WEIERSTRASS POINTS AND Z_{2} HOMOLOGY

JOHN D. MCCARTHY

0. Introduction

In a recent paper $[\mathrm{Lu}]$, Lustig established a beautiful connection between the 6 Weierstrass points on a Riemann surface M_{2} of genus 2 and intersection points of closed geodesics for the associated hyperbolic metric. As a consequence, he was able to construct an action of the mapping class group $\operatorname{Out}\left(\pi_{1} M_{2}\right)$ of M_{2} on the Weierstrass points of M_{2} which afforded an epimorphism $\operatorname{Out}\left(\pi_{1} M_{2}\right) \rightarrow S_{6}\left([\mathrm{Lu}]\right.$, Lemma 3.4). (Here S_{6} denotes the symmetric group on 6 elements.) Furthermore, he showed that the stabilizer in $\operatorname{Out}\left(\pi_{1} M_{2}\right)$ of a single Weierstrass point P acts naturally on $\pi_{1} M_{2}$ affording a virtual splitting of $\operatorname{Aut}\left(\pi_{1} M_{2}\right) \rightarrow \operatorname{Out}\left(\pi_{1} M_{2}\right)$ ([Lu], Theorem 3.5). Our discussion in this paper begins with the observation that these two results of Lustig's are direct consequences of the work of Birman and Hilden ($[\mathrm{B}-\mathrm{H}]$) on equivariant homotopies for surface homeomorphisms.

It is a well-known fact of finite group theory that there is an exceptional isomorphism $S_{6} \rightarrow S p_{4}\left(\mathbf{Z}_{2}\right)$ ([O]). On the other hand, it is a well-known fact of surface topology that $O u t\left(\pi_{1} M_{2}\right)$ acts on $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$ affording an epimorphism $\operatorname{Out}\left(\pi_{1} M_{2}\right) \rightarrow S p_{4}\left(\mathbf{Z}_{2}\right)$. (In this context $S p_{4}\left(\mathbf{Z}_{2}\right)$ arises as the automorphisms of $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$ which preserve the Z_{2}-valued intersection pairing on $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$.) In this paper, we show that the exceptional isomorphism $S_{6} \rightarrow S p_{4}\left(\mathbf{Z}_{2}\right)$ of finite group theory arises from a natural connection between the Weierstrass points on M_{2} and $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$. As a consequence, we show that the exceptional isomorphism $S_{6} \rightarrow S p_{4}\left(\mathbf{Z}_{2}\right)$ identifies Lustig's representation $\operatorname{Out}\left(\pi_{1} M_{2}\right) \rightarrow S_{6}$ with the Z_{2} symplectic representation $\operatorname{Out}\left(\pi_{1} M_{2}\right) \rightarrow S p_{4}\left(\mathbf{Z}_{2}\right)$.

Here is an outline of the paper. In section 1, using the work of Birman and Hilden referred to above, we construct an action of $\operatorname{Out}\left(\pi_{1} M_{2}\right)$ on the set of Weierstrass points of M_{2} and a virtual splitting of $A u t\left(\pi_{1} M_{2}\right) \rightarrow$ $\operatorname{Out}\left(\pi_{1} M_{2}\right)$. In section 2 , we develop the connection between the Weierstrass points of M_{2} and $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$ and the corresponding actions of $O u t\left(\pi_{1} M_{2}\right)$. We identify the kernel of the action of $\operatorname{Out}\left(\pi_{1} M_{2}\right)$ on the set of Weierstrass points of M_{2} given in section 1. In addition, we give an independent proof of Lustig's condition for simple closed curves on M_{2} ([Lu], Theorem 3.2). Finally, in section 3 , we show that our action and virtual splitting agree with those constructed by Lustig. In addition, we give an independent proof

[^0]of Lustig's result relating intersection points of base pairs and Weierstrass points on $M_{2}([\mathrm{Lu}]$, Theorems 2.3 and 2.4).

1. An action and a virtual splitting

Let M_{2} be a closed Riemann surface of genus 2 . Let W denote the set of 6 Weierstrass points of M_{2}. Let $i: M_{2} \rightarrow M_{2}$ be the hyperelliptic involution. The set of fixed points of i is equal to W ([F-K], pp. 101-102). The action of i on M_{2} affords a 2-fold branched covering map $q: M_{2} \rightarrow S^{2}$ branched over the 6 points of $q(W)$ in S^{2}. (See Figure 1.)

Figure 1

As a 2-fold branched covering of S^{2} branched over $q(W), q$ is classified by a homomorphism $\lambda: H_{1}\left(S^{2} \backslash q(W)\right) \rightarrow \mathbf{Z}_{2}$. For each Weierstrass point P of M_{2}, let β_{P} be a small loop in $S^{2} \backslash q(W)$ around the point $q(P) . H_{1}\left(S^{2} \backslash\right.$ $q(W), \mathbf{Z})$ is generated by the homology classes of the loops β_{P}. Let α_{P} be the preimage of β_{P} in $M_{2} \backslash W . \alpha_{P}$ is a small loop in $M_{2} \backslash W$ around the point P. (See Figure 2.) Since P is an isolated fixed point of the orientation preserving hyperelliptic involution i, the restriction of q to α_{P} is a two fold covering map $q \mid: \alpha_{P} \rightarrow \beta_{P}$. Hence, λ assigns 1 to the homology class of each loop β_{P}.

Suppose that $g: M_{2} \rightarrow M_{2}$ is a homeomorphism of M_{2}. We say that g preserves the fibers of q if $q(x)=q(y)$ implies that $q(g(x))=q(g(y))$. If $h: S^{2} \rightarrow S^{2}$ is a homeomorphism of S^{2} for which $h \circ q=q \circ g$, we say that g is a lift of h. It is easy to see that the following are equivalent:

- g preserves the fibers of q,
- g is the lift of a homeomorphism of S^{2},
- g commutes with i.

