
Probability Review

1 Probability space

Definition of probability space requires 3 parts

• Sample space S containing all outcomes of the experiment

• A collection Ω of the subsets of S, which obey the following,

– If A,B ∈ Ω then A ∪B ∈ Ω

– If A ∈ Ω then S\A ∈ Ω.

– Ω must contain both S and ∅.

This collection is should be thought of as how refined in information are the observations of
the random variable. For instance, if the experiment is the values of the stock market then
observations on the first day of the month are not able to uncover the values of the stock on the
second day of the month.

• A probability measure is a function P : Ω→ R so that

– For all A ∈ Ω, 0 ≤ P(A) ≤ 1.

– For (Ei)
∞
i=1 a subcollection of disjoint sets of Ω we have P(∪iEi) =

∑
i P(Ei).

– P (∅) = 0 and P (S) = 1.

1.1 Random Variables

A random variable X is a function on S, which may take vales, for example in Rn for n ≥ 1. Let us
write X : S → R in this case, which means X is a function with Domain S and range R.

For ‘any’ subset A of R, the set X−1(A) ∈ Ω. (Here ‘any’ should actually be limited for technical
reasons that do not concern us).

Thus in the most rigorous sense, to define a random variable we need a trio (S,Ω,P) and a function
X : S → R.

Example: (Bernoulli Trial)

Recall a Bernoulli trial is a model of a (weighted) coin flip. For pedagogical reasons, lets go through
the full above construction. Lets call S = {H,T}, and Ω = {∅, {T}, {H}, {H,T}}, which in this case
is the full power set of S. Define P (T ) = q and P (H) = p. Let X : S → {0, 1}, defined by X(T ) = 0
and X(H) = 1.

Thus the probability X is 1 is given by

P(X = 1) = P (X−1(1)) = P ({H}) = p
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If you have the feeling that we just went through alot of trouble to get nowhere, for the sake of
this example, you are right. In this example and in many random variables we are aquainted with, it
is easier to think in terms of S = R, then we simply think of 1 itself as having mass p and 0 having
mass q.

Density function To complete the discussion, we define the density function for the random vari-
able.

In the discrete case, the density is defined on R the image of S under X,

p(x) = P(X−1(x)) =
∑

s:X(s)=x

P(s)

We can define the cumulative distribution,

FX(x) = P(X−1(−∞, x]).

If the variable is continuously distributed and FX is differentiable then,

fX(x) =
d

dx
FX(x).

Example: (Bernoulli Trial - part 2)

We can define the cumulative and density distribution of X. The density, fX(0) = q and fX(1) = p.
The cummulative distribution,

FX(x) =


0 x < 0,

q 0 ≤ x < 1

1 x ≥ 1

1.2 Why worry about Ω?

Consider a series of random variables X1, X2, .. which are, say, the value of a given stock each day.
Then Xi+1 depends in some way on Xi.

At each time step some new information is uncovered. Thus at time t, the events that are of the
form {X0 = x0, .., Xt = xt} is zero or one. Then at time t we condition on such an event to find the
probability of an event of the form {X0 = x0, .., Xt = xt, Xt+1 = xt+1}

Thus we think of Ω(= Ωt+1) at time t + 1 to be larger (ie contain more information) than the
Ω(= Ωt) at time t.

We see therefore that we need many Ω, one for each time step. We will develop these ideas with
examples later in the course.

1.3 Important examples of random variables

Here is a list, please refer to your favorite probability text for details.

• Discrete/continuous uniform
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• Bernoulli trial

• Binomial

• Geometric

• Normal/Gaussian

• Poisson

• Exponential

1.4 Expectation

The most important quantity to measure a random variable is the expectation. We’ll define this in
the case of R ⊂ R.

Lets use the probability space definition to define the expectation,

E(X) =
∑
s∈S

X(s)P(s).

