(Ã) (H1(B̃)).) Since Ã is a covering space
of A with finite index, b1(Ã) ≥ b1(A). Indeed, the covering projection π : Ã → A

induces a homomorphism π∗ : H1(Ã) → H1(A) which maps H1(Ã) onto a subgroup
of finite index in H1(A). Thus, since b1(A) ≥ 1, b1(Ã) ≥ 1. Since b1(B̃) ≥ 0 and
p ≥ 2, we conclude that b1(M̃) = b1(Ã) + b1(B̃) + p− 1 ≥ 1 + 0 + 2− 1 ≥ 2.

This completes the proof of Lemma 2.2.
�

Lemma 2.3. Let M be a closed connected oriented 3-manifold for which the product
X = M × S1 of M with the circle S1 admits a symplectic structure. Suppose that
A#B is a connect sum decomposition of M such that b1(A) ≥ 1. Then every
connected covering space of B with finite index is trivial.

Remark 2.4. The main facts used in the proof of Lemma 2.3 are familiar: (i) the
vanishing of the Seiberg-Witten invariants for 4-manifolds admitting appropriate
decompositions, and (ii) the nonvanishing of certain Seiberg-Witten invariants for
closed symplectic 4-manifolds.

Remark 2.5. In order to apply the familiar facts mentioned in the previous remark,
we must pass to an appropriate covering space M̃ of M . The idea of passing to
a covering space to apply these familiar facts was introduced by Dieter Kotschick
in [K1], and exploited further in [KMT] and [K3]. Kotschick’s “covering trick”
exploits a particular covering space X̃ of a 4-manifold X. The covering trick which
we shall use in the proof of Lemma 2.3 is similar to Kotschick’s covering trick, but
the covering space M̃ of M which we employ is not the three-dimensional analogue
of the covering space X̃ of X exploited by Kotschick. The difference between our
choice of covering spaces and Kotschick’s choice of covering spaces corresponds to
the fact that we appeal to a different vanishing result for Seiberg-Witten invariants
than that which is invoked in Kotschick’s covering trick.

Proof of Lemma 2.3. Suppose, on the contrary, that B has a nontrivial connected
covering space with finite index. Let M̃ and Σ be as in Lemma 2.2. Orient M̃ by
pulling back the orientation on M through the covering map π : M̃ → M . Orient
the embedded 2-sphere Σ in M̃ . Since Σ is a smooth oriented nonseparating em-
bedded 2-sphere in the oriented 3-manifold M̃ , we may choose a smooth embedded
oriented circle γ in M̃ such that Σ meets γ exactly at one point x in M̃ , this point
is a point of transverse intersection of Σ with γ in M̃ , and the sign of intersection
of Σ with γ at x is positive.

Let X̃ denote the product M̃ × S1 of M̃ with the circle S1. The smoothly
embedded oriented 2-sphere Σ in M̃ determines a smoothly embedded oriented
2-sphere S̃ = Σ × {1} in the closed oriented 4-manifold X̃. Since S̃ lies in the
hypersurface M̃ × {1} in X̃, S̃ has square zero (i.e. Q̃([S̃], [S̃]) = 0, where Q̃ is



6 JOHN D. MCCARTHY

the intersection pairing on X̃, and [S̃] is the homology class in H2(X̃) represented
by S̃). The oriented circle γ in M̃ determines an oriented torus T̃ = γ × S1 in X̃.
By our previous assumptions, S̃ meets T̃ in exactly one point, (x, 1), this point is
a point of transverse intersection of S̃ with T̃ in X̃, and the sign of intersection
of S̃ with T̃ at this point is positive. Hence, Q̃([S̃], [T̃ ]) = 1. It follows that S̃ is
essential, (i.e [S̃] is a homology class of infinite order in H2(X̃)).

By Lemma 2.1 and Lemma 2.2, b+
2 (X̃) = b1(M) ≥ 2. Thus, X̃ is a closed

oriented 4-manifold with b+
2 (X̃) > 1, and S̃ is an essential embedded sphere in X̃

of nonnegative self-intersection. Hence, by Lemma 5.1 in [FS], the Seiberg-Witten
invariant SWX̃ vanishes identically.

Since M̃ is a covering space of M , X̃ is a covering space of X = M × S1. Since,
by assumption, X admits a symplectic structure, X̃ admits a symplectic structure.
Indeed, we may pull back any symplectic structure ω on X through the covering
map π : X̃ → X to obtain a symplectic structure π∗ω on X̃. Let ω̃ be a symplectic
structure on X̃. (By assumption, ω̃ ∧ ω̃ gives the orientation of X̃.) Then, by
the Main Theorem of [T], the first Chern class of the associated almost complex
structure on X̃ has Seiberg-Witten invariant equal to ±1.

This is a contradiction. Hence, every connected covering space of B with finite
index is trivial.

This completes the proof of Lemma 2.3. �

3. The Main Result

In this section, we shall prove the main result of this paper, Theorem 1.1. As
in the previous section, M denotes a closed connected oriented 3-manifold and X
denotes the product M×S1 of M with the circle S1. We assume that S1 is equipped
with the standard orientation, and X is equipped with the corresponding product
orientation.

A 3-manifold P is non-trivial if it is not homeomorphic to the 3-sphere S3. We
recall that a non-trivial 3-manifold P is prime if there is no decomposition P =
M1#M2 of P as a connect sum with M1 and M2 non-trivial. In [M], Milnor showed
that each closed connected oriented 3-manifold P has a unique decomposition as a
connect sum of prime factors:

Theorem 1 (Milnor) . Every nontrivial closed connected oriented 3-manifold P
is isomorphic to a connect sum P1#....#Pk of prime manifolds. The summands Pi

are uniquely determined up to order and isomorphism.