Figure 2

If g commutes with i, then g must preserve the fixed point set of i. Hence, if $\operatorname{Homeo}\left(M_{2}, i\right)$ denotes the group of homeomorphisms of M_{2} which commute with i, $\operatorname{Homeo}\left(M_{2}, i\right)$ acts on W. Since we have chosen a labeling of the points of $W, W=\left\{P_{1}, \ldots, P_{6}\right\}$, this action affords a representation $\rho: \operatorname{Homeo}\left(M_{2}, i\right) \rightarrow S_{6}$.
Lemma 1.1. The representation $\rho: \operatorname{Homeo}\left(M_{2}, i\right) \rightarrow S_{6}$ is surjective.
Proof. Let $\sigma \in S_{6}$. Let h be a homeomorphism of S^{2} such that $h\left(q\left(P_{i}\right)\right)=$ $q\left(P_{\sigma(i)}\right)$. Let $(h \mid)_{*}$ be the automorphism of $H_{1}\left(S^{2} \backslash q(W), \mathbf{Z}\right)$ induced by the restriction $h \mid: S^{2} \backslash q(W) \rightarrow S^{2} \backslash q(W)$. Clearly, $(h \mid)_{*}$ maps the homology class of a small loop around $q\left(P_{i}\right)$ to the homology class of a small loop around $q\left(P_{\sigma(i)}\right)$. Thus, from the description of λ given above, we conclude that $\lambda \circ(h \mid)_{*}=\lambda$. It follows from elementary covering space theory that h lifts to a homeomorphism g of M_{2} such that $g\left(P_{i}\right)=P_{\sigma(i)}$. Since g is a lift of a homeomorphism of $S^{2}, g \in \operatorname{Homeo}\left(M_{2}, i\right)$.

Let Γ_{2} be the full (or extended) mapping class group of M_{2} and Γ_{2}^{+}be the mapping class group of $M_{2} . \Gamma_{2}^{+}$is the subgroup of index 2 in Γ_{2} consisting of the mapping classes of orientation preserving homeomorphisms of M_{2}. As observed in the proof of Theorem 4.8 of [B], there exists a collection of twist maps $g_{i}: M_{2} \rightarrow M_{2}, i=1, \ldots, 5$ such that:

- g_{i} is the lift of a homeomorphism of S^{2} for $i=1, \ldots, 5$,
- Γ_{2}^{+}is generated by the isotopy classes of $g_{i}, i=1, \ldots, 5$.

Let h_{0} be an orientation reversing homeomorphism of S^{2} which fixes each point of $q(W)$. By the proof of Lemma 1.1, h_{0} lifts to a homeomorphism g_{0} of M_{2} which fixes each point of W. Since h_{0} is orientation reversing, g_{0} is orientation reversing. Hence, Γ_{2} is generated by the isotopy classes of
$g_{i}, i=0, \ldots, 5$. Since g_{i} is a lift of a homeomorphism of S^{2}, g_{i} is an element of $\operatorname{Homeo}\left(M_{2}, i\right), i=0, \ldots, 5$. Hence, we have an epimorphism:

Lemma 1.2. The natural homomorphism $\eta: \operatorname{Homeo}\left(M_{2}, i\right) \rightarrow \Gamma_{2}$ is surjective.

Proposition 1.1. There exists a unique representation r such that the following diagram commutes:

The associated action of Γ_{2} on the set of Weierstrass points of M_{2} is given by the rule $\tau \cdot P=g(P)$ for every Weierstrass point P of M_{2}, every mapping class τ in Γ_{2} and every homeomorphism $g \in \operatorname{Homeo}\left(M_{2}, i\right)$ representing τ. Moreover, r is surjective.

Proof. The second and third statements follow immediately from the first statement and Lemma 1.1. Suppose that h is in the kernel of η. We must show that h is in the kernel of ρ. By our assumption and the previous observations, h is a homeomorphism of M_{2} which respects the fibers of q and is isotopic to the identity. By Theorem 4.7 of [B], there is an isotopy h_{t} between $h=h_{0}$ and $i d=h_{1}$ such that for each $t \in[0,1]$ the map h_{t} is fiber-preserving. By the previous observations, each homeomorphism h_{t} acts on the set of Weierstrass points of M_{2}. Since this is a discrete set of points, it follows that $h_{t}(P)=h_{0}(P)$ for all $t \in[0,1]$ and all $P \in W$. Since $h_{1}=h$ and $h_{0}=i d$, we conclude that h is in the kernel of ρ.

By our previous discussion, Γ_{2} is generated by Γ_{2}^{+}and the mapping class of an orientation reversing homeomorphism g_{0} of M_{2} which fixes each Weierstrass point of M_{2}. Since Γ_{2}^{+}is generated by the mapping classes of Dehn twists about nonseparating simple closed curves, r is completely determined by the action of such classes. We now describe the action of these classes.

Lemma 1.3. Let c be an isotopy class of unoriented nonseparating simple closed curves on M_{2}. There exists a nonseparating simple closed curve $\gamma \in c$ such that $i(\gamma)=\gamma$.

Proof. This is an easy consequence of Theorem 3.2 of [Lu]. We now give an independent proof which illustrates the nature of our arguments in this paper.

Let P and Q be a pair of distinct Weierstrass points. Let J be an embedded arc in S^{2} such that J meets $q(W)$ precisely at its endpoints $q(P)$ and $q(Q)$. The preimage $\gamma_{0}=q^{-1}(J)$ in M_{2} is a nonseparating simple closed curve on M_{2} and $i\left(\gamma_{0}\right)=\gamma_{0}$. Since γ_{0} is a nonseparating simple
closed curve on M_{2}, there exists a homeomorphism h such that $h\left(\gamma_{0}\right)$ represents c. By Lemma 1.2, there exists a homeomorphism h^{\prime} such that h is isotopic to h^{\prime} and $i \circ h^{\prime}=h^{\prime} \circ i$. Let $\gamma=h^{\prime}\left(\gamma_{0}\right)$. Since γ_{0} is a nonseparating simple closed curve, γ is a nonseparating simple closed curve. Since h^{\prime} is isotopic to h and $h\left(\gamma_{0}\right) \in c, \gamma \in c$. Finally, since $i\left(\gamma_{0}\right)=\gamma_{0}$, $i(\gamma)=i\left(h\left(\gamma_{0}\right)\right)=h\left(i\left(\gamma_{0}\right)\right)=h\left(\gamma_{0}\right)=\gamma$.

Lemma 1.4. Let γ be a nonseparating simple closed curve on M_{2} such that $i(\gamma)$ is equal to γ. Then γ contains exactly two Weierstrass points of M_{2}.

Proof. The restriction of i to γ is an involution $i \mid$ of a circle. Since i has only finitely many fixed points, $i \mid$ is a nontrivial involution. If $i \mid$ is orientation preserving, then $i \mid$ has no fixed points. On the other hand, if $i \mid$ is orientation reversing, then $i \mid$ has exactly two fixed points. It suffices, therefore, to show that $i \mid$ has at least one fixed point.

Suppose that $i \mid$ has no fixed points. Then the restriction of q to γ gives a two fold covering $q \mid: \gamma \rightarrow q(\gamma)$ and $\gamma=q^{-1}(q(\gamma))$. The image $q(\gamma)$ is an embedded simple closed curve in S^{2}. Hence, $q(\gamma)$ bounds a disc D in S^{2}. Since $\gamma=q^{-1}(q(\gamma)), \gamma$ bounds the surface $q^{-1}(D)$ in M_{2}. Since γ is nonseparating, this is impossible.