On the other hand, if we use a density distribution,

E(X) =
∑
x∈R

xp(x)

In the continuous case:

E(X) =

∫
R
xfX(x)dx

Example: (Continuous ‘triangular’ distribution)

Consider X given by density fX(x) = 2x for 0 ≤ x ≤ 1. Find the expectation,

E(X) =

∫ 1

0

xfX(x)dx =

∫ 1

0

x(2x)dx =
2x3

3

∣∣∣∣1
0

=
2

3

1.4.1 Tail sum formula

If X is a nonnegative random variable with cummulative distribution FX then

FX(x) = 0

for all x < 0.
If X is continuously distributed then fX(x) = 0 for all x < 0.
If X is a non negative random variable we can calculate the expectation with the following formula,

E(X) =

∫ ∞
t=0

P(X > t)dt =

∫ ∞
t=0

[1− FX(t)]dt

This follows in the case that X is continously distributed from,

E(X) =

∫ ∞
t=0

[1− FX(t)]dt =

∫ ∞
t=0

∫ ∞
x=t

fX(x)dxdt =

∫ ∞
x=0

∫ x

t=0

fX(x)dtdx =

∫ ∞
x=0

xfX(x)dx
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This formula is valid for discrete random variables as well.
Example: (Geometric distribution)

Suppose p+ q = 1 and P(X = k) = qk−1p. So

P(X ≤ k) = p+ qp+ ...+ qk−1p =
1− qk

1− q
p = 1− qk

So P(X > k) = qk Now we have,

∞∑
k=0

P(X > k) = 1 + q + q2 + · · · = 1

1− q
=

1

p
.

2 Random Variables with joint distribution

Suppose Z takes on values in R2, then we can write Z = (X, Y ) where there is some joint density
function fX,Y : R2 → R+ where R+ = [0,∞). Then for A ⊂ R2, we have

P(Z ∈ A) =

∫ ∫
(x,y)∈A

fX,Y (x, y)

Example: (Uniform distribution on a triangle)

Consider Z = (X, Y ) ∼ U(A) where A is the triangle A = {(x, y) : 0 ≤ y ≤ x ≤ 1} then Z has the
density fZ(z) = 2χz∈A. Equivalently, (X, Y ) has joint density fX,Y (x, y) = 2χ(x,y)∈A

Note here we use notation χP (z) = 1 when condition P (z) is true and χP (z) = 0 otherwise.

We can define cumulative density as usual FX,Y (x, y) = P(X ≤ x; Y ≤ y).
If the density fX,Y exists then,

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dudv

so
d2

dxdy
FX,Y = fX,Y

Example: (Two day stock price)

Suppose the value of a stock on the first day X1 is uniformly distributed on [1, 2], suppose the value
on the second day X1 is uniformly distributed over an interval of lenght one centered at the value of
the first day.

We can write independent variables Ui ∼ U [0, 1] for i = 1, 2. Then X1 = 1 + U1, and X2 =
X1 − 1/2 + U2.

The shape of this object in R2 is a parallelogram with vertices (1, 0.5), (1, 1.5), (2, 1.5) and (2, 2.5).
fX1,X2(x1, x2) = 1 for (x1, x2) on the interior of the parallelogram and 0 otherwise.

Notice X2 however is distributed from 0.5 to 2.5. Is it uniformly distributed?
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2.1 Marginals

The formula for marginal density of bivariate discrete random variable:

fX(x) =
∑

y:(x,y)∈S

P[(X, Y ) = (x, y)]

similarly for the continuous case, where fX,Y is joint density

fX(x) =

∫
y∈R

fX,Y (x, y)dy

2.2 Sums

We wish to consider the special examples of sums of random variables.
Example: (Two day stock price – part 2)

We continue the example above. Let us find the density of X2.

fX2(x2) =

∫
y∈R

fX1,X2(y, x2)dy =


0 2.5 < x2

−x2 + 2.5 1.5 < x2 ≤ 2.5

x2 − 0.5 0.5 < x2 ≤ 1.5

0 x2 ≤ 0.5

Let us consider the simple example of the sum of a die roll.
Example: (Sum of die roll)

Suppose X, Y ∼ U{1, 2, .., 6} that is, both are the outcomes of a dice roll. Let W = X + Y , what is
the distribution of W ?
We have

P(W = 2) =
1

36
, ...,P(W = 7) =

6

36
, ...,P(W = 12) =

1

36
.