We recall that a 3-manifold P is irreducible if every (tame) 2-sphere in P bounds
a 3-ball in P . The relationship between primitivity and irreducibility for closed
connected oriented 3-manifolds may be summarized by the following results from
[M]:

Lemma 1 (Milnor) . With the exception of manifolds isomorphic to S3 or S2×S1,
a closed connected oriented 3-manifold is prime if and only if it is irreducible.

Lemma 2 (Milnor) . S2 × S1 is prime.

Note that S3 is irreducible, by a theorem of Alexander [A], but not prime, since
S3 is trivial. On the other hand, S2 × S1 is prime, by Lemma 1 (Milnor), but
not irreducible, since the 2-sphere S2 × {1} in S2 × S1 does not bound a 3-ball in
S2 × S1.
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We recall that a topological space T is aspherical if all the higher homotopy
groups πi(T ), i > 1, are zero. Note that neither S3 nor S2 × S1 is aspherical,
since π3(S3) and π2(S2 × S1) are both infinite cyclic. The relationship between
irreducibility and asphericity for closed connected oriented 3-manifolds may be
summarized by the following result from [M]:

Theorem 2 (Milnor) . For every non-trivial closed connected oriented irreducible
3-manifold P , the second homotopy group π2(P ) of P is zero. If the Poincaré
hypothesis is true, then, conversely, every such manifold P with π2(P ) = 0 is
irreducible.

Suppose now that P is a closed connected oriented prime 3-manifold with first
Betti number b1(P ) ≥ 1. Since b1(P ) ≥ 1, P is not diffeomorphic to S3. Hence, by
Lemma 1 (Milnor), P is either diffeomorphic to S2 × S1 or P is irreducible. Since
b1(P ) ≥ 1, the fundamental group π1(P ) of P is infinite and, hence, the universal
cover P̃ of P is not compact. In [M], Milnor observes that if, in addition to the
hypotheses on P in Theorem 2 (Milnor), the universal covering space P̃ of P is not
compact, then P̃ is contractible and all the higher homotopy groups πi(P ), i > 1,
are zero. In other words, in this situation, P is aspherical. Hence, we have the
following consequence of the above results from [M]:

Lemma 3.1. Suppose that P is a closed connected oriented prime 3-manifold with
first Betti number b1(P ) ≥ 1. Then either P is diffeomorphic to S2 × S1 or P is
irreducible and aspherical.

Proof of Theorem 1.1. By assumption, X = M×S1 admits a symplectic structure,
ω. We may assume that the closed 2-form ω on X represents an integral cohomology
class [ω] in the second cohomology H2(X) of X. Since ω ∪ ω is a positive closed
4-form on the oriented 4-manifold X, the Poincare dual e = PD([ω]) is an element
of H2(X) with Q(e, e) > 0. It follows that b+

2 (X) ≥ 1. Thus, by Lemma 2.1,
b1(M) ≥ 1 and, hence, M is nontrivial. Therefore, by Theorem 1 (Milnor), there
exists a connect sum decomposition M = M1#...#Mr of M into prime summands
Mi, which are uniquely determined up to order and isomorphism. Note that M =
S3#M1#...#Mr.

Since M = M1#...#Mr, b1(M) = b1(M1)+ ...+b1(Mr). It follows, from the fact
that b1(M) ≥ 1, that b1(Mi) ≥ 1 for some integer i with 1 ≤ i ≤ r. We may assume,
without loss of generality, that i = r. Let A = Mr and B = S3#M1#...#Mr−1.
Then M = A#B, A = Mr is prime, and b1(A) = b1(Mr) ≥ 1. By Lemma 3.1,
either A is diffeomorphic to S2 × S1 or A is irreducible and aspherical. By Lemma
2.3, every connected covering space of B with finite index is trivial.

This proves the existence of a connect sum decomposition of M with the stipu-
lated properties.

Suppose that M = C#D is a connect sum decomposition of M where (i) b1(C) ≥
1, (ii) either C is diffeomorphic to S2 × S1 or C is irreducible and aspherical, and
(iii) every connected covering space of D with finite index is trivial.

Since either C is diffeomorphic to S2 × S1 or C is irreducible and aspherical,
it follows from Lemma 1 (Milnor) and Lemma 2 (Milnor) that C is prime. By
Theorem 1 (Milnor), on the other hand, there exists a connect sum decomposition
D = S3#D1#...#Ds of D into prime summands Di. (Here, we allow for the
possibility that D is trivial, (i.e. s = 0).) It follows that M = C#D1#...#Ds is a
decomposition of M into prime summands, C,D1, ..., Ds. By the uniqueness clause
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of Theorem 1 (Milnor), the factors C,D1, ..., Ds must be isomorphic to the factors
M1, ...,Mr, respectively, up to a reordering of these factors.

By Lemma 2.3, every connected covering space of B with finite index is trivial. As
pointed out in Remark 1.4, this implies that B is a homology sphere. In particular,
b1(B) = 0. On the other hand, since B = S3#M1#...#Mr−1 and b1(S3) = 0,
b1(B) = b1(M1) + ... + b1(Mr−1). It follows that b1(Mi) = 0 for 1 ≤ i < r. Thus,
Mr is the unique prime factor of M with positive first Betti number. Since C is
such a prime factor of M , we conclude that C = Mr = A. Likewise, it follows that
D = S3#D1#...#Ds = S3#M1#...#Mr−1 = B.

This proves the uniqueness of a connect sum decomposition of M with the stip-
ulated properties.

This completes the proof of Theorem 1.1. �
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