Proposition 1.2. Let γ be a nonseparating simple closed curve on M_{2} such that $i(\gamma)=\gamma$ and P and Q be the two Weierstrass points of M_{2} on γ. Let $\tau_{\gamma} \in \Gamma_{2}$ be the mapping class of a Dehn twist about γ. Then the action of τ_{γ} on the set of Weierstrass points of M_{2} is given by the transposition of P and Q.

Proof. Let $J=q(\gamma)$ be the image of γ in S^{2}. Since the restriction of i to γ is an involution with two fixed points P and Q, J is an embedded arc in S^{2} joining $q(P)$ to $q(Q)$ and $\gamma=q^{-1}(J)$. Since P and Q are the only Weierstrass points of M_{2} on $\gamma, q(P)$ and $q(Q)$ are the only points of $q(W)$ on J. Let D be a regular neighborhood of J in S^{2} such that P and Q are the only Weierstrass points of M_{2} in $q^{-1}(D)$. Let h be a homeomorphism of S^{2} which fixes $S^{2} \backslash D$ pointwise and permutes $q(P)$ and $q(Q)$. We assume that the restriction of h to D represents the standard generator of the braid group on two strings. h lifts to a homeomorphism g of M_{2} which represents τ_{γ} and permutes P and Q. Since g is a lift of a homeomorphism of M_{2}, $g \in \operatorname{Homeo}\left(M_{2}, i\right)$. Hence, by Proposition 1.1, the action of τ_{γ} on W is equal to the action of g on W.

Lemma 1.5. Let c be an isotopy class of unoriented nontrivial separating simple closed curves on M_{2}. There exists a nontrivial separating simple closed curve $\gamma \in c$ such that $i(\gamma)=\gamma$.

Proof. This is an easy consequence of Theorem 3.2 of $[\mathrm{Lu}]$. We give an independent proof.

Let D be a disc in S^{2} such that D meets $q(W)$ in precisely 3 points none of which lie on the boundary β of D. The preimage $\gamma_{0}=q^{-1}(\beta)$ is a
simple closed curve in M_{2} bounding the preimage $T=q^{-1}(D)$. Since T is a two-fold branched cover of D branched over 3 points, T is a torus with one hole. Hence, γ_{0} separates M_{2} into two tori with one hole each. Thus γ_{0} is a nontrivial separating simple closed curve on M_{2}. Moreover, since $\gamma_{0}=q^{-1}(\beta), i\left(\gamma_{0}\right)=\gamma_{0}$. Since γ_{0} is a nontrivial separating simple closed curve on M_{2}, there exists a homeomorphism h such that $h\left(\gamma_{0}\right)$ represents c. The result follows as in the proof of Lemma 1.3.

Lemma 1.6. Let γ be a nontrivial separating simple closed curve on M_{2} such that $i(\gamma)$ is equal to γ. Then γ contains no Weierstrass points of M_{2}.

Proof. The restriction of i to γ is an involution $i \mid$ of a circle. Since i has only finitely many fixed points, $i \mid$ is a nontrivial involution. If $i \mid$ is orientation preserving, then $i \mid$ has no fixed points. On the other hand, if $i \mid$ is orientation reversing, then $i \mid$ has exactly two fixed points. It suffices, therefore, to show that $i \mid$ has no fixed points.

Suppose that $i \mid$ has a fixed point. Then $i \mid$ has two fixed points P and Q and the image $q(\gamma)$ is an embedded arc J which meets $q(W)$ precisely at its endpoints $q(P)$ and $q(Q)$ and $\gamma=q^{-1}(J)$. This is impossible, since it implies that γ is a nonseparating simple closed curve in M_{2}.

We are now able to give an independent proof of Lustig's criterion for simple closed curves.

Theorem 1.1 (Lustig). Consider the presentation of $\pi_{1} M_{2}$ arising from an appropriate edge pairing of an octagon $\pi_{1} M_{2}=<a, b, c, d \mid a b c d a^{-1} b^{-1} c^{-1} d^{-1}>$ and the automorphism $j: \pi_{1} M_{2} \rightarrow \pi_{1} M_{2}$ which maps each of the generators a, b, c and d to its inverse. Let $w \in \pi_{1} M_{2}$ be such that the homotopy class [w] contains a simple closed curve C on M_{2}. If C is separating, it follows that $j(w)$ is conjugate to w. If C is nonseparating, then $j(w)$ is conjugate to w^{-1}.

Proof. Let P_{1}, \ldots, P_{6} be the Weierstrass points of M_{2}. Let $J_{i}, i=1, \ldots, 4$ be a collection of embedded arcs in S^{2} with the following properties:

- J_{i} and J_{j} meet precisely at $q\left(P_{1}\right)$ for each distinct pair i and j,
- J_{i} meets $q(W)$ precisely at its endpoints $q\left(P_{1}\right)$ and $q\left(P_{i+1}\right)$,
- the indexing of these arcs agrees with their cyclic ordering around $q\left(P_{1}\right)$.
Let $\gamma_{j}=q^{-1}\left(J_{j}\right)$ so that γ_{j} is a nonseparating simple closed curve on M_{2} such that $q\left(\gamma_{j}\right)=\gamma_{j}$ and P_{1} and P_{j+1} are the two Weierstrass points of M_{2} on γ_{j}. (See Figure 3.) By our previous remarks, the restriction of i to γ_{j} is an orientation reversing involution with fixed points P_{1} and P_{j+1}. Hence, if x_{j} denotes the element of $\pi_{1}\left(M_{2}, P_{1}\right)$ represented by $\gamma_{j}, i_{*}\left(x_{j}\right)=x_{j}^{-1}$.

If we orient the curves γ_{j}, we see that the cyclic ordering of the curves γ_{j} around P_{1} is $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{1}^{-1}, \gamma_{2}^{-1}, \gamma_{3}^{-1}, \gamma_{4}^{-1}$. If we cut M_{2} open along the curves γ_{j} we obtain a surface F which is a 2 -fold branched cover over the complement D of the $\operatorname{arcs} J_{j}$ in S^{2}. Since D is a disc with one branch

Figure 3
point $q\left(P_{6}\right), F$ is a disc. On the other hand, our observation regarding the cyclic ordering implies that the boundary of F is represented by the word $\gamma_{1} \gamma_{4} \gamma_{3}^{-1} \gamma_{2} \gamma_{1}^{-1} \gamma_{4}^{-1} \gamma_{3} \gamma_{2}^{-1}$. (See Figure 4.) Hence, since M_{2} is obtained from F by the obvious edge pairing, we obtain the presentation of $\pi_{1} M_{2}$ given in the theorem provided we let $a=x_{1}, b=x_{4}, c=x_{3}^{-1}$ and $d=x_{2}$. Moreover, the hyperelliptic involution i induces the given automorphism j.

