In all problems, you may use symmetry where appropriate and calculations where necessary.

1. Let X be a real random variable given by a PDF (for some a)

$$f_X(x) = \begin{cases} a(1-x^2), & \text{for } -1 < x < 1\\ 0, & \text{otherwise} \end{cases}$$

(i) Find the proper value of a that makes this a probability density function.

$$1 = \int f_X(a)dx = a(x - \frac{1}{3}x^3)|_{-1}^1 = a(4/3)$$

Thus a = 3/4.

(ii) Find $\mathbb{E}(X)$

 f_X is symmetric around 0 ie $f_X(0+s) = f_X(0-s)$ so $\mathbb{E}(X) = 0$.

Let
$$Y = X^2$$

(iii) Find the PDF of Y

Two functions for x^{-1} , these are $x_{\pm}(y) = \pm \sqrt{y}$. Find, $\left| \frac{d}{dy}(\pm \sqrt{y}) \right| = \frac{1}{2\sqrt{y}}$

$$f_Y(y) = f_X(x_+(y)) \left| \frac{d}{dy} x_{\pm}(y) \right| + f_X(x_-(y)) \left| \frac{d}{dy} x_{\pm}(y) \right| = \frac{3}{4} (y^{-1/2} - y^{1/2})$$

- 2. Let $A = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le x \le 1\}$, Let the pair (X,Y) be uniformly distributed on A.
 - (i) Find the joint density $f_{X,Y}$ of X and Y

We must have $f_{X,Y}(x,y) = c$ for $(x,y) \in A$ and 0 otherwise.

Integrate over the density,

$$1 = \int \int f_{X,Y}(x,y) dx dy = \left(\int \int \right)_A c \ dx dy$$

where the right hand side indicates the integral over the triangle A. The area of the triangle is 1/2 so c=2.

1

(ii) Find the marginal distributions of X and Y

$$f_X(x) = \int_{\mathbb{R}} f_{X,Y}(x,y) dy = \mathbf{1}_{\{0 < x < 1\}} \int_0^x 2dy = 2x \mathbf{1}_{\{0 < x < 1\}}$$

Here $\mathbf{1}_{\{0 < x < 1\}} = 1$ if 0 < x < 1 and $\mathbf{1}_{\{0 < x < 1\}} = 0$ otherwise.

$$f_Y(y) = \int_{\mathbb{R}} f_{X,Y}(x,y) dx = \mathbf{1}_{0 < y < 1} \int_{y}^{1} 2dy = 2(1-y)\mathbf{1}_{\{0 < y < 1\}}$$

(iii) Find the Expectation of X and Y

$$\mathbb{E}X = \int_{\mathbb{R}} x f_X(x) \ dx = \int_0^1 2x^2 \ dx = 2/3$$

$$\mathbb{E}Y = \int_{\mathbb{R}} y f_Y(y) \ dy = \int_0^1 2(1 - y)y \ dx = 1/3$$

(iv) Find the variance of X and Y

$$\mathbb{E}(X^2) = \int_{\mathbb{R}} x^2 f_X(x) \ dx = \int_0^1 2x^3 \ dx = 1/2$$

Then $var(X) = \mathbb{E}(X^2) - (\mathbb{E}X)^2 = 1/2 - (2/3)^2 = 1/18$

The marginals distributions of X and Y are symmetric around 1/2:

$$f_X(1/2 + s) = f_Y(1/2 - s)$$

Thus var(X) = var(Y).

(v) Find the covariance of X and Y, cov(X, Y), write the convariance matrix.

$$\mathbb{E}(XY) = \int \int xy f_{X,Y}(x,y) \ dxdy = \int_0^1 \int_0^x 2xy dy dx = \int_0^1 x^3 dx = 1/4$$

So $cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 1/36$

$$\Sigma = \frac{1}{36} \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right)$$

(vi) Find the conditional probability of X with respect to Y for any Y = y, ie find $f_X(x|Y = y)$

2

$$f_X(x|Y=y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{1}{1-y} \mathbf{1}_{\{0 < y < x < 1\}}$$

(vi) Find E(X|Y)

$$E(X|Y = y) = \int x f_X(x|Y = y) dx$$

$$= \mathbf{1}_{\{0 < y < 1\}} \int_y^1 \frac{x}{1 - y} dx$$

$$= \mathbf{1}_{\{0 < y < 1\}} \frac{1 - y^2}{1 - y}$$

$$= \mathbf{1}_{\{0 < y < 1\}} (1 + y)$$

Thus, taking Y as a random variable:

$$E(X|Y) = (1+Y)$$