In all problems, you may use symmetry where appropriate and calculations where neccessary.

1. Let X be a real random variable given by a PDF (for some a)

$$
f_{X}(x)=\left\{\begin{array}{cl}
a\left(1-x^{2}\right), & \text { for }-1<x<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(i) Find the proper value of a that makes this a probability density function.

$$
1=\int f_{X}(a) d x=\left.a\left(x-\frac{1}{3} x^{3}\right)\right|_{-1} ^{1}=a(4 / 3)
$$

Thus $a=3 / 4$.
(ii) Find $\mathbb{E}(X)$
f_{X} is symmetric around 0 ie $f_{X}(0+s)=f_{X}(0-s)$ so $\mathbb{E}(X)=0$.
Let $Y=X^{2}$
(iii) Find the PDF of Y

Two functions for x^{-1}, these are $x_{ \pm}(y)= \pm \sqrt{y}$. Find, $\left|\frac{d}{d y}(\pm \sqrt{y})\right|=\frac{1}{2 \sqrt{y}}$

$$
f_{Y}(y)=f_{X}\left(x_{+}(y)\right)\left|\frac{d}{d y} x_{ \pm}(y)\right|+f_{X}\left(x_{-}(y)\right)\left|\frac{d}{d y} x_{ \pm}(y)\right|=\frac{3}{4}\left(y^{-1 / 2}-y^{1 / 2}\right)
$$

2. Let $A=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq x \leq 1\right\}$, Let the pair (X, Y) be uniformly distributed on A.
(i) Find the joint density $f_{X, Y}$ of X and Y

We must have $f_{X, Y}(x, y)=c$ for $(x, y) \in A$ and 0 otherwise.

Integrate over the density,

$$
1=\iint f_{X, Y}(x, y) d x d y=\left(\iint\right)_{A} c d x d y
$$

where the right hand side indicates the integral over the triangle A. The area of the triangle is $1 / 2$ so $c=2$.
(ii) Find the marginal distributions of X and Y

$$
f_{X}(x)=\int_{\mathbb{R}} f_{X, Y}(x, y) d y=\mathbf{1}_{\{0<x<1\}} \int_{0}^{x} 2 d y=2 x \mathbf{1}_{\{0<x<1\}}
$$

Here $\mathbf{1}_{\{0<x<1\}}=1$ if $0<x<1$ and $\mathbf{1}_{\{0<x<1\}}=0$ otherwise.

$$
f_{Y}(y)=\int_{\mathbb{R}} f_{X, Y}(x, y) d x=\mathbf{1}_{0<y<1} \int_{y}^{1} 2 d y=2(1-y) \mathbf{1}_{\{0<y<1\}}
$$

(iii) Find the Expectation of X and Y

$$
\begin{gathered}
\mathbb{E} X=\int_{\mathbb{R}} x f_{X}(x) d x=\int_{0}^{1} 2 x^{2} d x=2 / 3 \\
\mathbb{E} Y=\int_{\mathbb{R}} y f_{Y}(y) d y=\int_{0}^{1} 2(1-y) y d x=1 / 3
\end{gathered}
$$

(iv) Find the variance of X and Y

$$
\mathbb{E}\left(X^{2}\right)=\int_{\mathbb{R}} x^{2} f_{X}(x) d x=\int_{0}^{1} 2 x^{3} d x=1 / 2
$$

Then $\operatorname{var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2}=1 / 2-(2 / 3)^{2}=1 / 18$
The marginals distributions of X and Y are symmetric around $1 / 2$:
$f_{X}(1 / 2+s)=f_{Y}(1 / 2-s)$
Thus $\operatorname{var}(X)=\operatorname{var}(Y)$.
(v) Find the covariance of X and $Y, \operatorname{cov}(X, Y)$, write the convariance matrix.

$$
\mathbb{E}(X Y)=\iint x y f_{X, Y}(x, y) d x d y=\int_{0}^{1} \int_{0}^{x} 2 x y d y d x=\int_{0}^{1} x^{3} d x=1 / 4
$$

So $\operatorname{cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)=1 / 36$

$$
\Sigma=\frac{1}{36}\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

(vi) Find the conditional probability of X with respect to Y for any $Y=y$, ie find $f_{X}(x \mid Y=y)$

$$
f_{X}(x \mid Y=y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{1}{1-y} \mathbf{1}_{\{0<y<x<1\}}
$$

(vi) Find $E(X \mid Y)$

$$
\begin{aligned}
E(X \mid Y=y) & =\int x f_{X}(x \mid Y=y) d x \\
& =\mathbf{1}_{\{0<y<1\}} \int_{y}^{1} \frac{x}{1-y} d x \\
& =\mathbf{1}_{\{0<y<1\}} \frac{1-y^{2}}{1-y} \\
& =\mathbf{1}_{\{0<y<1\}}(1+y)
\end{aligned}
$$

Thus, taking Y as a random variable:

$$
E(X \mid Y)=(1+Y)
$$