Figure 4

Suppose that $[w]$ contains a separating simple closed curve γ. We may assume that γ is nontrivial. By Lemma 1.5, we can assume that $i(\gamma)=\gamma$.

Hence, by Lemma 1.6, the restriction of i to γ has no fixed points. Therefore, i must preserve the orientation of γ. Thus $j(w)$ is conjugate to w.

Suppose, on the other hand, that $[w]$ contains a nonseparating simple closed curve γ. By Lemma 1.3, we can assume that $i(\gamma)=\gamma$. Hence, by Lemma 1.4, the restriction of i to γ has exactly two fixed points. Therefore, i must reverse the orientation of γ. Thus $j(w)$ is conjugate to w^{-1}.

Let P be a Weierstrass point on M_{2}. Let $\operatorname{Homeo}\left(M_{2}, i, P\right)$ be the stabilizer in $\operatorname{Homeo}\left(M_{2}, i\right)$ of P with respect to the representation ρ. Since $\operatorname{Homeo}\left(M_{2}, i, P\right)$ is a group of homeomorphisms of the pointed space $\left(M_{2}, P\right)$, we have a natural action of $\operatorname{Homeo}\left(M_{2}, i, P\right)$ on $\pi_{1}\left(M_{2}, P\right)$. This action affords a representation $\sigma: \operatorname{Homeo}\left(M_{2}, i, P\right) \rightarrow \operatorname{Aut}\left(\pi_{1} M_{2}\right)$. Let $\Gamma_{2}(P)$ be the stabilizer in Γ_{2} of P with respect to the representation r. By Lemma 1.2 and Proposition 1.1, η restricts to an epimorphism $\eta \mid: \operatorname{Homeo}\left(M_{2}, i, P\right) \rightarrow$ $\Gamma_{2}(P)$.

Theorem 1.2. There exists a unique representation s such that the following diagram commutes:

The representation s is given by the rule $s(\tau)=g_{*}$ for any mapping class $\tau \in$ Γ_{2} and any homeomorphism $g \in \operatorname{Homeo}\left(M_{2}, i, P\right)$ representing τ. Moreover, s is a virtual splitting of the natural homomorphism $\operatorname{Aut}\left(\pi_{1}\left(M_{2}, P\right)\right) \rightarrow$ $\operatorname{Out}\left(\pi_{1}\left(M_{2}, P\right)\right)$.

Proof. The second and third statements are immediate consequences of the first statement, the surjectivity of $\eta \mid$ and the definition of σ. Suppose that h is in the kernel of $\eta \mid$. We must show that h is in the kernel of σ. By our assumption and the previous observations, h is a homeomorphism of M_{2} which respects the fibers of q and is isotopic to the identity. By Theorem 4.7 of [B], there is an isotopy h_{t} between $h=h_{0}$ and $i d=h_{1}$ such that for each $t \in[0,1]$ the map h_{t} is fiber-preserving. By the previous observations, each homeomorphism h_{t} acts on the set of Weierstrass points of M_{2}. Since this is a discrete set of points, it follows that $h_{t}(P)=h_{0}(P)$ for all $t \in[0,1]$. Thus, h is isotopic to $i d$ relative to P and, consequently, the action of h on $\pi_{1}\left(M_{2}, P\right)$ agrees with that of $i d$. Hence, h is in the kernel of σ.
Proposition 1.3. Let $\tau \in \Gamma_{2}(P)$. Then $s(\tau)$ is the unique automorphism ϕ in the outer automorphism class τ such that $\phi \circ i_{*}=i_{*} \circ \phi$.

Proof. Let $h \in \operatorname{Homeo}\left(M_{2}, i, P\right)$ represent the mapping class τ. Then $i \circ h=$ $h \circ i$ and $h(P)=P$. By Theorem 1.2, $s(\tau)=h_{*}$. Since $i \circ h=h \circ i$, it follows that $h_{*} \circ i_{*}=i_{*} \circ h_{*}$. It remains to prove the uniqueness statement.

Suppose that $\phi \in \operatorname{Aut}\left(\pi_{1}\left(M_{2}, P\right)\right)$ is a representative of the outer automorphism class τ and $\phi \circ i_{*}=i_{*} \circ \phi$. Since ϕ and h_{*} represent the same outer automorphism class $\tau, \phi=\chi^{c} \circ h_{*}$ where χ^{c} denotes the inner automorphism of $\pi_{1}\left(M_{2}, P\right)$ corresponding to an element c of $\pi_{1}\left(M_{2}, P\right)$. Since h_{*} and ϕ both commute with i_{*}, we conclude that χ^{c} commutes with i_{*}. Since the center of $\pi_{1}\left(M_{2}, P\right)$ is trivial, this implies that $i_{*}(c)=c$. Hence, by Lemma 1.1 of [B-H], we conclude that c is the identity element of $\pi_{1}\left(M_{2}, P\right)$. Hence, $\phi=h_{*}$.

2. Weierstrass points and Z_{2}-homology

The restriction q of q to $M_{2} \backslash W$ and $S^{2} \backslash q(W)$ induces a homomor$\operatorname{phism}(q \mid)_{*}: H_{1}\left(M_{2} \backslash W, \mathbf{Z}_{2}\right) \rightarrow H_{1}\left(S^{2} \backslash q(W), \mathbf{Z}_{2}\right)$. Since M_{2} is obtained from $M_{2} \backslash W$ by replacing the points of W, the inclusion inc : $M_{2} \backslash W \rightarrow M_{2}$ induces an epimorphism $i n c_{*}: H_{1}\left(M_{2} \backslash W, \mathbf{Z}_{2}\right) \rightarrow H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$. For each Weierstrass point P of M_{2}, let $\alpha_{P} \subset M_{2} \backslash W$ and $\beta_{P} \subset S^{2} \backslash q(W)$ be small loops around P and $q(P)$ respectively as defined in section 1 and depicted in Figure 2. $H_{1}\left(S^{2} \backslash q(W), \mathbf{Z}_{2}\right)$ is generated by the homology classes of the loops β_{P}. Indeed, $H_{1}\left(S^{2} \backslash q(W), \mathbf{Z}_{2}\right)$ is naturally isomorphic to the quotient of the free Z_{2} module on the loops β_{P} by the single relation:

$$
\begin{equation*}
\sum_{P \in W} \beta_{P}=0 . \tag{2.1}
\end{equation*}
$$

The kernel of $i n c_{*}$ is generated by the homology classes of the loops α_{P}. On the other hand, since P is an isolated fixed point of the orientation preserving hyperelliptic involution i, we conclude that $q_{*}\left(\left[\alpha_{P}\right]\right)=2\left[\beta_{P}\right]=0 \in H_{1}\left(S^{2} \backslash q(W), \mathbf{Z}_{2}\right)$. Hence, we have the following lemma.