Now consider a continuous example,
Example: (Sum of coordinates in a triangle)

Suppose (X, Y ) ∼ U(A), where A = {(x, y) : 0 ≤ y ≤ x ≤ 1}. What is the density?
The cummulative can be found by simply considering the area of the subset, we leave the reader to
verify,

P(W ≤ w) =

{
w2/2 : 0 ≤ w ≤ 1

1− (2− w)2/2 : 1 ≤ w ≤ 2

so the density is

fW (w) =

{
w : 0 ≤ w ≤ 1

2− w : 1 ≤ w ≤ 2

Notice these density distributions are ‘tent-shaped’, the moral of these examples for now is that sums
of random variables tend to concentrate.
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2.3 Independent Random Variables

Variables X and Y on R are independent if, for all x, y ∈ R we have

FX,Y (x, y) = P(X ≤ x;Y ≤ y) = P(X ≤ x)P(Y ≤ y) ≤ FX(x)FY (y)

If F is differentiable and we can define the density it then follow that the density is multiplicative, ie,

fX,Y (x, y) = fX(x)fY (y)

A corollary of this representation is that for X, Y independent random variables we have

E(XY ) = E(X)E(Y ).

3 Derived random Variables

Given random variable X, define probability in the case of Y = g(X).
The cumulative here is defined as

FY (y) =

∫
x:g(x)≤y

fX(x)dx

Suppose for every y an interval of (y − ε, y + ε) exists so that there are local functions (xi) so that
g(xi(y

′)) = y′ for y′ ∈ (y − ε, y + ε). Then the derivative of the cummulative density,

fY (y) =
d

dy
FY (y) =

∑
i

fX(xi(y))

∣∣∣∣ ddy [xi(y)]

∣∣∣∣
Example: (Square of uniform)

Let X ∼ U([−2, 2]) and Y = X2. Calculate the CDF and PDF.
Then for 0 ≤ y ≤ 4,

FY (y) = P(X : X2 ≤ y) =

∫ √y
−√y

(1/4)dx =
2
√
y

4
.

Let x±(y) = ±√y, then

fY (y) = fX(+
√
y) |(+√y)′|+ fX(−√y) |(−√y)′| = 1

4
√
y

for 0 < y < 4, and 0 otherwise.

3.1 Moments

The moments of the random variables are the expectations of powers of the random variables The kth

moment of X is

E(Xk) =

∫
R
xkfX(x)dx

The kth central moment is

E([X − E(X)]k) =
∑
i

(−1)i
(
k

i

)
E(X i)[E(X)]k−i
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3.1.1 Variance

Of course the most important central moment is the second. It is known as the variance,

V ar(X) = E[(X − E(X))2] = E(X2)− [E(X)]2 =: σ2
X

The square root of the variance is the Standard deviation

σX =
√
var(X)

Recall these helpfull properties of variance:

1 For a, b ∈ R, we have var(aX + b) = a2var(X).

2 For X1, X2 independent random variables var(X1 +X2) = var(X1) + var(X2)

3 ForX1, X2 independent random variables var(X1X2) = var(X1)var(X2)−µ2
X1
var(X2)−µ2

X2
var(X1).

As a corrolary, if µX1 = µX2 = 0 then var(X1X2) = var(X1)var(X2).

Example: (Two day stock price)

Let us find the variance of X1 and X2. Define Ui ∼ U [0, 1] for i = 1, 2 - the Ui are uniformly distributed
between 0 and 1. Here X1 = 1 + U1 and X2 = X1 − 1

2
+ U2 = 1

2
+ U1 + U2.

var(X1) = var(U1) = 1/12

having used property 1 and that for U ∼ U [a, b] that var(U) = [b− a]/12 .
On the other hand the variance for X2 is,

var(X2) = var(
1

2
+ U1 + U2) = var(U1) + var(U2) = 1/6.

having used property 1 and 2.