Lemma 2.1. There exists a unique homomorphism ω such that the following diagram commutes:

The homomorphism ω is given by the rule $\omega(v)=(q \mid)_{*}\left(v^{\prime}\right)$ for every homology class $v \in H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$ and $v^{\prime} \in H_{1}\left(M_{2} \backslash W, \mathbf{Z}_{2}\right)$ such that inc ${ }_{*}\left(v^{\prime}\right)=v$.

Lemma 2.2. Let γ be a nonseparating simple closed curve such that $i(\gamma)=\gamma$ and v be the homology class of γ in $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$. Let P and Q be the two Weierstrass points of M_{2} on γ. Then $\omega(v)=\beta_{P}+\beta_{Q}$.

Proof. The image $J=q(\gamma)$ is an embedded arc in S^{2} which meets $q(W)$ precisely at its endpoints $q(P)$ and $q(Q)$. Let δ be the boundary of a regular neighborhood D of J. We assume that $q(P)$ and $q(Q)$ are the only points
of $q(W)$ in D. In particular, this implies that δ represents the homology class $\beta_{P}+\beta_{Q}$. The preimage $A=q^{-1}(D)$ is a regular neighborhood of γ and P and Q are the only points of W in A. Let γ^{\prime} be one of the boundary components of A. Then $\gamma^{\prime} \in v, \gamma^{\prime} \subset M_{2} \backslash W$ and $(q \mid)_{*}\left(\left[\gamma^{\prime}\right]\right)=[\delta]$.

Lemma 2.3. Let v be a nontrivial homology class in $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$. There exists a unique pair of distinct Weierstrass points P and Q such that $\omega(v)=$ $\beta_{P}+\beta_{Q}$.
Proof. Suppose that v is a nontrivial element of $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$. Then there is a nonseparating simple closed curve γ representing v. By Lemma 1.3, we can assume that $i(\gamma)=\gamma$. Thus, by Lemma 1.4, there are precisely two Weierstrass points P and Q on γ. Hence, by Lemma 2.2, $\omega(v)=\beta_{P}+$ β_{Q}. This proves the existence statement. The uniqueness follows from the previous description of $H_{1}\left(S^{2} \backslash q(W), \mathbf{Z}_{2}\right)$ in terms of the relation 2.1.
Lemma 2.4. The homomorphism $\omega: H_{1}\left(M_{2}, \mathbf{Z}_{2}\right) \rightarrow H_{1}\left(S^{2} \backslash q(W), \mathbf{Z}_{2}\right)$ is injective.

Proof. Suppose that v is a nontrivial element of $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$. Then, by Lemma 2.3, there are precisely two Weierstrass points P and Q, such that $\omega(v)=\beta_{P}+\beta_{Q}$. By the previous description of $H_{1}\left(S^{2} \backslash q(W), \mathbf{Z}_{2}\right)$ in terms of the relation 2.1, we conclude that $\beta_{P}+\beta_{Q} \neq 0$.
Lemma 2.5. Let P and Q be a distinct pair of Weierstrass points of M_{2}. Then there exists a unique nontrivial homology class v in $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$ such that $\omega(v)=\beta_{P}+\beta_{Q}$.
Proof. The uniqueness follows from Lemma 2.4. Let J be an embedded arc in S^{2} meeting $q(W)$ precisely at its endpoints $q(P)$ and $q(Q)$ and let $\gamma=q^{-1}(J)$. Then γ is a nonseparating simple closed curve in $M_{2}, i(\gamma)=\gamma$ and P and Q are the two Weierstrass points of M_{2} on γ. Let v be the homology class of γ. By Lemma 2.2, $\omega(v)=\beta_{P}+\beta_{Q}$.

Henceforth, if v is a nontrivial homology class in $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$ and P and Q are the unique pair of Weierstrass points such that $\omega(v)=\beta_{P}+\beta_{Q}$, we say that P and Q are the two Weierstrass points of M_{2} on v. Lemmas 2.3 and 2.5 establish a bijection:

$$
\Omega: H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)^{*} \rightarrow S_{2}^{*}(W)
$$

between the set $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)^{*}$ of nontrivial homology classes in $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$ and the set $S_{2}^{*}(W)$ of pairs of distinct Weierstrass points of $M_{2} . \Omega(v)=$ $\{P, Q\}$ if and only if $\omega(v)=\beta_{P}+\beta_{Q}$. The naturality of Ω is expressed in the following lemma.

Lemma 2.6. Let $v \in H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)^{*}$ and $\tau \in \Gamma_{2}$. If $\Omega(v)=\{P, Q\}$, then $\Omega(\tau \cdot v)=\{\tau \cdot P, \tau \cdot Q\}$.

Proof. Let $g \in \operatorname{Homeo}\left(M_{2}, i\right)$ represent the mapping class τ. Since g commutes with $i, g(W)=W$. Moreover, there exists a homeomorphism h of
S^{2} such that $h \circ q=q \circ g$. Hence, $h(q(W))=q(g(W))=q(W)$. Hence, g restricts to a homeomorphism $g \mid$ of $M_{2} \backslash W$ and h restricts to a homeomorphism $h \mid$ of $S^{2} \backslash q(W)$. Since $h \circ q=q \circ g, h|\circ q|=q|\circ g|$, where $q \mid$ is the restriction of q to $M_{2} \backslash W$ and $S^{2} \backslash q(W)$. Applying $H_{1}\left(-, \mathbf{Z}_{2}\right)$, we conclude that $(q \mid)_{*} \circ(g \mid)_{*}=(h \mid)_{*} \circ(q \mid)_{*}$. From the definition of ω, it follows that $\omega \circ(g)_{*}=(h \mid)_{*} \circ \omega$.

By the definition of the action of Γ_{2} on $W, \tau \cdot P=g(P)$ and $\tau \cdot Q=g(Q)$. On the other hand, $\tau \cdot v=g_{*}(v)$. Since $h \circ q=q \circ g, h(q(P))=q(g(P))$ and $h(q(Q))=q(g(Q))$. Hence, $(h \mid)_{*}\left(\beta_{P}\right)=\beta_{g(P)}$ and $(h \mid)_{*}\left(\beta_{Q}\right)=\beta_{g(Q)}$. By assumption, $\omega(v)=\beta_{P}+\beta_{Q}$. Since $\omega \circ(g)_{*}=(h \mid)_{*} \circ \omega$, we conclude that:

$$
\omega\left(g_{*}(v)\right)=(h \mid)_{*}(\omega(v))=(h \mid)_{*}\left(\beta_{P}+\beta_{Q}\right)=\beta_{g(P)}+\beta_{g(Q)} .
$$

Let $<,>$ be the \mathbf{Z}_{2}-valued intersection form on $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$.
Lemma 2.7. Let v_{1} and v_{2} be two nontrivial homology classes in $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$ and P_{i} and Q_{i} be the two Weierstrass points of M_{2} on $v_{i}, i=1,2$. Then $<v_{1}, v_{2}>$ is equal to the congruence class modulo 2 of the number of points in $\left\{P_{1}, Q_{1}\right\} \cap\left\{P_{2}, Q_{2}\right\}$.
Proof. Let J_{j} be an embedded arc in S^{2} joining $q\left(P_{j}\right)$ to $q\left(Q_{j}\right)$. We may assume that $J_{1} \cap J_{2}=\left\{q\left(P_{1}\right), q\left(Q_{1}\right)\right\} \cap\left\{q\left(P_{2}\right), q\left(Q_{2}\right)\right\}$. Let $\gamma_{j}=q^{-1}\left(J_{j}\right)$. Then γ_{j} is a simple closed curve in M_{2} such that $i\left(\gamma_{j}\right)=\gamma_{j}$ and P_{j} and Q_{j} are the two Weierstrass points of M_{2} on γ_{j}. By choosing the $\operatorname{arcs} J_{i}$ carefully, we may assume that γ_{1} and γ_{2} are transverse. Hence, $\left\langle v_{1}, v_{2}\right\rangle$ is equal to the congruence class modulo 2 of the number of points in $\gamma_{1} \cap \gamma_{2}$. On the other hand, since $J_{1} \cap J_{2}$ is equal to $\left\{q\left(P_{1}\right), q\left(Q_{1}\right)\right\} \cap\left\{q\left(P_{2}\right), q\left(Q_{2}\right)\right\}$, $\gamma_{1} \cap \gamma_{2}=\left\{P_{1}, Q_{1}\right\} \cap\left\{P_{2}, Q_{2}\right\}$.

Let v and w be two nontrivial homology classes in $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$. We say that v and w are \mathbf{Z}_{2} disjoint if $\langle v, w\rangle=0$. By Lemma 2.7 and the fact that Ω is injective, v and w are \mathbf{Z}_{2} disjoint if and only if they are equal or have no common Weierstrass point. We say that $\{v, w\}$ is a \mathbf{Z}_{2} base pair if $\langle v, w\rangle=1$. Again, by Lemma 2.7, $\{v, w\}$ is a \mathbf{Z}_{2} base pair if and only if there is exactly one common Weierstrass point on v and w. The following result is an immediate consequence of these observations.

Proposition 2.1. Let $\left\{v_{1}, w_{1}\right\}$ and $\left\{v_{2}, w_{2}\right\}$ be \mathbf{Z}_{2} base pairs on M_{2} which are \mathbf{Z}_{2} disjoint from one another. Then the Weierstrass points of M_{2} consist of the following 6 points:

- the common Weierstrass points P_{i} of v_{i} and $w_{i}, i=1,2$;
- the remaining Weierstrass points on the 4 homology classes v_{1}, w_{1}, v_{2} and w_{2}.

Remark 2.1. A result of W. B. R. Lickorish [Li] implies that Γ_{2}^{+}is generated by the mapping classes of Dehn twists $\tau_{i}, i=1, \ldots, 5$ about any system
of nonseparating simple closed curves $\gamma_{i}, i=1, . ., 5$ with the following properties:

- γ_{i} and γ_{j} are transverse for all $i \neq j$,
- γ_{i} and γ_{i+1} meet in precisely one point,
- γ_{i} and γ_{j} are disjoint whenever $|i-j| \geq 2$.
(A result of S . Humphries $[\mathrm{H}]$ implies that this system of Dehn twists is the smallest system of Dehn twists generating Γ_{2}^{+}.) By an argument similar to the proof of Lemma 1.3, we may assume that $i\left(\gamma_{j}\right)=\gamma_{j}, j=1, \ldots, 5$. Hence, each of these curves contain exactly two Weierstrass points. The above results imply that we may label the Weierstrass points P_{1}, \ldots, P_{6} such that P_{i} and P_{i+1} are the Weierstrass points of M_{2} on γ_{i}. Hence, by Proposition 1.2, τ_{i} is sent to the i-th standard generator of S_{6}, the transposition interchanging P_{i} and P_{i+1}. Hence, we have a complete description of the representation r.

The \mathbf{Z}_{2}-valued intersection form $<,>$ is a \mathbf{Z}_{2} symplectic form on $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$. We recall the fact that the action of homeomorphisms on homology respects this form and induces an epimorphism $\psi: \Gamma_{2} \rightarrow S p_{4}\left(\mathbf{Z}_{2}\right)$.
Theorem 2.1. There exists a unique isomorphism μ such that the following diagram commutes:

where $r: \Gamma_{2} \rightarrow S_{6}$ is the representation of Proposition 1.1 and ψ is the standard \mathbf{Z}_{2} symplectic representation $\Gamma_{2} \rightarrow S p_{4}\left(\mathbf{Z}_{2}\right)$.
Proof. Since r and ψ are both epimorphisms, it suffices to show that they have the same kernel. The action of Γ_{2} on W associated to the representation r induces an action of Γ_{2} on $S_{2}^{*}(W)$. Let r^{*} denote the representation of Γ_{2} associated to this action. Likewise, the action of Γ_{2} on $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$ associated to the representation ψ induces an action of Γ_{2} on $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)^{*}$ with an associated representation ψ^{*}. Clearly, the kernel of ψ^{*} is equal to the kernel of ψ. On the other hand, by Lemma 2.6, Ω is a Γ_{2} equivariant bijection of the Γ_{2} sets $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)^{*}$ and $S_{2}^{*}(W)$. Thus, the kernel of r^{*} is equal to the kernel of ψ^{*}. Hence, it suffices to show that the kernel of r^{*} is equal to the kernel of r.