4 Covariance

Suppose X and Y have a joint CDF FXY , then

cov(X, Y ) = E[(X − µX)(Y − µY )]

for µX = EX and µY = EY .
We can easily derive cov(X, Y ) = E(XY ) − µXµY . Notice as well cov(X, Y ) = cov(Y,X) and

var(X) = cov(X,X).
Define the covariance matrix

Σ = ΣX,Y =

(
var(X) cov(X, Y )
cov(X, Y ) var(Y )

)
Let Z = aX + bY then (varify this)

var(Z) = cov(aX + bY, aX + bY ) = a2varX + 2ab cov(X, Y ) + b2var(Y ) =
(
a b

)
Σ

(
a
b

)
In particular, for Z = X + Y we have var(Z) = var(X) + 2cov(X, Y ) + var(Y )
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That is Σ has the property that for all v ∈ R2 we have vTΣv ≥ 0. This property is known as
positive semidefinite.

Observe Σ is real and symmetric so that Σ = ODOT where the matrices O are orthogonal and
D is diagonal - with entries being the eigenvalues of Σ. As Σ is positve definite, the eigenvalues are
nonnegative.

Of course this entire discussion generalizes to a set of n jointly distributed random variables
X1, ..., Xn.

Correlation The covariance of two random variables may be positive or negative. Random variables
which have positive covariance have the property that as one increases then on average the second
increases.

On the otherhand if the covariance is negative then as one increases on average the second decreases.
It is usefull to normalize the covariance to a number ρ between −1 and 1. Where |ρ| = 1 indicates

‘perfect’ correlation between the two random variables. Let

ρ = ρXY = corr(X, Y ) =
cov(X, Y )

σXσY

Example: (Two day stock price – part 3)

We continue the example above. Let us find the covariance matrix and the correlation of X1 and X2.
First find the covariance of X1 and X2. Find the expectation of the product,

E(X1X2) = E((1 + U1)(1/2 + U1 + U2))

= E{(3/2 + [U1 − 1/2])(3/2 + [U1 − 1/2] + [U2 − 1/2])}
= (3/2)2 + (3/2)E([U1 − 1/2] + [U2 − 1/2]) + (3/2)E([U1 − 1/2])+

+ E((U1 − 1/2)2) + E(U1 − 1/2)(U2 − 1/2)

= (3/2)2 + (1/12) + 0 = (3/2)2 + (1/12)

But E(X1)E(X2) = (3/2)2 so

cov(X1, X2) = E(X1X2)− E(X1)E(X2) = 1/12

4.1 Gaussians

One dimensional Gaussians X ∼ N(µ, σ2) have the PDF

fX(y) =
1

σ
√

2π
e−

(x−µ)2

2σ2

Recall Gaussians are stable, that is for Xi ∼ N(µi, σ
2
i ) we have X1 +X2 ∼ N(µ1 + µ2, σ

2
1 + σ2

2).
For any covariance matrix Σ (that is a positive definite real symmetric matrix) in Rn×n (real n×n

matrices) and vector µ ∈ Rn we can define a Multivariate Gaussian distribution X with PDF

fX(x) =
1√

(2π)n det(Σ)
e−

1
2

(x−µ)TΣ−1(x−µ)

Notice if Σ is the identity matrix we find X1, X2 normal random variables which are not independent
but the correlation is zero.
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5 Conditionals

Given a probability experiment, one often would like to condition on some partial knowledge of the
outcome.

Example: (Die roll)

Suppose we roll two die, one red and one green. The sample space is the set of ordered pairs S =
{(i, j) : i, j ∈ {1, .., 6}}. Consider the probability that one of the faces shows a 1.

P(At least one dice shows 1) = 1− P(Neither dice shows a 1) = 1− (5/6)2 = 11/36

But if we have partial knowledge of the outcome the probability may change, suppose we know the
sum is 4.

P(At least one dice shows 1|The sum of the die is 4) = 2/3

This can be seen by deduction, by considering the three possible outcomes where the sum of the roll
is 4: {(1, 3), (2, 2), (3, 1)}, two of three of these have a face with 1 showing.

5.1 Conditional probabilities

We will define the conditional probabilities, recall Bayes rule: let A,B ⊂ S

P(A|B) =
P(A ∩B)

P(B)
(5.1)

this gives the probability of event A given event B.
Example: (Die roll 2)

Suppose we roll two die, one red and one green. The sample space is the set of ordered pairs S =
{(i, j) : i, j ∈ {1, .., 6}}. Let X(i, j) = i+ j the sum of the faces of the die. Suppose we know that the
sum is greater than 7, ie X > 7. What is the probabilty X is greater than or equal to 10?