Clearly, the kernel of r is contained in the kernel of r^{*}. Suppose, on the other hand, that τ is an element of Γ_{2} contained in the kernel of r^{*}. Let P be a Weierstrass point of M_{2}. We must show that $\tau \cdot P=P$. Suppose, that $\tau \cdot P \neq P$. Let Q be a Weierstrass point of M_{2} with $P \neq Q$. Since τ is in the kernel of $r^{*},\{\tau \cdot P, \tau \cdot Q\}=\{P, Q\}$. Since $\tau \cdot P \neq P$, we conclude that $\tau \cdot P=Q$. This last identity holds for every Weierstrass point Q of M_{2} with $P \neq Q$. Since there are more than two Weierstrass points on M_{2}, this is impossible.

Corollary 2.1. The subgroup of Γ_{2}^{+}that acts trivially on the set of Weierstrass points of M_{2} via the representation $r: \Gamma_{2} \rightarrow S_{6}$ of Proposition 1.1 is equal to the subgroup of Γ_{2} generated by all squares of Dehn twists on simple closed curves in M_{2}.

Proof. Let Γ_{g}^{+}be the mapping class group of a closed Riemann surface M_{g} of genus g. By Theorem 8 of $[\mathrm{W}]$, the subgroup $\Gamma_{g}^{+}[2]$ of Γ_{g}^{+}which acts trivially on $H_{1}\left(M_{g}, \mathbf{Z}_{2}\right)$ is equal to the subgroup of Γ_{g}^{+}generated by all squares of Dehn twists on simple closed curves in M_{g}. Hence, the corollary follows immediately from Theorem 2.1.

Remark 2.2. In the classical argument, (Theorem 3.1.5 of [O]), an isomorphism from $S p_{4}\left(\mathbf{Z}_{2}\right)$ to S_{6} is established by considering configurations in V, where V is a 4 -dimensional regular alternating space over \mathbf{Z}_{2}. By definition, a configuration is any subset C of 5 elements in V with the property that no two distinct elements of C are orthogonal (with respect to the alternating form). It is shown that there are precisely 6 configurations in V and that $S p_{4}\left(\mathbf{Z}_{2}\right)$ acts effectively on the set of configurations in V. Hence, there is a monomorphism $\nu: S p_{4}\left(\mathbf{Z}_{2}\right) \rightarrow S_{6}$. Since $S p_{4}\left(\mathbf{Z}_{2}\right)$ and S_{6} have the same order, one concludes that ν is an isomorphism.

Now in our context, V is equal to $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$ equipped with the intersection form $<,>$. Configurations in V are naturally identified with Weierstrass points as follows. Let P be a Weierstrass point of M_{2}. Let:

$$
C_{P}=\left\{\Omega^{-1}(\{P, Q\}) \mid Q \in W \backslash\{P\}\right\} .
$$

Lemma 2.7 implies that C_{P} is a configuration. It is easy to see that the correspondence $P \mapsto C_{P}$ defines a bijection between the set of Weierstrass points of M_{2} and the set of configurations in $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$. The correspondence $P \mapsto C_{P}$ is in some sense "dual" to our correspondence Ω. From this duality, we see that the isomorphism μ of Theorem 2.1 is the inverse of the isomorphism ν constructed by the classical argument with configurations.

This duality can be understood as follows. Let G denote the full graph on 6 vertices (i.e. the 1 skeleton of a 5 -simplex). G has two interpretations relevant to our discussion. In the first interpretation, the vertices of G correspond to the Weierstrass points of M_{2} and the edges of G correspond to the distinct pairs of Weierstrass points of M_{2}. The vertices of an edge of G correspond to the two Weierstrass points of the corresponding pair. In the second interpretation, the vertices of G correspond to the configurations and the edges of G correspond to the nontrivial homology classes in $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$. The vertices of an edge of G are the two configurations containing the corresponding homology class. From this point of view, the correspondence $P \mapsto C_{P}$ is a "vertex" isomorphism and the correspondence Ω is the associated "edge" isomorphism.

3. IDENTIFICATION WITH LUSTIG'S ACTION AND VIRTUAL SPLITTING

Let d be the unique hyperbolic metric associated to the Riemann surface M_{2}. Since the hyperelliptic involution i is a conformal automorphism of M_{2} ([F-K]), it is an isometry of d. We recall that there exists a unique simple closed hyperbolic geodesic of the hyperbolic surface $\left(M_{2}, d\right)$ in the isotopy class of any nontrivial simple closed curve on M_{2}.

Lemma 3.1. Let c be an isotopy class of a nonseparating simple closed curve on M_{2} and γ be the unique hyperbolic geodesic of $\left(M_{2}, d\right)$ in c. Then $i(\gamma)=\gamma$.

Proof. This is a consequence of Theorem 2.3 of [Lu]. We give an independent argument.

By Lemma 1.3, there exists a nonseparating simple closed curve $\gamma^{\prime} \in c$ such that $i\left(\gamma^{\prime}\right)=\gamma^{\prime}$. Thus i preserves the isotopy class c. Since i is an isometry, $i(\gamma)$ is a geodesic. By the uniqueness of the geodesic in a given isotopy class, therefore, $i(\gamma)=\gamma$.

In order to state our next theorem, we recall the following notions from [Lu]. A geodesic base pair on a Riemann surface M is a pair of simple closed geodesics on M which meet in exactly one point. A pair of points P and Q on a closed geodesic γ on M are antipodes on γ if P and Q separate γ into two geodesic segments of equal hyperbolic length.

Theorem 3.1 (Lustig). The Weierstrass points of M_{2} coincide for any two disjoint geodesic base pairs on M_{2} with the two intersection points and the four antipodes.

Proof. This is essentially Theorems 2.3 and 2.4 of [Lu]. We give an independent proof.

By Lemmas 1.4 and 3.1, we see that there are exactly two Weierstrass points on each of the geodesics in the given base pairs. By Lemma 2.2, these two points are the Weierstrass points on the corresponding nontrivial homology classes in $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$. These homology classes form a pair of \mathbf{Z}_{2} disjoint \mathbf{Z}_{2} base pairs on M_{2}. Hence, the result follows immediately from Proposition 2.1.
Theorem 3.2. The representation $r: \Gamma_{2} \rightarrow S_{6}$ of Proposition 1.1 is equal to the induced map $p: \operatorname{Out}\left(\pi_{1} M_{2}\right) \rightarrow S_{6}$ of Lemma 3.4 of $[L u]$.
Proof. Let $g \in \operatorname{Homeo}\left(M_{2}, i\right)$ represent an element τ of Γ_{2} and let P be a Weierstrass point of M_{2}. Let γ_{1} and γ_{2} be a base pair of geodesics of $\left(M_{2}, d\right)$ such that $P=\gamma_{1} \cap \gamma_{2}$. Let Q_{j} be the Weierstrass point of M_{2} such that P and Q_{j} are the two Weierstrass points of M_{2} on $\gamma_{j}, j=1,2$. Let γ_{j}^{\prime} be the unique hyperbolic geodesic in the isotopy class of $g\left(\gamma_{j}\right), j=1,2$. We must show that $g(P)$ is the common Weierstrass point of γ_{1}^{\prime} and γ_{2}^{\prime}.