Let A = {X ≥ 10} and B = {X > 7}.

P(A ∩B) = P(A) = 6/36.

on the other hand P(B) = 15/36 so

P(A|B) =
6/36

15/36
=

2

5

Of course, we notice 2
5
6= 6

36

Example: (Die roll 3)

Let us continue the previous example. Let C be the event that the green dice is even. Find

P(A|C)

Notice the elements of A ∩C have the green dice is either 4 or 6. If the green dice is 4 the red dice is
6. If the green dice is 6 the red dice is 4,5, or 6.

P(A ∩ C) = 4/36 = 1/9
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Of course P(C) = 1/2. So

P(A|C) =
1/9

1/2
=

2

9

Finally let us return to the stock price example.
Example: (Two day stock price – part 4)

We continue the example above Suppose the event B is that the value of the stock on the second day
is 5/3 ie B = {X2 = 5/3}. Notice P(B) = 0 can we condition on it?!

Of course, if we think in terms of our usual notion of taking things in calculus we can define and
then take limits.

That is let Bε = {|X2 − 5/3| < ε}, and define for an event A, P(A|B) = limε→0 P(A|Bε).

Let A be the event that X1 < 3/2. Show

P(A|B) = 2/5

5.2 Conditional Random Variable

We condition the random variable Y on X with joint PDF fX,Y with the function,

fY (y|X = x) =
fX,Y (x, y)

fX(x)

where fX is the marginal of X defined in Section 2.1.

In the discrete setting the conditional distribution is

PY (y|X = x) =
PX,Y (x, y)

PX(x)

where PX is again the marginal of X.
Example: (Two day stock price – part 5)

Again let B be the value of the stock on the second day is 5/3 ie B = {X2 = 5/3}. Show that
fX2(x) = 6/5 for x ∈ (7/6, 2) and zero otherwise.

5.3 Conditional expectation

As the name indicates this is expectation conditioned on some function on the probability space.
Formally, for jointly distributed random variables X and Y ,

E(Y |X) =
∑
y

P(Y = y|X).
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Notice this is a function of X. As a matter of fact:

E(Y ) = EX [E(Y |X)]

where EX indicates taking expectation with respect to X.
Example: (unfair coin flips)

Suppose 3 unfair coins are flipped. The outcome of each flip is Fi ∈ {h, t}, i = 1, 2, 3. Let p be the
probability of a head, P(Fi = h) = p. Let X map the coin flip to {0, 1} ie X(h) = 1 and X(t) = 0,
define Xi = X(Fi) The total number of heads is H,

H = X1 +X2 +X3.

Have we seen H before? Is it one of the ‘Important examples of random variables’?

Find E(H|X1) and E(X1|H).

First we find,

E(H|X1) = 0P(H = 0|X1) + 1P(H = 1|X1) + 2P(H = 2|X1) = 3P(H = 3|X1)

consider fixing X1,
E(H|X1 = 0) = 2pq + 2p2 = 2p

and
E(H|X1 = 1) = 1 · q2 + 2 · 2pq + 3 · p2 = 1 + 2pq + 2p2 = 1 + 2p

consider making this a function of X1 (note above each are of the form of the value of X1 plus the
expectation of X2 +X3)

E(H|X1) = E[X1 +X2 +X3|X1]

= X1 + E[X2 +X3]

= X1 + 2p

notice this is a function of X1 only - everything else has been integrated. On the other hand,

E(X1|H = 0) = P(X1 = 1|H = 2) = 0

E(X1|H = 1) = P(X1 = 1|H = 1) = 1/3

E(X1|H = 2) = P(X1 = 1|H = 2) = 2/3

E(X1|H = 3) = P(X1 = 1|H = 3) = 1

clearly a good function is
E(X1|H) = H/3.

An alternative derivation is due to each coin having equal probability of turning up heads, so any of
the heads has equal probability to be the first coin.

The first part of the example illustrates that

E(f(X) + g(Y )|X) = f(X) + E(g(Y )|X).