Since $g \in \operatorname{Homeo}\left(M_{2}, i\right), i\left(g\left(\gamma_{j}\right)\right)=g\left(\gamma_{j}\right)$ and $g(P)$ and $g\left(Q_{j}\right)$ are the two Weierstrass points of M_{2} on $i\left(\gamma_{j}\right), j=1,2$. On the other hand, by Lemma
3.1, $i\left(\gamma_{j}^{\prime}\right)=\gamma_{j}^{\prime}, j=1,2$. Since γ_{j}^{\prime} is isotopic to $g\left(\gamma_{j}\right)$ and γ_{j} is a nonseparating simple closed curve, γ_{j}^{\prime} and $g\left(\gamma_{j}\right)$ represent the same nontrivial homology class in $H_{1}\left(M_{2}, \mathbf{Z}_{2}\right)$. Hence, by Lemmas 2.2 and 2.3, the Weierstrass points of γ_{j}^{\prime} and $g\left(\gamma_{j}\right)$ coincide. Thus, $g(P)$ is a common Weierstrass point of γ_{1}^{\prime} and γ_{2}^{\prime}.
Remark 3.1. From Theorem 3.2 and Corollary 2.1, we see that the subgroup of Γ_{2}^{+}which acts trivially on the set of Weierstrass points of M_{2} via the induced map $p: \operatorname{Out}\left(\pi_{1} M_{2}\right) \rightarrow S_{6}$ of Lemma 3.4 of $[\mathrm{Lu}]$ is equal to the subgroup of Γ_{2} generated by all squares of Dehn twists on simple closed curves in M_{2}.

The previous lemma implies that $\Gamma_{2}(P)=p^{-1}(\operatorname{Stab}(P))$. By Theorem 3.5 of [Lu], there is a subgroup $0 S\left(M_{2}\right.$ of $\operatorname{Aut}\left(\pi_{1} M_{2}\right)$ which maps isomorphically to $p^{-1}(\operatorname{Stab}(P))$ via the natural homomorphism $\operatorname{Aut}\left(\pi_{1} M_{2}\right) \rightarrow \operatorname{Out}\left(\pi_{1} M_{2}\right)$. Since $p^{-1}(\operatorname{Stab}(P))$ has finite index in $\operatorname{Out}\left(\pi_{1} M_{2}\right)$, the inverse of $\operatorname{OS}\left(M_{2}\right) \rightarrow$ $p^{-1}(\operatorname{Stab}(P))$ is a virtual splitting of $\operatorname{Aut}\left(\pi_{1} M_{2}\right) \rightarrow \operatorname{Out}\left(\pi_{1} M_{2}\right)$.
Theorem 3.3. The representation $s: \Gamma_{2}(P) \rightarrow \operatorname{Aut}\left(\pi_{1} M_{2}\right)$ of Theorem 1.2 corresponds to the virtual splitting of Theorem 3.5 of $[L u]$.
Proof. As observed in the proof of Proposition 3.6 of [Lu], the factor $\operatorname{OS}\left(M_{2}\right)$ of the splitting of Theorem 3.5 of [Lu] can be characterized precisely as follows. Let $\phi \in \operatorname{Aut}\left(\pi_{1}\left(M_{2}, P\right)\right)$. Then $\phi \in O S\left(M_{2}\right)$ if and only if $i_{*}(\phi(x))=$ $\phi\left(x^{-1}\right)$ for each element x of a specified set $\{a, b, c, d\}$ of generators of $\pi_{1}\left(M_{2}, P\right)$. But $i_{*}(x)=x^{-1}$ for each element x of this set of generators. Hence, $\phi \in O S\left(M_{2}\right)$ if and only if $i_{*} \circ \phi=\phi \circ i_{*}$.

Thus, by Proposition 1.3, $s\left(\Gamma_{2}(P)\right) \subset O S\left(M_{2}\right)$. By Theorem 3.5 of [Lu], $O S\left(M_{2}\right)$ is mapped isomorphically to $p^{-1}(\operatorname{Stab}(P))=\Gamma_{2}(P)$ by the natural homomorphism $\operatorname{Aut}\left(\pi_{1}\left(M_{2}, P\right)\right) \rightarrow \operatorname{Out}\left(\pi_{1}\left(M_{2}, P\right)\right)$. Since s is a virtual splitting of this homomorphism on the subgroup of finite index $\Gamma_{2}(P)$, we conclude that $s\left(\Gamma_{2}(P)\right)$ is equal to $\operatorname{OS}\left(M_{2}\right)$.

References

[B] Birman, J. S., Braids, Links and Mapping Class Groups, Ann. of Math. Studies, no. 82, Princeton University Press, Princeton, New Jersey, 1974
[B-H] Birman, J. S. and Hilden, H. M., Isotopies of homeomorphisms of Riemann surfaces, Ann. of Math., vol. 97, no. 3. (1973), 424-439
[F-K] Farkas, H. M. and Kra, I., Riemann Surfaces, Graduate Texts in Math. 71, Springer-Verlag, New York 1980
[H] Humphries, S., Generators for the mapping class group, in Topology of Lowdimensional Manifolds, Lecture Notes in Mathematics. 722, Springer-Verlag, Berlin, 1979, 44-47
[Li] Lickorish, W. B. R., A finite set of generators for the homeotopy group of a 2-manifold, Proc. Camb. Phil. Soc. 60 (1964), 769-778 and 62(1966), 679-681
[Lu] Lustig, M., Weierstrass points and multiple intersection points of closed geodesics, Geometriae Dedicata 48 (1993), 1-14
[O] O'Meara, O. T., Symplectic Groups, Mathematical Surveys, no. 16, American Mathematical Society, Providence, Rhode Island, 1978
[W] Wright, G., The Reshetikhin-Turaev representation of the mapping class group, to appear in the Journal of Knot Theory and its Ramifications

Department of Mathematics, Michigan State University, East Lansing, MI 48824

[^0]: Date: July 15, 1994.