Similar:
E(f(X)g(Y )|X) = f(X)E(g(Y )|X)

11



And if Y is independent of X, E(g(Y )|X) = E(g(Y )) which is a number - no longer a function.
The above can be generalized to the case conditioning on several random variables.
Example: (biased coin flips)

Again suppose P(Xi = h) = p, and P(Xi = t) = 1−p = q. If H = X1 +X2 +X3. Then the conditional
expectation is

E(H|X1, X2) = X1 +X2 + p.

or
E(X1|H) = H/3

Now suppose Hm = X1 + · · ·+Xm so for m < n we have

E(Hm|Hn) =
m

n
Hn

on the other hand,

E(Hn|Hm) = Hm + E(Xm+1 + · · ·+Xn) = Hn + p(n−m).

In the above example we can let Fi contain ‘all the information obtained from the first i coins.’
This is just notation, so we will write,

E(Hn|Fm) ≡ E(Hn|X1, · · · , Xm).

Example: (Sum of i.i.d.)

Let Xi for i = 1, 2, . . . be iid random variables Xi ∼ X with E(X) = µ = 0 and V ar(X) = E(X2) =
σ2. Let m < n,

E[S2
n|Fm] = E[((Sn − Sm) + Sm)2|Fm]

= E[(Sn − Sm)2 + 2(Sn − Sm)Sm + S2
m|Fm]

= E[(Sn − Sm)2] + 2SmE[Sn − Sm] + S2
m

= (n−m)σ2 + S2
m.

The third equality follows because Sn − Sm is independent of Fm the information from the first n
variables; the last equality follows because µ = 0 and E[XiXj] = E[Xi]E[Xj] = µ2 = 0.

6 Asymptotic behavior

Let (Ti)i≥1 be i.i.d. random variables, with distribution F (x) = P(Ti ≤ x). We assume for all
i = 0, 1, 2, ... that E(Ti) <∞ and define µ := E(T1).

Law of large numbers (LLN) The law of large numbers states, for Ti that with probability 1 the
average converges to the mean i.e.

lim
N→∞

N∑
i=1

Ti
N
→ µ.
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Notice the statement ‘with probability 1’, there are conceivable other sequences not averaging to the
mean but they total zero in probability - like flipping infinite heads in a row. An easier to understand,
but weaker, statement is

P
(∣∣∣∣T1 + · · ·TN

N
− µ

∣∣∣∣ > ε

)
→ 0 as N →∞.

The moral is T1 + · · ·+ TN ∼ µN , if we set t = µN then N = t/µ so that

T1 + · · ·+ Tt/µ ∼ t

Central Limit Theorem (CLT) We assume Var (T1) = σ2. The central limit theorem states, for
N(0, 1) a normal variable with mean 0 and variance 1,

T1 + · · ·+ TN −Nµ
σ
√
N

→ N(0, 1)

by this we mean that

P
(
T1 + · · ·+ TN −Nµ

σ
√
N

≤ x

)
→ Φ(x).

Where Φ is the cumulative distribution of a N(0, 1),

Φ(x) =

∫ x

−∞
e−x

2/2 dx√
2π
.

We write down the sum, (here Z ∼ N(0, 1)),

T1 + · · ·+ TN = SN ∼ Nµ+ Zσ
√
N

Central Limit Theorem - for multivariate random variables (CLT) Suppose Xi are iid
Random variables in Rd we may write

Xi =

 Xi(1)
...

Xi)(d)

 .

Suppose E(Xi) = µ ∈ Rd and Σ ∈ Rd×d is the covariance matrix Σj,k = cov(Xi(j), Xi(k)).
Let us suppose that detΣ 6= 0 (this is equivalent to saying that each Xi(j) has some randomness

not contained in the other Xi(k) - that is one of the Xi(j) is not a function of the other Xi(j).)
Then a sum of the Xi properly normalized approaches a Gaussian random variable. Let Sn =

X1 + · · ·+Xn That is for A ∈ Rd we have

lim
n→infty

P
(
Sn − nµ√

n
∈ A

)
=

∫
· · ·
∫
x∈A

e−(x−µ)TΣ−1(x−µ) dx1 · · · dxd√
(2π)d det Σ

.

As a short hand we write 1√
n
(Sn − nµ)

D−→ Z where Z ∼ N(0,Σ).
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